1
|
Negi V, Lee J, Mandi V, Danvers J, Liu R, Perez-Garcia EM, Li F, Jagannathan R, Yang P, Filingeri D, Kumar A, Ma K, Moulik M, Yechoor VK. Bromodomain Protein Inhibition Protects β-Cells from Cytokine-Induced Death and Dysfunction via Antagonism of NF-κB Pathway. Cells 2024; 13:1108. [PMID: 38994961 PMCID: PMC11240345 DOI: 10.3390/cells13131108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Cytokine-induced β-cell apoptosis is a major pathogenic mechanism in type 1 diabetes (T1D). Despite significant advances in understanding its underlying mechanisms, few drugs have been translated to protect β-cells in T1D. Epigenetic modulators such as bromodomain-containing BET (bromo- and extra-terminal) proteins are important regulators of immune responses. Pre-clinical studies have demonstrated a protective effect of BET inhibitors in an NOD (non-obese diabetes) mouse model of T1D. However, the effect of BET protein inhibition on β-cell function in response to cytokines is unknown. Here, we demonstrate that I-BET, a BET protein inhibitor, protected β-cells from cytokine-induced dysfunction and death. In vivo administration of I-BET to mice exposed to low-dose STZ (streptozotocin), a model of T1D, significantly reduced β-cell apoptosis, suggesting a cytoprotective function. Mechanistically, I-BET treatment inhibited cytokine-induced NF-kB signaling and enhanced FOXO1-mediated anti-oxidant response in β-cells. RNA-Seq analysis revealed that I-BET treatment also suppressed pathways involved in apoptosis while maintaining the expression of genes critical for β-cell function, such as Pdx1 and Ins1. Taken together, this study demonstrates that I-BET is effective in protecting β-cells from cytokine-induced dysfunction and apoptosis, and targeting BET proteins could have potential therapeutic value in preserving β-cell functional mass in T1D.
Collapse
Affiliation(s)
- Vinny Negi
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Jeongkyung Lee
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Varun Mandi
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Joseph Danvers
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Ruya Liu
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Eliana M. Perez-Garcia
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Feng Li
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Rajaganapati Jagannathan
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA; (R.J.); (M.M.)
| | - Ping Yang
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Domenic Filingeri
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Amit Kumar
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| | - Ke Ma
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Mousumi Moulik
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA; (R.J.); (M.M.)
| | - Vijay K. Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15213, USA; (V.N.); (J.L.); (V.M.); (R.L.); (E.M.P.-G.); (F.L.); (D.F.); (A.K.)
| |
Collapse
|
2
|
Duan Z, Shi H, Xing J, Zhang Q, Liu M. Mutation of Basic Residues R283, R286, and K288 in the Matrix Protein of Newcastle Disease Virus Attenuates Viral Replication and Pathogenicity. Int J Mol Sci 2023; 24:ijms24020980. [PMID: 36674496 PMCID: PMC9864103 DOI: 10.3390/ijms24020980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
The matrix (M) protein of Newcastle disease virus (NDV) contains large numbers of unevenly distributed basic residues, but the precise function of most basic residues in the M protein remains enigmatic. We previously demonstrated that the C-terminus (aa 264-313) of M protein interacted with the extra-terminal (ET) domain of chicken bromodomain-containing protein 2 (chBRD2), which promoted NDV replication by downregulating chBRD2 expression and facilitating viral RNA synthesis and transcription. However, the key amino acid sites determining M's interaction with chBRD2/ET and their roles in the replication and pathogenicity of NDV are not known. In this study, three basic residues-R283, R286, and K288-in the NDV M protein were verified to be responsible for its interaction with chBRD2/ET. In addition, mutation of these basic residues (R283A/R286A/K288A) in the M protein changed its electrostatic pattern and abrogated the decreased expression of endogenic chBRD2. Moreover, a recombinant virus harboring these mutations resulted in a pathotype change of NDV and attenuated viral replication and pathogenicity in chickens due to the decreased viral RNA synthesis and transcription. Our findings therefore provide a better understanding of the crucial biological functions of M's basic residues and also aid in understanding the poorly understood pathogenesis of NDV.
Collapse
Affiliation(s)
- Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel.: +86-(851)-8829-8005
| | - Haiying Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jingru Xing
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Qianyong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Menglan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Tuli HS, Kaur J, Vashishth K, Sak K, Sharma U, Choudhary R, Behl T, Singh T, Sharma S, Saini AK, Dhama K, Varol M, Sethi G. Molecular mechanisms behind ROS regulation in cancer: A balancing act between augmented tumorigenesis and cell apoptosis. Arch Toxicol 2023; 97:103-120. [PMID: 36443493 DOI: 10.1007/s00204-022-03421-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
Abstract
ROS include hydroxyl radicals (HO.), superoxide (O2..), and hydrogen peroxide (H2O2). ROS are typically produced under physiological conditions and play crucial roles in living organisms. It is known that ROS, which are created spontaneously by cells through aerobic metabolism in mitochondria, can have either a beneficial or detrimental influence on biological systems. Moderate levels of ROS can cause oxidative damage to proteins, DNA and lipids, which can aid in the pathogenesis of many disorders, including cancer. However, excessive concentrations of ROS can initiate programmed cell death in cancer. Presently, a variety of chemotherapeutic drugs and herbal agents are being investigated to induce ROS-mediated cell death in cancer. Therefore, preserving ROS homeostasis is essential for ensuring normal cell development and survival. On account of a significant association of ROS levels at various concentrations with carcinogenesis in a number of malignancies, further studies are needed to determine the underlying molecular mechanisms and develop the possibilities for intervening in these processes.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Kanupriya Vashishth
- Advance Cardiac Centre Department of Cardiology, PGIMER, Chandigarh, 160012, India
| | | | - Ujjawal Sharma
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Tapan Behl
- Department of Pharmacology, School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Tejveer Singh
- Translanatal Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India
| | - Sheetu Sharma
- Department of Pharmacovigilace and Clinical Research, Chitkara University, Rajpura, 140401, India
| | - Adesh K Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, 48000, Turkey
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
4
|
Karami Fath M, Azargoonjahromi A, Soofi A, Almasi F, Hosseinzadeh S, Khalili S, Sheikhi K, Ferdousmakan S, Owrangi S, Fahimi M, Zalpoor H, Nabi Afjadi M, Payandeh Z, Pourzardosht N. Current understanding of epigenetics role in melanoma treatment and resistance. Cancer Cell Int 2022; 22:313. [PMID: 36224606 PMCID: PMC9555085 DOI: 10.1186/s12935-022-02738-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer resulting from genetic mutations in melanocytes. Several factors have been considered to be involved in melanoma progression, including genetic alteration, processes of damaged DNA repair, and changes in mechanisms of cell growth and proliferation. Epigenetics is the other factor with a crucial role in melanoma development. Epigenetic changes have become novel targets for treating patients suffering from melanoma. These changes can alter the expression of microRNAs and their interaction with target genes, which involves cell growth, differentiation, or even death. Given these circumstances, we conducted the present review to discuss the melanoma risk factors and represent the current knowledge about the factors related to its etiopathogenesis. Moreover, various epigenetic pathways, which are involved in melanoma progression, treatment, and chemo-resistance, as well as employed epigenetic factors as a solution to the problems, will be discussed in detail.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Shahnaz Hosseinzadeh
- Department of Microbiology, Parasitology and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Kamran Sheikhi
- School of Medicine, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085 India
| | - Soroor Owrangi
- Student Research Committe, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
5
|
Global Trends in Research of NF-κB in Melanoma from 2000 to 2021: A Study of Bibliometric Analysis. JOURNAL OF ONCOLOGY 2022; 2022:3684228. [PMID: 36124033 PMCID: PMC9482551 DOI: 10.1155/2022/3684228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
In the pathogenesis of melanoma, NF-κB is a key signaling pathway. Appling bibliometric analysis, we identify the frontiers and hotspots about NF-κB in melanoma, as well as distinguishing features of scientific research and output all over the world during the past 22 years. 2226 publications published from 2000 to 2021 and related information were retrieved based on Science Citation Index Expanded (SCI-expanded) of Web of Science Core Collection (WoSCC). VOSviewer and Citespace were used to analyze bibliometric indicators and visualize the hotspots and research trend of studies on NF-κB in melanoma. The results indicated that despite fluctuations, the number of publications (Np) related to the research of NF-κB in melanoma per year increased over the past 22 years. The USA had the most publications. H-index and the number of citations (Nc) of the USA were also in the first place. PloS One was the most productive journal, and League of European Research Universities (LERU) was the most productive affiliation. Recently, the keywords “NF-kappa-b,” “melanoma,” “apoptosis,” “expression,” “activation,” “cancer,” and “metastasis” appeared most frequently. Our study suggested that articles associated with NF-κB in melanoma tend to increase. In this field, the USA was an influential country and a big producer. Most publications focused on clinical and basic research in the past 22 years, and keywords “tumor necrosis factor” and “trail induced apoptosis” had the highest burst strength.
Collapse
|
6
|
Waksal JA, Mascarenhas J. Novel Therapies in Myelofibrosis: Beyond JAK Inhibitors. Curr Hematol Malig Rep 2022; 17:140-154. [PMID: 35984598 DOI: 10.1007/s11899-022-00671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To discuss the current treatment paradigm, review novel targets, and summarize completed and ongoing clinical trials that may lead to a paradigm shifts in the management of myelofibrosis (MF). RECENT FINDINGS In addition to the recent approval and ongoing late-stage development of multiple novel JAK inhibitors, recent clinical studies demonstrate therapeutic potential of targeting multiple alternate proteins and pathways including BET, MDM2, telomerase, BCL2, LSD1, PI3K, SMAC, and PTX2 in patients with MF. MF is a myeloproliferative neoplasm characterized by clonal proliferation of myeloid cells and bone marrow fibrosis often causing cytopenias, extramedullary hematopoiesis resulting in hepatosplenomegaly, and increased pro-inflammatory cytokine production driving systemic symptoms. A significant proportion of morbidity and mortality is related to the propensity to transform to acute leukemia. Allogeneic hematopoietic stem cell transplantation is the only curative therapy; however, due to the high associated mortality, this treatment is not an option for the majority of patients with MF. Currently, there are three targeted Food and Drug Administration (FDA)-approved therapies for MF which include ruxolitinib, fedratinib, and pacritinib, all part of the JAK inhibitor class. Many patients are unable to tolerate, do not respond, or develop resistance to existing therapies, leaving a large unmet medical need. In this review, we discuss the current treatment paradigm and novel therapies in development for the treatment of MF. We review the scientific rationale of each targeted pathway. We summarize updated clinical data and ongoing trials that may lead to FDA approval of these agents.
Collapse
Affiliation(s)
- Julian A Waksal
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Box 1079, One Gustave L Levy Place, New York, NY, 10029, USA
| | - John Mascarenhas
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Box 1079, One Gustave L Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
7
|
Cerqueira SR, Benavides S, Lee HE, Ayad NG, Lee JK. BET protein inhibition promotes non-myeloid cell mediated neuroprotection after rodent spinal cord contusion. Exp Neurol 2022; 352:114035. [PMID: 35276206 PMCID: PMC10998280 DOI: 10.1016/j.expneurol.2022.114035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
Spinal cord injuries (SCI) often lead to multiple neurological deficits as a result from the initial trauma and also the secondary damage that follows. Despite abundant preclinical data proposing anti-inflammatory therapies to minimize secondary injury and improve functional recovery, the field still lacks an effective neuroprotective treatment. Epigenetic proteins, such as bromodomain and extraterminal domain (BET) proteins, are emerging as new targets to regulate inflammation. More importantly, pharmacological inhibition of BET proteins suppresses pro-inflammatory gene transcription after SCI. In this study, we tested the therapeutic potential of inhibiting BET proteins after SCI with clinically relevant compounds, and investigated the role of the BET protein BRD4 in macrophages during progression of SCI pathology. Systemic inhibition of BET proteins with I-BET762 significantly reduced lesion size 8 weeks after a contusion injury in rats. However, we observed no histological or locomotor improvements after SCI when we deleted Brd4 in macrophages through the use of myeloid-specific Brd4 knockout mice or after macrophage-targeted pharmacological BET inhibition. Taken together, our data indicate that systemic I-BET762 treatment is neuroprotective, and the histopathological improvement observed is likely to be a result of effects on non-macrophage targets. Expanding our understanding on the role of BET proteins after SCI is necessary to identify novel therapeutic targets that can effectively promote repair after SCI.
Collapse
Affiliation(s)
- Susana R Cerqueira
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sofia Benavides
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ha Eun Lee
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nagi G Ayad
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; The University of Miami Brain Tumor Initiative, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Jae K Lee
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
8
|
Ali HA, Li Y, Bilal AHM, Qin T, Yuan Z, Zhao W. A Comprehensive Review of BET Protein Biochemistry, Physiology, and Pathological Roles. Front Pharmacol 2022; 13:818891. [PMID: 35401196 PMCID: PMC8990909 DOI: 10.3389/fphar.2022.818891] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Epigenetic modifications, specifically acetylation of histone plays a decisive role in gene regulation and transcription of normal cellular mechanisms and pathological conditions. The bromodomain and extraterminal (BET) proteins (BRD2, BRD3, BRD4, and BRDT), being epigenetic readers, ligate to acetylated regions of histone and synchronize gene transcription. BET proteins are crucial for normal cellular processing as they control cell cycle progression, neurogenesis, differentiation, and maturation of erythroids and spermatogenesis, etc. Research-based evidence indicated that BET proteins (mainly BRD4) are associated with numeral pathological ailments, including cancer, inflammation, infections, renal diseases, and cardiac diseases. To counter the BET protein-related pathological conditions, there are some BET inhibitors developed and also under development. BET proteins are a topic of most research nowadays. This review, provides an ephemeral but comprehensive knowledge about BET proteins’ basic structure, biochemistry, physiological roles, and pathological conditions in which the role of BETs have been proven. This review also highlights the current and future approaches to pledge BET protein-related pathologies.
Collapse
Affiliation(s)
- Hafiz Akbar Ali
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yalan Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Akram Hafiz Muhammad Bilal
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tingting Qin
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wen Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
O-alkyl and o-benzyl hesperetin derivative-1L attenuates inflammation and protects against alcoholic liver injury via inhibition of BRD2-NF-κB signaling pathway. Toxicology 2022; 466:153087. [PMID: 34974135 DOI: 10.1016/j.tox.2021.153087] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/21/2021] [Accepted: 12/27/2021] [Indexed: 01/09/2023]
Abstract
Alcoholic liver injury (ALI) is a major risk factor for alcoholic liver disease, characterized by excessive inflammatory response and abnormal liver dysfunction. Previous studies have indicated that O-alkyl and o-benzyl hesperetin derivative-1 L (HD-1 L) has anti-inflammatory and hepato-protective effects in CCl4-induced liver injury. However, its effect on ALI and underlying mechanism has not been elucidated. This study was designed to evaluate the protective effects of HD-1 L on alcoholic liver injury and reveal the underlying mechanisms. ALI model was established in male C57BL/6 J mice (aged 6-8 weeks) by Gao-Binge protocol. The mice were received different doses of HD-1 L (25 mg/kg, 50 mg/kg, 100 mg/kg) by daily intragastric administration, respectively. Liver function and inflammation were measured. Mechanism underlying the anti-inflammatory and hepato-protective effect of HD-1 L were studied in RAW264.7 cells. In alcoholic liver injury mice, HD-1 L effectively improved the liver pathology, and remarkably reduced the levels of alanine transaminase (ALT), aspartate transaminase (AST), triglyceride (TG) and total cholesterol (T-CHO) in serum. Moreover, HD-1 L markedly suppressed inflammation in vivo and inhibited the secretion of inflammatory factors in vitro. Our results showed that HD-1 L decreased the activity of Bromodomain-containing Protein 2 (BRD2) and inhibited expression of BRD2 in vivo and in vitro. Furthermore, HD-1 L further alleviated alcohol-induced inflammation after blocking BRD2 with inhibitor (JQ1) or BRD2 small interfering (si)-RNA in RAW264.7 cells. Besides, HD-1 L failed to effectively exert its anti-inflammatory effects after over expression of BRD2. In addition, HD-1 L significantly inhibited the phosphorylation and activation of NF-κB-P65 mediated by BRD2. In conclusion, HD-1 L alleviated liver injury and inflammation mainly by inhibiting BRD2-NF-κB signaling pathway, and HD-1 L may be a potential anti-inflammatory compound in treatment of alcoholic liver disease.
Collapse
|
10
|
Abstract
Myelofibrosis is a myeloproliferative neoplasm characterized by clonal proliferation of myeloid cells, bone marrow fibrosis and cytopenias, extramedullary hematopoiesis and hepatosplenomegaly, increased pro-inflammatory cytokine production, and systemic symptoms. Patients with MF also have a propensity toward leukemic transformation. Allogeneic hematopoietic stem cell transplantation (aHCT) is the only curative therapy for patients with MF; however, transplant-related morbidity and mortality precludes this option for the majority of patients. In the last decade, two targeted therapies have been approved for the treatment of MF, both JAK2 inhibitors, ruxolitinib and fedratinib. Despite the clinical efficacy of these two compounds in terms of splenomegaly and symptom burden reduction, there remain many areas of unmet need in the treatment of myelofibrosis. In this review, we discuss the limitations of currently approved treatment options and novel therapeutic targets with drug candidates in late-stage (phase II or III) clinical development for the treatment of MF. We delve into the mechanism of action and scientific rational of each candidate agent as well as the available clinical data, and ongoing trials that could lead to the approval of some of these novel therapies.
Collapse
Affiliation(s)
- Julian A Waksal
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | | | - John O Mascarenhas
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| |
Collapse
|
11
|
Neganova M, Liu J, Aleksandrova Y, Klochkov S, Fan R. Therapeutic Influence on Important Targets Associated with Chronic Inflammation and Oxidative Stress in Cancer Treatment. Cancers (Basel) 2021; 13:6062. [PMID: 34885171 PMCID: PMC8657135 DOI: 10.3390/cancers13236062] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 01/17/2023] Open
Abstract
Chronic inflammation and oxidative stress are the interconnected pathological processes, which lead to cancer initiation and progression. The growing level of oxidative and inflammatory damage was shown to increase cancer severity and contribute to tumor spread. The overproduction of reactive oxygen species (ROS), which is associated with the reduced capacity of the endogenous cell defense mechanisms and/or metabolic imbalance, is the main contributor to oxidative stress. An abnormal level of ROS was defined as a predisposing factor for the cell transformation that could trigger pro-oncogenic signaling pathways, induce changes in gene expression, and facilitate accumulation of mutations, DNA damage, and genomic instability. Additionally, the activation of transcription factors caused by a prolonged oxidative stress, including NF-κB, p53, HIF1α, etc., leads to the expression of several genes responsible for inflammation. The resulting hyperactivation of inflammatory mediators, including TNFα, TGF-β, interleukins, and prostaglandins can contribute to the development of neoplasia. Pro-inflammatory cytokines were shown to trigger adaptive reactions and the acquisition of resistance by tumor cells to apoptosis, while promoting proliferation, invasion, and angiogenesis. Moreover, the chronic inflammatory response leads to the excessive production of free radicals, which further aggravate the initiated reactions. This review summarizes the recent data and progress in the discovery of mechanisms that associate oxidative stress and chronic inflammation with cancer onset and metastasis. In addition, the review provides insights for the development of therapeutic approaches and the discovery of natural substances that will be able to simultaneously inhibit several key oncological and inflammation-related targets.
Collapse
Affiliation(s)
- Margarita Neganova
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Sergey Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
12
|
Madej E, Ryszawy D, Brożyna AA, Czyz M, Czyz J, Wolnicka-Glubisz A. Deciphering the Functional Role of RIPK4 in Melanoma. Int J Mol Sci 2021; 22:ijms222111504. [PMID: 34768934 PMCID: PMC8583870 DOI: 10.3390/ijms222111504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
The receptor-interacting protein kinase 4 (RIPK4) plays an important role in the development and maintenance of various tissues including skin, but its role in melanoma has not been reported. Using patient-derived cell lines and clinical samples, we show that RIPK4 is expressed in melanomas at different levels. This heterogenous expression, together with very low level of RIPK4 in melanocytes, indicates that the role of this kinase in melanoma is context-dependent. While the analysis of microarray data has revealed no straightforward correlation between the stage of melanoma progression and RIPK4 expression in vivo, relatively high levels of RIPK4 are in metastatic melanoma cell lines. RIPK4 down-regulation by siRNA resulted in the attenuation of invasive potential as assessed by time-lapse video microscopy, wound-healing and transmigration assays. These effects were accompanied by reduced level of pro-invasive proteins such as MMP9, MMP2, and N-cadherin. Incubation of melanoma cells with phorbol ester (PMA) increased PKC-1β level and hyperphosphorylation of RIPK4 resulting in degradation of RIPK4. Interestingly, incubation of cells with PMA for short and long durations revealed that cell migration is controlled by the NF-κB signaling in a RIPK4-dependent (RIPK4high) or independent (RIPK4low) manner depending on cell origin (distant or lymph node metastasis) or phenotype (mesenchymal or epithelial).
Collapse
Affiliation(s)
- Ewelina Madej
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, 7 Gronostajowa Street, 30-387 Krakow, Poland;
| | - Damian Ryszawy
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, 7 Gronostajowa Street, 30-387 Krakow, Poland; (D.R.); (J.C.)
| | - Anna A. Brożyna
- Faculty of Biological and Veterinary Sciences, Institute of Biology, Department of Human Biology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Torun, Poland;
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer Lodz, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland;
| | - Jaroslaw Czyz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, 7 Gronostajowa Street, 30-387 Krakow, Poland; (D.R.); (J.C.)
| | - Agnieszka Wolnicka-Glubisz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, 7 Gronostajowa Street, 30-387 Krakow, Poland;
- Correspondence: ; Tel.: +48-12-664-65-26; Fax: +48-12-664-69
| |
Collapse
|
13
|
Ahmed F, Tseng HY, Ahn A, Gunatilake D, Alavi S, Eccles M, Rizos H, Gallagher SJ, Tiffen JC, Hersey P, Emran AA. Repurposing melanoma chemotherapy to activate inflammasomes in treatment of BRAF/MAPK inhibitor resistant melanoma. J Invest Dermatol 2021; 142:1444-1455.e10. [PMID: 34695412 DOI: 10.1016/j.jid.2021.09.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022]
Abstract
The development of resistance to treatments of melanoma is commonly associated with upregulation of the MAPK pathway and development of an undifferentiated state. Prior studies have suggested that melanoma with these resistance characteristics may be susceptible to innate death mechanisms such as pyroptosis triggered by activation of inflammasomes. In the present studies we have taken cell lines from patients before and after development of resistance to BRAF V600 inhibitors and exposed the resistant melanoma to temozolomide (a commonly used chemotherapy) with and without chloroquine to inhibit autophagy. It was found that melanoma with an inflammatory undifferentiated state appeared susceptible to this combination when tested in vitro and in vivo against xenografts in NSG mice. Translation of the latter results into patients would promise durable responses in patients treated by the combination. The inflammasome and death mechanism involved appeared to vary between melanoma and involved either AIM2 or NLRP3 inflammasomes and gasdermin D or E. These preliminary studies have raised questions as to the selectivity for different inflammasomes in different melanoma and their selective targeting by chemotherapy. They also question whether the inflammatory state of melanoma may be used as biomarkers to select patients for inflammasome targeted therapy.
Collapse
Affiliation(s)
- Farzana Ahmed
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia
| | - Hsin-Yi Tseng
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia; Central Clinical School, The University of Sydney, Camperdown, Australia
| | - Antonio Ahn
- Peter MacCallum Cancer Centre, Melbourne, Australia; The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Dilini Gunatilake
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia
| | - Sara Alavi
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia; Central Clinical School, The University of Sydney, Camperdown, Australia
| | - Michael Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Helen Rizos
- Melanoma Institute Australia, Sydney, Australia; Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Stuart J Gallagher
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia; Central Clinical School, The University of Sydney, Camperdown, Australia
| | - Jessamy C Tiffen
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia; Central Clinical School, The University of Sydney, Camperdown, Australia
| | - Peter Hersey
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia; Central Clinical School, The University of Sydney, Camperdown, Australia.
| | - Abdullah Al Emran
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia; Central Clinical School, The University of Sydney, Camperdown, Australia; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
14
|
Lai J, Liu Z, Zhao Y, Ma C, Huang H. Anticancer Effects of I-BET151, an Inhibitor of Bromodomain and Extra-Terminal Domain Proteins. Front Oncol 2021; 11:716830. [PMID: 34540687 PMCID: PMC8443787 DOI: 10.3389/fonc.2021.716830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
I-BET151 is an inhibitor of bromodomain and extra-terminal domain (BET) proteins that selectively inhibits BET family members (BRD2, BRD3, BRD4, and BRDT). Over the past ten years, many studies have demonstrated the potential of I-BET151 in cancer treatment. Specifically, I-BET151 causes cell cycle arrest and inhibits tumor cell proliferation in some hematological malignancies and solid tumors, such as breast cancer, glioma, melanoma, neuroblastoma, and ovarian cancer. The anticancer activity of I-BET151 is related to its effects on NF-κB, Notch, and Hedgehog signal transduction pathway, tumor microenvironment (TME) and telomere elongation. Remarkably, the combination of I-BET151 with select anticancer drugs can partially alleviate the occurrence of drug resistance in chemotherapy. Especially, the combination of forskolin, ISX9, CHIR99021, I-BET151 and DAPT allows GBM cells to be reprogrammed into neurons, and this process does not experience an intermediate pluripotent state. The research on the anticancer mechanism of I-BET151 will lead to new treatment strategies for clinical cancer.
Collapse
Affiliation(s)
- Jiacheng Lai
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Ziqiang Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yulei Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Chengyuan Ma
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Haiyan Huang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Dobre EG, Constantin C, Costache M, Neagu M. Interrogating Epigenome toward Personalized Approach in Cutaneous Melanoma. J Pers Med 2021; 11:901. [PMID: 34575678 PMCID: PMC8467841 DOI: 10.3390/jpm11090901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic alterations have emerged as essential contributors in the pathogenesis of various human diseases, including cutaneous melanoma (CM). Unlike genetic changes, epigenetic modifications are highly dynamic and reversible and thus easy to regulate. Here, we present a comprehensive review of the latest research findings on the role of genetic and epigenetic alterations in CM initiation and development. We believe that a better understanding of how aberrant DNA methylation and histone modifications, along with other molecular processes, affect the genesis and clinical behavior of CM can provide the clinical management of this disease a wide range of diagnostic and prognostic biomarkers, as well as potential therapeutic targets that can be used to prevent or abrogate drug resistance. We will also approach the modalities by which these epigenetic alterations can be used to customize the therapeutic algorithms in CM, the current status of epi-therapies, and the preliminary results of epigenetic and traditional combinatorial pharmacological approaches in this fatal disease.
Collapse
Affiliation(s)
- Elena-Georgiana Dobre
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Marieta Costache
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
| | - Monica Neagu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
16
|
Emran AA, Tseng HY, Gunatilake D, Cook SJ, Ahmed F, Wang S, Hersey P, Gallagher SJ, Tiffen JC. A Combination of Epigenetic BET and CDK9 Inhibitors for Treatment of Human Melanoma. J Invest Dermatol 2021; 141:2238-2249.e12. [DOI: 10.1016/j.jid.2020.12.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
|
17
|
Stephens KE, Zhou W, Renfro Z, Ji Z, Ji H, Guan Y, Taverna SD. Global gene expression and chromatin accessibility of the peripheral nervous system in animal models of persistent pain. J Neuroinflammation 2021; 18:185. [PMID: 34446036 PMCID: PMC8390277 DOI: 10.1186/s12974-021-02228-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Efforts to understand genetic variability involved in an individual's susceptibility to chronic pain support a role for upstream regulation by epigenetic mechanisms. METHODS To examine the transcriptomic and epigenetic basis of chronic pain that resides in the peripheral nervous system, we used RNA-seq and ATAC-seq of the rat dorsal root ganglion (DRG) to identify novel molecular pathways associated with pain hypersensitivity in two well-studied persistent pain models induced by chronic constriction injury (CCI) of the sciatic nerve and intra-plantar injection of complete Freund's adjuvant (CFA) in rats. RESULTS Our RNA-seq studies identify a variety of biological process related to synapse organization, membrane potential, transmembrane transport, and ion binding. Interestingly, genes that encode transcriptional regulators were disproportionately downregulated in both models. Our ATAC-seq data provide a comprehensive map of chromatin accessibility changes in the DRG. A total of 1123 regions showed changes in chromatin accessibility in one or both models when compared to the naïve and 31 shared differentially accessible regions (DAR)s. Functional annotation of the DARs identified disparate molecular functions enriched for each pain model which suggests that chromatin structure may be altered differently following sciatic nerve injury and hind paw inflammation. Motif analysis identified 17 DNA sequences known to bind transcription factors in the CCI DARs and 33 in the CFA DARs. Two motifs were significantly enriched in both models. CONCLUSIONS Our improved understanding of the changes in chromatin accessibility that occur in chronic pain states may identify regulatory genomic elements that play essential roles in modulating gene expression in the DRG.
Collapse
Affiliation(s)
- Kimberly E Stephens
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Arkansas Children's Research Institute, 13 Children's Way, Slot 512-47, Little Rock, AR, 72202, USA.
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Center for Epigenetics, Johns Hopkins University, Baltimore, MD, USA.
| | - Weiqiang Zhou
- Department of Biostatistics, School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Zachary Renfro
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Research Institute, 13 Children's Way, Slot 512-47, Little Rock, AR, 72202, USA
| | - Zhicheng Ji
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Hongkai Ji
- Department of Biostatistics, School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yun Guan
- Department of Anesthesia and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Sean D Taverna
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Center for Epigenetics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
18
|
Epigenetic Regulation in Melanoma: Facts and Hopes. Cells 2021; 10:cells10082048. [PMID: 34440824 PMCID: PMC8392422 DOI: 10.3390/cells10082048] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/25/2022] Open
Abstract
Cutaneous melanoma is a lethal disease, even when diagnosed in advanced stages. Although recent progress in biology and treatment has dramatically improved survival rates, new therapeutic approaches are still needed. Deregulation of epigenetics, which mainly controls DNA methylation status and chromatin remodeling, is implied not only in cancer initiation and progression, but also in resistance to antitumor drugs. Epigenetics in melanoma has been studied recently in both melanoma preclinical models and patient samples, highlighting its potential role in different phases of melanomagenesis, as well as in resistance to approved drugs such as immune checkpoint inhibitors and MAPK inhibitors. This review summarizes what is currently known about epigenetics in melanoma and dwells on the recognized and potential new targets for testing epigenetic drugs, alone or together with other agents, in advanced melanoma patients.
Collapse
|
19
|
Bhola NE, Njatcha C, Hu L, Lee ED, Shiah JV, Kim MO, Johnson DE, Grandis JR. PD-L1 is upregulated via BRD2 in head and neck squamous cell carcinoma models of acquired cetuximab resistance. Head Neck 2021; 43:3364-3373. [PMID: 34346116 DOI: 10.1002/hed.26827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/11/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tumor models resistant to EGFR tyrosine kinase inhibitors or cisplatin express higher levels of the immune checkpoint molecule PD-L1. We sought to determine whether PD-L1 expression is elevated in head and neck squamous cell carcinoma (HNSCC) models of acquired cetuximab resistance and whether the expression is regulated by bromodomain and extraterminal domain (BET) proteins. METHODS Expression of PD-L1 was assessed in HNSCC cell line models of acquired cetuximab resistance. Proteolysis targeting chimera (PROTAC)- and RNAi-mediated targeting were used to assess the role of BET proteins. RESULTS Cetuximab-resistant HNSCC cells expressed elevated PD-L1 compared to cetuximab-sensitive controls. Treatment with the BET inhibitor JQ1, the BET PROTAC MZ1, or RNAi-mediated knockdown of BRD2 decreased PD-L1 expression. Knockdown of BRD2 also reduced the elevated levels of PD-L1 seen in a model of acquired cisplatin resistance. CONCLUSIONS PD-L1 is significantly elevated in HNSCC models of acquired cetuximab and cisplatin resistance where BRD2 is the primary regulator.
Collapse
Affiliation(s)
- Neil E Bhola
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Christian Njatcha
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Lanlin Hu
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Eliot D Lee
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Jamie V Shiah
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Mi-Ok Kim
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Daniel E Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
20
|
Mikkelsen SU, Gillberg L, Lykkesfeldt J, Grønbæk K. The role of vitamin C in epigenetic cancer therapy. Free Radic Biol Med 2021; 170:179-193. [PMID: 33789122 DOI: 10.1016/j.freeradbiomed.2021.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022]
Abstract
The role of vitamin C in the treatment of cancer has been subject to controversy for decades. Within the past 10 years, mechanistic insight into the importance of vitamin C in epigenetic regulation has provided a new rationale for its potential anti-cancer effects. At physiological concentrations, vitamin C is a potent antioxidant and thereby co-factor for a range of enzymes including the Fe(II)- and α-ketoglutarate-dependent dioxygenases that represent some of the most important epigenetic regulators; the ten-eleven translocation (TET) methylcytosine dioxygenases and the Jumonji-C domain-containing histone demethylases. Epigenetic deregulation is a hallmark of many cancers and reduced activity of these enzymes or somatic loss-of-function mutations in the genes encoding them, are observed in many cancer types. The present review outlines the growing literature on the role of vitamin C in epigenetic therapy of cancer. In the vast majority of in vitro, animal and clinical studies included in this review, vitamin C showed ability across cancer types to increase the hydroxylation of 5-methylcytosine to 5-hydroxymethylcytosine catalyzed by the TET enzymes - the first step in DNA demethylation. Most consistently, vitamin C in combination with the class of epigenetic drugs, DNA methyltransferase inhibitors, has demonstrated efficacy in the treatment of hematological malignancies in both preclinical and the limited number of available clinical studies. Yet, the pertinent question of what is the optimal dose of vitamin C in cancer studies remains to be answered. High-quality randomized placebo-controlled trials are needed to determine whether supplementation with vitamin C may benefit subgroups of patients with (pre-)cancer.
Collapse
Affiliation(s)
- Stine Ulrik Mikkelsen
- Department of Hematology, Rigshospitalet, Juliane Maries Vej 10, 2100, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, Building 2, 3rd Floor, 2200, Copenhagen, Denmark
| | - Linn Gillberg
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jens Lykkesfeldt
- Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1st Floor, 1870, Frederiksberg, Denmark
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Juliane Maries Vej 10, 2100, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, Building 2, 3rd Floor, 2200, Copenhagen, Denmark; DanStem, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
21
|
Salahong T, Schwartz C, Sungthong R. Are BET Inhibitors yet Promising Latency-Reversing Agents for HIV-1 Reactivation in AIDS Therapy? Viruses 2021; 13:v13061026. [PMID: 34072421 PMCID: PMC8228869 DOI: 10.3390/v13061026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022] Open
Abstract
AIDS first emerged decades ago; however, its cure, i.e., eliminating all virus sources, is still unachievable. A critical burden of AIDS therapy is the evasive nature of HIV-1 in face of host immune responses, the so-called "latency." Recently, a promising approach, the "Shock and Kill" strategy, was proposed to eliminate latently HIV-1-infected cell reservoirs. The "Shock and Kill" concept involves two crucial steps: HIV-1 reactivation from its latency stage using a latency-reversing agent (LRA) followed by host immune responses to destroy HIV-1-infected cells in combination with reinforced antiretroviral therapy to kill the progeny virus. Hence, a key challenge is to search for optimal LRAs. Looking at epigenetics of HIV-1 infection, researchers proved that some bromodomains and extra-terminal motif protein inhibitors (BETis) are able to reactivate HIV-1 from latency. However, to date, only a few BETis have shown HIV-1-reactivating functions, and none of them have yet been approved for clinical trial. In this review, we aim to demonstrate the epigenetic roles of BETis in HIV-1 infection and HIV-1-related immune responses. Possible future applications of BETis and their HIV-1-reactivating properties are summarized and discussed.
Collapse
Affiliation(s)
- Thanarat Salahong
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Christian Schwartz
- Research Unit 7292, DHPI, IUT Louis Pasteur, University of Strasbourg, 67300 Schiltigheim, France
- Correspondence: (C.S.); (R.S.)
| | - Rungroch Sungthong
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
- Laboratory of Hydrology and Geochemistry of Strasbourg, University of Strasbourg, UMR 7517 CNRS/EOST, 67084 Strasbourg CEDEX, France
- Correspondence: (C.S.); (R.S.)
| |
Collapse
|
22
|
Lee JE, Kim MY. Cancer epigenetics: Past, present and future. Semin Cancer Biol 2021; 83:4-14. [PMID: 33798724 DOI: 10.1016/j.semcancer.2021.03.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
Cancer was thought to be caused solely by genetic mutations in oncogenes and tumor suppressor genes. In the last 35 years, however, epigenetic changes have been increasingly recognized as another primary driver of carcinogenesis and cancer progression. Epigenetic deregulation in cancer often includes mutations and/or aberrant expression of chromatin-modifying enzymes, their associated proteins, and even non-coding RNAs, which can alter chromatin structure and dynamics. This leads to changes in gene expression that ultimately contribute to the emergence and evolution of cancer cells. Studies of the deregulation of chromatin modifiers in cancer cells have reshaped the way we approach cancer and guided the development of novel anticancer therapeutics that target epigenetic factors. There remain, however, a number of unanswered questions in this field that are the focus of present research. Areas of particular interest include the actions of emerging classes of epigenetic regulators of carcinogenesis and the tumor microenvironment, as well as epigenetic tumor heterogeneity. In this review, we discuss past findings on epigenetic mechanisms of cancer, current trends in the field of cancer epigenetics, and the directions of future research that may lead to the identification of new prognostic markers for cancer and the development of more effective anticancer therapeutics.
Collapse
Affiliation(s)
- Jae Eun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; KAIST Institute for the BioCentury, Cancer Metastasis Control Center, Daejeon, Republic of Korea.
| |
Collapse
|
23
|
Yang X, Li F, Liu Y, Li D, Li J. Study on the Correlation Between NF-κB and Central Fatigue. J Mol Neurosci 2021; 71:1975-1986. [PMID: 33586033 PMCID: PMC8500872 DOI: 10.1007/s12031-021-01803-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/26/2021] [Indexed: 12/25/2022]
Abstract
In recent years, the World Health Organization (WHO) has included fatigue as a major risk factor for human life and health. The incidence rate of fatigue is high. In Europe and America, nearly 1/3 of the population is suffering from fatigue. Due to the acceleration of modern people’s life rhythm and the increase of work pressure, more and more attention has been paid to central fatigue. The activation of NF-κB is related to central fatigue, which has been paid little attention by previous studies. At the same time, previous studies have mostly focused on the immune regulation function of NF-κB, while the NF-κB pathway plays an equally important role in regulating nerve function. NF-κB can participate in the occurrence and development of central fatigue by mediating immune inflammatory response, regulating central excitability and inhibitory transmitters, regulating synaptic plasticity and regulating central nervous system (CNS) functional genes. In addition to neuroprotective effects, NF-κB also has nerve damage effects, which is also closely related to the occurrence and development of central fatigue. In this review, we focus on the relationship between NF-κB pathway and central fatigue and further explore the biological mechanism of central fatigue. At the same time, the clinical application and potential of typical NF-κB inhibitors in the treatment of fatigue were analyzed to provide reference for the clinical treatment of central fatigue.
Collapse
Affiliation(s)
- Xingzhe Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Feng Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Yan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Danxi Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
24
|
Wang N, Wu R, Tang D, Kang R. The BET family in immunity and disease. Signal Transduct Target Ther 2021; 6:23. [PMID: 33462181 PMCID: PMC7813845 DOI: 10.1038/s41392-020-00384-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/27/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Innate immunity serves as the rapid and first-line defense against invading pathogens, and this process can be regulated at various levels, including epigenetic mechanisms. The bromodomain and extraterminal domain (BET) family of proteins consists of four conserved mammalian members (BRD2, BRD3, BRD4, and BRDT) that regulate the expression of many immunity-associated genes and pathways. In particular, in response to infection and sterile inflammation, abnormally expressed or dysfunctional BETs are involved in the activation of pattern recognition receptor (e.g., TLR, NLR, and CGAS) pathways, thereby linking chromatin machinery to innate immunity under disease or pathological conditions. Mechanistically, the BET family controls the transcription of a wide range of proinflammatory and immunoregulatory genes by recognizing acetylated histones (mainly H3 and H4) and recruiting transcription factors (e.g., RELA) and transcription elongation complex (e.g., P-TEFb) to the chromatin, thereby promoting the phosphorylation of RNA polymerase II and subsequent transcription initiation and elongation. This review covers the accumulating data about the roles of the BET family in innate immunity, and discusses the attractive prospect of manipulating the BET family as a new treatment for disease.
Collapse
Affiliation(s)
- Nian Wang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
25
|
Antonangeli F, Natalini A, Garassino MC, Sica A, Santoni A, Di Rosa F. Regulation of PD-L1 Expression by NF-κB in Cancer. Front Immunol 2020; 11:584626. [PMID: 33324403 PMCID: PMC7724774 DOI: 10.3389/fimmu.2020.584626] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
Immune checkpoints are inhibitory receptor/ligand pairs regulating immunity that are exploited as key targets of anti-cancer therapy. Although the PD-1/PD-L1 pair is one of the most studied immune checkpoints, several aspects of its biology remain to be clarified. It has been established that PD-1 is an inhibitory receptor up-regulated by activated T, B, and NK lymphocytes and that its ligand PD-L1 mediates a negative feedback of lymphocyte activation, contributing to the restoration of the steady state condition after acute immune responses. This loop might become detrimental in the presence of either a chronic infection or a growing tumor. PD-L1 expression in tumors is currently used as a biomarker to orient therapeutic decisions; nevertheless, our knowledge about the regulation of PD-L1 expression is limited. The present review discusses how NF-κB, a master transcription factor of inflammation and immunity, is emerging as a key positive regulator of PD-L1 expression in cancer. NF-κB directly induces PD-L1 gene transcription by binding to its promoter, and it can also regulate PD-L1 post-transcriptionally through indirect pathways. These processes, which under conditions of cellular stress and acute inflammation drive tissue homeostasis and promote tissue healing, are largely dysregulated in tumors. Up-regulation of PD-L1 in cancer cells is controlled via NF-κB downstream of several signals, including oncogene- and stress-induced pathways, inflammatory cytokines, and chemotherapeutic drugs. Notably, a shared signaling pathway in epithelial cancers induces both PD-L1 expression and epithelial–mesenchymal transition, suggesting that PD-L1 is part of the tissue remodeling program. Furthermore, PD-L1 expression by tumor infiltrating myeloid cells can contribute to the immune suppressive features of the tumor environment. A better understanding of the interplay between NF-κB signaling and PD-L1 expression is highly relevant to cancer biology and therapy.
Collapse
Affiliation(s)
- Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Marina Chiara Garassino
- Medical Oncology Department, Istituto Nazionale dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, Novara, Italy.,Humanitas Clinical and Research Center, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Rome, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| |
Collapse
|
26
|
Spatial and Temporal Changes in PD-L1 Expression in Cancer: The Role of Genetic Drivers, Tumor Microenvironment and Resistance to Therapy. Int J Mol Sci 2020; 21:ijms21197139. [PMID: 32992658 PMCID: PMC7583014 DOI: 10.3390/ijms21197139] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Immunotherapies blocking immune inhibitory receptors programmed cell death-1 (PD-1) and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) on T-cells have dramatically improved patient outcomes in a range of advanced cancers. However, the lack of response, and the development of resistance remain major obstacles to long-term improvements in patient outcomes. There is significant interest in the clinical use of biomarkers to improve patient selection, and the expression of PD-1 ligand 1 (PD-L1) is often reported as a potential biomarker of response. However, accumulating evidence suggests that the predictive value of PD-L1 expression in tumor biopsies is relatively low due, in part, to its complex biology. In this review, we discuss the biological consequences of PD-L1 expression by various cell types within the tumor microenvironment, and the complex mechanisms that regulate PD-L1 expression at the genomic, transcriptomic and proteomic levels.
Collapse
|
27
|
Xu JL, Yuan YJ, Lv J, Qi D, Wu MD, Lan J, Liu SN, Yang Y, Zhai J, Jiang HM. Inhibition of BRD4 triggers cellular senescence through suppressing aurora kinases in oesophageal cancer cells. J Cell Mol Med 2020; 24:13036-13045. [PMID: 32954665 PMCID: PMC7701500 DOI: 10.1111/jcmm.15901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/22/2020] [Accepted: 09/01/2020] [Indexed: 01/16/2023] Open
Abstract
Oesophageal cancer is one of the most frequent solid malignancies and the leading cause of cancer-related death around the world. It is urgent to develop novel therapy strategies to improve patient outcomes. Acetylation modification of histones has been extensively studied in epigenetics. BRD4, a reader of acetylated histone and non-histone proteins, has involved in tumorigenesis. It has emerged as a promising target for cancer therapy. BRD4 inhibitors, such as JQ1, have exerted efficacious anti-proliferation activities in diverse cancers. However, the effects of JQ1 on oesophageal cancer are still not fully described. Here, we demonstrate that JQ1 suppresses cell growth and triggers cellular senescence in KYSE450 cells. Mechanistically, JQ1 up-regulates p21 level and decreases cyclin D1 resulting in G1 cycle arrest. The inhibitory effects of JQ1 on KYSE450 cells are independent on apoptosis. It activates cellular senescence by increasing SA-β-gal activity. BRD4 knockdown by shRNA recapitulates cellular senescence. We also display that administration of JQ1 decreases recruitment of BRD4 on the promoter of aurora kinases A and B. Inhibitors targeting at AURKA/B phenocopy JQ1 treatment in KYSE450 cells. These results identify a novel action manner of BRD4 in oesophageal cancer, which strengthens JQ1 as a candidate drug in oesophageal cancer chemotherapy.
Collapse
Affiliation(s)
- Jian-Ling Xu
- Department of Biochemistry, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ya-Jiao Yuan
- Department of Biochemistry, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Department of Clinical Laboratory, People's Hospital of Jimo District, Qingdao, China
| | - Jiao Lv
- Department of Biochemistry, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Di Qi
- Department of Biochemistry, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Meng-Di Wu
- Department of Biochemistry, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Lan
- Department of Biochemistry, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Sheng-Nan Liu
- Department of Biochemistry, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yong Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Jing Zhai
- Department of Biochemistry, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Han-Ming Jiang
- Department of Biochemistry, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
28
|
Deng G, Zeng F, Su J, Zhao S, Hu R, Zhu W, Hu S, Chen X, Yin M. BET inhibitor suppresses melanoma progression via the noncanonical NF-κB/SPP1 pathway. Am J Cancer Res 2020; 10:11428-11443. [PMID: 33052224 PMCID: PMC7546000 DOI: 10.7150/thno.47432] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Bromodomain and extra-terminal domain (BET) inhibitors have shown profound efficacy against hematologic malignancies and solid tumors in preclinical studies. However, the underlying molecular mechanism in melanoma is not well understood. Here we identified secreted phosphoprotein 1 (SPP1) as a melanoma driver and a crucial target of BET inhibitors in melanoma. Methods: Bioinformatics analysis and meta-analysis were used to evaluate the SPP1 expression in normal tissues, primary melanoma, and metastatic melanoma. Real-time PCR (RT-PCR) and Western blotting were employed to quantify SPP1 expression in melanoma cells and tissues. Cell proliferation, wound healing, and Transwell assays were carried out to evaluate the effects of SPP1 and BET inhibitors in melanoma cells in vitro. A xenograft mouse model was used to investigate the effect of SPP1 and BET inhibitors on melanoma in vivo. Chromatin immunoprecipitation (ChIP) assay was performed to evaluate the regulatory mechanism of BET inhibitors on SPP1. Results: SPP1 was identified as a melanoma driver by bioinformatics analysis, and meta-analysis determined it to be a diagnostic and prognostic biomarker for melanoma. SPP1 overexpression was associated with poor melanoma prognosis, and silencing SPP1 suppressed melanoma cell proliferation, migration, and invasion. Through a pilot drug screen, we identified BET inhibitors as ideal therapeutic agents that suppressed SPP1 expression. Also, SPP1 overexpression could partially reverse the suppressive effect of BET inhibitors on melanoma. We further demonstrated that bromodomain-containing 4 (BRD4) regulated SPP1 expression. Notably, BRD4 did not bind directly to the SPP1 promoter but regulated SPP1 expression through NFKB2. Silencing of NFKB2 resembled the phenotype of BET inhibitors treatment and SPP1 silencing in melanoma. Conclusion: Our findings highlight SPP1 as an essential target of BET inhibitors and provide a novel mechanism by which BET inhibitors suppress melanoma progression via the noncanonical NF-κB/SPP1 pathway.
Collapse
|
29
|
Liu J, Cao L, Qu JZ, Chen TT, Su ZJ, Hu YL, Wang Y, Yao MD, Xiao WH, Li C, Li B, Yuan YJ. NVD-BM-mediated genetic biosensor triggers accumulation of 7-dehydrocholesterol and inhibits melanoma via Akt1/NF-ĸB signaling. Aging (Albany NY) 2020; 12:15021-15036. [PMID: 32712598 PMCID: PMC7425431 DOI: 10.18632/aging.103562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/05/2020] [Indexed: 01/08/2023]
Abstract
Aberrant activation of the cholesterol biosynthesis supports tumor cell growth. In recent years, significant progress has been made by targeting rate-limiting enzymes in cholesterol biosynthesis pathways to prevent carcinogenesis. However, precise mechanisms behind cholesterol degradation in cancer cells have not been comprehensively investigated. Here, we report that codon optimization of the orthologous cholesterol 7-desaturase, NVD-BM from Bombyx mori, significantly slowed melanoma cell proliferation and migration, and inhibited cancer cell engraftment in nude mice, by converting cholesterol to toxic 7-dehydrocholesterol. Based on these observations, we established a synthetic genetic circuit to induce melanoma cell regression by sensing tumor specific signals in melanoma cells. The dual-input signals, RELA proto-oncogene (RELA) and signal transducer and activator of transcription 1 (STAT1), activated NVD-BM expression and repressed melanoma cell proliferation and migration. Mechanically, we observed that NVD-BM decreased Akt1-ser473 phosphorylation and inhibited cytoplasmic RELA translocation. Taken together, NVD-BM was identified as a tumor suppressor in malignant melanoma, and we established a dual-input biosensor to promote cancer cell regression, via Akt1/NF-κB signaling. Our results demonstrate the potential therapeutic effects of cholesterol 7-desaturase in melanoma metabolism, and provides insights for genetic circuits targeting 7-dehydrocholesterol accumulation in tumors.
Collapse
Affiliation(s)
- Jia Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lei Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jun-Ze Qu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ting-Ting Chen
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Carson International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Zi-Jie Su
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Carson International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Yun-Long Hu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University, Health Science Center, Shenzhen 518055, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ming-Dong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wen-Hai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chun Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bo Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University, Health Science Center, Shenzhen 518055, China
| | - Ying-Jin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
30
|
Epigenetic Mechanisms of Resistance to Immune Checkpoint Inhibitors. Biomolecules 2020; 10:biom10071061. [PMID: 32708698 PMCID: PMC7407667 DOI: 10.3390/biom10071061] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have demonstrated to be highly efficient in treating solid tumors; however, many patients have limited benefits in terms of response and survival. This rapidly led to the investigation of combination therapies to enhance response rates. Moreover, predictive biomarkers were assessed to better select patients. Although PD-L1 expression remains the only validated marker in clinics, molecular profiling has brought valuable information, showing that the tumor mutation load and microsatellite instability (MSI) status were associated to higher response rates in nearly all cancer types. Moreover, in lung cancer, EGFR and MET mutations, oncogene fusions or STK11 inactivating mutations were associated with low response rates. Cancer progression towards invasive phenotypes that impede immune surveillance relies on complex regulatory networks and cell interactions within the tumor microenvironment. Epigenetic modifications, such as the alteration of histone patterns, chromatin structure, DNA methylation status at specific promoters and changes in microRNA levels, may alter the cell phenotype and reshape the tumor microenvironment, allowing cells to grow and escape from immune surveillance. The objective of this review is to make an update on the identified epigenetic changes that target immune surveillance and, ultimately, ICI responses, such as histone marks, DNA methylation and miR signatures. Translational studies or clinical trials, when available, and potential epigenetic biomarkers will be discussed as perspectives in the context of combination treatment strategies to enhance ICI responses in patients with solid tumors.
Collapse
|
31
|
Tseng HY, Dreyer J, Emran AA, Gunatilake D, Pirozyan M, Cullinane C, Dutton-Regester K, Rizos H, Hayward NK, McArthur G, Hersey P, Tiffen J, Gallagher S. Co-targeting bromodomain and extra-terminal proteins and MCL1 induces synergistic cell death in melanoma. Int J Cancer 2020; 147:2176-2189. [PMID: 32249419 DOI: 10.1002/ijc.33000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 12/29/2022]
Abstract
The treatment of melanoma has been markedly improved by the introduction of targeted therapies and checkpoint blockade immunotherapy. Unfortunately, resistance to these therapies remains a limitation. Novel anticancer therapeutics targeting the MCL1 anti-apoptotic protein have shown impressive responses in haematological cancers but are yet to be evaluated in melanoma. To assess the sensitivity of melanoma to new MCL1 inhibitors, we measured the response of 51 melanoma cell lines to the novel MCL1 inhibitor, S63845. Additionally, we assessed combination of this drug with inhibitors of the bromodomain and extra-terminal (BET) protein family of epigenetic readers, which we postulated would assist MCL1 inhibition by downregulating anti-apoptotic targets regulated by NF-kB such as BCLXL, BCL2A1 and XIAP, and by upregulating pro-apoptotic proteins including BIM and NOXA. Only 14% of melanoma cell lines showed sensitivity to S63845, however, combination of S63845 and I-BET151 induced highly synergistic apoptotic cell death in all melanoma lines tested and in an in vivo xenograft model. Cell death was dependent on caspases and BAX/BAK. Although the combination of drugs increased the BH3-only protein, BIM, and downregulated anti-apoptotic proteins such as BCL2A1, the importance of these proteins in inducing cell death varied between cell lines. ABT-199 or ABT-263 inhibitors against BCL2 or BCL2 and BCLXL, respectively, induced further cell death when combined with S63845 and I-BET151. The combination of MCL1 and BET inhibition appears to be a promising therapeutic approach for metastatic melanoma, and presents opportunities to add further BCL2 family inhibitors to overcome treatment resistance.
Collapse
Affiliation(s)
- Hsin-Yi Tseng
- Melanoma Immunology and Oncology, The Centenary Institute, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,Central Clinical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Jan Dreyer
- Melanoma Immunology and Oncology, The Centenary Institute, Camperdown, New South Wales, Australia
| | - Abdullah Al Emran
- Melanoma Immunology and Oncology, The Centenary Institute, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,Central Clinical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Dilini Gunatilake
- Melanoma Immunology and Oncology, The Centenary Institute, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia
| | - Mehdi Pirozyan
- Melanoma Immunology and Oncology, The Centenary Institute, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,Central Clinical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Carleen Cullinane
- Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ken Dutton-Regester
- Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Helen Rizos
- Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Nicholas K Hayward
- Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Grant McArthur
- Department of Cancer Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Hersey
- Melanoma Immunology and Oncology, The Centenary Institute, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,Central Clinical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Jessamy Tiffen
- Melanoma Immunology and Oncology, The Centenary Institute, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,Central Clinical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Stuart Gallagher
- Melanoma Immunology and Oncology, The Centenary Institute, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia.,Central Clinical School, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
32
|
Emran AA, Tseng HY, Coleman MC, Tiffen J, Cook S, McGuire HM, Gallagher S, Feng C, Hersey P. Do innate killing mechanisms activated by inflammasomes have a role in treating melanoma? Pigment Cell Melanoma Res 2020; 33:660-670. [PMID: 32027447 PMCID: PMC7497247 DOI: 10.1111/pcmr.12870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/18/2022]
Abstract
Melanoma, as for many other cancers, undergoes a selection process during progression that limits many innate and adaptive tumor control mechanisms. Immunotherapy with immune checkpoint blockade overcomes one of the escape mechanisms but if the tumor is not eliminated other escape mechanisms evolve that require new approaches for tumor control. Some of the innate mechanisms that have evolved against infections with microorganisms and viruses are proving to be active against cancer cells but require better understanding of how they are activated and what inhibitory mechanisms may need to be targeted. This is particularly so for inflammasomes which have evolved against many different organisms and which recruit a number of cytotoxic mechanisms that remain poorly understood. Equally important is understanding of where these mechanisms will fit into existing treatment strategies and whether existing strategies already involve the innate killing mechanisms.
Collapse
Affiliation(s)
- Abdullah Al Emran
- Melanoma Immunology and Oncology Group, The Centenary Institute, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Hsin-Yi Tseng
- Melanoma Immunology and Oncology Group, The Centenary Institute, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Mikaela C Coleman
- Immunology and Host Defence Group, Department of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Tuberculosis Research Program, Centenary Institute, Camperdown, New South Wales, Australia
| | - Jessamy Tiffen
- Melanoma Immunology and Oncology Group, The Centenary Institute, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Stuart Cook
- Melanoma Immunology and Oncology Group, The Centenary Institute, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Helen M McGuire
- Ramaciotti Facility for Human Systems Biology, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Stuart Gallagher
- Melanoma Immunology and Oncology Group, The Centenary Institute, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Carl Feng
- Immunology and Host Defence Group, Department of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Tuberculosis Research Program, Centenary Institute, Camperdown, New South Wales, Australia
| | - Peter Hersey
- Melanoma Immunology and Oncology Group, The Centenary Institute, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
33
|
Strub T, Ballotti R, Bertolotto C. The "ART" of Epigenetics in Melanoma: From histone "Alterations, to Resistance and Therapies". Theranostics 2020; 10:1777-1797. [PMID: 32042336 PMCID: PMC6993228 DOI: 10.7150/thno.36218] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Malignant melanoma is the most deadly form of skin cancer. It originates from melanocytic cells and can also arise at other body sites. Early diagnosis and appropriate medical care offer excellent prognosis with up to 5-year survival rate in more than 95% of all patients. However, long-term survival rate for metastatic melanoma patients remains at only 5%. Indeed, malignant melanoma is known for its notorious resistance to most current therapies and is characterized by both genetic and epigenetic alterations. In cutaneous melanoma (CM), genetic alterations have been implicated in drug resistance, yet the main cause of this resistance seems to be non-genetic in nature with a change in transcription programs within cell subpopulations. This change can adapt and escape targeted therapy and immunotherapy cytotoxic effects favoring relapse. Because they are reversible in nature, epigenetic changes are a growing focus in cancer research aiming to prevent or revert the drug resistance with current therapies. As such, the field of epigenetic therapeutics is among the most active area of preclinical and clinical research with effects of many classes of epigenetic drugs being investigated. Here, we review the multiplicity of epigenetic alterations, mainly histone alterations and chromatin remodeling in both cutaneous and uveal melanomas, opening opportunities for further research in the field and providing clues to specifically control these modifications. We also discuss how epigenetic dysregulations may be exploited to achieve clinical benefits for the patients, the limitations of these therapies, and recent data exploring this potential through combinatorial epigenetic and traditional therapeutic approaches.
Collapse
Affiliation(s)
- Thomas Strub
- Université Nice Côte d'Azur, Inserm, C3M, France
- Biology and pathologies of melanocytes, Equipe labellisée ARC 2019, C3M, team 1, France
| | - Robert Ballotti
- Université Nice Côte d'Azur, Inserm, C3M, France
- Biology and pathologies of melanocytes, Equipe labellisée ARC 2019, C3M, team 1, France
| | - Corine Bertolotto
- Université Nice Côte d'Azur, Inserm, C3M, France
- Biology and pathologies of melanocytes, Equipe labellisée ARC 2019, C3M, team 1, France
| |
Collapse
|
34
|
Erkes DA, Rosenbaum SR, Field CO, Chervoneva I, Villanueva J, Aplin AE. PLX3397 inhibits the accumulation of intra-tumoral macrophages and improves bromodomain and extra-terminal inhibitor efficacy in melanoma. Pigment Cell Melanoma Res 2019; 33:372-377. [PMID: 31696640 DOI: 10.1111/pcmr.12845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/25/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Bromodomain and extra-terminal inhibitors (BETi) delay tumor growth, in part, through tumor cell intrinsic alterations and initiation of anti-tumor CD8+ T-cell responses. By contrast, BETi effects on pro-tumoral immune responses remain unclear. Here, we show that the next-generation BETi, PLX51107, delayed tumor growth to differing degrees in Braf V600E melanoma syngeneic mouse models. These differential responses were associated with the influx of tumor-associated macrophages during BETi treatment. Tumors that were poorly responsive to PLX51107 showed increased influx of colony-stimulating factor-1 receptor (CSF-1R)-positive tumor-associated macrophages. We depleted CSF-1R+ tumor-associated macrophages with the CSF-1R inhibitor, PLX3397, in combination with PLX51107. Treatment with PLX3397 enhanced the efficacy of PLX51107 in poorly responsive Braf V600E syngeneic melanomas in vivo. These findings suggest that tumor-associated macrophage accumulation limits BETi efficacy and that co-treatment with PLX3397 can improve response to PLX51107, offering a potential novel combination therapy for metastatic melanoma patients.
Collapse
Affiliation(s)
- Dan A Erkes
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sheera R Rosenbaum
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Conroy O Field
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Inna Chervoneva
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessie Villanueva
- Molecular and Cellular Oncogenesis Program, Melanoma Research Center, The Wistar Institute, PA, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
35
|
Erkes DA, Field CO, Capparelli C, Tiago M, Purwin TJ, Chervoneva I, Berger AC, Hartsough EJ, Villanueva J, Aplin AE. The next-generation BET inhibitor, PLX51107, delays melanoma growth in a CD8-mediated manner. Pigment Cell Melanoma Res 2019; 32:687-696. [PMID: 31063649 PMCID: PMC6697571 DOI: 10.1111/pcmr.12788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/26/2019] [Accepted: 04/28/2019] [Indexed: 12/30/2022]
Abstract
Epigenetic agents such as bromodomain and extra-terminal region inhibitors (BETi) slow tumor growth via tumor intrinsic alterations; however, their effects on antitumor immunity remain unclear. A recent advance is the development of next-generation BETi that are potent and display a favorable half-life. Here, we tested the BETi, PLX51107, for immune-based effects on tumor growth in BRAF V600E melanoma syngeneic models. PLX51107 delayed melanoma tumor growth and increased activated, proliferating, and functional CD8+ T cells in tumors leading to CD8+ T-cell-mediated tumor growth delay. PLX51107 decreased Cox2 expression, increased dendritic cells, and lowered PD-L1, FasL, and IDO-1 expression in the tumor microenvironment. Importantly, PLX51107 delayed the growth of tumors that progressed on anti-PD-1 therapy; a response associated with decreased Cox2 levels, decreased PD-L1 expression on non-immune cells, and increased intratumoral CD8+ T cells. Thus, next-generation BETi represent a potential first-line and secondary treatment strategy for metastatic melanoma by eliciting effects, at least in part, on antitumor CD8+ T cells.
Collapse
Affiliation(s)
- Dan A. Erkes
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Conroy O. Field
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Claudia Capparelli
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Manoela Tiago
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J. Purwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Inna Chervoneva
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam C. Berger
- Department of Surgical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Edward J. Hartsough
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19107
| | - Jessie Villanueva
- Molecular and Cellular Oncogenesis Program, Melanoma Research Center, The Wistar Institute, PA 19104, USA
| | - Andrew E. Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
36
|
Zhao G, Yin Y, Zhao B. miR-140-5p is negatively correlated with proliferation, invasion, and tumorigenesis in malignant melanoma by targeting SOX4 via the Wnt/β-catenin and NF-κB cascades. J Cell Physiol 2019; 235:2161-2170. [PMID: 31385607 DOI: 10.1002/jcp.29122] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/21/2019] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) have been validated as critical regulators in the development of melanoma. miR-140 was abnormally downregulated in uveal melanoma samples. However, the expression level and roles of miR-140-5p remain unclear in melanoma for now. We speculate that miR-140-5p is abnormally expressed and may play an important role in melanoma. The expressions of miR-140-5p and SOX4 messenger RNA were determined by quantitative real-time polymerase chain reaction assays. Western blot assays were employed to detect the expression levels of SOX4, Ki67, MMP-2, MMP-7, p-β-catenin, c-Myc, cyclin D1, p65, and IκBα. Luciferase reporter assays were employed to elucidate the interaction between SOX4 and miR-140-5p. MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) and transwell invasion assays were applied to evaluate capabilities of cell proliferation and invasion, respectively. Xenograft models of melanoma were established to verify the role and molecular basis of miR-140-5p. Immunohistochemical (IHC) assays were employed to measure the Ki67 and SOX4 at the protein level in xenografted melanoma tissues. Herein, these observations showed that, miR-140-5p was abnormally downregulated in melanoma tissues and cells, while SOX4 was upregulated. miR-140-5p directly targeted SOX4 and inhibited its expression in melanoma cells. miR-140-5p overexpression repressed melanoma cell proliferation and invasion and its effects were partially restored SOX4 overexpression. Moreover, miR-140-5p hindered melanoma growth in vivo by downregulating SOX4. Mechanistically, miR-140-5p suppressed activation of the Wnt/β-catenin and NF-κB pathways by targeting SOX4. Our study concluded that miR-140-5p hindered cell proliferation, invasion, and tumorigenesis by targeting SOX4 via inactivation of the Wnt/β-catenin and NF-κB signaling pathways in malignant melanoma, which provides an underlying molecular mechanism for the treatment for melanoma with miRNAs.
Collapse
Affiliation(s)
- Ge Zhao
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yakun Yin
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Zhao
- Department of Dermatology, The Third Provincial People's Hospital of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
37
|
Damaneh MS, Hu JP, Huan XJ, Song SS, Tian CQ, Chen DQ, Meng T, Chen YL, Shen JK, Xiong B, Miao ZH, Wang YQ. A new BET inhibitor, 171, inhibits tumor growth through cell proliferation inhibition more than apoptosis induction. Invest New Drugs 2019; 38:700-713. [DOI: 10.1007/s10637-019-00818-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/14/2019] [Indexed: 01/06/2023]
|
38
|
Xiong S, Peng H, Ding X, Wang X, Wang L, Wu C, Wang S, Xu H, Liu Y. Circular RNA Expression Profiling and the Potential Role of hsa_circ_0089172 in Hashimoto's Thyroiditis via Sponging miR125a-3p. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:38-48. [PMID: 31207490 PMCID: PMC6579753 DOI: 10.1016/j.omtn.2019.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/05/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022]
Abstract
Circular RNA (circRNA) is a novel subclass of noncoding-RNA molecules that participate in development and progression of a variety of human diseases via sponging microRNAs (miRNAs), but the role of circRNAs in Hashimoto’s thyroiditis (HT) has not been defined. In this study, peripheral blood samples from five patients with HT and five healthy volunteers were investigated by Illumina HiSeq Sequencer. A total of 627 differentially expressed circRNAs including 370 upregulated and 257 downregulated ones were identified in HT patients. Four upregulated circRNAs indicated the same rising tendency toward sequencing results. The expression of hsa_circ_0089172 was upregulated and correlated positively with the serum level of the thyroid peroxidase antibody. Two perfectly matched binding sites of miR-125a-3p were found in hsa_circ_0089172 sequences with bioinformatics tools. The expression of miR-125a-3p was decreased in the HT patients and correlated inversely with an elevated level of hsa_circ_0089172. Moreover, knockdown of hsa_circ_0089172 resulted in an increase of the expression of miR-125a-3p in vitro. Receiver operating characteristic (ROC) curve analysis suggested that hsa_circ_0089172 had significant value in HT diagnosis. Taken together, these results demonstrate that hsa_circ_0089172 as a potential diagnostic biomarker of HT and may play a crucial role in the pathogenesis of HT via sponging miR-125a-3p.
Collapse
Affiliation(s)
- Si Xiong
- Department of Endocrinology, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China
| | - Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China
| | - Xiangmei Ding
- Department of Endocrinology, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China
| | - Xuehua Wang
- Department of Endocrinology, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China
| | - Li Wang
- Department of Endocrinology, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China
| | - Chenguang Wu
- Department of Endocrinology, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China
| | - Huaxi Xu
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang 212013, China
| | - Yingzhao Liu
- Department of Endocrinology, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, China.
| |
Collapse
|
39
|
I-BET151 suppresses osteoclast formation and inflammatory cytokines secretion by targetting BRD4 in multiple myeloma. Biosci Rep 2019; 39:BSR20181245. [PMID: 30455393 PMCID: PMC6522735 DOI: 10.1042/bsr20181245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/24/2018] [Accepted: 11/03/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Multiple myeloma (MM) is an incurable hematologic cancer, accompanied by excessive osteoclast formation and inflammatory cytokine secretion. The mechanisms by which bromodomain and extra-terminal domain (BET) protein inhibitor I-BET151 regulates osteoclast differentiation and inflammatory cytokine secretion in MM are largely unknown. Methods: The isolated peripheral blood mononuclear cells from normal or patients with MM were treated with receptor activator of NF-κB ligand (RANKL) and M-CSF to induce osteoclast differentiation. RAW 264.7 cells were treated with RANKL. I-BET151 was applied to investigate the effects of BRD4 inhibition on osteoclast formation and inflammatory cytokine secretion. Osteoclast formation was determined by tartrate-resistant acid phosphatase (TRACP) staining. The expression of osteoclast-specific genes TRACP, matrix metalloproteinase-9 (MMP-9), cathepsin K (Ctsk), and c-Src was tested using quantitative real-time PCR. And the level of inflammatory cytokines TNF-α, IL-1β, and IL-6 was assessed by ELISA. Tumor necrosis factor receptor-associated factor 6 (TRAF6), BRD4, nuclear and cytoplasm p65, IκB-α, nuclear factor of activated T cells cytoplasmic (NFATc1), and osteoprotegerin (OPG) expression were measured by Western blotting. RNAi technology was applied to knock down BET family member BRD4. Results: I-BET151 dose-dependently suppressed osteoclast formation, inhibited the levels of osteoclast-specific genes TRACP, MMP-9, Ctsk, and c-Src and inflammatory cytokines TNF-α, IL-1β, and IL-6 secretion in peripheral blood mononuclear cells and RAW 264.7. I-BET151 inhibited the protein levels of BRD4 and NFATc1, increased OPG expression, and suppressed IκB-α degradation and p65 nuclear translocation. Further, the effects of I-BET151 on osteoclast formation, osteoclast-specific genes expression, inflammatory cytokine secretion, and NF-κB inhibition were promoted by BRD4 knockdown. Conclusion: I-BET151 inhibits osteoclast formation and inflammatory cytokine secretion by targetting BRD4-mediated RANKL-NF-κB signal pathway and BRD4 inhibition might be beneficial for MM treatment.
Collapse
|
40
|
Loganathan SN, Tang N, Holler AE, Wang N, Wang J. Targeting the IGF1R/PI3K/AKT Pathway Sensitizes Ewing Sarcoma to BET Bromodomain Inhibitors. Mol Cancer Ther 2019; 18:929-936. [PMID: 30926641 DOI: 10.1158/1535-7163.mct-18-1151] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/20/2018] [Accepted: 03/11/2019] [Indexed: 01/08/2023]
Abstract
Inhibitors of the bromodomain and extra-terminal domain (BET) family proteins modulate EWS-FLI1 activities in Ewing sarcoma. However, the efficacy of BET inhibitors as a monotherapy was moderate and transient in preclinical models. The objective of this study was to identify the mechanisms mediating intrinsic resistance to BET inhibitors and develop more effective combination treatments for Ewing sarcoma. Using a panel of Ewing sarcoma cell lines and patient-derived xenograft lines (PDX), we demonstrated that IGF1R inhibitors synergistically increased sensitivities to BET inhibitors and induced potent apoptosis when combined with BET inhibitors. Constitutively activated AKT significantly protected Ewing sarcoma cells against BET inhibitors, suggesting that IGF1R regulates responsiveness to BET inhibitors mainly through the PI3K/AKT pathway. Although two Ewing sarcoma cell lines were resistant to IGF1R inhibitors, they retained synergistic response to a combination of BET inhibitors and mTOR inhibitors, suggesting that BET proteins, when IGF1R is not functional, cross-talk with its downstream molecules. Furthermore, the combination of a BET inhibitor and an IGF1R inhibitor induced potent and durable response in xenograft tumors, whereas either agent alone was less effective. Taken together, our results suggest that IGF1R and the downstream PI3K/AKT/mTOR kinase cascade mediate intrinsic resistance to BET inhibitors in Ewing sarcoma. These results provide the proof-of-concept for combining BET inhibitors with agents targeting the IGF1R pathway for treating advanced Ewing sarcoma.
Collapse
Affiliation(s)
- Sudan N Loganathan
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Nan Tang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Albert E Holler
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nenghui Wang
- Ningbo Wenda Pharmaceutical Technology Co., Ninghai, Zhejiang, China
| | - Jialiang Wang
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee. .,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee.,Cullgen Inc., San Diego, California
| |
Collapse
|
41
|
Ambrosini G, Do C, Tycko B, Realubit RB, Karan C, Musi E, Carvajal RD, Chua V, Aplin AE, Schwartz GK. Inhibition of NF-κB-Dependent Signaling Enhances Sensitivity and Overcomes Resistance to BET Inhibition in Uveal Melanoma. Cancer Res 2019; 79:2415-2425. [PMID: 30885979 DOI: 10.1158/0008-5472.can-18-3177] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/29/2019] [Accepted: 03/13/2019] [Indexed: 01/08/2023]
Abstract
Bromodomain and extraterminal protein inhibitors (BETi) are epigenetic therapies aimed to target dysregulated gene expression in cancer cells. Despite early successes of BETi in a range of malignancies, the development of drug resistance may limit their clinical application. Here, we evaluated the mechanisms of BETi resistance in uveal melanoma, a disease with little treatment options, using two approaches: a high-throughput combinatorial drug screen with the clinical BET inhibitor PLX51107 and RNA sequencing of BETi-resistant cells. NF-κB inhibitors synergistically sensitized uveal melanoma cells to PLX51107 treatment. Furthermore, genes involved in NF-κB signaling were upregulated in BETi-resistant cells, and the transcription factor CEBPD contributed to the mechanism of resistance. These findings suggest that inhibitors of NF-κB signaling may improve the efficacy of BET inhibition in patients with advanced uveal melanoma. SIGNIFICANCE: These findings provide evidence that inhibitors of NF-κB signaling synergize with BET inhibition in in vitro and in vivo models, suggesting a clinical utility of these targeted therapies in patients with uveal melanoma.
Collapse
Affiliation(s)
- Grazia Ambrosini
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.
| | - Catherine Do
- Division of Genetics & Epigenetics, Department of Biomedical Research, Hackensack-Meridian Health School of Medicine at Seton Hall University, Nutley, New Jersey
| | - Benjamin Tycko
- Division of Genetics & Epigenetics, Department of Biomedical Research, Hackensack-Meridian Health School of Medicine at Seton Hall University, Nutley, New Jersey
| | - Ronald B Realubit
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Charles Karan
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Elgilda Musi
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Richard D Carvajal
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.,Division of Hematology/Oncology, Columbia University Medical Center, New York, New York
| | - Vivian Chua
- Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Gary K Schwartz
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.,Division of Hematology/Oncology, Columbia University Medical Center, New York, New York
| |
Collapse
|
42
|
Targeting DNA Methylation and EZH2 Activity to Overcome Melanoma Resistance to Immunotherapy. Trends Immunol 2019; 40:328-344. [PMID: 30853334 DOI: 10.1016/j.it.2019.02.004] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
Methylation of DNA at CpG sites is the most common and stable of epigenetic changes in cancer. Hypermethylation acts to limit immune checkpoint blockade immunotherapy by inhibiting endogenous interferon responses needed for recognition of cancer cells. By contrast, global hypomethylation results in the expression of programmed death ligand 1 (PD-L1) and inhibitory cytokines, accompanied by epithelial-mesenchymal changes that can contribute to immunosuppression. The drivers of these contrasting methylation states are not well understood. DNA methylation also plays a key role in cytotoxic T cell 'exhaustion' associated with tumor progression. We present an updated exploratory analysis of how DNA methylation may define patient subgroups and can be targeted to develop tailored treatment combinations to help improve patient outcomes.
Collapse
|
43
|
Emerging roles of and therapeutic strategies targeting BRD4 in cancer. Cell Immunol 2019; 337:48-53. [PMID: 30832981 DOI: 10.1016/j.cellimm.2019.02.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/27/2019] [Accepted: 02/02/2019] [Indexed: 12/12/2022]
Abstract
The Bromodomain and Extra-terminal (BET) family of proteins were first recognized as important epigenetic regulators in inflammatory processes; however, there is increasing evidence to support the notion that BET proteins also play a critical role in 'reading' chromatin and recruiting chromatin-regulating enzymes to control gene expression in a number of pathologic processes, including cancer. To this end, the mechanisms by which BET proteins regulate chromatin remodeling and promote tumor-associated inflammation have been heavily studied over the past decade. This article to review the biology of BET protein dysfunction in promoting tumor-associated inflammation and cancer progression and the application of small molecule inhibitors that target specific BET proteins, alone or in combination with immunomodulatory agents as a novel therapeutic strategy for cancer patients.
Collapse
|
44
|
Rudman MD, Choi JS, Lee HE, Tan SK, Ayad NG, Lee JK. Bromodomain and extraterminal domain-containing protein inhibition attenuates acute inflammation after spinal cord injury. Exp Neurol 2018; 309:181-192. [DOI: 10.1016/j.expneurol.2018.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 01/18/2023]
|
45
|
Hishiki K, Akiyama M, Kanegae Y, Ozaki K, Ohta M, Tsuchitani E, Kaito K, Yamada H. NF-κB signaling activation via increases in BRD2 and BRD4 confers resistance to the bromodomain inhibitor I-BET151 in U937 cells. Leuk Res 2018; 74:57-63. [DOI: 10.1016/j.leukres.2018.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022]
|
46
|
Zerdes I, Matikas A, Bergh J, Rassidakis GZ, Foukakis T. Genetic, transcriptional and post-translational regulation of the programmed death protein ligand 1 in cancer: biology and clinical correlations. Oncogene 2018; 37:4639-4661. [PMID: 29765155 PMCID: PMC6107481 DOI: 10.1038/s41388-018-0303-3] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/27/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023]
Abstract
The programmed death protein 1 (PD-1) and its ligand (PD-L1) represent a well-characterized immune checkpoint in cancer, effectively targeted by monoclonal antibodies that are approved for routine clinical use. The regulation of PD-L1 expression is complex, varies between different tumor types and occurs at the genetic, transcriptional and post-transcriptional levels. Copy number alterations of PD-L1 locus have been reported with varying frequency in several tumor types. At the transcriptional level, a number of transcriptional factors seem to regulate PD-L1 expression including HIF-1, STAT3, NF-κΒ, and AP-1. Activation of common oncogenic pathways such as JAK/STAT, RAS/ERK, or PI3K/AKT/MTOR, as well as treatment with cytotoxic agents have also been shown to affect tumoral PD-L1 expression. Correlative studies of clinical trials with PD-1/PD-L1 inhibitors have so far shown markedly discordant results regarding the value of PD-L1 expression as a marker of response to treatment. As the indications for immune checkpoint inhibition broaden, understanding the regulation of PD-L1 in cancer will be of utmost importance for defining its role as predictive marker but also for optimizing strategies for cancer immunotherapy. Here, we review the current knowledge of PD-L1 regulation, and its use as biomarker and as therapeutic target in cancer.
Collapse
Affiliation(s)
- Ioannis Zerdes
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Alexios Matikas
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden
| | - George Z Rassidakis
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden.
- Department of Oncology, Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
47
|
Chatterjee A, Rodger EJ, Ahn A, Stockwell PA, Parry M, Motwani J, Gallagher SJ, Shklovskaya E, Tiffen J, Eccles MR, Hersey P. Marked Global DNA Hypomethylation Is Associated with Constitutive PD-L1 Expression in Melanoma. iScience 2018; 4:312-325. [PMID: 30240750 PMCID: PMC6147024 DOI: 10.1016/j.isci.2018.05.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/08/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022] Open
Abstract
Constitutive expression of the immune checkpoint, PD-L1, inhibits anti-tumor immune responses in cancer, although the factors involved in PD-L1 regulation are poorly understood. Here we show that loss of global DNA methylation, particularly in intergenic regions and repeat elements, is associated with constitutive (PD-L1CON), versus inducible (PD-L1IND), PD-L1 expression in melanoma cell lines. We further show this is accompanied by transcriptomic up-regulation. De novo epigenetic regulators (e.g., DNMT3A) are strongly correlated with PD-L1 expression and methylome status. Accordingly, decitabine-mediated inhibition of global methylation in melanoma cells leads to increased PD-L1 expression. Moreover, viral mimicry and immune response genes are highly expressed in lymphocyte-negative plus PD-L1-positive melanomas, versus PD-L1-negative melanomas in The Cancer Genome Atlas (TCGA). In summary, using integrated genomic analysis we identified that global DNA methylation influences PD-L1 expression in melanoma, and hence melanoma's ability to evade anti-tumor immune responses. These results have implications for combining epigenetic therapy with immunotherapy.
Collapse
Affiliation(s)
- Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Antonio Ahn
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| | - Peter A Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| | - Matthew Parry
- Department of Mathematics & Statistics, University of Otago, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Jyoti Motwani
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| | - Stuart J Gallagher
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| | - Elena Shklovskaya
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| | - Jessamy Tiffen
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| | - Peter Hersey
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia.
| |
Collapse
|
48
|
Penas C, Navarro X. Epigenetic Modifications Associated to Neuroinflammation and Neuropathic Pain After Neural Trauma. Front Cell Neurosci 2018; 12:158. [PMID: 29930500 PMCID: PMC5999732 DOI: 10.3389/fncel.2018.00158] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence suggests that epigenetic alterations lie behind the induction and maintenance of neuropathic pain. Neuropathic pain is usually a chronic condition caused by a lesion, or pathological change, within the nervous system. Neuropathic pain appears frequently after nerve and spinal cord injuries or diseases, producing a debilitation of the patient and a decrease of the quality of life. At the cellular level, neuropathic pain is the result of neuronal plasticity shaped by an increase in the sensitivity and excitability of sensory neurons of the central and peripheral nervous system. One of the mechanisms thought to contribute to hyperexcitability and therefore to the ontogeny of neuropathic pain is the altered expression, trafficking, and functioning of receptors and ion channels expressed by primary sensory neurons. Besides, neuronal and glial cells, such as microglia and astrocytes, together with blood borne macrophages, play a critical role in the induction and maintenance of neuropathic pain by releasing powerful neuromodulators such as pro-inflammatory cytokines and chemokines, which enhance neuronal excitability. Altered gene expression of neuronal receptors, ion channels, and pro-inflammatory cytokines and chemokines, have been associated to epigenetic adaptations of the injured tissue. Within this review, we discuss the involvement of these epigenetic changes, including histone modifications, DNA methylation, non-coding RNAs, and alteration of chromatin modifiers, that have been shown to trigger modification of nociception after neural lesions. In particular, the function on these processes of EZH2, JMJD3, MeCP2, several histone deacetylases (HDACs) and histone acetyl transferases (HATs), G9a, DNMT, REST and diverse non-coding RNAs, are described. Despite the effort on developing new therapies, current treatments have only produced limited relief of this pain in a portion of patients. Thus, the present review aims to contribute to find novel targets for chronic neuropathic pain treatment.
Collapse
Affiliation(s)
- Clara Penas
- Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Xavier Navarro
- Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
49
|
Dong X, Hu X, Chen J, Hu D, Chen LF. BRD4 regulates cellular senescence in gastric cancer cells via E2F/miR-106b/p21 axis. Cell Death Dis 2018; 9:203. [PMID: 29434197 PMCID: PMC5833665 DOI: 10.1038/s41419-017-0181-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/27/2022]
Abstract
Small molecules targeting bromodomains of BET proteins possess strong anti-tumor activities and have emerged as potential therapeutics for cancer. However, the underlying mechanisms for the anti-proliferative activity of these inhibitors are still not fully characterized. In this study, we demonstrated that BET inhibitor JQ1 suppressed the proliferation and invasiveness of gastric cancer cells by inducing cellular senescence. Depletion of BRD4, which was overexpressed in gastric cancer tissues, but not other BET proteins recapitulated JQ1-induced cellular senescence with increased cellular SA-β-Gal activity and elevated p21 levels. In addition, we showed that the levels of p21 were regulated at the post-transcriptional level by BRD4-dependent expression of miR-106b-5p, which targets the 3'-UTR of p21 mRNA. Overexpression of miR-106b-5p prevented JQ1-induced p21 expression and BRD4 inhibition-associated cellular senescence, whereas miR-106b-5p inhibitor up-regulated p21 and induced cellular senescence. Finally, we demonstrated that inhibition of E2F suppressed the binding of BRD4 to the promoter of miR-106b-5p and inhibited its transcription, leading to the increased p21 levels and cellular senescence in gastric cancer cells. Our results reveal a novel mechanism by which BRD4 regulates cancer cell proliferation by modulating the cellular senescence through E2F/miR-106b-5p/p21 axis and provide new insights into using BET inhibitors as potential anticancer drugs.
Collapse
Affiliation(s)
- Xingchen Dong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xiangming Hu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jinjing Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Dan Hu
- Department of Pathology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fujian, China, 350108
| | - Lin-Feng Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China, 350108.
- Department of Medical Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
50
|
Mustafi S, Camarena V, Volmar CH, Huff TC, Sant DW, Brothers SP, Liu ZJ, Wahlestedt C, Wang G. Vitamin C Sensitizes Melanoma to BET Inhibitors. Cancer Res 2017; 78:572-583. [PMID: 29180474 DOI: 10.1158/0008-5472.can-17-2040] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/28/2017] [Accepted: 11/08/2017] [Indexed: 11/16/2022]
Abstract
Bromodomain and extraterminal inhibitors (BETi) are promising cancer therapies, yet prominent side effects of BETi at effective doses have been reported in phase I clinical trials. Here, we screened a panel of small molecules targeting epigenetic modulators against human metastatic melanoma cells. Cells were pretreated with or without ascorbate (vitamin C), which promotes DNA demethylation and subsequently changes the sensitivity to drugs. Top hits were structurally unrelated BETi, including JQ1, I-BET151, CPI-203, and BI-2536. Ascorbate enhanced the efficacy of BETi by decreasing acetylation of histone H4, but not H3, while exerting no effect on the expression of BRD proteins. Histone acetyltransferase 1 (HAT1), which catalyzes H4K5ac and H4K12ac, was downregulated by ascorbate mainly via the TET-mediated DNA hydroxymethylation pathway. Loss of H4ac, especially H4K5ac and H4K12ac, disrupted the interaction between BRD4 and H4 by which ascorbate and BETi blocked the binding of BRD4 to acetylated histones. Cotreatment with ascorbate and JQ1 induced apoptosis and inhibited proliferation of cultured melanoma cells. Ascorbate deficiency as modeled in Gulo-/- mice diminished the treatment outcome of JQ1 for melanoma tumorgraft. In contrast, ascorbate supplementation lowered the effective dose of JQ1 needed to successfully inhibit melanoma tumors in mice. On the basis of our findings, future clinical trials with BETi should consider ascorbate levels in patients. Furthermore, ascorbate supplementation might help reduce the severe side effects that arise from BETi therapy by reducing the dosage necessary for treatment.Significance: This study shows that ascorbate can enhance the efficacy of BET inhibitors, providing a possible clinical solution to challenges arising in phase I trials from the dose-dependent side effects of this class of epigenetic therapy. Cancer Res; 78(2); 572-83. ©2017 AACR.
Collapse
Affiliation(s)
- Sushmita Mustafi
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Vladimir Camarena
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Tyler C Huff
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - David W Sant
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Shaun P Brothers
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Zhao-Jun Liu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|