1
|
Gómez-Ilescas A, Silveira PP. Early adversity and the comorbidity between metabolic disease and psychopathology. J Physiol 2025. [PMID: 40349327 DOI: 10.1113/jp285927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 04/01/2025] [Indexed: 05/14/2025] Open
Abstract
Although the co-existence of metabolic and psychiatric disorders in the same individual (comorbidity) is very prevalent, the mechanisms by which these disorders co-occur are poorly understood, but a history of early-life adversity is a common developmental risk factor. Exposure to adverse environments during critical periods of development (e.g. fetal life and infancy) modifies the metabolism and the function of the brain persistently, influencing behaviours that contribute to both metabolic and mental health disarrangements over the life course. We will review molecular and clinical evidence supporting the notion that early adversity is an important risk factor for the comorbidity between metabolic and psychiatric conditions. We will also discuss the possible mechanisms involved: neurometabolic programming, epigenetic alterations and the cumulative effects of altered inflammatory and oxidative pathways linked to early adversity.
Collapse
Affiliation(s)
| | - Patricia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Martini S, Castellini L, Parladori R, Paoletti V, Aceti A, Corvaglia L. Free Radicals and Neonatal Brain Injury: From Underlying Pathophysiology to Antioxidant Treatment Perspectives. Antioxidants (Basel) 2021; 10:2012. [PMID: 34943115 PMCID: PMC8698308 DOI: 10.3390/antiox10122012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/23/2023] Open
Abstract
Free radicals play a role of paramount importance in the development of neonatal brain injury. Depending on the pathophysiological mechanisms underlying free radical overproduction and upon specific neonatal characteristics, such as the GA-dependent maturation of antioxidant defenses and of cerebrovascular autoregulation, different profiles of injury have been identified. The growing evidence on the detrimental effects of free radicals on the brain tissue has led to discover not only potential biomarkers for oxidative damage, but also possible neuroprotective therapeutic approaches targeting oxidative stress. While a more extensive validation of free radical biomarkers is required before considering their use in routine neonatal practice, two important treatments endowed with antioxidant properties, such as therapeutic hypothermia and magnesium sulfate, have become part of the standard of care to reduce the risk of neonatal brain injury, and other promising therapeutic strategies are being tested in clinical trials. The implementation of currently available evidence is crucial to optimize neonatal neuroprotection and to develop individualized diagnostic and therapeutic approaches addressing oxidative brain injury, with the final aim of improving the neurological outcome of this population.
Collapse
Affiliation(s)
- Silvia Martini
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Laura Castellini
- School of Medicine and Surgery, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Roberta Parladori
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Vittoria Paoletti
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Arianna Aceti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Luigi Corvaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
3
|
Oxidative Stress and Neurodevelopmental Outcomes in Rat Offspring with Intrauterine Growth Restriction Induced by Reduced Uterine Perfusion. Brain Sci 2021; 11:brainsci11010078. [PMID: 33435577 PMCID: PMC7826770 DOI: 10.3390/brainsci11010078] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 01/21/2023] Open
Abstract
Intrauterine growth restriction (IUGR) is a major cause of morbidity and mortality and is worldwide associated with delayed neurodevelopment. The exact mechanism involved in delayed neurodevelopment associated with IUGR is still unclear. Reduced uterine perfusion (RUP) is among the main causes of placental insufficiency leading to IUGR, which is associated with increases in oxidative stress. This study investigated whether oxidative stress is associated with delayed neurodevelopment in IUGR rat pups. Pregnant rats were exposed to RUP surgery on gestational day 14 to generate IUGR rat offspring. We evaluated offspring’s morphometric at birth, and neurodevelopment on postnatal day 21 (PD21) as well as markers of oxidative stress in plasma and brain. Offspring from dams exposed to RUP showed significant (p < 0.05) lower birth weight compared to controls, indicating IUGR. Motor and cognitive deficits, and levels of oxidative stress markers, were significantly (p < 0.05) elevated in IUGR offspring compared to controls. IUGR offspring showed significant (p < 0.05) negative correlations between brain lipid peroxidation and neurocognitive tests (open field and novel object recognition) in comparison with controls. Our findings suggest that neurodevelopmental delay observed in IUGR rat offspring is associated with increased levels of oxidative stress markers.
Collapse
|
4
|
Yoneda N, Yoneda S, Tsuda S, Ito M, Shiozaki A, Niimi H, Yoshida T, Nakashima A, Saito S. Pre-eclampsia Complicated With Maternal Renal Dysfunction Is Associated With Poor Neurological Development at 3 Years Old in Children Born Before 34 Weeks of Gestation. Front Pediatr 2021; 9:624323. [PMID: 33996679 PMCID: PMC8116540 DOI: 10.3389/fped.2021.624323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The purpose of this study was to investigate perinatal factors associated with a poor neurodevelopmental outcome in preterm infants. Methods: A retrospective study was conducted by searching our clinical database between January 2006 and December 2016. A total of 165 singleton children who were born between 23 and 33 weeks of gestation were included. We defined poor neurological development outcomes as follows: cerebral palsy; intellectual disability; developmental disorder including autism and attention-deficit/hyperactivity disorder; low score (<85 points) on Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III); or low score of Kyoto Scale of Psychological Development corrected at 3 years old. We diagnosed maternal renal dysfunction according to the Clinical Practice Guideline for chronic kidney disease 2018 and the Best Practice Guide 2015 for Care and Treatment of Hypertension in Pregnancy. Results: The rate of poor neurological development was 25/165 (15.2%): cerebral palsy (n = 1), intellectual disability (n = 1), developmental disorder (n = 2), low score of Bayley-III (n = 20), and low score of Kyoto Scale of Psychological Development (n = 1). Preeclampsia complicated with maternal renal dysfunction (P = 0.045) and delivery at <30 weeks of gestation (P = 0.007) were independent risk factors for poor neurological development. Conclusions: In addition to previous risk factors such as delivery at <30 weeks of gestation, preeclampsia complicated with renal dysfunction was also associated with poor neurodevelopmental outcomes corrected at 3 years old.
Collapse
Affiliation(s)
- Noriko Yoneda
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Satoshi Yoneda
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Sayaka Tsuda
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Mika Ito
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Arihiro Shiozaki
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Hideki Niimi
- Clinical Laboratory Center, Toyama University Hospital, Toyama, Japan
| | - Taketoshi Yoshida
- Division of Neonatology, Maternal and Perinatal Center, Toyama University Hospital, Toyama, Japan
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | | |
Collapse
|
5
|
Ijomone OK, Erukainure OL, Shallie P, Naicker T. Neurotoxicity in pre-eclampsia involves oxidative injury, exacerbated cholinergic activity and impaired proteolytic and purinergic activities in cortex and cerebellum. Hum Exp Toxicol 2020; 40:158-171. [PMID: 32772714 DOI: 10.1177/0960327120946477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Women with a history of pre-eclampsia (PE) tend to have a higher risk of developing cardiovascular and neurological diseases later in life. Imbalance in oxidative markers and purinergic enzymes have been implicated in the pathogenesis of neurological disease. This study investigated the effect of PE on oxidative imbalance, purinergic enzyme inhibitory activity, acetylcholinesterase and chymotrypsin activities in the brain of PE rat model at post-partum/post-natal day (PP/PND) 60. Pregnant rats divided into early-onset and late-onset groups were administered with Nω-nitro-l-arginine methyl through drinking water at gestational days 8-17. Rats were allowed free access to water throughout the pregnancy and allowed to deliver on their own. The mother and the pups were euthanized at PP and PND 60, respectively, the cortex and the cerebellum excised, homogenized and stored for analyses of the enzymes. Results showed an increase in nitric oxide and malondialdehyde with a concomitant decrease in reduced glutathione and superoxide dismutase, an indication of oxidative damage. Also, there was an increase in acetylcholinesterase activity with a decrease in chymotrypsin, adenylpyrophosphatase and ecto-nucleoside triphosphate diphosphohydrolase activities in both the cortex and the cerebellum of the mother and the pups at PND 60. These results indicate the involvement of oxidative stress, increased cholinergic activity and depleted proteolytic and purinergic activities in PE-induced neurotoxicity.
Collapse
Affiliation(s)
- O K Ijomone
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, 72753University of KwaZulu-Natal, Durban, South Africa
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria
| | - O L Erukainure
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - P Shallie
- Department of Anatomy, 361901Olabisi Onabanjo University, Ikenne, Ogun State, Nigeria
| | - T Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, 72753University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
6
|
Hashizume N, Tanaka Y, Asagiri K, Fukahori S, Ishii S, Saikusa N, Yoshida M, Tanikawa K, Asakawa T, Yagi M. Perioperative reactive oxygen species in infants with biliary atresia: A retrospective observational study. Medicine (Baltimore) 2020; 99:e21332. [PMID: 32756118 PMCID: PMC7402746 DOI: 10.1097/md.0000000000021332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Biliary atresia (BA) is a devastating cholestatic disorder of infants that presents during the first several months after birth due to an idiopathic obstruction to the bile flow. Without prompt diagnosis, Kasai portoenterostomy, and deliberate follow-ups, the resulting cholestasis leads to progressive hepatic failure. Oxidative stress is an abnormal phenomenon inside cells or tissues caused by a disturbance in the reactive oxygen species (ROS). We aimed to measure perioperative ROS in BA patients.Data are presented as median (25th, 75th percentiles). We evaluated 15 BA patients (age 55 [48, 69] days) and measured ROS; serum superoxide dismutase (SOD), urinary 8-iso prostaglandin F2α (8-iso-PGF2α) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) preoperatively and 30 days later to compare values with serum liver function tests and histologic grades of liver cholestasis. For compared BA patients, 4 normal subjects as control group (age 55 [27, 75] days) measured ROS and serum liver function tests.In BA patients, the preoperative serum SOD was 6.1 IU/mL (4.7, 7.2), urinary 8-iso-PGF2α was 1969 pg/mg Cre (1697, 2374), and urinary 8-OHdG was 37.1 ng/mg Cre (33.1, 53.7). At the postoperative day 30, the serum SOD was 5.2 IU/mL (4.2, 6.7), urinary 8-iso-PGF2α was 1761 pg/mg Cre (1256, 3036), and urinary 8-OHdG was 42.1 ng/mg Cre (29.65, 72.64). In ROS, there were no significant differences between the 2 periods. In control group, urinary 8-iso-PGF2α was significantly lower than that in preoperative BA patient group. However, other ROS were not significant differences between control group and BA patient group. The concentration of urinary 8-iso-PGF2α was positively correlated with total bilirubin and direct bilirubin levels (preoperatively: r = 0.6921, P = .0042 and r = 0.6639, P = .007, postoperatively: r = 0.6036, P = .0172 and r = 0.6464, P = .0092, respectively). The preoperative ROS were not correlated with histologic grades of liver cholestasis. Various factors such as liver inflammation, lipid malabsorption, and tissue disorders due to jaundice might affect the antioxidant activity and elevated urinary 8-iso-PGF2α. However, at least until 30 days later, urinary 8-OHdG as oxidative DNA damage might persist after the operation whether the cholestasis improved or not.
Collapse
Affiliation(s)
- Naoki Hashizume
- Department of Pediatric Surgery, Kurume University School of Medicine
| | - Yoshiaki Tanaka
- Department of Pediatric Surgery, Kurume University School of Medicine
- Division of Medical Safety Management, Kurume University Hospital
| | - Kimio Asagiri
- Department of Pediatric Surgery, Kurume University School of Medicine
- Department of Pediatric Surgery, St Mary's Hospital
| | - Suguru Fukahori
- Department of Pediatric Surgery, Kurume University School of Medicine
| | - Shinji Ishii
- Department of Pediatric Surgery, Kurume University School of Medicine
| | - Nobuyuki Saikusa
- Department of Pediatric Surgery, Kurume University School of Medicine
| | - Motomu Yoshida
- Department of Pediatric Surgery, Kurume University School of Medicine
| | - Ken Tanikawa
- Departments of Pathology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Takahiro Asakawa
- Department of Pediatric Surgery, Kurume University School of Medicine
- Department of Pediatric Surgery, St Mary's Hospital
| | - Minoru Yagi
- Department of Pediatric Surgery, Kurume University School of Medicine
| |
Collapse
|
7
|
Abstract
Cerebral palsy (CP), defined as a group of nonprogressive disorders of movement and posture, is the most common cause of severe neurodisability in children. The prevalence of CP is the same across the globe, affecting approximately 17 million people worldwide. Cerebral Palsy is an umbrella term used to describe the disease due to its inherent heterogeneity. For instance, CP has multiple (1) causes; (2) clinical types; (3) patterns of neuropathology on brain imaging and (4) it's associated with several developmental pathologies such as intellectual disability, autism, epilepsy, and visual impairment. Understanding its physiopathology is crucial to developing protective strategies. Despite its importance, there is still insufficient progress in the areas of CP prediction, early diagnosis, treatment, and prevention. Herein we describe the current risk factors and biomarkers used for the diagnosis and prediction of CP. With the advancement in biomarker discovery, we predict that our understanding of the etiopathophysiology of CP will also increase, lending to more opportunities for developing novel treatments and prognosis.
Collapse
Affiliation(s)
- Zeynep Alpay Savasan
- Department of Obstetrics and Gynecology, Maternal Fetal Medicine Division, Beaumont Health System, Royal Oak, MI, United States; Oakland University-William Beaumont School of Medicine, Beaumont Health, Royal Oak, MI, United States.
| | - Sun Kwon Kim
- Department of Obstetrics and Gynecology, Maternal Fetal Medicine Division, Beaumont Health System, Royal Oak, MI, United States; Oakland University-William Beaumont School of Medicine, Beaumont Health, Royal Oak, MI, United States
| | - Kyung Joon Oh
- Beaumont Research Institute, Beaumont Health, Royal Oak, MI, United States; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, South Korea
| | - Stewart F Graham
- Oakland University-William Beaumont School of Medicine, Beaumont Health, Royal Oak, MI, United States; Beaumont Research Institute, Beaumont Health, Royal Oak, MI, United States
| |
Collapse
|
8
|
Perrone S, Laschi E, Buonocore G. Oxidative stress biomarkers in the perinatal period: Diagnostic and prognostic value. Semin Fetal Neonatal Med 2020; 25:101087. [PMID: 32008959 DOI: 10.1016/j.siny.2020.101087] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Perinatal oxidative stress (OS) is involved in the physiopathology of many pregnancy-related disorders and is largely responsible for cellular, tissue and organ damage that occur in the perinatal period especially in preterm infants, leading to the so-called "free-radicals related diseases of the newborn". Reliable biomarkers of lipid, protein, DNA oxidation and antioxidant power in the perinatal period have been demonstrated to show specificity for the disease, to have prognostic power or to correlate with disease activity. Yet potential clinical applications of oxidative stress biomarkers in neonatology are still under study. Overcoming the technical and economic difficulties that preclude the use of OS biomarkers in the clinical practice is a challenge that needs to be overcome to identify high-risk subjects and to predict their short- and long-term outcome. Cord blood, urine and saliva represent valid and ethically acceptable biological samples for investigations in the perinatal period.
Collapse
Affiliation(s)
- Serafina Perrone
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Elisa Laschi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
9
|
Scarpato R, Testi S, Colosimo V, Garcia Crespo C, Micheli C, Azzarà A, Tozzi MG, Ghirri P. Role of oxidative stress, genome damage and DNA methylation as determinants of pathological conditions in the newborn: an overview from conception to early neonatal stage. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 783:108295. [DOI: 10.1016/j.mrrev.2019.108295] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 11/25/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022]
|
10
|
Magalhães RC, Moreira JM, Lauar AO, da Silva AAS, Teixeira AL, E Silva ACS. Inflammatory biomarkers in children with cerebral palsy: A systematic review. RESEARCH IN DEVELOPMENTAL DISABILITIES 2019; 95:103508. [PMID: 31683246 DOI: 10.1016/j.ridd.2019.103508] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/04/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND An exacerbated systemic inflammatory response has been associated with the occurrence of central nervous system injuries that may determine, in long term, motor, sensorial and cognitive disabilities. Persistence of this exacerbated inflammatory response seems to be involved in the pathophysiology of cerebral palsy (CP). METHODS A systematic search was conducted in Bireme, Embase, PubMed and Scopus including studies that were published until August 2019. The key words used were "cerebral palsy", "brain injury", "inflammation", "oxidative stress", "cytokines", "chemokines", "neuropsychomotor development", "neurodevelopment outcomes" and "child". The quality of the eligible studies was determined according to the criteria suggested by the Newcastle-Ottawa Scale (NOS). RESULTS Fourteen eligible studies aimed to investigate the association between peripheral inflammatory molecules and neurodevelopment in infants. The studies differed regarding CP-related risk factors and its classification. Inflammatory proteins were measured in blood, plasma, serum, cerebrospinal fluid or urine. In ten studies, higher circulating levels of cytokines, including IL-1β, IL-6, TNF and CXCL8/IL-8, were associated with abnormal neurological findings. CONCLUSION The investigation of the potential association between inflammatory molecules and neurological development in children with CP requires further original studies in order to clarify the influence of prenatal and perinatal inflammation on neurological outcomes.
Collapse
Affiliation(s)
- Rafael Coelho Magalhães
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Janaina Matos Moreira
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Pediatrics, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Amanda Oliveira Lauar
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ariádna Andrade Saldanha da Silva
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, USA
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Pediatrics, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
11
|
Peña-Bautista C, Durand T, Vigor C, Oger C, Galano JM, Cháfer-Pericás C. Non-invasive assessment of oxidative stress in preterm infants. Free Radic Biol Med 2019; 142:73-81. [PMID: 30802488 DOI: 10.1016/j.freeradbiomed.2019.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/22/2022]
Abstract
Preterm newborns have an immature antioxidant defense system and are especially susceptible to oxidative stress. Resuscitation, mechanical ventilation, intermittent hypoxia and apneic episodes require frequently oxygen supplementation which leads to oxidative stress in preterm newborns. The consequences of oxidative damage are increased short and long-term morbidities, neurodevelopmental impairment and increased mortality. Oxidative stress biomarkers are determined in blood samples from preterm children during their stay in neonatal intensive care units especially for research purposes. However, there is a tendency towards reducing invasive and painful techniques in the NICU (Neonatal Intensive Care Unit) and avoiding excessive blood extractions procedures. In this paper, it has been described some studies that employed non-invasive samples to determine oxidative stress biomarkers form preterm infants in order to perform a close monitoring biomarker with a significant greater predictive value. Among these methods we describe a previously developed and validated high-performance liquid chromatography tandem mass spectrometry method that allow to accurately determine the most reliable biomarkers in biofluids, which are non-invasively and painlessly obtained.
Collapse
Affiliation(s)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS ENSCM, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS ENSCM, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS ENSCM, Montpellier, France
| | | |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW With the incidence of neurodevelopmental disorders on the rise, it is imperative to identify and understand the mechanisms by which environmental contaminants can impact the developing brain and heighten risk. Here, we report on recent findings regarding novel mechanisms of developmental neurotoxicity and highlight chemicals of concern, beyond traditionally defined neurotoxicants. RECENT FINDINGS The perinatal window represents a critical and extremely vulnerable period of time during which chemical insult can alter the morphological and functional trajectory of the developing brain. Numerous chemical classes have been associated with alterations in neurodevelopment including metals, solvents, pesticides, and, more recently, endocrine-disrupting compounds. Although mechanisms of neurotoxicity have traditionally been identified as pathways leading to neuronal cell death, neuropathology, or severe neural injury, recent research highlights alternative mechanisms that result in more subtle but consequential changes in the brain and behavior. These emerging areas of interest include neuroendocrine and immune disruption, as well as indirect toxicity via actions on other organs such as the gut and placenta. Understanding of the myriad ways in which the developing brain is vulnerable to chemical exposures has grown tremendously over the past decade. Further progress and implementation in risk assessment is critical to reducing risk of neurodevelopmental disorders.
Collapse
|
13
|
Kim JH, Lee J, Moon HB, Park J, Choi K, Kim SK, Kim S. Association of phthalate exposures with urinary free cortisol and 8-hydroxy-2'-deoxyguanosine in early childhood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:506-513. [PMID: 29426173 DOI: 10.1016/j.scitotenv.2018.01.125] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/13/2018] [Accepted: 01/13/2018] [Indexed: 05/26/2023]
Abstract
Several studies suggested potential links of phthalates to stress-related outcomes. However, limited evidence has been available for the relationships between phthalate metabolites and free cortisol and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in perinatal and postnatal environments. Therefore, we evaluated the relationships between phthalate metabolites and free cortisol and 8-OHdG in mother-child pairs. We repeatedly collected urine samples of 287 mother-child pairs from just before delivery to 15 months of age to measure the levels of four phthalate metabolites - mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono-isobutyl phthalate (MiBP), and mono-n-butyl phthalate (MnBP) - and free cortisol and 8-OHdG. We used linear mixed effect models and generalized additive mixed models to estimate the relationship between the phthalate metabolites and free cortisol and 8-OHdG after adjusting for the child's gender, urine collection time, and maternal smoking status. The four phthalate metabolite levels were strongly correlated each other (all, p < .0001), and intra-class correlation for each metabolite in children ranged from 0.18 to 0.96. All four phthalate metabolites were positively associated with both free cortisol (MEHHP, β = 0.18 and p < .0001; MEOHP, β = 0.17 and p < .0001; MiBP, β = 0.13 and p = .0001; MnBP, β = 0.21 and p < .0001; and molar sum of metabolites, β = 0.21 and p < .0001) and 8-OHdG (MEHHP, β = 0.20 and p < .0001; MEOHP, β = 0.18 and p < .0001; MiBP, β = 0.23 and p < .0001; MnBP, β = 0.28 and p < .0001; and molar sum of metabolites, β = 0.29 and p < .0001) in childhood. Our findings suggest that phthalate exposures increase free cortisol and 8-OHdG levels in early childhood.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul, Republic of Korea; Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jangwoo Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, Republic of Korea
| | - Jeongim Park
- College of Natural Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Sung Koo Kim
- College of Medicine, Hallym University, Seoul, Republic of Korea
| | - Sungkyoon Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Lavoie JC, Tremblay A. Sex-Specificity of Oxidative Stress in Newborns Leading to a Personalized Antioxidant Nutritive Strategy. Antioxidants (Basel) 2018; 7:49. [PMID: 29584624 PMCID: PMC5946115 DOI: 10.3390/antiox7040049] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Oxidative stress is a critical process that triggers several diseases observed in premature infants. Growing recognition of the detriment of oxidative stress in newborns warrants the use of an antioxidant strategy that is likely to be nutritional in order to restore redox homeostasis. It appears essential to have a personalized approach that will take into account the age of gestation at birth and the sex of the infant. However, the link between sex and oxidative stress remains unclear. The aim of this study was to find a common denominator explaining the discrepancy between studies related to sex-specific effects of oxidative stress. Results highlight a specificity of sex in the levels of oxidative stress markers linked to the metabolism of glutathione, as measured in the intracellular compartments. Levels of all sex-dependent oxidative stress markers are greater and markers associated to a better antioxidant defense are lower in boys compared to girls during the neonatal period. This sex-specific discrepancy is likely to be related to estrogen metabolism, which is more active in baby-girls and promotes the activation of glutathione metabolism. CONCLUSION our observations suggest that nutritive antioxidant strategies need to target glutathione metabolism and, therefore, should be personalized considering, among others, the sex specificity.
Collapse
Affiliation(s)
- Jean-Claude Lavoie
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Sainte-Justine Hospital, Montréal, QC H3T 1C5, Canada.
| | - André Tremblay
- Department Obstetrics & Gynecology, and department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Sainte-Justine Hospital, Montréal, QC H3T 1C5, Canada.
| |
Collapse
|
15
|
Soraisham AS, Rabi Y, Shah PS, Singhal N, Synnes A, Yang J, Lee SK, Lodha AK, Lodha AK. Neurodevelopmental outcomes of preterm infants resuscitated with different oxygen concentration at birth. J Perinatol 2017; 37:1141-1147. [PMID: 28594395 DOI: 10.1038/jp.2017.83] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/20/2017] [Accepted: 05/04/2017] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To compare the neurodevelopmental outcomes at 18 to 21 months corrected age (CA) of infants born at <29 weeks that received room air, an intermediate oxygen concentration or 100% oxygen at the initiation of resuscitation. STUDY DESIGN In this retrospective cohort study, we compared neonatal and neurodevelopmental outcomes at 18 to 21 months CA among inborn infants born before 29 weeks' gestation that received room air, intermediate oxygen concentration or 100% oxygen at the initiation of resuscitation. RESULTS Of 1509 infants, 445 received room air, 483 received intermediate oxygen concentrations and 581 received 100% oxygen. Compared to infants that received room air, the primary outcome of death or neurodevelopmental impairment (NDI) was not different in intermediate oxygen (adjusted odds ratio (aOR) 1.01; 95% confidence interval (CI) 0.77, 1.34) or 100% oxygen (aOR 1.03; 95% CI 0.78, 1.35). Compared to room air, there was no difference in odds of death or severe NDI in intermediate oxygen (aOR 1.14; 95% CI 0.82, 1.58) or 100% oxygen group (aOR 1.22; 95% CI 0.90, 1.67). The odds of severe NDI among survivors were significantly higher in infants that received 100% oxygen as compared to room air (aOR 1.57, 95% CI 1.05, 2.35). CONCLUSIONS We observed no significant difference in the primary composite outcomes of death or NDI and death or severe NDI at 18 to 21 months CA between infants that received room air, intermediate oxygen concentration or 100% oxygen at the initiation of resuscitation. However, use of 100% oxygen was associated with increased odds of severe NDI among survivors as compared to room air.
Collapse
Affiliation(s)
- A S Soraisham
- Department of Paediatrics, Section of Neonatal Perinatal Medicine, University of Calgary, Alberta Children's Hospital Research Institute, Foothills Medical Centre, Calgary, AB, Canada
| | - Y Rabi
- Department of Paediatrics, Section of Neonatal Perinatal Medicine, University of Calgary, Alberta Children's Hospital Research Institute, Foothills Medical Centre, Calgary, AB, Canada
| | - P S Shah
- Department of Paediatrics, Section of Neonatal Perinatal Medicine, University of Toronto, Mount Sinai Hospital, Toronto, ON, Canada
| | - N Singhal
- Department of Paediatrics, Section of Neonatal Perinatal Medicine, University of Calgary, Alberta Children's Hospital Research Institute, Foothills Medical Centre, Calgary, AB, Canada
| | - A Synnes
- Department of Paediatrics, University of British Columbia, Vancouver, BC, Canada
| | - J Yang
- Department of Paediatrics, Section of Neonatal Perinatal Medicine, University of Toronto, Mount Sinai Hospital, Toronto, ON, Canada
| | - S K Lee
- Department of Paediatrics, Section of Neonatal Perinatal Medicine, University of Toronto, Mount Sinai Hospital, Toronto, ON, Canada
| | - A K Lodha
- Department of Paediatrics, Section of Neonatal Perinatal Medicine, University of Calgary, Alberta Children's Hospital Research Institute, Foothills Medical Centre, Calgary, AB, Canada
| | | |
Collapse
|