1
|
Adedayo AA, Musser R, Aanaenson M, Babalola OO. The biochemical and molecular mechanisms of plants: a review on insect herbivory. PLANT SIGNALING & BEHAVIOR 2025; 20:2439248. [PMID: 39723993 DOI: 10.1080/15592324.2024.2439248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Biochemical and molecular mechanisms have been essential mechanisms to reduce various insect attacks on plants. The biochemical methods are wide involving direct and indirect defenses. The defensive chemical substances are secreted effectively to the wound caused by the herbivores (insects and phytopathogens) on plants. Plants responded by producing VOCs which draw the natural enemies of the insects and phytopathogens. The progress observed in the cognition of the stimulus in plants and their potential to control the responses is characterized by the modification observed in molecular mechanisms which shifts our attention to the development of the endogenous resistance methods of preserving crops. The main objective of implementing a biotechnological mechanism in crop production is to employ durable and multimechanistic alternatives to insect pests via the stimulus the plant produces upon encountering the insect attack.
Collapse
Affiliation(s)
- Afeez Adesina Adedayo
- Department of Biological Sciences, Western Illinois University, 1 University Circle, Macomb, IL, USA
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Richard Musser
- Department of Biological Sciences, Western Illinois University, 1 University Circle, Macomb, IL, USA
| | - Mari Aanaenson
- Department of Biological Sciences, Western Illinois University, 1 University Circle, Macomb, IL, USA
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Department of Life Sciences, Imperial College London, Ascot, Berkshire, UK
| |
Collapse
|
2
|
Tang T, Ndikuryayo F, Gong XY, Amirinezhadfard E, Aslam MM, Chen MX, Yang WC. Deciphering the complex roles of leucine-rich repeat receptor kinases (LRR-RKs) in plant signal transduction. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112494. [PMID: 40180130 DOI: 10.1016/j.plantsci.2025.112494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Leucine-rich repeat receptor kinases (LRR-RKs) are essential receptor protein kinases in plants that are the key to signal perception and responses and central to regulating plant growth, development, and defense. Despite extensive research on the LRR-RK family, gaps persist in our understanding of their ligand recognition and activation mechanisms, interactions with co-receptor, signal transduction pathways, and biochemical and molecular regulation. Researchers have made significant advances in understanding the critical roles of LRR-RKs in plant growth and development, signal transduction, and stress responses. Here, we first summarized the gene expression levels of LRR-RKs in plants. We then reviewed the conservation and evolutionary relationships of these genes across different species. We also investigated the molecular mechanisms underlying the variations in LRR-RK signaling under different environmental conditions. Finally, we provide a comprehensive summary of how abiotic and biotic stresses modulate LRR-RK signaling pathways in plants.
Collapse
Affiliation(s)
- Ting Tang
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Ferdinand Ndikuryayo
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Xue-Yan Gong
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Elaheh Amirinezhadfard
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Mehtab Muhammad Aslam
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, MO 65201, USA
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China.
| | - Wen-Chao Yang
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China.
| |
Collapse
|
3
|
Annabi K, Haouala F, Hamrita A, Kouki R, Laabidi F, Rejili M, Akef Bziouech S, Mezghani Aïachi M. Architectural Analysis for Novel Olive Crop Management. PLANTS (BASEL, SWITZERLAND) 2025; 14:1707. [PMID: 40508381 PMCID: PMC12157064 DOI: 10.3390/plants14111707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/15/2025] [Accepted: 05/20/2025] [Indexed: 06/16/2025]
Abstract
Efficient fruit production, quality improvement, and timely harvesting are essential in olive cultivation, which requires optimised distribution and management of fruiting sites. This study aimed to support sustainable olive crop management by analysing the morphological characteristics of five cultivars (Chemlali, Chetoui, Koroneiki, Meski, and Picholine) under semi-arid Tunisian conditions. Through a detailed architectural analysis, we investigated the relationships between branching patterns, density, distribution of inflorescence and fruit sites, biometric traits (shoot length, internode number, and shoot dimensions), and geometric variability within each cultivar. Three trees per cultivar were analysed across three architectural units. The results showed marked architectural differences, highlighting the need for cultivar-specific strategies in planting, pruning, and orchard management. The distribution of shoots across botanical orders revealed unique branching patterns: Chemlali and Koroneiki showed thinner shoots and higher shoot density, reflecting strong apical dominance and their suitability for hyper-intensive systems. In addition, nonsignificant differences in long shoots' insertion angles between Meski, Chetoui, and Koroneiki suggest compatibility for co-cultivation, facilitating mechanised maintenance and harvesting. Emphasis on inter-cultivar compatibility and architectural coherence is crucial for orchard design. These findings provide important insights for optimising orchard management practices to improve productivity, fruit quality, and operational efficiency.
Collapse
Affiliation(s)
- Khouloud Annabi
- Research Laboratory of Agrobiodiversity and Ecotoxicology “LR21AGR02”, Higher Agronomic Institute of Chott Mariem, University of Sousse, Sousse 4002, Tunisia
| | - Faouzi Haouala
- Department of Biology, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11564, Saudi Arabia
| | - AbdelKarim Hamrita
- Research Laboratory of Agrobiodiversity and Ecotoxicology “LR21AGR02”, Higher Agronomic Institute of Chott Mariem, University of Sousse, Sousse 4002, Tunisia
| | - Rania Kouki
- High Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Foued Laabidi
- Research Laboratory, Improving the Productivity of Olive Tree and Product Quality, Olive Tree Institute Sousse, Ibn Khaldoun Street, B.P.: 14, Sousse 4061, Tunisia; (F.L.); (M.M.A.)
| | - Mokhtar Rejili
- Department of Biology, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11564, Saudi Arabia
| | - Samra Akef Bziouech
- Research Laboratory of Agrobiodiversity and Ecotoxicology “LR21AGR02”, Higher Agronomic Institute of Chott Mariem, University of Sousse, Sousse 4002, Tunisia
| | - Mouna Mezghani Aïachi
- Research Laboratory, Improving the Productivity of Olive Tree and Product Quality, Olive Tree Institute Sousse, Ibn Khaldoun Street, B.P.: 14, Sousse 4061, Tunisia; (F.L.); (M.M.A.)
| |
Collapse
|
4
|
Wang Z, Guo J, Luo W, Niu S, Qu L, Li J, Chen Y, Li G, Yang H, Lu D. Salicylic Acid Cooperates With Lignin and Sucrose Signals to Alleviate Waxy Maize Leaf Senescence Under Heat Stress. PLANT, CELL & ENVIRONMENT 2025; 48:4341-4355. [PMID: 39969247 DOI: 10.1111/pce.15437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
Leaf senescence induced by high temperature (HT) has become a primary factor limiting maize yield, particularly during the filling stage. Exogenous salicylic acid (SA) has emerged as an effective strategy to mitigate leaf senescence and HT-induced damage, though its underlying mechanisms remain unclear. This study investigated the regulatory mechanism of SA application on waxy maize subjected to HT during the early filling stage. Compared to HT alone, exogenous SA alleviated the inhibition of photosynthesis and oxidative damage by enhancing the activities of enzymes involved in photosynthesis and antioxidant system and modulating phytohormone metabolism and signal transduction pathways, thereby reducing leaf senescence and mitigating yield loss under HT. Transcriptomic and metabolomic analyses showed that HT downregulated most genes involved in the starch and sucrose metabolism pathway in leaves but promoted soluble sugar accumulation, which represents a plant strategy to cope with HT. Conversely, exogenous SA reversed this change and further enhanced soluble sugar accumulation in leaves. SA also regulated sugar metabolism by inhibiting trehalose-6-phosphate synthesis and activating SnRK1 to resist HT. Furthermore, SA stimulated lignin biosynthesis through the phenylpropanoid pathway, ensuring cell membrane integrity under HT. The relationship between SA signalling and plant heat tolerance was validated using a maize SA synthesis-synthetic mutant.
Collapse
Affiliation(s)
- Zitao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenxuan Luo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Shiduo Niu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Lingling Qu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Jing Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yanping Chen
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guanghao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Huan Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research, Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Deng J, Chen Y, Lin S, Shao Y, Zou Y, Zheng Q, Guo L, Lin J, Chen M, Ye Z. Molecular Regulation of Carotenoid Accumulation Enhanced by Oxidative Stress in the Food Industrial Strain Blakeslea trispora. Foods 2025; 14:1452. [PMID: 40361535 PMCID: PMC12071634 DOI: 10.3390/foods14091452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Blakeslea trispora is a key industrial strain for carotenoid production due to its rapid growth, ease of cultivation, and high yield. This study examined the effects of oxidative stress induced by rose bengal (RB) and hydrogen peroxide (H2O2) on carotenoid accumulation, achieving maximum yields of 459.38 ± 77.15 μg/g dry cell weight (DCW) at 0.4 g/L RB and 294.38 ± 14.16 μg/g DCW at 0.6% H2O2. These results demonstrate that oxidative stress promotes carotenoid accumulation in B. trispora. To investigate the underlying molecular mechanisms, transcriptional levels of key genes were analyzed under optimal stress conditions. In the carotenogenic pathway, only HMGR showed upregulation, while ACC, linked to fatty acid biosynthesis, remained unchanged. Within the mitogen-activated protein kinase (MAPK) pathway, FUS3 transcription increased under both stress conditions, MPK1 transcription rose only under H2O2 stress, and HOG1 exhibited no significant changes. Among heat shock proteins (HSPs), only HSP70 showed elevated transcription under H2O2 stress, while other HSP genes remained unchanged. These findings suggest that oxidative stress induced by RB and H2O2 enhances carotenoid accumulation in B. trispora through distinct regulatory pathways. This study provides valuable insights into stress-adaptive mechanisms and offers strategies to optimize carotenoid production in fungi.
Collapse
Affiliation(s)
- Jiawei Deng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuyang Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Siting Lin
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yilu Shao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuan Zou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Qianwang Zheng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Liqiong Guo
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Junfang Lin
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhiwei Ye
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| |
Collapse
|
6
|
Ali A, Zhao XT, Lin JS, Zhao TT, Feng CL, Li L, Wu RJ, Huang QX, Liu HB, Wang JG. Genome-wide identification and unveiling the role of MAP kinase cascade genes involved in sugarcane response to abiotic stressors. BMC PLANT BIOLOGY 2025; 25:484. [PMID: 40240958 PMCID: PMC12001561 DOI: 10.1186/s12870-025-06490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND The MAP Kinase cascade system is a conserved signaling mechanism essential for plant development, growth, and stress tolerance. Thus far, genes from the MAPK cascade have been identified in several plant species but remain uncharacterized in the polyploid Saccharum spp. Hybrid R570 genome. RESULTS This study identified 89 ScMAPK, 24 ScMAPKK, and 107 ScMAPKKK genes through genome-wide analysis. Phylogenetic classification revealed that four subgroups were present in each ScMAPK and ScMAPKK family, and three sub-families (ZIK-like, RAF-like, and MEKK-like) presented in the ScMAPKKK family. Conserved motif and gene structure analysis supported the evolutionary relationships of the three families inferred from the phylogenetic analysis. All of the ScMAPK, ScMAPKK and ScMAPKKK genes were mapped on four scaffolds (Scaffold_88/89/91/92) and nine chromosomes (1-8, 10). Collinearity and gene duplication analysis identified 169 pairs of allelic and non-allelic segmentally duplicated MAPK cascade genes, contributing to their expansion. Additionally, 13 putative 'ss-miRNAs' were predicted to target 87 MAPK cascade genes, with 'ssp-miR168a' alone regulating 45 genes. qRT-PCR analysis revealed differential gene expression under abiotic stressors. ScMAPK07, ScMAPK66, and ScRAF43 were down-regulated and acted as negative regulators. Conversely, ScMAPKK13, ScRAF10, and ScZIK18 were up-regulated at specific time points under drought, with ScZIK18 exhibiting strong defense. Under NaCl stress, most genes were down-regulated, except for slight increases in ScZIK18 and ScMAPKK13, suggesting a positive role in salt stress response. Under CaCl2 stress, five genes were significantly down-regulated, while ScRAF43 remained unchanged, reflecting their negative roles in stress adaptation and resource conservation. CONCLUSION This study provides insights into MAPK cascade gene evolution and function in sugarcane, highlighting distinct regulatory roles in abiotic stress responses. Interestingly, some genes acted as negative regulators, serving as a mechanism to balance stress responses and prevent overactivation. In contrast, others contributed to defense mechanisms, offering potential targets for stress resilience improvement. CLINICAL TRAIL NUMBER This study contains no clinical trials. Not applicable.
Collapse
Affiliation(s)
- Ahmad Ali
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Xue-Ting Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Ji-Shan Lin
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Ting-Ting Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Cui-Lian Feng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Ling Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Rui-Jie Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Qi-Xing Huang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Hong-Bo Liu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China.
| | - Jun-Gang Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China.
| |
Collapse
|
7
|
Bhagat PK, Verma N, Pandey S, Verma D, Sinha AK. MPK3 mediated phosphorylation inhibits the dimerization of ABI5 to fine-tune the ABA signaling in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109690. [PMID: 40010200 DOI: 10.1016/j.plaphy.2025.109690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 02/14/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
Seed germination is, a critical physiological process, is tightly regulated by the phytohormone abscisic acid (ABA). However, the cross talk between multiple regulatory pathways involved in seed germination remains poorly understood. Here, we show that ABA activates two MAP kinases, AtMPK3/AtMPK6, which interact with and phosphorylate AtABI5, a master regulator of ABA signaling. MAP kinase-mediated AtABI5 phosphorylation at the serine-314 position regulates its nuclear localization and dimerization. Interestingly, AtABI5 provides feedback regulation by directly binding to the promoter of AtMPK3 to modulate its transcription. Further, functional analyses revealed that overexpression of a phospho-null AtABI5S314A variant in the abi5-8 mutant background conferred increased ABA sensitivity during seed germination, heightened drought sensitivity, and delayed flowering compared to wild-type plants. Conversely, overexpression of phospho-mimic AtABI5S314D in abi5-8 mutant showed ABA insensitivity during seed germination, drought tolerance, and early floral transition similar to abi5-8 mutant. Collectively, our findings highlight that MAP kinase-mediated phosphorylation of AtABI5 fine-tunes ABA signaling by regulating its dimerization, providing new insights into the dynamic regulation of plant responses to environmental and developmental cues.
Collapse
Affiliation(s)
- Prakash Kumar Bhagat
- National Institute of Plant Genome Research, ArunaAsaf Ali Marg, New Delhi, 110067, India
| | - Neetu Verma
- National Institute of Plant Genome Research, ArunaAsaf Ali Marg, New Delhi, 110067, India
| | - Shubhangi Pandey
- National Institute of Plant Genome Research, ArunaAsaf Ali Marg, New Delhi, 110067, India
| | - Deepanjali Verma
- National Institute of Plant Genome Research, ArunaAsaf Ali Marg, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, ArunaAsaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
8
|
Li M, Gao H, Zhou M, Zhang Y, Jiang H, Li Y. The Apple Mitogen-Activated Protein Kinase MdMAPK6 Increases Drought, Salt, and Disease Resistance in Plants. Int J Mol Sci 2025; 26:3245. [PMID: 40244102 PMCID: PMC11989477 DOI: 10.3390/ijms26073245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
As sessile organisms, plants are exposed to a variety of environmental stresses caused by biotic and abiotic factors during their life cycle; as a result, plants have evolved complex defense mechanisms to cope with these stresses, among which the mitogen-activated protein kinase cascade signaling pathway is particularly critical. This study focused on MdMAPK6, a specific mitogen-activated protein kinase gene in Malus domestica, to illuminate its functions in stress responses. MdMAPK6 was successfully cloned from apple and shown to respond to various stressors, including drought, salt, and abscisic acid. Overexpressing MdMAPK6 in apple calli resulted in enhanced resistance to drought, salt, and Botryosphaeria dothidea. Ectopic expression of MdMAPK6 in Arabidopsis thaliana enhanced the resistance to drought, salt, and Pseudomonas syringae pathovar tomato DC3000. These results indicated that MdMAPK6 in apples is a traditional mitogen-activated protein kinase, which plays an important role in both biotic and abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | - Han Jiang
- State Key Laboratory of Wheat Improvement, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; (M.L.); (H.G.); (M.Z.); (Y.Z.)
| | - Yuanyuan Li
- State Key Laboratory of Wheat Improvement, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; (M.L.); (H.G.); (M.Z.); (Y.Z.)
| |
Collapse
|
9
|
Liu X, You L, Yu W, Yuan Y, Zhang W, Yan M, Zheng Y, Duan R, Meng G, Chen Y, Liu Z, Xiang G. Transcriptome profiles of leaves and roots of Brassica napus L. in response to antimony stress. Sci Rep 2025; 15:9413. [PMID: 40108303 PMCID: PMC11923117 DOI: 10.1038/s41598-025-88521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/28/2025] [Indexed: 03/22/2025] Open
Abstract
Antimony (Sb), a non-essential heavy metal, exerts severe toxic effects on the growth and development of plants. This study investigated the response of Brassica napus to Sb(III) stress under hydroponic conditions, focusing on Sb accumulation, physiological indexes, and transcriptome sequencing. Sb accumulation in different B. napus varieties showed consistent trends with physiological indicators (SOD, POD, CAT, MDA) in XZY512 root tissue. Both parameters increased with Sb concentration, reaching a peak at 75 mg/L before declining, suggesting that 75 mg/L Sb may be the optimal concentration for B. napus adaptation. Transcriptomic analysis identified 8,802 genes in root tissues and 13,612 genes in leaf tissues responsive to Sb stress, predominantly involved in oxidative stress responses, ABC transporters, glutathione metabolism, plant hormone signaling, and MAPK pathways. Physiological index changes were associated with upregulation of genes linked to antioxidants, including as CATs, GPXs, PERs, and GSTUs, in root tissues, whereas photosynthesis-related genes were mostly downregulated in leaf tissues. This work shows the potential of B. napus for phytoremediation efforts and offers important insights into its response mechanisms to Sb stress.
Collapse
Affiliation(s)
- Xianjun Liu
- College of Agriculture and biology, Key Laboratory of Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan of College of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Liang You
- College of Agriculture and biology, Key Laboratory of Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan of College of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Wencong Yu
- College of Agriculture and biology, Key Laboratory of Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan of College of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Yuhui Yuan
- College of Agriculture and biology, Key Laboratory of Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan of College of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Wei Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yu Zheng
- College of Agriculture and biology, Key Laboratory of Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan of College of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and biology, Key Laboratory of Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan of College of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Guiyuan Meng
- College of Agriculture and biology, Key Laboratory of Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan of College of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Yong Chen
- College of Agriculture and biology, Key Laboratory of Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan of College of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Zhongsong Liu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| | - Guohong Xiang
- College of Agriculture and biology, Key Laboratory of Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan of College of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China.
| |
Collapse
|
10
|
Dev W, Sultana F, Li H, Hu D, Peng Z, He S, Zhang H, Waqas M, Geng X, Du X. Molecular mechanisms of cold stress response in cotton: Transcriptional reprogramming and genetic strategies for tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112390. [PMID: 39827949 DOI: 10.1016/j.plantsci.2025.112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Cold stress has a huge impact on the growth and development of cotton, presenting a significant challenge to its productivity. Comprehending the complex molecular mechanisms that control the reaction to CS is necessary for developing tactics to improve cold tolerance in cotton. This review paper explores how cotton responds to cold stress by regulating gene expression, focusing on both activating and repressing specific genes. We investigate the essential roles that transcription factors and regulatory elements have in responding to cold stress and controlling gene expression to counteract the negative impacts of low temperatures. Through a comprehensive examination of new publications, we clarify the intricacies of transcriptional reprogramming induced by cold stress, emphasizing the connections between different regulatory elements and signaling pathways. Additionally, we investigate the consecutive effects of cold stress on cotton yield, highlighting the physiological and developmental disturbances resulting from extended periods of low temperatures. The knowledge obtained from this assessment allows for a more profound comprehension of the molecular mechanisms that regulate cold stress responses, suggesting potential paths for future research to enhance cold tolerance in cotton by utilizing targeted genetic modifications and biotechnological interventions.
Collapse
Affiliation(s)
- Washu Dev
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fahmida Sultana
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hongge Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 57202, China
| | - Daowu Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 57202, China
| | - Zhen Peng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Haobo Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Muhammad Waqas
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoli Geng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiongming Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 57202, China.
| |
Collapse
|
11
|
Zou Y, Zhu M, Zhu Z, Du T, Liu X, Jiang Y, Chen J. Discovery of Novel Antibacterial Agents against Plant Pathogens: Design, Synthesis, Antibacterial Activity, and Mechanism of Action of 1,2,4-Thiadiazole Derivatives Containing a Sulfone Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4534-4543. [PMID: 39943793 DOI: 10.1021/acs.jafc.4c08770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
1,2,4-Thiadiazole derivatives containing a sulfone moiety were designed and synthesized via scaffold hopping to facilitate the discovery of novel antibacterial agents. Most of the compounds exhibited excellent activity against three plant pathogenic bacteria. The half-maximal effective concentrations (EC50) of compound B7 for Xanthomonas oryzae pv oryzae (Xoo) and X. oryzae pv oryzicola (Xoc) concentrations were 0.4 and 1.0 mg/L, respectively. In addition, the EC50 values of compounds B1 and B24 for Xoo, Xoc, and Pseudomonas syringae pv actinidiae (Psa) were less than 5 mg/L and significantly better than those of the positive control agents thiodiazole copper (121.8, 119.5, and 142.0 mg/L, respectively) and bismerthiazol (73.3, 65.6, and 128.8 mg/L, respectively). Compound B7 exhibited protective and curative activities of 48.1 and 46.7%, respectively, against bacterial leaf blight, which were higher than those of bismerthiazol (35.5 and 36.9%, respectively) and thiodiazole copper (39.3 and 39.5%, respectively). Additionally, compound B7 exerted an effect on the virulence factors of Xoo (production of exopolysaccharides and extracellular enzymes, biofilm formation, and motility), membrane permeability, cell surface morphology, and intracellular content of reactive oxygen species. Transcriptome analysis showed that compound B7 improved the resistance of rice plants to external stress by influencing the metabolic process, biological regulation, catalytic activity of enzymes, and plant-pathogen interaction. Compound B7 can therefore be considered as a potential candidate antibacterial agent and warrants an in-depth investigation in the future.
Collapse
Affiliation(s)
- Yue Zou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Mei Zhu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zongnan Zhu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tingting Du
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xing Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yaojia Jiang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jixiang Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Zhou D, Li P, Yu S, Cui Z, Xu T, Ouyang L. Optimizing extrusion-based 3D bioprinting of plant cells with enhanced resolution and cell viability. Biofabrication 2025; 17:025008. [PMID: 39847862 DOI: 10.1088/1758-5090/adada1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/23/2025] [Indexed: 01/25/2025]
Abstract
3D bioprinting of plant cells has emerged as a promising technology for plant cell immobilization and related applications. Despite the numerous progress in mammalian cell printing, the bioprinting of plant cells is still in its infancy and needs further investigation. Here, we present a systematic study on optimizing the 3D bioprinting of plant cells, using carrots as an example, towards enhanced resolution and cell viability. We mainly investigated the effects of cell cluster forms and nozzle size on the rheological, extrusion, and printability properties of plant cell bioinks, as well as on the resultant cell viability and growth. We found that when the printing nozzle is larger than 85% of the cell clusters embedded in the bioink, smooth extrusion and good printability can be achieved together with considerable cell viability and long-term growth. Specifically, we optimized a bioink composited with suspension-cultured carrot cells, which exhibited better uniformity, smoother extrusion, and higher cell viability over 1 month culture compared to those with the regular callus or fragmented callus. This work provides a practical guideline for optimizing plant cell bioprinting from the bioink development to the printing outcome assessment. It highlights the importance of selecting a matched nozzle and cell cluster and might provide insights for a better understanding and exploitation of plant cell bioprinting.
Collapse
Affiliation(s)
- Dezhi Zhou
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Peixi Li
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Shuang Yu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Zhenhua Cui
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Tao Xu
- Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, People's Republic of China
| | - Liliang Ouyang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| |
Collapse
|
13
|
Chen L, Bin M, Lin J, Shen W, Zhang X. Characterization of MPK family members in the genus Citrus (Rutaceae) and analysis of the function of AbMPK13 in the response to citrus canker in Atalantia buxifolia. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109418. [PMID: 39708698 DOI: 10.1016/j.plaphy.2024.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/20/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Citrus bacterial canker has deleterious effects on global citrus production. The mitogen-activated protein kinase (MAPK) signaling cascade regulates plant defense against pathogen infection. Here, we identified 11 MAPKs in Atalantia buxifolia, a wild citrus species with high stress tolerance. Phylogenetic and gene structure analysis of the identified MAP kinases (MPKs) was conducted, and conserved motifs were identified. MPK expression was altered in Xanthomonas citri subsp. citri (Xcc)-resistant Atalantia buxifolia and Xcc-sensitive sweet orange after Xcc infection. AbMPK13 expression was significantly up-regulated after Xcc infection. AbMPK13 was localized to the cytoplasm, and its overexpression enhanced the resistance of sweet orange to Xcc and activated the salicylic acid (SA) signaling pathway. These findings clarify the role of MPKs in the citrus canker resistance of A. buxifolia.
Collapse
Affiliation(s)
- Lijuan Chen
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, 510640, China
| | - Minliang Bin
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, 510640, China; College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Jue Lin
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, 510640, China
| | - Wenzhong Shen
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, 510640, China
| | - Xinxin Zhang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, 510640, China.
| |
Collapse
|
14
|
Gao X, Zhu X, Wang Z, Liu X, Guo R, Luan J, Liu Z, Yu F. Modulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus by Sphingomonas Sp Y503 via the CrMAPKKK1-CrMAPKK1/CrMAPKK2-CrMPK3 Signaling Cascade. PLANT, CELL & ENVIRONMENT 2025; 48:1692-1704. [PMID: 39473344 DOI: 10.1111/pce.15253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 01/04/2025]
Abstract
Catharanthus roseus is a highly relevant model for investigating plant defense mechanisms and the biosynthesis of therapeutically valuable compounds, including terpenoid indole alkaloids (TIAs). It has been demonstrated that beneficial microbial interactions can regulate TIA biosynthesis in C. roseus, highlighting the need to fully comprehend the molecular mechanisms involved to efficiently implement eco-friendly strategies. This study explores the effects of a novel microbial strain, Y503, identified as Sphingomonas sp., on TIA production and the underlying mechanisms in C. roseus. Through bioinformatics analysis, we have identified 17 MAPKKKs, 7 MAPKKs, and 13 MAPKs within the C. roseus genome. Further investigation has verified the presence of the MAPK module (CrMAPKKK1-CrMAPKK1/CrMAPKK2-CrMPK3) mediating Y503 in regulating TIA biosynthesis in C. roseus. This study provides foundational information for strengthening the plant defense system in C. roseus through advantageous microbial interactions, which could contribute to the sustainable cultivation of medicinal plants such as C. roseus.
Collapse
Affiliation(s)
- Xiaoxiao Gao
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Xiaona Zhu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Zhiqin Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Xuejing Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Rui Guo
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Jing Luan
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Zhiwen Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Fang Yu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
15
|
Wang Z, Wang Y, Wong DCJ. Editorial: Surviving and thriving: how crops perceive and respond to temperature stress. FRONTIERS IN PLANT SCIENCE 2025; 15:1550257. [PMID: 39866320 PMCID: PMC11758980 DOI: 10.3389/fpls.2024.1550257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025]
Affiliation(s)
- Zemin Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, and Chinese Academy of Sciences (CAS) Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Darren Chern Jan Wong
- Division of Ecology and Evolution, Research School Research of Biology, The Australian National University, Acton, ACT, Australia
- School of Agriculture, Food, and Wine, Waite Research Precinct, University of Adelaide, Adelaide, Australia
| |
Collapse
|
16
|
Son S, An CS, Yoon WJ, Jeong Y, Han SC, Kim YB, Lee JD, Oh E, Choi H, Kwon M, Kim S, Aziz I, Jung MY, Im JH. Soybean mitogen-activated protein kinase GmMPK6 enhances drought tolerance. Biochem Biophys Res Commun 2025; 745:151170. [PMID: 39740401 DOI: 10.1016/j.bbrc.2024.151170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/17/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Soybeans are a critical crop that provides both protein and oil. In response to environmental stresses, mitogen-activated protein kinases (MPKs) play a key role in transmitting stress signals to the nucleus to initiate stress-responsive actions. Drought stress reduces plant development and productivity but the specific MPK responsible for drought stress responses has not been previously identified. In this study, we demonstrate that GmMPK6, a soybean MPK, responds to drought stress and enhances drought tolerance. GmMPK6 is activated in drought conditions through post-translational modifications. Inhibition of GmMPK6 activity leads to reduced drought resistance and a decrease in GmRD19A expression. Additionally, GmMPK6 activation is modulated by calcium signaling, highlighting GmMPK6 as a positive regulator of drought stress resistance in soybean. This study presents the first report of an MPK conferring drought tolerance in soybean.
Collapse
Affiliation(s)
- Seungmin Son
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea; National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Chung Sun An
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Weon-Jong Yoon
- Biodiversity Research Institute (JBRI), Clean Bio Business Division, Jeju Technopark (JTP), Seogwipo, 63608, Republic of Korea
| | - Yujeong Jeong
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea; Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sang-Chul Han
- Department of Medicine, College of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Yun Beom Kim
- L-TEC PHARMACHEM CO., LTD, Jeju, 63309, Republic of Korea
| | - Jong-Du Lee
- Biodiversity Research Institute (JBRI), Clean Bio Business Division, Jeju Technopark (JTP), Seogwipo, 63608, Republic of Korea
| | - Eugene Oh
- The Lotus Corporation Limited, Jeju, 63243, Republic of Korea
| | - Hwon Choi
- The Lotus Corporation Limited, Jeju, 63243, Republic of Korea
| | - Miye Kwon
- Biodiversity Research Institute (JBRI), Clean Bio Business Division, Jeju Technopark (JTP), Seogwipo, 63608, Republic of Korea
| | - Seongwook Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, Republic of Korea
| | - Israr Aziz
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, Republic of Korea
| | - Man-Young Jung
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, Republic of Korea.
| | - Jong Hee Im
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, Republic of Korea.
| |
Collapse
|
17
|
Ren N, Zhang G, Yang X, Chen J, Ni L, Jiang M. MAPKKK28 functions upstream of the MKK1-MPK1 cascade to regulate abscisic acid responses in rice. PLANT, CELL & ENVIRONMENT 2024; 47:5140-5157. [PMID: 39166350 DOI: 10.1111/pce.15095] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
The mitogen-activated protein kinase (MAPK) cascade (MAPKKK-MAPKK-MAPK) plays a critical role in biotic and abiotic stress responses and abscisic acid (ABA) signalling. A previous study has shown that the ABA-activated MKK1-MPK1 cascade is essential in regulating ABA response and stress tolerance in rice. However, the specific MAPKKK upstream of the MKK1-MPK1 cascade in ABA signalling remains unknown. Here, we identified that MAPKKK28, a previously uncharacterized member of the rice MEKK family, is involved in regulating ABA responses, including seed germination, root growth, stomatal closure, and the tolerance to oxidative stress and osmotic stress. We found that MAPKKK28 directly interacts with and phosphorylates MKK1. Further analysis indicated that the activation of both MKK1 and MPK1 depends on MAPKKK28 in ABA signalling. Genetic analysis revealed that MAPKKK28 functions upstream of the MKK1-MPK1 cascade to positively regulate ABA responses and enhance tolerance to oxidative and osmotic stress. These results not only reveal a new complete MAPK cascade in plants but also uncover its importance in ABA signalling.
Collapse
Affiliation(s)
- Ning Ren
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Gang Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Xiaokun Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lan Ni
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingyi Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
de Araújo AC, Brasileiro ACM, Martins ADCQ, Grynberg P, Togawa RC, Saraiva MADP, Miller RNG, Guimaraes PM. Ectopic expression of a truncated NLR gene from wild Arachis enhances resistance to Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2024; 15:1486820. [PMID: 39606668 PMCID: PMC11598430 DOI: 10.3389/fpls.2024.1486820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Fusarium oxysporum causes devastating vascular wilt diseases in numerous crop species, resulting in substantial yield losses. The Arabidopsis thaliana-F. oxysporum f.sp. conglutinans (FOC) model system enables the identification of meaningful genotype-phenotype correlations and was applied in this study to evaluate the effects of overexpressing an NLR gene (AsTIR19) from Arachis stenosperma against pathogen infection. AsTIR19 overexpression (OE) lines exhibited enhanced resistance to FOC without any discernible phenotype penalties. To elucidate the underlying resistance mechanisms mediated by AsTIR19 overexpression, we conducted whole transcriptome sequencing of an AsTIR19-OE line and non-transgenic wild-type (WT) plants inoculated and non-inoculated with FOC using Illumina HiSeq4000. Comparative analysis revealed 778 differentially expressed genes (DEGs) attributed to transgene overexpression, while fungal inoculation induced 434 DEGs in the OE line, with many falling into defense-related Gene Ontology (GO) categories. GO and KEGG enrichment analysis showed that DEGs were enriched in the phenylpropanoid and flavonoid pathways in the OE plants. This comprehensive transcriptomic analysis underscores how AsTIR19 overexpression reprograms transcriptional networks, modulating the expression of stress-responsive genes across diverse metabolic pathways. These findings provide valuable insights into the molecular mechanisms underlying the role of this NLR gene under stress conditions, highlighting its potential to enhance resistance to Fusarium oxysporum.
Collapse
Affiliation(s)
| | - Ana Cristina Miranda Brasileiro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica – PqEB, Brasília, DF, Brazil
- National Institute of Science and Technology - INCT PlantStress Biotech, EMBRAPA, Brasilia, DF, Brazil
| | | | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica – PqEB, Brasília, DF, Brazil
| | - Roberto Coiti Togawa
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica – PqEB, Brasília, DF, Brazil
| | | | - Robert Neil Gerard Miller
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
- National Institute of Science and Technology - INCT PlantStress Biotech, EMBRAPA, Brasilia, DF, Brazil
| | - Patricia Messenberg Guimaraes
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica – PqEB, Brasília, DF, Brazil
- National Institute of Science and Technology - INCT PlantStress Biotech, EMBRAPA, Brasilia, DF, Brazil
| |
Collapse
|
19
|
Ding R, Li J, Wang J, Li Y, Ye W, Yan G, Yin Z. Molecular traits of MAPK kinases and the regulatory mechanism of GhMAPKK5 alleviating drought/salt stress in cotton. PLANT PHYSIOLOGY 2024; 196:2030-2047. [PMID: 39140753 PMCID: PMC11531841 DOI: 10.1093/plphys/kiae415] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 08/15/2024]
Abstract
Mitogen-activated protein kinase kinases (MAPKKs) play a critical role in the mitogen-activated protein kinase (MAPK) signaling pathway, transducing external stimuli into intracellular responses and enabling plant adaptation to environmental challenges. Most research has focused on the model plant Arabidopsis (Arabidopsis thaliana). The systematic analysis and characterization of MAPKK genes across different plant species, particularly in cotton (Gossypium hirsutum), are somewhat limited. Here, we identified MAPKK family members from 66 different species, which clustered into five different sub-groups, and MAPKKs from four cotton species clustered together. Through further bioinformatic and expression analyses, GhMAPKK5 was identified as the most responsive MAPKK member to salt and drought stress among the 23 MAPKKs identified in Gossypium hirsutum. Silencing GhMAPKK5 in cotton through virus-induced gene silencing (VIGS) led to quicker wilting under salt and drought conditions, while overexpressing GhMAPKK5 in Arabidopsis enhanced root growth and seed germination under these stresses, demonstrating GhMAPKK5's positive role in stress tolerance. Transcriptomics and Yeast-Two-Hybrid assays revealed a MAPK cascade signal module comprising GhMEKK (mitogen-activated protein kinase kinase kinases)3/8/31-GhMAPKK5-GhMAPK11/23. This signaling cascade may play a role in managing drought and salt stress by regulating transcription factor genes, such as WRKYs, which are involved in the biosynthesis and transport pathways of ABA, proline, and RALF. This study is highly important for further understanding the regulatory mechanism of MAPKK in cotton, contributing to its stress tolerance and offering potential in targets for genetic enhancement.
Collapse
Affiliation(s)
- Rui Ding
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junhua Li
- Xinjiang Tarim River Seed Industry Co., Ltd., Xinjiang 518120, China
| | - Jie Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yan Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Wuwei Ye
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Gentu Yan
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Zujun Yin
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
20
|
Kefale H, You J, Zhang Y, Getahun S, Berhe M, Abbas AA, Ojiewo CO, Wang L. Metabolomic insights into the multiple stress responses of metabolites in major oilseed crops. PHYSIOLOGIA PLANTARUM 2024; 176:e14596. [PMID: 39575499 DOI: 10.1111/ppl.14596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 12/06/2024]
Abstract
The multidimensional significance of metabolomics has gained increasing attention in oilseeds research and development. Sesame, peanut, soybean, sunflower, rapeseed, and perilla are the most important oilseed crops consumed as vegetable oils worldwide. However, multiple biotic and abiotic stressors affect metabolites essential for plant growth, development, and ecological adaptation, resulting in reduced productivity and quality. Stressors can result in dynamic changes in oilseed crops' overall performance, leading to changes in primary (ex: saccharides, lipids, organic acids, amino acids, vitamins, phytohormones, and nucleotides) and secondary (ex: flavonoids, alkaloids, phenolic acids, terpenoids, coumarins, and lignans) major metabolite classes. Those metabolites indicate plant physiological conditions and adaptation strategies to diverse biotic and abiotic stressors. Advancements in targeted and untargeted detection and quantification approaches and technologies aided metabolomics and crop improvement. This review seeks to clarify the metabolomics advancements, significant contributions of metabolites, and specific metabolites that accumulate in reaction to various stressors in oilseed crops. Considering the response of metabolites to multiple stress effects, we compiled comprehensive and combined metabolic biosynthesis pathways for six major classes. Understanding these essential metabolites and pathways can inform molecular breeding strategies to develop resilient oilseed cultivars. Hence, this review highlights metabolomics advancements and metabolites' potential roles in major oilseed crops' biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Habtamu Kefale
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Plant Science, College of Agriculture and Natural Resources, Debre Markos University, Ethiopia
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Sewnet Getahun
- Department of Plant Science, College of Agriculture and Natural Resources, Debre Markos University, Ethiopia
| | - Muez Berhe
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Tigray Agricultural Research Institute, Humera Agricultural Research Center, Tigray, Ethiopia
| | - Ahmed A Abbas
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Agronomy, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Chris O Ojiewo
- Dryland Crops Program, International Maize and Wheat Improvement Center (CIMMYT) ICRAF House, United Nations Avenue, Nairobi-, Kenya
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
21
|
Singh D, Verma N, Rengasamy B, Banerjee G, Sinha AK. The small RNA biogenesis in rice is regulated by MAP kinase-mediated OsCDKD phosphorylation. THE NEW PHYTOLOGIST 2024; 244:1482-1497. [PMID: 39285527 DOI: 10.1111/nph.20116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/22/2024] [Indexed: 10/18/2024]
Abstract
CDKs are the master regulator of cell division and their activity is controlled by the regulatory subunit cyclins and phosphorylation by the CAKs. However, the role of MAP kinases in regulating plant cell cycle or CDKs have not been explored. Here, we report that the MAP kinases OsMPK3, OsMPK4, and OsMPK6 physically interact and phosphorylate OsCDKD and its regulatory subunit OsCYCH in rice. MAP kinases phosphorylate CDKD at Ser-168 and Thr-235 residues in OsCDKD. The MAP kinase-mediated phosphorylation of OsCDKD is required for its activation to control the small RNA biogenesis. The phosphodead version of OsCDKD fails to activate the C-terminal domain of RNA Polymerase II, thereby negatively impacting small RNA transcription. Further, the overexpression lines of wild-type (WT) OsCDKD and phosphomimic OsCDKD show increased root growth, plant height, tiller number, panicle number, and seed number in comparison to WT, phosphodead OsCDKD-OE, and kinase-dead OsCDKD-OE plants. In a nutshell, our study establishes a novel regulation of OsCDKD by MAPK-mediated phosphorylation in rice. The phosphorylation of OsCDKD by MAPKs imparts a positive effect on rice growth and development by regulating miRNAs transcription.
Collapse
Affiliation(s)
- Dhanraj Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Neetu Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Balakrishnan Rengasamy
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Gopal Banerjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| |
Collapse
|
22
|
Verma N, Singh D, Mittal L, Banerjee G, Noryang S, Sinha AK. MPK4-mediated phosphorylation of PHYTOCHROME INTERACTING FACTOR4 controls thermosensing by regulating histone variant H2A.Z deposition. THE PLANT CELL 2024; 36:4535-4556. [PMID: 39102893 PMCID: PMC11449107 DOI: 10.1093/plcell/koae223] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 08/07/2024]
Abstract
Plants can perceive a slight upsurge in ambient temperature and respond by undergoing morphological changes, such as elongated hypocotyls and early flowering. The dynamic functioning of PHYTOCHROME INTERACTING FACTOR4 (PIF4) in thermomorphogenesis is well established, although the complete regulatory pathway involved in thermosensing remains elusive. We establish that an increase in temperature from 22 to 28 °C induces upregulation and activation of MITOGEN-ACTIVATED PROTEIN KINASE 4 (MPK4) in Arabidopsis (Arabidopsis thaliana), subsequently leading to the phosphorylation of PIF4. Phosphorylated PIF4 represses the expression of ACTIN-RELATED PROTEIN 6 (ARP6), which is required for mediating the deposition of histone variant H2A.Z at its target loci. Furthermore, we demonstrate that variations in ARP6 expression in PIF4 phosphor-null and phosphor-mimetic seedlings affect hypocotyl growth at 22 and 28 °C by modulating the regulation of ARP6-mediated H2A.Z deposition at the loci of genes involved in elongating hypocotyl cells. Interestingly, the expression of MPK4 is also controlled by H2A.Z deposition in a temperature-dependent manner. Taken together, these findings highlight the regulatory mechanism of thermosensing by which MPK4-mediated phosphorylation of PIF4 affects ARP6-mediated H2A.Z deposition at the genes involved in hypocotyl cell elongation.
Collapse
Affiliation(s)
- Neetu Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Dhanraj Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Lavanya Mittal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopal Banerjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Stanzin Noryang
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
23
|
Hailemariam S, Liao CJ, Mengiste T. Receptor-like cytoplasmic kinases: orchestrating plant cellular communication. TRENDS IN PLANT SCIENCE 2024; 29:1113-1130. [PMID: 38816318 DOI: 10.1016/j.tplants.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
The receptor-like kinase (RLK) family of receptors and the associated receptor-like cytoplasmic kinases (RLCKs) have expanded in plants because of selective pressure from environmental stress and evolving pathogens. RLCKs link pathogen perception to activation of coping mechanisms. RLK-RLCK modules regulate hormone synthesis and responses, reactive oxygen species (ROS) production, Ca2+ signaling, activation of mitogen-activated protein kinase (MAPK), and immune gene expression, all of which contribute to immunity. Some RLCKs integrate responses from multiple receptors recognizing distinct ligands. RLKs/RLCKs and nucleotide-binding domain, leucine-rich repeats (NLRs) were found to synergize, demonstrating the intertwined genetic network in plant immunity. Studies in arabidopsis (Arabidopsis thaliana) have provided paradigms about RLCK functions, but a lack of understanding of crop RLCKs undermines their application. In this review, we summarize current understanding of the diverse functions of RLCKs, based on model systems and observations in crop species, and the emerging role of RLCKs in pathogen and abiotic stress response signaling.
Collapse
Affiliation(s)
- Sara Hailemariam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
24
|
Lu Y, Wang K, Ngea GLN, Godana EA, Ackah M, Dhanasekaran S, Zhang Y, Su Y, Yang Q, Zhang H. Recent advances in the multifaceted functions of Cys2/His2-type zinc finger proteins in plant growth, development, and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5501-5520. [PMID: 38912636 DOI: 10.1093/jxb/erae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Recent research has highlighted the importance of Cys2/His2-type zinc finger proteins (C2H2-ZFPs) in plant growth and in responses to various stressors, and the complex structures of C2H2-ZFP networks and the molecular mechanisms underlying their responses to stress have received considerable attention. Here, we review the structural characteristics and classification of C2H2-ZFPs, and consider recent research advances in their functions. We systematically introduce the roles of these proteins across diverse aspects of plant biology, encompassing growth and development, and responses to biotic and abiotic stresses, and in doing so hope to lay the foundations for further functional studies of C2H2-ZFPs in the future.
Collapse
Affiliation(s)
- Yuchun Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | | | - Esa Abiso Godana
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Michael Ackah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yingying Su
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| |
Collapse
|
25
|
Sen MK, Hamouzová K, Košnarová P, Soukup J. H 2O 2-mediated signaling in plant stress caused by herbicides: its role in metabolism and degradation pathways. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112166. [PMID: 38897545 DOI: 10.1016/j.plantsci.2024.112166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Systemic acquired acclimation and resistance are vital physiological mechanisms, essential for plants to survive challenging conditions, including herbicide stress. Harmonizing this adaptation involves a series of complex communication pathways. Hydrogen peroxide (H2O2) metabolism might play pivotal roles in orchestrating weeds' acclimation and defense responses. In the context of herbicide resistance, the interaction between H2O2 and key stress signaling pathways is crucial in understanding weed physiology and developing effective management strategies. This dynamic interplay might significantly influence how weeds develop resistance to the various challenges posed by herbicides. Moreover, the production and eradication of H2O2 can be highly compartmentalized, depending on the type of herbicide exposure. Till date there have been no studies aiming to explore/discuss these possibilities. Therefore, in this mini-review, our objective is to delve into the potentialities and recent advancements regarding H2O2-mediated signaling of transcriptomic changes during herbicide stress.
Collapse
Affiliation(s)
- Madhab Kumar Sen
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 165 00, Czech Republic.
| | - Katerina Hamouzová
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 165 00, Czech Republic
| | - Pavlina Košnarová
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 165 00, Czech Republic
| | - Josef Soukup
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6 165 00, Czech Republic
| |
Collapse
|
26
|
Jian J, Wang Z, Chen C, Workman CT, Fang X, Larsen TO, Guo J, Sonnenschein EC. Two high-quality Prototheca zopfii genomes provide new insights into their evolution as obligate algal heterotrophs and their pathogenicity. Microbiol Spectr 2024; 12:e0414823. [PMID: 38940543 PMCID: PMC11302234 DOI: 10.1128/spectrum.04148-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
The majority of the nearly 10,000 described species of green algae are photoautotrophs; however, some species have lost their ability to photosynthesize and become obligate heterotrophs that rely on parasitism for survival. Two high-quality genomes of the heterotrophic algae Prototheca zopfii Pz20 and Pz23 were obtained using short- and long-read genomic as well as transcriptomic data. The genome sizes were 31.2 Mb and 31.3 Mb, respectively, and contig N50 values of 1.99 Mb and 1.26 Mb. Although P. zopfii maintained its plastid genome, the transition to heterotrophy led to a reduction in both plastid and nuclear genome size, including the loss of photosynthesis-related genes from both the nuclear and plastid genomes and the elimination of genes encoding for carotenoid oxygenase and pheophorbide an oxygenase. The loss of genes, including basic leucine-zipper (bZIP) transcription factors, flavin adenine dinucleotide-linked oxidase, and helicase, could have played a role in the transmission of autotrophy to heterotrophs and in the processes of abiotic stress resistance and pathogenicity. A total of 66 (1.37%) and 73 (1.49%) genes were identified as potential horizontal gene transfer events in the two P. zopfii genomes, respectively. Genes for malate synthase and isocitrate lyase, which are horizontally transferred from bacteria, may play a pivotal role in carbon and nitrogen metabolism as well as the pathogenicity of Prototheca and non-photosynthetic organisms. The two high-quality P. zopfii genomes provide new insights into their evolution as obligate heterotrophs and pathogenicity. IMPORTANCE The genus Prototheca, characterized by its heterotrophic nature and pathogenicity, serves as an exemplary model for investigating pathobiology. The limited understanding of the protothecosis infectious disease is attributed to the lack of genomic resources. Using HiFi long-read sequencing, both nuclear and plastid genomes were generated for two strains of P. zopfii. The findings revealed a concurrent reduction in both plastid and nuclear genome size, accompanied by the loss of genes associated with photosynthesis, carotenoid oxygenase, basic leucine-zipper (bZIP) transcription factors, and others. The analysis of horizontal gene transfer revealed the presence of 1.37% and 1.49% bacterial genes, including malate synthase and isocitrate lyase, which play crucial roles in carbon and nitrogen metabolism, as well as pathogenicity and obligate heterotrophy. The two high-quality P. zopfii genomes represent valuable resources for investigating their adaptation and evolution as obligate heterotrophs, as well as for developing future prevention and treatment strategies against protothecosis.
Collapse
Affiliation(s)
- Jianbo Jian
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- BGI Genomics, Shenzhen, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | | | | | - Christopher T. Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Eva C. Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Department of Biosciences, Swansea University, Swansea, United Kingdom
| |
Collapse
|
27
|
Akanmu AO, Asemoloye MD, Marchisio MA, Babalola OO. Adoption of CRISPR-Cas for crop production: present status and future prospects. PeerJ 2024; 12:e17402. [PMID: 38860212 PMCID: PMC11164064 DOI: 10.7717/peerj.17402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/25/2024] [Indexed: 06/12/2024] Open
Abstract
Background Global food systems in recent years have been impacted by some harsh environmental challenges and excessive anthropogenic activities. The increasing levels of both biotic and abiotic stressors have led to a decline in food production, safety, and quality. This has also contributed to a low crop production rate and difficulty in meeting the requirements of the ever-growing population. Several biotic stresses have developed above natural resistance in crops coupled with alarming contamination rates. In particular, the multiple antibiotic resistance in bacteria and some other plant pathogens has been a hot topic over recent years since the food system is often exposed to contamination at each of the farm-to-fork stages. Therefore, a system that prioritizes the safety, quality, and availability of foods is needed to meet the health and dietary preferences of everyone at every time. Methods This review collected scattered information on food systems and proposes methods for plant disease management. Multiple databases were searched for relevant specialized literature in the field. Particular attention was placed on the genetic methods with special interest in the potentials of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and Cas (CRISPR associated) proteins technology in food systems and security. Results The review reveals the approaches that have been developed to salvage the problem of food insecurity in an attempt to achieve sustainable agriculture. On crop plants, some systems tend towards either enhancing the systemic resistance or engineering resistant varieties against known pathogens. The CRISPR-Cas technology has become a popular tool for engineering desired genes in living organisms. This review discusses its impact and why it should be considered in the sustainable management, availability, and quality of food systems. Some important roles of CRISPR-Cas have been established concerning conventional and earlier genome editing methods for simultaneous modification of different agronomic traits in crops. Conclusion Despite the controversies over the safety of the CRISPR-Cas system, its importance has been evident in the engineering of disease- and drought-resistant crop varieties, the improvement of crop yield, and enhancement of food quality.
Collapse
Affiliation(s)
- Akinlolu Olalekan Akanmu
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, University of North-West, Mmabatho, South Africa
| | - Michael Dare Asemoloye
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, University of North-West, Mmabatho, South Africa
| | | | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, University of North-West, Mmabatho, South Africa
| |
Collapse
|
28
|
Chen X, Zhang Y, Chao S, Song L, Wu G, Sun Y, Chen Y, Lv B. Biocontrol potential of endophytic Bacillus subtilis A9 against rot disease of Morchella esculenta. Front Microbiol 2024; 15:1388669. [PMID: 38873148 PMCID: PMC11169702 DOI: 10.3389/fmicb.2024.1388669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Morchella esculenta is a popular edible fungus with high economic and nutritional value. However, the rot disease caused by Lecanicillium aphanocladii, pose a serious threat to the quality and yield of M. esculenta. Biological control is one of the effective ways to control fungal diseases. Methods and results In this study, an effective endophytic B. subtilis A9 for the control of M. esculenta rot disease was screened, and its biocontrol mechanism was studied by transcriptome analysis. In total, 122 strains of endophytic bacteria from M. esculenta, of which the antagonistic effect of Bacillus subtilis A9 on L. aphanocladii G1 reached 72.2% in vitro tests. Biological characteristics and genomic features of B. subtilis A9 were analyzed, and key antibiotic gene clusters were detected. Scanning electron microscope (SEM) observation showed that B. subtilis A9 affected the mycelium and spores of L. aphanocladii G1. In field experiments, the biological control effect of B. subtilis A9 reached to 62.5%. Furthermore, the transcritome profiling provides evidence of B. subtilis A9 bicontrol at the molecular level. A total of 1,246 differentially expressed genes (DEGs) were identified between the treatment and control group. Gene Ontology (GO) enrichment analysis showed that a large number of DEGs were related to antioxidant activity related. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the main pathways were Nitrogen metabolism, Pentose Phosphate Pathway (PPP) and Mitogen-Activated Protein Kinases (MAPK) signal pathway. Among them, some important genes such as carbonic anhydrase CA (H6S33_007248), catalase CAT (H6S33_001409), tRNA dihydrouridine synthase DusB (H6S33_001297) and NAD(P)-binding protein NAD(P) BP (H6S33_000823) were found. Furthermore, B. subtilis A9 considerably enhanced the M. esculenta activity of Polyphenol oxidase (POD), Superoxide dismutase (SOD), Phenylal anineammonia lyase (PAL) and Catalase (CAT). Conclusion This study presents the innovative utilization of B. subtilis A9, for effectively controlling M. esculenta rot disease. This will lay a foundation for biological control in Morchella, which may lead to the improvement of new biocontrol agents for production.
Collapse
Affiliation(s)
- Xue Chen
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yin Zhang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - ShengQian Chao
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - LiLi Song
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - GuoGan Wu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu Sun
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - YiFan Chen
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - BeiBei Lv
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd., Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai, China
| |
Collapse
|
29
|
Liu H, Li X, Yin Z, Hu J, Xie L, Wu H, Han S, Li B, Zhang H, Li C, Li L, Zhang F, Tan G. Identification and characterization of the CRK gene family in the wheat genome and analysis of their expression profile in response to high temperature-induced male sterility. PeerJ 2024; 12:e17370. [PMID: 38737737 PMCID: PMC11086307 DOI: 10.7717/peerj.17370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 05/14/2024] Open
Abstract
Cysteine-rich receptor-like kinases (CRKs) play many important roles during plant development, including defense responses under both biotic and abiotic stress, reactive oxygen species (ROS) homeostasis, callose deposition and programmed cell death (PCD). However, there are few studies on the involvement of the CRK family in male sterility due to heat stress in wheat (Triticum aestivum L.). In this study, a genome-wide characterization of the CRK family was performed to investigate the structural and functional attributes of the wheat CRKs in anther sterility caused by heat stress. A total of 95 CRK genes were unevenly distributed on 18 chromosomes, with the most genes distributed on chromosome 2B. Paralogous homologous genes with Ka/Ks ratios less than 1 may have undergone strong purifying selection during evolution and are more functionally conserved. The collinearity analysis results of CRK genes showed that wheat and Arabidopsis (A. thaliana), foxtail millet, Brachypodium distachyon (B. distachyon), and rice have three, 12, 15, and 11 pairs of orthologous genes, respectively. In addition, the results of the network interactions of genes and miRNAs showed that five miRNAs were in the hub of the interactions map, namely tae-miR9657b-5p, tae-miR9780, tae-miR9676-5p, tae-miR164, and tae-miR531. Furthermore, qRT-PCR validation of the six TaCRK genes showed that they play key roles in the development of the mononuclear stage anthers, as all six genes were expressed at highly significant levels in heat-stressed male sterile mononuclear stage anthers compared to normal anthers. We hypothesized that the TaCRK gene is significant in the process of high-temperature-induced sterility in wheat based on the combination of anther phenotypes, paraffin sections, and qRT-PCR data. These results improve our understanding of their relationship.
Collapse
Affiliation(s)
- Hongzhan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng, Henan Province, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou, Henan Province, China
| | - Xiaoyi Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Zehui Yin
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Junmin Hu
- Jiaozuo Seed Management Station, Jiaozuo, Henan Province, China
| | - Liuyong Xie
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Huanhuan Wu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Shuying Han
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Bing Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Huifang Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Chaoqiong Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Lili Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng, Henan Province, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou, Henan Province, China
| | - Fuli Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng, Henan Province, China
| | - Guangxuan Tan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou, Henan Province, China
| |
Collapse
|
30
|
Su B, Wang A, Lin J, Xie D, Shan X. Signal-specific spatiotemporal organization of AtRGS1 in plant pattern-triggered immunity. THE NEW PHYTOLOGIST 2024; 242:841-852. [PMID: 38453800 DOI: 10.1111/nph.19658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Affiliation(s)
- Bodan Su
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- National State Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Anqi Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinxing Lin
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Daoxin Xie
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaoyi Shan
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
31
|
Wu G, Wang W. Recent advances in understanding the role of two mitogen-activated protein kinase cascades in plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2256-2265. [PMID: 38241698 DOI: 10.1093/jxb/erae020] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The mitogen-activated protein kinase (MAPK/MPK) cascade is an important intercellular signaling module that regulates plant growth, development, reproduction, and responses to biotic and abiotic stresses. A MAPK cascade usually consists of a MAPK kinase kinase (MAPKKK/MEKK), a MAPK kinase (MAPKK/MKK/MEK), and a MAPK. The well-characterized MAPK cascades in plant immunity to date are the MEKK1-MKK1/2-MPK4 cascade and the MAPKKK3/4/5-MKK4/5-MPK3/6 cascade. Recently, major breakthroughs have been made in understanding the molecular mechanisms associated with the regulation of immune signaling by both of these MAPK cascades. In this review, we highlight the most recent advances in understanding the role of both MAPK cascades in activating plant defense and in suppressing or fine-tuning immune signaling. We also discuss the molecular mechanisms by which plants stabilize and maintain the activation of MAPK cascades during immune signaling. Based on this review, we reveal the complexity and importance of the MEKK1-MKK1/2-MPK4 cascade and the MAPKKK3/4/5-MKK4/5-MPK3/6 cascade, which are tightly controlled by their interacting partners or substrates, in plant immunity.
Collapse
Affiliation(s)
- Guangheng Wu
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
32
|
Panthri M, Saini H, Banerjee G, Bhatia P, Verma N, Sinha AK, Gupta M. Deciphering the regulation of transporters and mitogen-activated protein kinase in arsenic and iron exposed rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133687. [PMID: 38325101 DOI: 10.1016/j.jhazmat.2024.133687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/26/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
This study investigates the influence of arsenic (As) and iron (Fe) on the molecular aspects of rice plants. The mRNA-abundance of As (OsLsi, OsPHT, OsNRAMP1, OsABCC1) and Fe (OsIRT, OsNRAMP1, OsYSL, OsFRDL1, OsVIT2, OsSAMS1, OsNAS, OsNAAT1, OsDMAS1, OsTOM1, OsFER) related genes has been observed in 12-d old As and Fe impacted rice varieties. Analyses of phytosiderophores synthesis and Fe-uptake genes affirm the existence of specialized Fe-uptake strategies in rice with varieties PB-1 and Varsha favouring strategy I and II, respectively. Expression of OsNAS3, OsVIT2, OsFER and OsABCC1 indicated PB-1's tolerance towards Fe and As. Analysis of mitogen-activated protein kinase cascade members (OsMKK3, OsMKK4, OsMKK6, OsMPK3, OsMPK4, OsMPK7, and OsMPK14) revealed their importance in the fine adjustment of As/Fe in the rice system. A conditional network map was generated based on the gene expression pattern that unfolded the differential dynamics of both rice varieties. The mating based split ubiquitin system determined the interaction of OsIRT1 with OsMPK3, and OsLsi1 with both OsMPK3 and OsMPK4. In-silico tools also confirmed the binding affinities of OsARM1 with OsLsi1, OsMPK3 and OsMPK4, and of OsIDEF1/OsIRO2 with OsIRT1 and OsMPK3, supporting our hypothesis that OsARM1, OsIDEF1, OsIRO2 were active in the connections discovered by mbSUS.
Collapse
Affiliation(s)
- Medha Panthri
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Himanshu Saini
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Gopal Banerjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Priyanka Bhatia
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Neetu Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
33
|
Shi A, Xu J, Guo Y, Rensing C, Chang J, Zhang T, Zhang L, Xing S, Ni W, Yang W. Jasmonic acid's impact on Sedum alfredii growth and cadmium tolerance: A physiological and transcriptomic study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169939. [PMID: 38211868 DOI: 10.1016/j.scitotenv.2024.169939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Soil cadmium (Cd) pollution is escalating, necessitating effective remediation strategies. This study investigated the effects of exogenous jasmonic acid (JA) on Sedum alfredii Hance under Cd stress, aiming to enhance its phytoextraction efficiency. Initially, experiments were conducted to assess the impact of various concentrations of JA added to environments with Cd concentrations of 100, 300, and 500 μmol/L. The results determined that a concentration of 1 μmol/L JA was optimal. This concentration effectively mitigated the level of ROS products by enhancing the activity of antioxidant enzymes. Additionally, JA fostered Cd absorption and accumulation, while markedly improving plant biomass and photosynthetic performance. In further experiments, treatment with 1 μmol/L JA under 300 μmol/L Cd stress was performed and transcriptomic analysis unveiled a series of differentially expressed genes (DEGs) instrumental in the JA-mediated Cd stress response. These DEGs encompass not only pathways of JA biosynthesis and signaling but also genes encoding functions that influence antioxidant systems and photosynthesis, alongside genes pertinent to cell wall synthesis, and metal chelation and transport. This study highlights that JA treatment significantly enhances S. alfredii's Cd tolerance and accumulation, offering a promising strategy for plant remediation and deepening our understanding of plant responses to heavy metal stress.
Collapse
Affiliation(s)
- An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junlong Xu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingmin Guo
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinqing Chang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Taoxiang Zhang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liming Zhang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wuzhong Ni
- College of Environment and Resources, Zhejiang University, Hangzhou 310058, China
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
34
|
Kong CH, Li Z, Li FL, Xia XX, Wang P. Chemically Mediated Plant-Plant Interactions: Allelopathy and Allelobiosis. PLANTS (BASEL, SWITZERLAND) 2024; 13:626. [PMID: 38475470 DOI: 10.3390/plants13050626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Plant-plant interactions are a central driver for plant coexistence and community assembly. Chemically mediated plant-plant interactions are represented by allelopathy and allelobiosis. Both allelopathy and allelobiosis are achieved through specialized metabolites (allelochemicals or signaling chemicals) produced and released from neighboring plants. Allelopathy exerts mostly negative effects on the establishment and growth of neighboring plants by allelochemicals, while allelobiosis provides plant neighbor detection and identity recognition mediated by signaling chemicals. Therefore, plants can chemically affect the performance of neighboring plants through the allelopathy and allelobiosis that frequently occur in plant-plant intra-specific and inter-specific interactions. Allelopathy and allelobiosis are two probably inseparable processes that occur together in plant-plant chemical interactions. Here, we comprehensively review allelopathy and allelobiosis in plant-plant interactions, including allelopathy and allelochemicals and their application for sustainable agriculture and forestry, allelobiosis and plant identity recognition, chemically mediated root-soil interactions and plant-soil feedback, and biosynthesis and the molecular mechanisms of allelochemicals and signaling chemicals. Altogether, these efforts provide the recent advancements in the wide field of allelopathy and allelobiosis, and new insights into the chemically mediated plant-plant interactions.
Collapse
Affiliation(s)
- Chui-Hua Kong
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zheng Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Feng-Li Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xin-Xin Xia
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
35
|
Shan J, Peng F, Yu J, Li Q. Identification and Characterization of a Plant Endophytic Fungus Paraphaosphaeria sp. JRF11 and Its Growth-Promoting Effects. J Fungi (Basel) 2024; 10:120. [PMID: 38392792 PMCID: PMC10890554 DOI: 10.3390/jof10020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/24/2024] Open
Abstract
Endophytic fungi establish mutualistic relationships with host plants and can promote the growth and development of plants. In this study, the endophytic fungus JRF11 was isolated from Carya illinoinensis. Sequence analysis of the internal transcribed spacer (ITS) region and 18S rRNA gene combined with colonial and conidial morphology identified JRF11 as a Paraphaosphaeria strain. Plant-fungus interaction assays revealed that JRF11 showed significant growth-promoting effects on plants. In particular, JRF11 significantly increased the root biomass and soluble sugar content of plants. Furthermore, transcriptome analysis demonstrated that JRF11 treatment reprogrammed a variety of genes involved in plant mitogen-activated protein kinase (MAPK) signaling and starch and sucrose metabolism pathways through Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Our research indicates that beneficial endophytic fungi are able to interact with plants and exhibit outstanding plant growth-promoting activities.
Collapse
Affiliation(s)
- Jie Shan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fangren Peng
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jinping Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Qi Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
36
|
Fu Z, Zhao T, Chu B, Gao W, Li T, Zhang Z, Li Q, Sun D. Low and high temperatures promote docosahexaenoic acid accumulation in Crypthecodinium sp. SUN by regulating the polyunsaturated fatty acid synthase pathway and the expression of saturated fatty acid preferred diacylglycerol acyltransferases. BIORESOURCE TECHNOLOGY 2023; 389:129850. [PMID: 37813314 DOI: 10.1016/j.biortech.2023.129850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Low (15 °C) and high (35 °C) temperatures significantly increased DHA as a percentage of total fatty acids (TFAs) to 43.6 % and 40.46 %, respectively (1.28- and 1.18-fold of that at 25 °C, respectively). The incompleteness of the FAS pathway indicates that DHA synthesis does not occur via this pathway. Meanwhile, Comparative transcriptome analysis showed that the PUFA synthase pathway might be responsible for DHA synthesis in C. sp. SUN. Additionally, the three diacylglycerol acyltransferases all had a substrate preference for saturated fatty acid (SFA)-CoA, which also contributed to the decreased SFA and increased DHA at both low and high temperatures. Additionally, WGCNA analysis identifies key regulatory genes that may be involved in temperature-regulated DHA proportion. The findings of this study indicate the mechanisms of temperature-regulated DHA accumulation in C. sp. SUN and shed light on the manipulation of DHA proportion by changes in temperature.
Collapse
Affiliation(s)
- Zhongxiang Fu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; School of Life Sciences, Hebei University, Baoding 071000, China
| | - Tiantian Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Baijun Chu
- Nutrition & Health Research Institute, China National Cereals, Oils and Foodstuffs Corporation (COFCO), Beijing 102209, China
| | - Weizheng Gao
- School of Life Sciences, Hebei University, Baoding 071000, China
| | - Tong Li
- School of Life Sciences, Hebei University, Baoding 071000, China
| | - Zhao Zhang
- School of Life Sciences, Hebei University, Baoding 071000, China
| | - Qingyang Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Dongzhe Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
37
|
Banerjee G, Singh D, Pandey C, Jonwal S, Basu U, Parida SK, Pandey A, Sinha AK. Rice Mitogen-Activated Protein Kinase regulates serotonin accumulation and interacts with cell cycle regulators under prolonged UV-B exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108078. [PMID: 37832368 DOI: 10.1016/j.plaphy.2023.108078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Stress conditions such as UV-B exposure activates MAPKs in Arabidopsis and rice. UV-B radiation is hazardous to plant as it causes photosystem disruption, DNA damage and ROS generation. Here we report its effect on biological pathways by studying the global changes in transcript profile in rice seedling exposed to UV-B radiation for 1 h and 16 h. Short UV-B exposure (1 h) led to moderate changes, while a drastic change in transcript landscape was observed after long term UV-B exposure (16 h) in rice seedlings. Prolonged UV-B exposure negatively impacts the expression of cell cycle regulating genes and several other metabolic pathways in developing seedlings. MAP kinase signaling cascade gets activated upon UV-B exposure similar to reports in Arabidopsis indicating conservation of its function in both dicot and monocot. Expression analysis in inducible overexpression transgenic lines of MPK3 and MPK6 shows higher transcript abundance of phytoalexin biosynthesis gene like Oryzalexin D synthase and Momilactone A synthase, along with serotonin biosynthesis genes. An accumulation of serotonin was observed upon UV-B exposure and its abundance positively correlates with the MPK3 and MPK6 transcript level in the respective over-expression lines. Interestingly, multiple cell cycle inhibitor proteins including WEE1 and SMR1 interact with MPK3 and MPK6 thus, implying a major role of this pathway in cell cycle regulation under stress condition. Overall overexpression of MPK3 and MPK6 found to be detrimental for rice as overexpression lines shows higher cell death and compromised tolerance to UV-B.
Collapse
Affiliation(s)
- Gopal Banerjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Dhanraj Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Chandana Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Sarvesh Jonwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Udita Basu
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India.
| |
Collapse
|
38
|
Javed T, Gao SJ. WRKY transcription factors in plant defense. Trends Genet 2023; 39:787-801. [PMID: 37633768 DOI: 10.1016/j.tig.2023.07.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/28/2023]
Abstract
Environmental stressors caused by climate change are fundamental barriers to agricultural sustainability. Enhancing the stress resilience of crops is a key strategy in achieving global food security. Plants perceive adverse environmental conditions and initiate signaling pathways to activate precise responses that contribute to their survival. WRKY transcription factors (TFs) are essential players in several signaling cascades and regulatory networks that have crucial implications for defense responses in plants. This review summarizes advances in research concerning how WRKY TFs mediate various signaling cascades and metabolic adjustments as well as how epigenetic modifications involved in environmental stress responses in plants can modulate WRKYs and/or their downstream genes. Emerging research shows that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-mediated genome editing of WRKYs could be used to improve crop resilience.
Collapse
Affiliation(s)
- Talha Javed
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
39
|
Jonwal S, Rengasamy B, Sinha AK. Regulation of photosynthesis by mitogen-activated protein kinase in rice: antagonistic adjustment by OsMPK3 and OsMPK6. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1247-1259. [PMID: 38024949 PMCID: PMC10678870 DOI: 10.1007/s12298-023-01383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/02/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Photosynthesis is the basis of almost all life on earth and is the main component of crop yield that contributes to the carbohydrate partitioning to the grains. Maintaining the photosynthetic efficiency of plants in challenging environmental conditions by regulating the associated factors is a potential research arena which will help in the improvement of crop yield. Phosphorylation is known to play a pivotal role in the regulation of photosynthesis. Mitogen Activated Protein Kinases (MAPKs) cascade although known to regulate a diverse range of processes does not have any exact reported function in the regulation of photosynthesis. To elucidate the regulatory role of MAPKs in photosynthesis we investigated the changes in net photosynthesis rate and related parameters in DEX inducible over-expressing (OE) lines of two members of MAPK gene family namely, OsMPK3 and OsMPK6 in rice. Interestingly, significant changes were found in net photosynthesis rate and related physiological parameters in OsMPK3 and OsMPK6-OE lines compared to its wild-type relatives. OsMPK3 and OsMPK6 have regulatory effects on nuclear-encoded photosynthetic genes. Untargeted metabolite profiling reveals a higher accumulation of sugars and their derivatives in MPK6 overexpressing plants and a lower accumulation of sugars and organic acids in MPK3 overexpressing plants. The accumulation of amino acids was found in abundance in both MPK3 and MPK6 overexpressing plants. Understanding the effects of MPK3 and MPK6 on the CO2 assimilation of rice plants under normal growth conditions, will help in devising strategies that can be extended for crop improvement. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01383-9.
Collapse
Affiliation(s)
- Sarvesh Jonwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Balakrishnan Rengasamy
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|