1
|
Bai Y, Yang G, Liu T, Chen F, Xia J. Dynamic Chromatin Accessibility and Transcriptional Regulation in the Eyes of Red Tilapia (Oreochromis sp.) in Response to Wintering Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:47. [PMID: 39937323 DOI: 10.1007/s10126-025-10424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
During wintering, red tilapia may develop variable black spots on their bodies, significantly reducing their market value. Understanding the mechanisms driving this phenomenon is essential for molecular improvements in body color. In this study, we investigated chromatin accessibility landscapes in the eyes of red tilapia with two distinct phenotypes (normal pure red and black spot) under wintering stress using ATAC-seq and RNA-seq analyses. We observed that approximately 32.7% of chromatin accessibility peaks were located in promoter regions, followed by intergenic regions (32.4%) and intronic regions (26.7%). One thousand two hundred twenty-nine differentially accessible regions (DARs) and 1448 differentially expressed genes (DEGs) were identified between the RS and DS groups. Notably, DEGs associated with melanin synthesis, including tyrp1, tyr, tyrp1b, pmela, slc24a5, and mlph, were significantly upregulated in the DS group, which aligns with the observed 1.85-fold increase in melanin content, compared to the RS group. 92 DEGs were associated with significant changes in chromatin accessibility between groups (R2 = 0.8059; p < 0.0001), indicating potential regulatory relationships. Interestingly, 23.92% of the DARs were located on the chromosome 3. Specifically, a 2.5-fold difference in average peak height on LG3: 11,215,273-11,217,225 were observed between DS and RS tilapia. In the region, transcription factors including HSF1 and HSF2 were identified as key regulators of chromatin structure and gene expression under wintering stress. Our findings reveal that dynamic chromatin accessibility in the eyes of red tilapia facilitates adaptation to wintering stress by regulating visual signaling, melanin production, and downstream pigmentation.
Collapse
Affiliation(s)
- Ying Bai
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Gan Yang
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Tongde Liu
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Fuyan Chen
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Junhong Xia
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
2
|
Moore TI, Bright WG, Bell WE, Solomon-Lane TK, Alvarado SG, Dijkstra PD. Background color matching influences sexual behavior, growth, and mortality rate in an African cichlid fish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636662. [PMID: 39975021 PMCID: PMC11839129 DOI: 10.1101/2025.02.05.636662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Phenotypic plasticity allows organisms to adapt to changing environments within their lifetimes. The cost of plastic adaptations may constrain the persistence of plasticity over evolutionary time. One potential cost is the possibility that phenotypic adjustment to specific environments can cause correlated responses that are not necessarily adaptive. Males in the African cichlid Astatotilapia burtoni are blue or yellow, and males are able adjust their body coloration to the color of the background, presumably to increase crypsis. To test whether background color influences fitness-related traits, we raised mix-sex groups of juvenile A. burtoni to adulthood in yellow or blue tanks. We found that fish in blue tanks were darker and more bluish, whereas fish reared in yellow tanks were paler and more yellow in body coloration. Males, but not females, from blue tanks showed earlier sexual maturation than those held in yellow tanks. However, across the duration of the experiment, there was a higher frequency of females mouthbrooding in groups housed in yellow tanks than those that were housed in blue tanks. In addition, fish in blue tanks exhibited reduced growth rate but higher survivorship relative to their yellow-reared counterparts. Our data suggests that background color affects important fitness-related traits in a color polymorphic cichlid, which may influence the evolution of phenotypic plasticity.
Collapse
|
3
|
Souto-Neto JA, David DD, Zanetti G, Sua-Cespedes C, Freret-Meurer NV, Moraes MN, de Assis LVM, Castrucci AMDL. Light-specific wavelengths differentially affect the exploration rate, opercular beat, skin color change, opsin transcripts, and the oxi-redox system of the longsnout seahorse Hippocampus reidi. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111551. [PMID: 37972916 DOI: 10.1016/j.cbpa.2023.111551] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Light is a strong stimulus for the sensory and endocrine systems. The opsins constitute a large family of proteins that can respond to specific light wavelengths. Hippocampus reidi is a near-threatened seahorse that has a diverse color pattern and sexual dimorphism. Over the years, H. reidi's unique characteristics, coupled with its high demand and over-exploitation for the aquarium trade, have raised concerns about its conservation, primarily due to their significant impact on wild populations. Here, we characterized chromatophore types in juvenile and adult H. reidi in captivity, and the effects of specific light wavelengths with the same irradiance (1.20 mW/cm2) on color change, growth, and survival rate. The xanthophores and melanophores were the major components of H. reidi pigmentation with differences in density and distribution between life stages and sexes. In the eye and skin of juveniles, the yellow (585 nm) wavelength induced a substantial increase in melanin levels compared to the individuals kept under white light (WL), blue (442 nm), or red (650 nm) wavelengths. In addition, blue and yellow wavelengths led to a higher juvenile mortality rate in comparison to the other treatments. Adult seahorses showed a rhythmic color change over 24 h, the highest reflectance values were obtained in the light phase, representing a daytime skin lightening for individuals under WL, blue and yellow wavelength, with changes in the acrophase. The yellow wavelength was more effective on juvenile seahorse pigmentation, while the blue wavelength exerted a stronger effect on the regulation of adult physiological color change. Dramatic changes in the opsin mRNA levels were life stage-dependent, which may infer ontogenetic opsin functions throughout seahorses' development. Exposure to specific wavelengths differentially affected the opsins mRNA levels in the skin and eyes of juveniles. In the juveniles, skin transcripts of visual (rh1, rh2, and lws) and non-visual opsins (opn3 and opn4x) were higher in individuals under yellow light. While in the juvenile's eyes, only rh1 and rh2 had increased transcripts influenced by yellow light; the lws and opn3 mRNA levels were higher in juveniles' eyes under WL. Prolonged exposure to yellow wavelength stimulates a robust increase in the antioxidant enzymes sod1 and sod2 mRNA levels. Our findings indicate that changes in the visible light spectrum alter physiological processes at different stages of life in H. reidi and may serve as the basis for a broader discussion about the implications of artificial light for aquatic species in captivity.
Collapse
Affiliation(s)
- José Araújo Souto-Neto
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Laboratory of Micropollutants, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Daniela Dantas David
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Giovanna Zanetti
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Cristhian Sua-Cespedes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Maria Nathália Moraes
- Laboratory of Molecular Chronobiology, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil
| | | | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, United States.
| |
Collapse
|
4
|
Man LLH, Storey SS, Bertolesi GE, McFarlane S. Cell-type expression and activation by light of neuropsins in the developing and mature Xenopus retina. Front Cell Neurosci 2023; 17:1266945. [PMID: 37799826 PMCID: PMC10547888 DOI: 10.3389/fncel.2023.1266945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Photosensitive opsins detect light and perform image- or nonimage-forming tasks. Opsins such as the "classical" visual opsins and melanopsin are well studied. However, the retinal expression and functions of a novel family of neuropsins are poorly understood. We explored the developmental time-course and cell-type specificity of neuropsin (opn5, 6a, 6b, and 8) expression in Xenopus laevis by in situ hybridization and immunohistochemistry. We compared the Xenopus results with publicly available single cell RNA sequencing (scRNA-seq) data from zebrafish, chicken, and mouse. Additionally, we analyzed light-activation of neuropsin-expressing cells through induction of c-fos mRNA. opn5 and opn8 expression begins at stage 37/38 when the retinal circuits begin to be activated. Once retinal circuits connect to the brain, opn5 mRNA is distributed across multiple retinal cell types, including bipolar (~70%-75%), amacrine (~10%), and retinal ganglion (~20%) cells, with opn8 present in amacrine (~70%) and retinal ganglion (~30%) cells. opn6a and opn6b mRNAs emerge in newborn-photoreceptors (stage 35), and are colocalized in rods and cones by stage 37/38. Interestingly, in the mature larval retina (stage 43/44), opn6a and opn6b mRNAs become preferentially localized to rods and cones, respectively, while newborn photoreceptors bordering the proliferative ciliary marginal zone express both genes. In zebrafish, opn6a and opn6b are also expressed in photoreceptors, while Müller glia and amacrine cells express opn8c. Most neuropsin-expressing retinal ganglion cells display c-fos expression in response to light, as do over half of the neuropsin-expressing interneurons. This study gave a better understanding of retinal neuropsin-expressing cells, their developmental onset, and light activation.
Collapse
Affiliation(s)
| | | | - Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Andrabi M, Upton BA, Lang RA, Vemaraju S. An Expanding Role for Nonvisual Opsins in Extraocular Light Sensing Physiology. Annu Rev Vis Sci 2023; 9:245-267. [PMID: 37196422 DOI: 10.1146/annurev-vision-100820-094018] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We live on a planet that is bathed in daily and seasonal sunlight cycles. In this context, terrestrial life forms have evolved mechanisms that directly harness light energy (plants) or decode light information for adaptive advantage. In animals, the main light sensors are a family of G protein-coupled receptors called opsins. Opsin function is best described for the visual sense. However, most animals also use opsins for extraocular light sensing for seasonal behavior and camouflage. While it has long been believed that mammals do not have an extraocular light sensing capacity, recent evidence suggests otherwise. Notably, encephalopsin (OPN3) and neuropsin (OPN5) are both known to mediate extraocular light sensing in mice. Examples of this mediation include photoentrainment of circadian clocks in skin (by OPN5) and acute light-dependent regulation of metabolic pathways (by OPN3 and OPN5). This review summarizes current findings in the expanding field of extraocular photoreception and their relevance for human physiology.
Collapse
Affiliation(s)
- Mutahar Andrabi
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; ,
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Brian A Upton
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; ,
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Molecular and Developmental Biology Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Medical Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Richard A Lang
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; ,
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shruti Vemaraju
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; ,
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Roy T, Boateng ST, Uddin MB, Banang-Mbeumi S, Yadav RK, Bock CR, Folahan JT, Siwe-Noundou X, Walker AL, King JA, Buerger C, Huang S, Chamcheu JC. The PI3K-Akt-mTOR and Associated Signaling Pathways as Molecular Drivers of Immune-Mediated Inflammatory Skin Diseases: Update on Therapeutic Strategy Using Natural and Synthetic Compounds. Cells 2023; 12:1671. [PMID: 37371141 PMCID: PMC10297376 DOI: 10.3390/cells12121671] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The dysregulated phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway has been implicated in various immune-mediated inflammatory and hyperproliferative dermatoses such as acne, atopic dermatitis, alopecia, psoriasis, wounds, and vitiligo, and is associated with poor treatment outcomes. Improved comprehension of the consequences of the dysregulated PI3K/Akt/mTOR pathway in patients with inflammatory dermatoses has resulted in the development of novel therapeutic approaches. Nonetheless, more studies are necessary to validate the regulatory role of this pathway and to create more effective preventive and treatment methods for a wide range of inflammatory skin diseases. Several studies have revealed that certain natural products and synthetic compounds can obstruct the expression/activity of PI3K/Akt/mTOR, underscoring their potential in managing common and persistent skin inflammatory disorders. This review summarizes recent advances in understanding the role of the activated PI3K/Akt/mTOR pathway and associated components in immune-mediated inflammatory dermatoses and discusses the potential of bioactive natural products, synthetic scaffolds, and biologic agents in their prevention and treatment. However, further research is necessary to validate the regulatory role of this pathway and develop more effective therapies for inflammatory skin disorders.
Collapse
Affiliation(s)
- Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Mohammad B. Uddin
- Department of Toxicology and Cancer Biology, Center for Research on Environmental Diseases, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Division for Research and Innovation, POHOFI Inc., Madison, WI 53744, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA 71203, USA
| | - Rajesh K. Yadav
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Chelsea R. Bock
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Joy T. Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria 0208, South Africa;
| | - Anthony L. Walker
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Judy A. King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
- College of Medicine, Belmont University, 900 Belmont Boulevard, Nashville, TN 37212, USA
| | - Claudia Buerger
- Department of Dermatology, Venerology and Allergology, Clinic of the Goethe University, 60590 Frankfurt am Main, Germany;
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA;
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
| |
Collapse
|
7
|
Malik HR, Bertolesi GE, McFarlane S. TRPM8 thermosensation in poikilotherms mediates both skin colour and locomotor performance responses to cold temperature. Commun Biol 2023; 6:127. [PMID: 36721039 PMCID: PMC9889708 DOI: 10.1038/s42003-023-04489-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
Thermoregulation is a homeostatic process to maintain an organism's internal temperature within a physiological range compatible with life. In poikilotherms, body temperature fluctuates with that of the environment, with both physiological and behavioral responses employed to modify body temperature. Changing skin colour/reflectance and locomotor activity are both well-recognized temperature regulatory mechanisms, but little is known of the participating thermosensor/s. We find that Xenopus laevis tadpoles put in the cold exhibit a temperature-dependent, systemic, and rapid melanosome aggregation in melanophores, which lightens the skin. Cooling also induces a reduction in the locomotor performance. To identify the cold-sensor, we focus on transient receptor potential (trp) channel genes from a Trpm family. mRNAs for several Trpms are present in Xenopus tails, and Trpm8 protein is present in skin melanophores. Temperature-induced melanosome aggregation is mimicked by the Trpm8 agonist menthol (WS12) and blocked by a Trpm8 antagonist. The degree of skin lightening induced by cooling is correlated with locomotor performance, and both responses are rapidly regulated in a dose-dependent and correlated manner by the WS12 Trpm8 agonist. We propose that TRPM8 serves as a cool thermosensor in poikilotherms that helps coordinate skin lightening and behavioural locomotor performance as adaptive thermoregulatory responses to cold.
Collapse
Affiliation(s)
- Hannan R. Malik
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| | - Gabriel E. Bertolesi
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| | - Sarah McFarlane
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| |
Collapse
|
8
|
Radovanović TB, Petrović TG, Gavrilović BR, Despotović SG, Gavrić JP, Kijanović A, Mirč M, Tomašević Kolarov N, Vukov T, Prokić MD. What coloration brings: Implications of background adaptation to oxidative stress in anurans. Front Zool 2023; 20:6. [PMID: 36717935 PMCID: PMC9887830 DOI: 10.1186/s12983-023-00486-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Urban development results in habitat destruction, affecting populations of amphibians, the most fragile group of vertebrates. With changes in the environment, these animals become more exposed to light and predators. To enhance their chances of survival, they display plasticity of body coloration. Aside from adaptive benefits, animals exhibiting background matching meet the energetic costs and restrictions of changing body tones. To study the physiological consequences of Hyla arborea tadpole adaptation to background color, we followed oxidative stress parameters after rearing larvae on a constant background (black/white) and after changing the background color. RESULTS Larvae cultivated for 20 days on constant substrate color exhibited differences in body coloration but without differences in lipid peroxidation (LPO) concentration between dark and pale individuals, suggesting that coloration investment during this period did not induce higher oxidative damage in darker tadpoles. Prolonged exposure of larvae (37 days) to a dark habitat increased antioxidative system defense and LPO concentrations, compared to animals reared permanently in the white surroundings. The positive correlation of oxidative damage with color intensity of individuals points to the physiological consequences of higher investment in the number of pigment cells necessary for dark pigmentation. In individuals faced with non-matching background and change in body coloration, defense system declined and LPO occurred relative to individuals cultivated in white habitat. CONCLUSION Here, we have pointed to consequences related to background matching and stress that amphibians experienced during chromatic adaptations. Background color change causes a complex physiological response affecting the antioxidative defense parameters. This investigation elucidates the accompanying cost of amphibians' adjustment to an altered environment.
Collapse
Affiliation(s)
- Tijana B. Radovanović
- grid.7149.b0000 0001 2166 9385Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060 Serbia
| | - Tamara G. Petrović
- grid.7149.b0000 0001 2166 9385Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060 Serbia
| | - Branka R. Gavrilović
- grid.7149.b0000 0001 2166 9385Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060 Serbia
| | - Svetlana G. Despotović
- grid.7149.b0000 0001 2166 9385Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060 Serbia
| | - Jelena P. Gavrić
- grid.7149.b0000 0001 2166 9385Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060 Serbia
| | - Ana Kijanović
- grid.7149.b0000 0001 2166 9385Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060 Serbia
| | - Marko Mirč
- grid.7149.b0000 0001 2166 9385Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060 Serbia
| | - Nataša Tomašević Kolarov
- grid.7149.b0000 0001 2166 9385Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060 Serbia
| | - Tanja Vukov
- grid.7149.b0000 0001 2166 9385Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060 Serbia
| | - Marko D. Prokić
- grid.7149.b0000 0001 2166 9385Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060 Serbia
| |
Collapse
|
9
|
Transcriptome Analysis Reveals the Complex Regulatory Pathway of Background Color in Juvenile Plectropomus leopardus Skin Color Variation. Int J Mol Sci 2022; 23:ijms231911186. [PMID: 36232493 PMCID: PMC9569894 DOI: 10.3390/ijms231911186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Fish skin color is often strongly affected by background color. We hypothesized that the regulatory mechanism of variations in skin color in P. leopardus is linked to the background color. In this study, we conducted transcriptome analysis of Plectropomus leopardus cultured under different background colors to compare gene expression levels and the important signaling pathways. The RNA-seq analysis yielded 26,675 known mRNAs, 3278 novel mRNAs, and 3179 differentially expressed genes (DEGs). The DEGs related to melanin synthesis were screened out. Some key melanin-related genes were identified, specifically tyr, slc7a11, mc1r, ednrb, dct, tat, and wnt1. These DEGs were mainly involved in melanogenesis, including tyrosine metabolism, the Wnt signaling pathway, and the cAMP signaling pathway. The expression levels of some key genes were upregulated when background color deepened, such as α-msh, wnt, and gf. The α-MSH/cAMP-dependent, Wnt/β-catenin, and PI3K/Akt signaling pathways were activated, resulting in the accumulation of intracellular mitf. mitf promoted melanin production by binding to the tyr/tyrp1/dct promoter region. In the present study, we explored the molecular mechanism underlying the darkened skin color pattern of P. leopardus, providing a theoretical basis for the molecular mechanism underlying pigmentation in P. leopardus.
Collapse
|
10
|
Chen YY, Liu LP, Zhou H, Zheng YW, Li YM. Recognition of Melanocytes in Immuno-Neuroendocrinology and Circadian Rhythms: Beyond the Conventional Melanin Synthesis. Cells 2022; 11:2082. [PMID: 35805166 PMCID: PMC9266247 DOI: 10.3390/cells11132082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Melanocytes produce melanin to protect the skin from UV-B radiation. Notwithstanding, the spectrum of their functions extends far beyond their well-known role as melanin production factories. Melanocytes have been considered as sensory and computational cells. The neurotransmitters, neuropeptides, and other hormones produced by melanocytes make them part of the skin's well-orchestrated and complex neuroendocrine network, counteracting environmental stressors. Melanocytes can also actively mediate the epidermal immune response. Melanocytes are equipped with ectopic sensory systems similar to the eye and nose and can sense light and odor. The ubiquitous inner circadian rhythm controls the body's basic physiological processes. Light not only affects skin photoaging, but also regulates inner circadian rhythms and communicates with the local neuroendocrine system. Do melanocytes "see" light and play a unique role in photoentrainment of the local circadian clock system? Why, then, are melanocytes responsible for so many mysterious functions? Do these complex functional devices work to maintain homeostasis locally and throughout the body? In addition, melanocytes have also been shown to be localized in internal sites such as the inner ear, brain, and heart, locations not stimulated by sunlight. Thus, what can the observation of extracutaneous melanocytes tell us about the "secret identity" of melanocytes? While the answers to some of these intriguing questions remain to be discovered, here we summarize and weave a thread around available data to explore the established and potential roles of melanocytes in the biological communication of skin and systemic homeostasis, and elaborate on important open issues and propose ways forward.
Collapse
Affiliation(s)
- Yan-Yan Chen
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Li-Ping Liu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Hang Zhou
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- School of Medicine, Yokohama City University, Yokohama 234-0006, Japan
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yu-Mei Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| |
Collapse
|
11
|
Dekens MPS, Fontinha BM, Gallach M, Pflügler S, Tessmar‐Raible K. Melanopsin elevates locomotor activity during the wake state of the diurnal zebrafish. EMBO Rep 2022; 23:e51528. [PMID: 35233929 PMCID: PMC9066073 DOI: 10.15252/embr.202051528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Mammalian and fish pineals play a key role in adapting behaviour to the ambient light conditions through the release of melatonin. In mice, light inhibits nocturnal locomotor activity via the non‐visual photoreceptor Melanopsin. In contrast to the extensively studied function of Melanopsin in the indirect regulation of the rodent pineal, its role in the intrinsically photosensitive zebrafish pineal has not been elucidated. Therefore, it is not evident if the light signalling mechanism is conserved between distant vertebrates, and how Melanopsin could affect diurnal behaviour. A double knockout of melanopsins (opn4.1‐opn4xb) was generated in the diurnal zebrafish, which manifests attenuated locomotor activity during the wake state. Transcriptome sequencing gave insight into pathways downstream of Melanopsin, implying that sustained repression of the melatonin pathway is required to elevate locomotor activity during the diurnal wake state. Moreover, we show that light induces locomotor activity during the diurnal wake state in an intensity‐dependent manner. These observations suggest a common Melanopsin‐driven mechanism between zebrafish and mammals, while the diurnal and nocturnal chronotypes are inversely regulated downstream of melatonin.
Collapse
Affiliation(s)
- Marcus P S Dekens
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Bruno M Fontinha
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Miguel Gallach
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Max Perutz Laboratory Centre for Integrative Bioinformatics University of Vienna and Medical University of Vienna Vienna Austria
| | - Sandra Pflügler
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Kristin Tessmar‐Raible
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Research Platform “Marine Rhythms of Life” University of Vienna Vienna Austria
| |
Collapse
|
12
|
Bertolesi GE, Debnath N, Malik HR, Man LLH, McFarlane S. Type II Opsins in the Eye, the Pineal Complex and the Skin of Xenopus laevis: Using Changes in Skin Pigmentation as a Readout of Visual and Circadian Activity. Front Neuroanat 2022; 15:784478. [PMID: 35126061 PMCID: PMC8814574 DOI: 10.3389/fnana.2021.784478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023] Open
Abstract
The eye, the pineal complex and the skin are important photosensitive organs. The African clawed frog, Xenopus laevis, senses light from the environment and adjusts skin color accordingly. For example, light reflected from the surface induces camouflage through background adaptation while light from above produces circadian variation in skin pigmentation. During embryogenesis, background adaptation, and circadian skin variation are segregated responses regulated by the secretion of α-melanocyte-stimulating hormone (α-MSH) and melatonin through the photosensitivity of the eye and pineal complex, respectively. Changes in the color of skin pigmentation have been used as a readout of biochemical and physiological processes since the initial purification of pineal melatonin from pigs, and more recently have been employed to better understand the neuroendocrine circuit that regulates background adaptation. The identification of 37 type II opsin genes in the genome of the allotetraploid X. laevis, combined with analysis of their expression in the eye, pineal complex and skin, is contributing to the elucidation of the role of opsins in the different photosensitive organs, but also brings new questions and challenges. In this review, we analyze new findings regarding the anatomical localization and functions of type II opsins in sensing light. The contribution of X. laevis in revealing the neuroendocrine circuits that regulate background adaptation and circadian light variation through changes in skin pigmentation is discussed. Finally, the presence of opsins in X. laevis skin melanophores is presented and compared with the secretory melanocytes of birds and mammals.
Collapse
Affiliation(s)
- Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
13
|
Shinohara Y, Kasagi S, Amiya N, Hoshino Y, Ishii R, Hyodo N, Yamaguchi H, Sato S, Amano M, Takahashi A, Mizusawa K. Taisho-Sanshoku koi have hardly faded skin and show attenuated melanophore sensitivity to adrenaline and melanin-concentrating hormone. Front Endocrinol (Lausanne) 2022; 13:994060. [PMID: 36619537 PMCID: PMC9813866 DOI: 10.3389/fendo.2022.994060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Koi carp, an ornamental fish derived from the common carp Cyprinus carpio (CC), is characterized by beautiful skin color patterns. However, the mechanism that gives rise to the characteristic vivid skin coloration of koi carp has not been clarified. The skin coloration of many teleosts changes in response to differences in the background color. This change in skin coloration is caused by diffusion or aggregation of pigment granules in chromatophores and is regulated mainly by sympathetic nerves and hormones. We hypothesized that there would be some abnormality in the mechanism of skin color regulation in koi carp, which impairs skin color fading in response to background color. METHODS We compared the function of melanin-concentrating hormone (MCH), noradrenaline, and adrenaline in CC and Taisho-Sanshoku (TS), a variety of tri-colored koi. RESULTS AND DISCUSSION In CC acclimated to a white background, the skin color became paler and pigment granules aggregated in melanophores in the scales compared to that in black-acclimated CC. There were no clear differences in skin color or pigment granule aggregation in white- or black-acclimated TS. The expression of mch1 mRNA in the brain was higher in the white-acclimated CC than that in the black-acclimated CC. However, the expression of mch1 mRNA in the brain in the TS did not change in response to the background color. Additionally, plasma MCH levels did not differ between white- and black-acclimated fish in either CC or TS. In vitro experiments showed that noradrenaline induced pigment aggregation in scale melanophores in both CC and TS, whereas adrenaline induced pigment aggregation in the CC but not in the TS. In vitro administration of MCH induced pigment granule aggregation in the CC but not in the TS. However, intraperitoneal injection of MCH resulted in pigment granule aggregation in both CC and TS. Collectively, these results suggest that the weak sensitivity of scale melanophores to MCH and adrenaline might be responsible for the lack of skin color change in response to background color in the TS.
Collapse
Affiliation(s)
- Yukari Shinohara
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Satoshi Kasagi
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Noriko Amiya
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Yukihiro Hoshino
- Niigata Prefectural Inland Water Fisheries Experiment Station, Ogawaramachi, Nagaoka, Niigata, Japan
| | - Ryo Ishii
- Niigata Prefectural Inland Water Fisheries Experiment Station, Ogawaramachi, Nagaoka, Niigata, Japan
| | - Noriyuki Hyodo
- Niigata Prefectural Inland Water Fisheries Experiment Station, Ogawaramachi, Nagaoka, Niigata, Japan
| | - Hiroaki Yamaguchi
- Niigata Prefectural Inland Water Fisheries Experiment Station, Ogawaramachi, Nagaoka, Niigata, Japan
| | - Shoh Sato
- Niigata Prefectural Inland Water Fisheries Experiment Station, Ogawaramachi, Nagaoka, Niigata, Japan
| | - Masafumi Amano
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Akiyoshi Takahashi
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kanta Mizusawa
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
- *Correspondence: Kanta Mizusawa,
| |
Collapse
|
14
|
Preißler K, Rodríguez A, Pröhl H. Evidence for coloration plasticity in the yellow-bellied toad, Bombina variegata. Ecol Evol 2021; 11:17557-17567. [PMID: 34938529 PMCID: PMC8668782 DOI: 10.1002/ece3.8391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
Phenotypic adaptation in terms of background color matching to the local habitat is an important mechanism for survival in prey species. Thus, intraspecific variation in cryptic coloration is expected among localities with dissimilar habitat features (e.g., soil, vegetation). Yellow-bellied toads (Bombina variegata) display a dark dorsal coloration that varies between populations, assumed to convey crypsis. In this study, we explored I) geographic variation in dorsal coloration and II) coloration plasticity in B. variegata from three localities differing in substrate coloration. Using avian visual modeling, we found that the brightness contrasts of the cryptic dorsa were significantly lower on the local substrates than substrates of other localities. In experiments, individuals from one population were able to quickly change the dorsal coloration to match a lighter substrate. We conclude that the environment mediates an adaptation in cryptic dorsal coloration. We suggest further studies to test the mechanisms by which the color change occurs and explore the adaptive potential of coloration plasticity on substrates of varying brightness in B. variegata and other species.
Collapse
Affiliation(s)
- Kathleen Preißler
- Molecular Evolution and Systematics of AnimalsInstitute of BiologyUniversity LeipzigLeipzigGermany
| | - Ariel Rodríguez
- Institute of ZoologyUniversity of Veterinary Medicine of HannoverHannoverGermany
| | - Heike Pröhl
- Institute of ZoologyUniversity of Veterinary Medicine of HannoverHannoverGermany
| |
Collapse
|
15
|
Bertolesi GE, Debnath N, Atkinson-Leadbeater K, Niedzwiecka A, McFarlane S. Distinct type II opsins in the eye decode light properties for background adaptation and behavioural background preference. Mol Ecol 2021; 30:6659-6676. [PMID: 34592025 DOI: 10.1111/mec.16203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022]
Abstract
Crypsis increases survival by reducing predator detection. Xenopus laevis tadpoles decode light properties from the substrate to induce two responses: a cryptic coloration response where dorsal skin pigmentation is adjusted to the colour of the substrate (background adaptation) and a behavioural crypsis where organisms move to align with a specific colour surface (background preference). Both processes require organisms to detect reflected light from the substrate. We explored the relationship between background adaptation and preference and the light properties able to trigger both responses. We also analysed which retinal photosensor (type II opsin) is involved. Our results showed that these two processes are segregated mechanistically, as there is no correlation between the preference for a specific background with the level of skin pigmentation, and different dorsal retina-localized type II opsins appear to underlie the two crypsis modes. Indeed, inhibition of melanopsin affects background adaptation but not background preference. Instead, we propose pinopsin is the photosensor involved in background preference. pinopsin mRNA is co-expressed with mRNA for the sws1 cone photopigment in dorsally located photoreceptors. Importantly, the developmental onset of pinopsin expression aligns with the emergence of the preference for a white background, but after the background adaptation phenotype appears. Furthermore, white background preference of tadpoles is associated with increased pinopsin expression, a feature that is lost in premetamorphic froglets along with a preference for a white background. Thus, our data show a mechanistic dissociation between background adaptation and background preference, and we suggest melanopsin and pinopsin, respectively, initiate the two responses.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Nilakshi Debnath
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | | | - Anna Niedzwiecka
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Sarah McFarlane
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| |
Collapse
|
16
|
Baier H, Wullimann MF. Anatomy and function of retinorecipient arborization fields in zebrafish. J Comp Neurol 2021; 529:3454-3476. [PMID: 34180059 DOI: 10.1002/cne.25204] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
In 1994, Burrill and Easter described the retinal projections in embryonic and larval zebrafish, introducing the term "arborization fields" (AFs) for the retinorecipient areas. AFs were numbered from 1 to 10 according to their positions along the optic tract. With the exception of AF10 (neuropil of the optic tectum), annotations of AFs remained tentative. Here we offer an update on the likely identities and functions of zebrafish AFs after successfully matching classical neuroanatomy to the digital Max Planck Zebrafish Brain Atlas. In our system, individual AFs are neuropil areas associated with the following nuclei: AF1 with the suprachiasmatic nucleus; AF2 with the posterior parvocellular preoptic nucleus; AF3 and AF4 with the ventrolateral thalamic nucleus; AF4 with the anterior and intermediate thalamic nuclei; AF5 with the dorsal accessory optic nucleus; AF7 with the parvocellular superficial pretectal nucleus; AF8 with the central pretectal nucleus; and AF9d and AF9v with the dorsal and ventral periventricular pretectal nuclei. AF6 is probably part of the accessory optic system. Imaging, ablation, and activation experiments showed contributions of AF5 and potentially AF6 to optokinetic and optomotor reflexes, AF4 to phototaxis, and AF7 to prey detection. AF6, AF8 and AF9v respond to dimming, and AF4 and AF9d to brightening. While few annotations remain tentative, it is apparent that the larval zebrafish visual system is anatomically and functionally continuous with its adult successor and fits the general cyprinid pattern. This study illustrates the synergy created by merging classical neuroanatomy with a cellular-resolution digital brain atlas resource and functional imaging in larval zebrafish.
Collapse
Affiliation(s)
- Herwig Baier
- Max Planck Institute of Neurobiology, Genes-Circuits-Behavior, Martinsried, Germany
| | - Mario F Wullimann
- Max Planck Institute of Neurobiology, Genes-Circuits-Behavior, Martinsried, Germany.,Department Biology II, Division of Neurobiology, Ludwig-Maximilians-University (LMU Munich), Martinsried, Germany
| |
Collapse
|
17
|
The effects of corticosterone and background colour on tadpole physiological plasticity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100872. [PMID: 34224981 DOI: 10.1016/j.cbd.2021.100872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022]
Abstract
Corticosterone (CORT)-mediated adaptive plasticity improves animal fitness in stressful environments. Although it brings ecological benefits, the cost potentially constrains its expression and evolution. Revealing the factors affecting plasticity costs is of great ecological and evolutionary significance. Evidence indicates that both CORT and background colour can induce metabolic changes in animals, which in turn determine phenotypic plasticity. However, whether and/or how CORT and background colour jointly act on plastic responses has not been studied. Here, this question has been investigated in amphibian tadpoles (Microhyla fissipes) exposed to CORT at different background colours (white or black) using integrated morphological, histological, and transcriptomic analyses. The results showed that CORT exposure increased relative tail length, immune function, and metabolic maintenance (i.e., transcription of substrate catabolism and oxidative phosphorylation) at the expense of reduction in growth rate and skin melanin level. The black background also increased relative tail length and metabolic maintenance (i.e., transcription of oxidative phosphorylation) at the cost of reduction in growth rate, but increased skin melanin level. The expression of critical pigmentation genes indicated that black background activated a distinct and opposite pigmentation regulating route to CORT. Although there was no interactive effect of background colour and CORT on phenotypic and metabolic variations, their additive effects further impact the trade-off between somatic growth, metabolic maintenance, and pigmentation in terms of resource allocation. In conclusion, the individual and additive effects of background colour and CORT exposure on tadpole plasticity were revealed. These results likely provide new insights into the environmental adaptation of animals.
Collapse
|
18
|
Guo K, Zhong J, Zhu L, Xie F, Du Y, Ji X. The thermal dependence and molecular basis of physiological color change in Takydromus septentrionalis (Lacertidae). Biol Open 2021; 10:bio.058503. [PMID: 33593793 PMCID: PMC8015239 DOI: 10.1242/bio.058503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One of the main functions of physiological color change is thermoregulation. This change occurs much more rapidly than morphological color change, but the underlying mechanism remains poorly understood. Here, we studied the thermal dependence and molecular basis of physiological color change in lizards using Takydromus septentrionalis (Lacertidae) as the model system. Body color was thermally sensitive, becoming increasingly light as body temperatures deviated from the level (∼30°C) preferred by this species. We identified 3389 differentially expressed genes (DEGs) between lizards at 24°C and 30°C, and 1,097 DEGs between lizards at 36°C and 30°C. Temperature affected the cAMP signal pathway, motor proteins, cytoskeleton, and the expression of genes related to melanocyte-stimulating hormone (MSH) and melanocyte-concentrating hormone (MCH). Our data suggest that the role of physiological color change in thermoregulation is achieved in T. septentrionalis by altering the arrangement of pigments and thus the amount of solar radiation absorbed and reflected. G protein-coupling system inhibits adenylate cyclase activity to transform ATP into cAMP and thereby causes rapid pigment aggregation. MCH deactivates the G proteins and thereby initiates pigment dispersion. This mechanism differs from that reported for teleost fish where MCH activates the G proteins and thereby causes pigment aggregation. This article has an associated First Person interview with the first author of the paper. Summary: G protein-coupling system inhibits adenylate cyclase activity to transform ATP into cAMP and thereby causes rapid pigment aggregation. MCH deactivates the G proteins and thereby initiates pigment dispersion.
Collapse
Affiliation(s)
- Kun Guo
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China.,Institute of Biodiversity Conservation and Utilization, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Jun Zhong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China.,Institute of Biodiversity Conservation and Utilization, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Lin Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Fan Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yu Du
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China.,MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya 572022, Hainan, China
| | - Xiang Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China .,Institute of Biodiversity Conservation and Utilization, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang, China.,MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya 572022, Hainan, China
| |
Collapse
|
19
|
Sousa NA, Oliveira GAL, de Oliveira AP, Lopes ALF, Iles B, Nogueira KM, Araújo TSL, Souza LKM, Araújo AR, Ramos-Jesus J, Plácido A, Amaral C, Campelo YDM, Barbosa EA, Portugal CC, Socodato R, Lobo A, Relvas J, Bemquerer M, Eaton P, Leite JRSA, Medeiros JVR. Novel Ocellatin Peptides Mitigate LPS-induced ROS Formation and NF-kB Activation in Microglia and Hippocampal Neurons. Sci Rep 2020; 10:2696. [PMID: 32060388 PMCID: PMC7021831 DOI: 10.1038/s41598-020-59665-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Cutaneous secretions of amphibians have bioactive compounds, such as peptides, with potential for biotechnological applications. Therefore, this study aimed to determine the primary structure and investigate peptides obtained from the cutaneous secretions of the amphibian, Leptodactylus vastus, as a source of bioactive molecules. The peptides obtained possessed the amino acid sequences, GVVDILKGAAKDLAGH and GVVDILKGAAKDLAGHLASKV, with monoisotopic masses of [M + H]± = 1563.8 Da and [M + H]± = 2062.4 Da, respectively. The molecules were characterized as peptides of the class of ocellatins and were named as Ocellatin-K1(1-16) and Ocellatin-K1(1-21). Functional analysis revealed that Ocellatin-K1(1-16) and Ocellatin-K1(1-21) showed weak antibacterial activity. However, treatment of mice with these ocellatins reduced the nitrite and malondialdehyde content. Moreover, superoxide dismutase enzymatic activity and glutathione concentration were increased in the hippocampus of mice. In addition, Ocellatin-K1(1-16) and Ocellatin-K1(1-21) were effective in impairing lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) formation and NF-kB activation in living microglia. We incubated hippocampal neurons with microglial conditioned media treated with LPS and LPS in the presence of Ocellatin-K1(1-16) and Ocellatin-K1(1-21) and observed that both peptides reduced the oxidative stress in hippocampal neurons. Furthermore, these ocellatins demonstrated low cytotoxicity towards erythrocytes. These functional properties suggest possible to neuromodulatory therapeutic applications.
Collapse
Affiliation(s)
- Nayara A Sousa
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil
| | - Guilherme A L Oliveira
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil
| | - Ana Patrícia de Oliveira
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil
| | - André Luís F Lopes
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil
| | - Bruno Iles
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil
| | - Kerolayne M Nogueira
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil
| | - Thiago S L Araújo
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil.,Instituto de Educação Superior do Vale do Parnaíba, FAHESP/IESVAP/NRE, Parnaíba, Brazil
| | - Luan K M Souza
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil.,Instituto de Educação Superior do Vale do Parnaíba, FAHESP/IESVAP/NRE, Parnaíba, Brazil
| | - Alyne R Araújo
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Universidade Federal do Piauí, UFPI, Piauí, Brazil
| | - Joilson Ramos-Jesus
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Universidade Federal do Piauí, UFPI, Piauí, Brazil.,Instituto de Educação Superior do Vale do Parnaíba, FAHESP/IESVAP/NRE, Parnaíba, Brazil
| | - Alexandra Plácido
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Constança Amaral
- Instituto de Medicina Molecular, IMM, Universidade de Lisboa, Lisboa, Portugal
| | - Yuri D M Campelo
- Instituto de Educação Superior do Vale do Parnaíba, FAHESP/IESVAP/NRE, Parnaíba, Brazil
| | - Eder Alves Barbosa
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, UnB, Brasília, Brazil
| | - Camila C Portugal
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal
| | - Renato Socodato
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal
| | - Andrea Lobo
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal
| | - Joao Relvas
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal
| | | | - Peter Eaton
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal.,Instituto de Medicina Molecular, IMM, Universidade de Lisboa, Lisboa, Portugal
| | - José Roberto S A Leite
- Núcleo de Pesquisa em Morfologia e Imunonologia Aplicada, NuPMIA, Área Morfologia, Faculdade de Medicina, UnB, Brasília, Brazil
| | - Jand Venes R Medeiros
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil. .,Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Universidade Federal do Piauí, UFPI, Piauí, Brazil.
| |
Collapse
|
20
|
Dahora LI, Fitzgerald A, Emanuel M, Baiges AF, Husain Z, Thompson CK. The Flavor Enhancer Maltol Increases Pigment Aggregation in Dermal and Neural Melanophores in Xenopus laevis Tadpoles. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:381-395. [PMID: 31721268 DOI: 10.1002/etc.4626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/26/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Melanophores are pigmented cells that change the distribution of melanosomes, enabling animals to appear lighter or darker for camouflage, thermoregulation, and protection from ultraviolet radiation. A complex series of hormonal and neural mechanisms regulates melanophore pigment distribution, making these dynamic cells a valuable tool to screen toxicants as they rapidly respond to changes in the environment. We found that maltol, a naturally occurring flavor enhancer and fragrance agent, induces melanophore pigment aggregation in a dose-dependent manner in Xenopus laevis tadpoles. To determine if maltol affects camouflage adaptation, we placed tadpoles into maltol baths situated over either a white or a black background. Maltol induced pigment aggregation in a similar dose-dependent pattern regardless of background color. We also tested how maltol treatment compares to melatonin treatment and found that the degree of pigment aggregation induced by maltol is similar to treatment with melatonin but that maltol induces over a much longer time course. Last, maltol had no effect on mRNA expression in the brain of genes that regulate camouflage-related pigment aggregation. The present results suggest that maltol does not exert its effects via the camouflage adaptation mechanism or via melatonin-related mechanisms. These results are the first to identify a putative toxicological effect of maltol exposure in vivo and rule out several mechanisms by which maltol may exert its effects on pigment aggregation. Environ Toxicol Chem 2020;39:381-395. © 2019 SETAC.
Collapse
Affiliation(s)
- Lara I Dahora
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Matthew Emanuel
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA
| | - Alexa F Baiges
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA
| | - Zahabiya Husain
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA
| | - Christopher K Thompson
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA
- Global Change Center, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
21
|
Pinto KS, Pires THS, Stefanelli-Silva G, Barros BS, Borghezan EA, Zuanon J. Does soil color affect fish evolution? Differences in color change rate between lineages of the sailfin tetra. NEOTROPICAL ICHTHYOLOGY 2020. [DOI: 10.1590/1982-0224-2019-0093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
ABSTRACT Several organisms match their skin color to the prevalent background color, granting crypsis against predators. The rate at which body color changes occur varies among organisms as a result of physiological constraints and adaptation to variation in contrasts between objects and the environmental background. Faster darkening of body color is favored in environments that show higher amounts of contrast between common objects and the prevailing background. Soil types in Amazon forest streams (igarapés) create distinct environments with respect to the amount of contrast, a result of the amount of sand and clay, which offers different contrasts against dead leaves. Here, we investigated differences in the rates of color change among populations of the sailfin tetra (Crenuchus spilurus) that represent lineages that live in regions of different soil types. Populations inserted into blackwaters (sandy soil) showed higher rates of color darkening in response to exposure to a dark environment composed by dead leaves. We propose that natural selection stemming from predation can favor faster color change rate in environments where there is higher variability of contrasts between leaf litter and soil, which is common in most blackwater streams.
Collapse
|
22
|
Chamcheu JC, Roy T, Uddin MB, Banang-Mbeumi S, Chamcheu RCN, Walker AL, Liu YY, Huang S. Role and Therapeutic Targeting of the PI3K/Akt/mTOR Signaling Pathway in Skin Cancer: A Review of Current Status and Future Trends on Natural and Synthetic Agents Therapy. Cells 2019; 8:cells8080803. [PMID: 31370278 PMCID: PMC6721560 DOI: 10.3390/cells8080803] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
The mammalian or mechanistic target of rapamycin (mTOR) and associated phosphatidyl-inositiol 3-kinase (PI3K)/protein kinase B (Akt) pathways regulate cell growth, differentiation, migration, and survival, as well as angiogenesis and metabolism. Dysregulation of these pathways is frequently associated with genetic/epigenetic alterations and predicts poor treatment outcomes in a variety of human cancers including cutaneous malignancies like melanoma and non-melanoma skin cancers. Recently, the enhanced understanding of the molecular and genetic basis of skin dysfunction in patients with skin cancers has provided a strong basis for the development of novel therapeutic strategies for these obdurate groups of skin cancers. This review summarizes recent advances in the roles of PI3K/Akt/mTOR and their targets in the development and progression of a broad spectrum of cutaneous cancers and discusses the current progress in preclinical and clinical studies for the development of PI3K/Akt/mTOR targeted therapies with nutraceuticals and synthetic small molecule inhibitors.
Collapse
Affiliation(s)
| | - Tithi Roy
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | | | - Sergette Banang-Mbeumi
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
- Division for Research and Innovation, POHOFI Inc., P.O. Box 44067, Madison, WI 53744, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA 71203, USA
| | | | - Anthony L Walker
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | - Yong-Yu Liu
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| |
Collapse
|
23
|
Bertolesi GE, Zhang JZ, McFarlane S. Plasticity for colour adaptation in vertebrates explained by the evolution of the genes pomc, pmch and pmchl. Pigment Cell Melanoma Res 2019; 32:510-527. [PMID: 30791235 PMCID: PMC7167667 DOI: 10.1111/pcmr.12776] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/27/2019] [Accepted: 02/16/2019] [Indexed: 02/06/2023]
Abstract
Different camouflages work best with some background matching colour. Our understanding of the evolution of skin colour is based mainly on the genetics of pigmentation ("background matching"), with little known about the evolution of the neuroendocrine systems that facilitate "background adaptation" through colour phenotypic plasticity. To address the latter, we studied the evolution in vertebrates of three genes, pomc, pmch and pmchl, that code for α-MSH and two melanin-concentrating hormones (MCH and MCHL). These hormones induce either dispersion/aggregation or the synthesis of pigments. We find that α-MSH is highly conserved during evolution, as is its role in dispersing/synthesizing pigments. Also conserved is the three-exon pmch gene that encodes MCH, which participates in feeding behaviours. In contrast, pmchl (known previously as pmch), is a teleost-specific intron-less gene. Our data indicate that in zebrafish, pmchl-expressing neurons extend axons to the pituitary, supportive of an MCHL hormonal role, whereas zebrafish and Xenopus pmch+ neurons send axons dorsally in the brain. The evolution of these genes and acquisition of hormonal status for MCHL explain different mechanisms used by vertebrates to background-adapt.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - John Zhijia Zhang
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
24
|
Crowe-Riddell JM, Simões BF, Partridge JC, Hunt DM, Delean S, Schwerdt JG, Breen J, Ludington A, Gower DJ, Sanders KL. Phototactic tails: Evolution and molecular basis of a novel sensory trait in sea snakes. Mol Ecol 2019; 28:2013-2028. [PMID: 30767303 DOI: 10.1111/mec.15022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022]
Abstract
Dermal phototaxis has been reported in a few aquatic vertebrate lineages spanning fish, amphibians and reptiles. These taxa respond to light on the skin of their elongate hind-bodies and tails by withdrawing under cover to avoid detection by predators. Here, we investigated tail phototaxis in sea snakes (Hydrophiinae), the only reptiles reported to exhibit this sensory behaviour. We conducted behavioural tests in 17 wild-caught sea snakes of eight species by illuminating the dorsal surface of the tail and midbody skin using cold white, violet, blue, green and red light. Our results confirmed phototactic tail withdrawal in the previously studied Aipysurus laevis, revealed this trait for the first time in A. duboisii and A. tenuis, and suggested that tail photoreceptors have peak spectral sensitivities between blue and green light (457-514 nm). Based on these results, and an absence of photoresponses in five Aipysurus and Hydrophis species, we tentatively infer that tail phototaxis evolved in the ancestor of a clade of six Aipysurus species (comprising 10% of all sea snakes). Quantifying tail damage, we found that the probability of sustaining tail injuries was not influenced by tail phototactic ability in snakes. Gene profiling showed that transcriptomes of both tail skin and body skin lacked visual opsins but contained melanopsin (opn4x) in addition to key genes of the retinal regeneration and phototransduction cascades. This work suggests that a nonvisual photoreceptor (e.g., Gq rhabdomeric) signalling pathway underlies tail phototaxis, and provides candidate gene targets for future studies of this unusual sensory innovation in reptiles.
Collapse
Affiliation(s)
- Jenna M Crowe-Riddell
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,Department of Biology, University of Florida, Gainesville, Florida
| | - Bruno F Simões
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,School of Earth Sciences, University of Bristol, Bristol, UK
| | - Julian C Partridge
- School of Biological Sciences and Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia
| | - David M Hunt
- School of Biological Sciences and Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia.,Centre for Ophthalmology and Vision Science, Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Steven Delean
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Julian G Schwerdt
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - James Breen
- Robinson Research Institute, University of Adelaide, North Adelaide, South Australia, Australia.,Bioinformatics Hub, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Alastair Ludington
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,Bioinformatics Hub, University of Adelaide, Adelaide, South Australia, Australia
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Kate L Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
25
|
Sanchez E, Pröhl H, Lüddecke T, Schulz S, Steinfartz S, Vences M. The conspicuous postmetamorphic coloration of fire salamanders, but not their toxicity, is affected by larval background albedo. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:26-35. [DOI: 10.1002/jez.b.22845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Eugenia Sanchez
- Department of Life Sciences, Zoological Institute, Technische Universität BraunschweigBraunschweig Germany
| | - Heike Pröhl
- The University of Veterinary Medicine Hannover Foundation does not have departments, only clinics, institutes and special units, Institute of Zoology, Tierärztliche Hochschule HannoverHannover Germany
| | - Tim Lüddecke
- Department of Life Sciences, Zoological Institute, Technische Universität BraunschweigBraunschweig Germany
- LOEWE Centre for Translational Biodiversity Genomics, Animal Venomics Research Group, Fraunhofer Institute for Molecular Biology and Applied EcologyGießen Germany
| | - Stefan Schulz
- Department of Life Sciences, Institute of Organic Chemistry, Technische Universität BraunschweigBraunschweig Germany
| | - Sebastian Steinfartz
- Department of Life Sciences, Zoological Institute, Technische Universität BraunschweigBraunschweig Germany
| | - Miguel Vences
- Department of Life Sciences, Zoological Institute, Technische Universität BraunschweigBraunschweig Germany
| |
Collapse
|
26
|
Stachurska A, Sarna T. Regulation of Melanopsin Signaling: Key Interactions of the Nonvisual Photopigment. Photochem Photobiol 2018; 95:83-94. [DOI: 10.1111/php.12995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Stachurska
- Labolatory of Imaging and Force Spectroscopy; Malopolska Centre of Biotechnology; Jagiellonian University; Krakow Poland
| | - Tadeusz Sarna
- Department of Biophysics; Faculty of Biochemistry, Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
| |
Collapse
|