1
|
Hsieh MY, Hsu SK, Liu TY, Wu CY, Chiu CC. Melanoma biology and treatment: a review of novel regulated cell death-based approaches. Cancer Cell Int 2024; 24:63. [PMID: 38336727 PMCID: PMC10858604 DOI: 10.1186/s12935-024-03220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
The incidence of melanoma, the most lethal form of skin cancer, has increased due to ultraviolet exposure. The treatment of advanced melanoma, particularly metastatic cases, remains challenging with poor outcomes. Targeted therapies involving BRAF/MEK inhibitors and immunotherapy based on anti-PD1/anti-CTLA4 antibodies have achieved long-term survival rates of approximately 50% for patients with advanced melanoma. However, therapy resistance and inadequate treatment response continue to hinder further breakthroughs in treatments that increase survival rates. This review provides an introduction to the molecular-level pathogenesis of melanoma and offers an overview of current treatment options and their limitations. Cells can die by either accidental or regulated cell death (RCD). RCD is an orderly cell death controlled by a variety of macromolecules to maintain the stability of the internal environment. Since the uncontrolled proliferation of tumor cells requires evasion of RCD programs, inducing the RCD of melanoma cells may be a treatment strategy. This review summarizes studies on various types of nonapoptotic RCDs, such as autophagy-dependent cell death, necroptosis, ferroptosis, pyroptosis, and the recently discovered cuproptosis, in the context of melanoma. The relationships between these RCDs and melanoma are examined, and the interplay between these RCDs and immunotherapy or targeted therapy in patients with melanoma is discussed. Given the findings demonstrating melanoma cell death in response to different stimuli associated with these RCDs, the induction of RCD shows promise as an integral component of treatment strategies for melanoma.
Collapse
Affiliation(s)
- Ming-Yun Hsieh
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Tzu-Yu Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Chien-Chih Chiu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
2
|
Su Y, Zhang T, Qiao R. Pyroptosis in platelets: Thrombocytopenia and inflammation. J Clin Lab Anal 2023; 37:e24852. [PMID: 36852778 PMCID: PMC10020847 DOI: 10.1002/jcla.24852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/28/2022] [Accepted: 02/05/2023] [Indexed: 03/01/2023] Open
Abstract
OBJECTIVE The purpose of this manuscript was to conclude the role of platelets in immune inflammation and discuss the complex mechanisms of pyroptosis in platelets as well as their related diseases. METHODS This article reviewed the existing literature to see the development of pyroptosis in platelets. RESULTS Platelets have been shown to be capable of activating inflammasomes assembled from NOD-like receptor family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1. Recently, they were also implicated in pyroptosis. Cleaved by caspase-1, N-terminal gasdermin D (N-GSDMD) could form pores in the cell membrane, inducing nonselective intracellular substance release. This programmed cell death induced thrombocytopenia and inflammatory cytokine release such as IL-1β and IL-18, promoting platelet aggregation, vaso-occlusion, endothelial permeability and cascaded inflammatory response. CONCLUSION Pyroptosis in platelets contributes to thrombocytopenia and inflammation.
Collapse
Affiliation(s)
- Yang Su
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Tiannan Zhang
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Rui Qiao
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
| |
Collapse
|
3
|
Gupta S, Cassel SL, Sutterwala FS. Inflammasome-Independent Roles of NLR and ALR Family Members. Methods Mol Biol 2023; 2696:29-45. [PMID: 37578713 DOI: 10.1007/978-1-0716-3350-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Pattern recognition receptors, including members of the NLR and ALR families, are essential for recognition of both pathogen- and host-derived danger signals. Several members of these families, including NLRP1, NLRP3, NLRC4, and AIM2, are capable of forming multiprotein complexes, called inflammasomes, that result in the activation of pro-inflammatory caspase-1. However, in addition to the formation of inflammasomes, a number of these family members exert inflammasome-independent functions. Here, we will discuss inflammasome-independent functions of NLRC4, NLRP12, and AIM2 and examine their roles in regulating innate and adaptive immune processes.
Collapse
Affiliation(s)
- Suman Gupta
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Suzanne L Cassel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Fayyaz S Sutterwala
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Abstract
Pyroptosis, as a proinflammatory form of regulated cell death, plays an important role in multiple cancers. However, the diagnostic and prognostic values of pyroptosis and its interaction with tumor immunity in pan-cancer are still unclear. Here, we show an elevated general expression of 17 pyroptosis-associated genes of tumor patients with high-immune-activity and a reduced pyroptosis in low-immune-activity tumors. Moreover, pyroptosis is positively correlated with immune infiltration and immune-related signatures across 30 types of cancer. Furthermore, our experimental data suggest that pyroptosis directly modulate the expression of immune checkpoint molecules and cytokines. We generate a pyroptosis score model as a potential independent prognostic indicator in melanoma patients. Interestingly, 3 of pyroptosis-associated genes including CASP1, CASP4 and PYCARD, can predict the effectiveness of anti-PD-1 immunotherapy for patients with melanoma. Our study demonstrates that pyroptosis correlates with tumor immunity and prognosis, might be used as a potential target for immune therapy. A pan-cancer analysis demonstrates that pyroptosis is involved in tumor development, prognosis and immunotherapy through the promotion of tumor immunity.
Collapse
|
5
|
Mónaco A, Chilibroste S, Yim L, Chabalgoity JA, Moreno M. Inflammasome activation, NLRP3 engagement and macrophage recruitment to tumor microenvironment are all required for Salmonella antitumor effect. Cancer Immunol Immunother 2022; 71:2141-2150. [PMID: 35061085 DOI: 10.1007/s00262-022-03148-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Salmonella-based cancer therapies show great potential in preclinical models, but for most cases the observed antitumor effect is transient. Understanding the basis of the antitumor efficacy might guide the design of improved strains that elicit long-lasting effects, paving the wave for clinical use. Here, we deepened into the role of macrophages and inflammasome activation in the context of Salmonella anti-melanoma effect. We showed inflammasome activation in melanoma cells upon infection, which correlated with cell surface exposure of gasdermin-D (GSDM-D) and calreticulin (CRT) and High mobility group box 1 protein (HMGB-1) release, suggesting immunogenic cell death, particularly pyroptosis. Salmonella infection upregulated levels of Caspase-11 (Casp11) mRNA, but not Nlrp3 or Nlrc4 mRNA, the only described inflammasome receptors engaged by Salmonella, suggesting that non-canonical inflammasome activation could be occurring in melanoma cells. Intratumoral administration of Salmonella to melanoma-bearing mice elicited local inflammasome activation and interleukin-1β (IL-1β) production together with tumor growth retardation and extended survival in wild type but not Caspase-1/11 (Casp1/11) knockout mice despite similar levels of intratumoral IL-1β in the later. Salmonella antitumor activity was also suppressed in melanoma bearing Nlrp3 knockout mice. Salmonella induced macrophage recruitment to the tumor site and infiltrating cells exhibited inflammasome activation. Depletion experiments confirmed that macrophages are also essential for Salmonella anti-melanoma effect. Intratumoral macrophages showed a marked M2/M1 shift soon after treatment but this inflammatory profile is then lost, which could explain the transient effect of therapy. All in all, our results highlight CASP-1/11 axis and macrophages as essential players in Salmonella-based cancer immunotherapy and suggest a possible target for future interventions.
Collapse
Affiliation(s)
- Amy Mónaco
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sofía Chilibroste
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Yim
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jose Alejandro Chabalgoity
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - María Moreno
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
6
|
Li X, Xiao GY, Guo T, Song YJ, Li QM. Potential therapeutic role of pyroptosis mediated by the NLRP3 inflammasome in type 2 diabetes and its complications. Front Endocrinol (Lausanne) 2022; 13:986565. [PMID: 36387904 PMCID: PMC9646639 DOI: 10.3389/fendo.2022.986565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
As a new way of programmed cell death, pyroptosis plays a vital role in many diseases. In recent years, the relationship between pyroptosis and type 2 diabetes (T2D) has received increasing attention. Although the current treatment options for T2D are abundant, the occurrence and development of T2D appear to continue, and the poor prognosis and high mortality of patients with T2D remain a considerable burden in the global health system. Numerous studies have shown that pyroptosis mediated by the NLRP3 inflammasome can affect the progression of T2D and its complications; targeting the NLRP3 inflammasome has potential therapeutic effects. In this review, we described the molecular mechanism of pyroptosis more comprehensively, discussed the most updated progress of pyroptosis mediated by NLRP3 inflammasome in T2D and its complications, and listed some drugs and agents with potential anti-pyroptosis effects. Based on the available evidence, exploring more mechanisms of the NLRP3 inflammasome pathway may bring more options and benefits for preventing and treating T2D and drug development.
Collapse
|
7
|
Niu Z, Xu Y, Li Y, Chen Y, Han Y. Construction and validation of a novel pyroptosis-related signature to predict prognosis in patients with cutaneous melanoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:688-706. [PMID: 34903008 DOI: 10.3934/mbe.2022031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Skin cutaneous melanoma (SKCM) is one of the most malignant skin cancers and remains a health concern worldwide. Pyroptosis is a newly recognized form of programmed cell death and plays a vital role in cancer progression. We aim to construct a prognostic model for SKCM patients based on pyroptosis-related genes (PRGs). SKCM patients from The Cancer Genome Atlas (TCGA) were divided into training and validation cohorts. We used GSE65904 downloaded from GEO database as an external validation cohort. We performed Cox regression and the least absolute shrinkage and selection operator (LASSO) regression to identify prognostic genes and built a risk score. Patients were divided into high- and low-risk groups based on the risk score. Differently expressed genes (DEGs), immune cell infiltration and immune-related pathways activation were compared between the two groups. We established a model containing 4 PRGs, i.e., GSDMA, GSDMC, AIM2 and NOD2. The overall survival (OS) time was significantly different between the 2 groups. The risk score was an independent predictor for prognosis in both the uni- and multi-variable Cox regressions. Gene ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) analyses showed that DEGs were enriched in immune-related pathways. Most types of immune cells were highly expressed in the low risk group. All immune pathways were significantly up-regulated in the low-risk group. In addition, low-risk patients had a better response to immune checkpoint inhibitors. Our novel pyroptosis-related gene signature could predict the prognosis of SKCM patients and their response to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Zehao Niu
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Plastic and Reconstructive Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yujian Xu
- Department of Plastic and Reconstructive Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Li
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Plastic and Reconstructive Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Youbai Chen
- Department of Plastic and Reconstructive Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
8
|
Hersey P. Re: Pyrexia in patients treated with dabrafenib plus trametinib across clinical trials in BRAF-mutant cancers. Eur J Cancer 2021; 162:241-242. [PMID: 34949515 DOI: 10.1016/j.ejca.2021.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Peter Hersey
- Centenary Institute, Melanoma Research, Sydney, NSW 2050, Australia.
| |
Collapse
|
9
|
Ahmed F, Tseng HY, Ahn A, Gunatilake D, Alavi S, Eccles M, Rizos H, Gallagher SJ, Tiffen JC, Hersey P, Emran AA. Repurposing melanoma chemotherapy to activate inflammasomes in treatment of BRAF/MAPK inhibitor resistant melanoma. J Invest Dermatol 2021; 142:1444-1455.e10. [PMID: 34695412 DOI: 10.1016/j.jid.2021.09.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022]
Abstract
The development of resistance to treatments of melanoma is commonly associated with upregulation of the MAPK pathway and development of an undifferentiated state. Prior studies have suggested that melanoma with these resistance characteristics may be susceptible to innate death mechanisms such as pyroptosis triggered by activation of inflammasomes. In the present studies we have taken cell lines from patients before and after development of resistance to BRAF V600 inhibitors and exposed the resistant melanoma to temozolomide (a commonly used chemotherapy) with and without chloroquine to inhibit autophagy. It was found that melanoma with an inflammatory undifferentiated state appeared susceptible to this combination when tested in vitro and in vivo against xenografts in NSG mice. Translation of the latter results into patients would promise durable responses in patients treated by the combination. The inflammasome and death mechanism involved appeared to vary between melanoma and involved either AIM2 or NLRP3 inflammasomes and gasdermin D or E. These preliminary studies have raised questions as to the selectivity for different inflammasomes in different melanoma and their selective targeting by chemotherapy. They also question whether the inflammatory state of melanoma may be used as biomarkers to select patients for inflammasome targeted therapy.
Collapse
Affiliation(s)
- Farzana Ahmed
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia
| | - Hsin-Yi Tseng
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia; Central Clinical School, The University of Sydney, Camperdown, Australia
| | - Antonio Ahn
- Peter MacCallum Cancer Centre, Melbourne, Australia; The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Dilini Gunatilake
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia
| | - Sara Alavi
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia; Central Clinical School, The University of Sydney, Camperdown, Australia
| | - Michael Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Helen Rizos
- Melanoma Institute Australia, Sydney, Australia; Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Stuart J Gallagher
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia; Central Clinical School, The University of Sydney, Camperdown, Australia
| | - Jessamy C Tiffen
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia; Central Clinical School, The University of Sydney, Camperdown, Australia
| | - Peter Hersey
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia; Central Clinical School, The University of Sydney, Camperdown, Australia.
| | - Abdullah Al Emran
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown, Australia; Melanoma Institute Australia, Sydney, Australia; Central Clinical School, The University of Sydney, Camperdown, Australia; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
10
|
Tudor DV, Bâldea I, Olteanu DE, Fischer-Fodor E, Piroska V, Lupu M, Călinici T, Decea RM, Filip GA. Celecoxib as a Valuable Adjuvant in Cutaneous Melanoma Treated with Trametinib. Int J Mol Sci 2021; 22:4387. [PMID: 33922284 PMCID: PMC8122835 DOI: 10.3390/ijms22094387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Melanoma patients stop responding to targeted therapies mainly due to mitogen activated protein kinase (MAPK) pathway re-activation, phosphoinositide 3 kinase/the mechanistic target of rapamycin (PI3K/mTOR) pathway activation or stromal cell influence. The future of melanoma treatment lies in combinational approaches. To address this, our in vitro study evaluated if lower concentrations of Celecoxib (IC50 in nM range) could still preserve the chemopreventive effect on melanoma cells treated with trametinib. MATERIALS AND METHODS All experiments were conducted on SK-MEL-28 human melanoma cells and BJ human fibroblasts, used as co-culture. Co-culture cells were subjected to a celecoxib and trametinib drug combination for 72 h. We focused on the evaluation of cell death mechanisms, melanogenesis, angiogenesis, inflammation and resistance pathways. RESULTS Low-dose celecoxib significantly enhanced the melanoma response to trametinib. The therapeutic combination reduced nuclear transcription factor (NF)-kB (p < 0.0001) and caspase-8/caspase-3 activation (p < 0.0001), inhibited microphthalmia transcription factor (MITF) and tyrosinase (p < 0.05) expression and strongly down-regulated the phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signaling pathway more significantly than the control or trametinib group (p < 0.0001). CONCLUSION Low concentrations of celecoxib (IC50 in nM range) sufficed to exert antineoplastic capabilities and enhanced the therapeutic response of metastatic melanoma treated with trametinib.
Collapse
Affiliation(s)
- Diana Valentina Tudor
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| | - Ioana Bâldea
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| | - Diana Elena Olteanu
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| | - Eva Fischer-Fodor
- “Prof. Dr. Ion Chiricuță” Oncology Institute, 400015 Cluj-Napoca, Romania; (E.F.-F.); (V.P.)
| | - Virag Piroska
- “Prof. Dr. Ion Chiricuță” Oncology Institute, 400015 Cluj-Napoca, Romania; (E.F.-F.); (V.P.)
| | - Mihai Lupu
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| | - Tudor Călinici
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Roxana Maria Decea
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| | - Gabriela Adriana Filip
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| |
Collapse
|
11
|
Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 2021; 6:128. [PMID: 33776057 PMCID: PMC8005494 DOI: 10.1038/s41392-021-00507-5] [Citation(s) in RCA: 1281] [Impact Index Per Article: 320.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, pyroptosis has received more and more attention because of its association with innate immunity and disease. The research scope of pyroptosis has expanded with the discovery of the gasdermin family. A great deal of evidence shows that pyroptosis can affect the development of tumors. The relationship between pyroptosis and tumors is diverse in different tissues and genetic backgrounds. In this review, we provide basic knowledge of pyroptosis, explain the relationship between pyroptosis and tumors, and focus on the significance of pyroptosis in tumor treatment. In addition, we further summarize the possibility of pyroptosis as a potential tumor treatment strategy and describe the side effects of radiotherapy and chemotherapy caused by pyroptosis. In brief, pyroptosis is a double-edged sword for tumors. The rational use of this dual effect will help us further explore the formation and development of tumors, and provide ideas for patients to develop new drugs based on pyroptosis.
Collapse
Affiliation(s)
- Pian Yu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Ling Tang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Hartman ML. Non-Apoptotic Cell Death Signaling Pathways in Melanoma. Int J Mol Sci 2020; 21:E2980. [PMID: 32340261 PMCID: PMC7215321 DOI: 10.3390/ijms21082980] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Resisting cell death is a hallmark of cancer. Disturbances in the execution of cell death programs promote carcinogenesis and survival of cancer cells under unfavorable conditions, including exposition to anti-cancer therapies. Specific modalities of regulated cell death (RCD) have been classified based on different criteria, including morphological features, biochemical alterations and immunological consequences. Although melanoma cells are broadly equipped with the anti-apoptotic machinery and recurrent genetic alterations in the components of the RAS/RAF/MEK/ERK signaling markedly contribute to the pro-survival phenotype of melanoma, the roles of autophagy-dependent cell death, necroptosis, ferroptosis, pyroptosis, and parthanatos have recently gained great interest. These signaling cascades are involved in melanoma cell response and resistance to the therapeutics used in the clinic, including inhibitors of BRAFmut and MEK1/2, and immunotherapy. In addition, the relationships between sensitivity to non-apoptotic cell death routes and specific cell phenotypes have been demonstrated, suggesting that plasticity of melanoma cells can be exploited to modulate response of these cells to different cell death stimuli. In this review, the current knowledge on the non-apoptotic cell death signaling pathways in melanoma cell biology and response to anti-cancer drugs has been discussed.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
13
|
Emran AA, Tseng HY, Coleman MC, Tiffen J, Cook S, McGuire HM, Gallagher S, Feng C, Hersey P. Do innate killing mechanisms activated by inflammasomes have a role in treating melanoma? Pigment Cell Melanoma Res 2020; 33:660-670. [PMID: 32027447 PMCID: PMC7497247 DOI: 10.1111/pcmr.12870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/18/2022]
Abstract
Melanoma, as for many other cancers, undergoes a selection process during progression that limits many innate and adaptive tumor control mechanisms. Immunotherapy with immune checkpoint blockade overcomes one of the escape mechanisms but if the tumor is not eliminated other escape mechanisms evolve that require new approaches for tumor control. Some of the innate mechanisms that have evolved against infections with microorganisms and viruses are proving to be active against cancer cells but require better understanding of how they are activated and what inhibitory mechanisms may need to be targeted. This is particularly so for inflammasomes which have evolved against many different organisms and which recruit a number of cytotoxic mechanisms that remain poorly understood. Equally important is understanding of where these mechanisms will fit into existing treatment strategies and whether existing strategies already involve the innate killing mechanisms.
Collapse
Affiliation(s)
- Abdullah Al Emran
- Melanoma Immunology and Oncology Group, The Centenary Institute, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Hsin-Yi Tseng
- Melanoma Immunology and Oncology Group, The Centenary Institute, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Mikaela C Coleman
- Immunology and Host Defence Group, Department of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Tuberculosis Research Program, Centenary Institute, Camperdown, New South Wales, Australia
| | - Jessamy Tiffen
- Melanoma Immunology and Oncology Group, The Centenary Institute, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Stuart Cook
- Melanoma Immunology and Oncology Group, The Centenary Institute, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Helen M McGuire
- Ramaciotti Facility for Human Systems Biology, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Stuart Gallagher
- Melanoma Immunology and Oncology Group, The Centenary Institute, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Carl Feng
- Immunology and Host Defence Group, Department of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Tuberculosis Research Program, Centenary Institute, Camperdown, New South Wales, Australia
| | - Peter Hersey
- Melanoma Immunology and Oncology Group, The Centenary Institute, Royal Prince Alfred Hospital, University of Sydney, Camperdown, New South Wales, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|