1
|
Strücker GK, Jaramillo ML, de Quadros T, Nazari EM. UVB radiation exposure modulates mitophagy in embryonic cells of freshwater prawn Macrobrachium olfersii: Exploring a protective organelle quality control mechanism. Comp Biochem Physiol A Mol Integr Physiol 2024; 295:111664. [PMID: 38735623 DOI: 10.1016/j.cbpa.2024.111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Aquatic environments are subject to ultraviolet B (UVB) radiation incidence, and its effects on organisms are dose-dependent. Besides DNA, mitochondria are an important target of this radiation that causes structural damage and impairs its functional dynamics. Here, we hypothesize that mitophagy acts as an organelle quality control mechanism to mitigate UVB impacts in embryonic cells. Then, freshwater prawn Macrobrachium olfersii embryos was used as a model to investigate the effects of UVB on genes (Tomm20, Opa1, Pink, Prkn, Sqstm1, and Map1lc3) and proteins (TOM20, PINK1, p62 and LC3B) involved in mitophagy modulation. The choice of genes and proteins was based on the identification of mitochondrial membrane (Tomm20, Opa1 and TOM20), mediation of mitophagy (Pink1, Prkn and PINK1), and recognition of mitochondria by the autophagosome membrane (Sqstm1, Map1lc3, p62 and LC3B). First, the phylogeny of all genes presented bootstrap values >80 and conserved domains among crustacean species. Gene expression was inherently modulated during development, with transcripts (Tomm20, Opa1, Pink, Prkn, Sqstm1, and Map1lc3) overexpressed in the initial and final stages of development. Moreover, UVB radiation induced upregulation of Tomm20, Opa1, Pink, Prkn, Sqstm1, and Map1lc3 genes at 6 h after exposure. Interestingly, after 12 h, the protein content of PINK1, p62, and LC3B increased, while TOM20 was not responsive. Despite UVB radiation's harmful effects on embryonic cells, the chronology of gene expression and protein content indicates rapid activation of mitophagy, serving as an organelle quality control mechanism, given the analyzed cells' integrity.
Collapse
Affiliation(s)
- Giuliam K Strücker
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Michael L Jaramillo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Thaline de Quadros
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Evelise M Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
2
|
Müller YMR, Melo MSD, Weiss VMC, Quadros TD, Ammar D, Nazari EM. Ultraviolet B radiation affects epithelial cell morphology and ultrastructure in the hepatopancreas of the freshwater decapod Macrobrachium olfersii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111096. [PMID: 32805503 DOI: 10.1016/j.ecoenv.2020.111096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The hepatopancreas is the digestive organ of crustaceans, and plays important roles also in the synthesis and secretion of sexual hormones, immunological defenses and xenobiotic detoxification. Although the importance of this organ in crustaceans cannot be underestimated, the effects of ultraviolet B (UVB) radiation on hepatopancreas are poorly understood. Moreover, Macrobrachium prawns, have a transparent carapace, which make them more susceptible to UVB radiation, since their internal organs, such as hepatopancreas, are easily reached by solar radiation. Therefore, we aimed to evaluate UVB radiation toxicity on the morphology and morphometry of hepatopancreatic epithelial cells, and to investigate these UVB effects in subcellular compartments of the ecologically-important freshwater decapod, Macrobrachium olfersii. Hepatopancreas from the UVB-irradiated group showed a granular cytoplasm, with non-defined cell limits. Morphometric analyses revealed that the UVB-irradiated group exhibited a higher frequency of fibrillar (F-cell), resorptive (R-cell) and midget (M-cell), and decreased the blister-like (B-cell). It was also observed increased vacuole frequencies and increased F-, B- and R-cell volumes in the UVB-irradiated group. In addition, it was observed increased B-cell vacuolar volumes and decreased R-cell vacuolar volumes. Ultrastructural alterations occurred in subcellular compartments in F- and R-cells, e.g. loss of mitochondrial crests, morphologically compatible with mitochondrial fission, rough endoplasmic reticulum cisternae dilation, dilation of Golgi lamellar sacs, and increased vacuole and concentric membrane formation in the UVB-irradiated group. Our data showed that the hepatopancreas is an important target of UVB radiation, as demonstrated by a series of organ-specific morphological and morphometric impairments. Therefore, cell damage caused by UVB radiation can compromise metabolic functions in epithelial cells from the hepatopancreas, potentially affecting absorption, secretion and digestion processes, vitellogenin synthesis, immune responses and xenobiotic detoxification.
Collapse
Affiliation(s)
- Yara Maria Rauh Müller
- Laboratório de Reprodução e Desenvolvimento Animal, Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Madson Silveira de Melo
- Laboratório de Reprodução e Desenvolvimento Animal, Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Valquíria Machado Cardoso Weiss
- Laboratório de Reprodução e Desenvolvimento Animal, Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Thaline de Quadros
- Laboratório de Reprodução e Desenvolvimento Animal, Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Dib Ammar
- Laboratório de Reprodução e Desenvolvimento Animal, Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Evelise Maria Nazari
- Laboratório de Reprodução e Desenvolvimento Animal, Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
3
|
Dos Santos TPG, de Melo MS, Schramm H, Müller YMR, Jaramillo MLB, Nazari EM. Ultraviolet-B radiation induces transcriptional modulation of components associated with the extracellular matrix in embryos of decapod Macrobrachium olfersii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105468. [PMID: 32199137 DOI: 10.1016/j.aquatox.2020.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
The extracellular matrix (ECM) is a non-cellular and three-dimensional structure, constituted by a macromolecular dynamic network that involves the cells in all animal tissues, including embryonic ones. Several studies with vertebrates and cell cultures have reported deleterious effects of ultraviolet-B (UVB) radiation on the components associated with the ECM. However, studies focusing on the UVB radiation effects on ECM components of crustaceans during embryonic development are very scarce. Thus, the aim of this study was to identify the coding sequences of components associated with the ECM and to evaluate the effect of UVB radiation on embryos of the ecologically-important decapod Macrobrachium olfersii. To evaluate the modulation of these ECM components during embryonic development, the transcript levels of Col4α1, Itgβ, Lamα, Mmp1 and Timp in M. olfersii embryos were analyzed at early developmental stages (E1, E3 and E4), intermediate developmental stage (E7) and late developmental stages (E10 and E14). In addition, embryos at E7, which correspond to a landmark of crustacean development, were analyzed after 12 h of UVB exposure to verify UVB effects on the ECM components. The ECM component sequences were similar to other decapods, suggesting conservation of these genes among crustaceans. The results showed modulations of the ECM components of M. olfersii embryos that reflect the need for each component in the cellular mechanisms, necessary for normal embryonic development. After UVB exposure, embryos showed opacity of embryonic tissues and it was found the overexpression of Col4α1, Itgβ, Mmp1 and Timp transcript levels (1.82-, 1.52-, 2.34- and 6.27-fold, respectively). These impairments can compromise important events for normal embryonic development, such as growth of optic lobes, caudal papilla, ramification of appendages and differentiation of organic systems. The results presented here, together with the effects on morphology, cell proliferation, differentiation, and apoptosis demonstrated previously, strengthen the knowledge of the complex impacts of UVB radiation on freshwater embryos. Nevertheless, our results encourage further investigations focusing on the assessment of UVB effects on different organisms in order to better understand the myriad of UVB effects on ECM components.
Collapse
Affiliation(s)
| | - Madson Silveira de Melo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Heloisa Schramm
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Yara Maria Rauh Müller
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Michael L B Jaramillo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Evelise Maria Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
4
|
microRNAs in Macrobrachium olfersii embryos: Identification, their biogenesis components and potential targets. Comput Biol Chem 2018; 78:205-216. [PMID: 30576966 DOI: 10.1016/j.compbiolchem.2018.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 11/24/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022]
Abstract
In embryonic development, microRNAs (miRNAs) regulate the complex gene expression associated with the complexity of embryogenesis. Today, few studies have been conducted on the identification of miRNAs and components of miRNA biogenesis on embryonic development in crustaceans, especially in prawns. In this context, the aim of this study was to identify in silico components of miRNA biogenesis, and miRNAs and potential target genes during embryonic development in the prawn Macrobrachium olfersii through small RNAs and transcriptome analyses. Using the miRDeep2 program, we identified 17 miRNA precursors in M. olfersii, which seven (miR-9, miR-10, miR-92, miR-125, miR-305, miR-1175, and miR-2788) were reported in the miRBase database, indicating high evolutionary conservation of these sequences among animals. The other 10 miRNAs of M. olfersii were novel miRNAs and only similar to Macrobrachium niponnense miRNAs, indicating genus-specific miRNAs. In addition, eight key components of miRNA biogenesis (DROSHA, PASHA/DGCR8, XPO5, RAN, DICER, TRBP2, AGO, and PIWI) were identified in M. olfersii embryos unigenes. In the annotation of miRNA targets, 516 genes were similar to known sequences in the GenBank database. Regarding the conserved miRNAs, we verified that they were differentially expressed during embryonic development in M. olfersii. In conclusion, this is the first study that identifies conserved and novel miRNAs in the prawn M. olfersii with some miRNA target genes involved in embryonic development. Our results will allow further studies on the function of these miRNAs and miRNA biogenesis components during embryonic development in M. olfersii and other prawns of commercial interest.
Collapse
|
5
|
Schramm H, Jaramillo ML, Quadros TD, Zeni EC, Müller YMR, Ammar D, Nazari EM. Effect of UVB radiation exposure in the expression of genes and proteins related to apoptosis in freshwater prawn embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:25-33. [PMID: 28780296 DOI: 10.1016/j.aquatox.2017.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Our previous studies showed that embryos of the freshwater prawn Macrobrachium olfersii exposed to ultraviolet B (UVB) radiation exhibited DNA damage, excessive ROS production, mitochondrial dysfunction and increased hsp70 expression, which are able, independently or together, to induce apoptosis. Thus, we attempted to elucidate some key apoptosis-related genes (ARG) and apoptosis-related proteins (ARP) and their expression during different stages of embryonic development, as well as to characterize the chronology of ARG expression and ARP contents after UVB radiation insult. We demonstrate that p53, Bax and Caspase3 genes are active in the embryonic cells at early embryonic developmental stages, and that the Bcl2 gene is active from the mid-embryonic stage. After UVB radiation exposure, we found an increase in ARP such as p53 and Bak after 3h of exposure. Moreover, an increase in ARG transcript levels for p53, Bax, Bcl2 and Caspase3 was observed at 6h after UVB exposure. Then, after 12h of UVB radiation exposure, an increase in Caspase3 gene expression and protein was observed, concomitantly with an increased number of apoptotic cells. Our data reveal that ARG and ARP are developmentally regulated in embryonic cells of M. olfersii and that UVB radiation causes apoptosis after 12h of exposure. Overall, we demonstrate that embryonic cells of M. olfersii are able to active the cell machinery against environmental changes, such as increased incidence of UVB radiation in aquatic ecosystems.
Collapse
Affiliation(s)
- Heloísa Schramm
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Michael L Jaramillo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Thaline de Quadros
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Eliane C Zeni
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Yara M R Müller
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Dib Ammar
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; Centro Universitário Católica de Santa Catarina, Joinville, Santa Catarina, Brazil
| | - Evelise M Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
6
|
Jaramillo ML, Ammar D, Quispe RL, Guzman F, Margis R, Nazari EM, Müller YMR. Identification and evaluation of reference genes for expression studies by RT-qPCR during embryonic development of the emerging model organism, Macrobrachium olfersii. Gene 2016; 598:97-106. [PMID: 27825774 DOI: 10.1016/j.gene.2016.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/25/2016] [Accepted: 11/02/2016] [Indexed: 11/28/2022]
Abstract
RT-qPCR is a sensitive and highly efficient technique that is widely used in gene expression analysis and to provide insight into the molecular mechanisms underlying embryonic development. The freshwater prawn, Macrobrachium olfersii is an emerging model organism, but, the stable reference genes of this species need to be identified and validated for RT-qPCR analysis. Thus, the aim of this study was to evaluate the expression stability of six genes (β-act, GAPDH, EF-1α, RpL8, RpS6, AK) in embryos and in adult tissues (cerebral ganglia, muscle and hepatopancreas) of M. olfersii. The expression stabilities of these genes were evaluated using geNorm, NormFinder, BestKeeper, ΔCt method and integrated tool RefFinder. In the general ranking, RpL8 and RpS6 were the most stable genes in embryos, while RpS6 and RpL8 were the most stable in a combined adult tissue analysis. Analysis of the adult tissues revealed that β-act and AK were the most stable genes in cerebral ganglia, RpL8 and AK in muscle, and RpS6 and β-act in hepatopancreas. EF-1α and GAPDH were the least stable genes and as normalizer genes in RT-qPCR affected expression of the Distal-less gene during M. olfersii development. This study provides suitable reference genes for RT-qPCR analysis and allows future studies of the gene expression in M. olfersii for understanding the molecular mechanisms of their development. To our knowledge, this is the first published study that identifies and evaluates reference genes for RT-qPCR analysis in M. olfersii and could be useful as basis for evaluations of reference genes in other prawns.
Collapse
Affiliation(s)
- Michael L Jaramillo
- Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genética, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Dib Ammar
- Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genética, 88040-900 Florianópolis, Santa Catarina, Brazil; Centro Universitário - Católica de Santa Catarina, 89203-005 Joinville, SC, Brazil
| | - Ruth L Quispe
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Neurociências, Campus Universitário, 88040-900 Florianópolis, SC, Brazil
| | - Frank Guzman
- Universidade Federal do Rio Grande do Sul, PPGBCM, Centro de Biotecnologia, 91501-970 Porto Alegre, RS, Brazil
| | - Rogerio Margis
- Universidade Federal do Rio Grande do Sul, Departamento de Biofisica, 91501-970 Porto Alegre, RS, Brazil
| | - Evelise M Nazari
- Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genética, 88040-900 Florianópolis, Santa Catarina, Brazil.
| | - Yara M R Müller
- Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genética, 88040-900 Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
7
|
de Quadros T, Schramm H, Zeni EC, Simioni C, Allodi S, Müller YMR, Ammar D, Nazari EM. Developmental effects of exposure to ultraviolet B radiation on the freshwater prawn Macrobrachium olfersi: Mitochondria as a target of environmental UVB radiation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:279-287. [PMID: 27344016 DOI: 10.1016/j.ecoenv.2016.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
In South America, increased UVB radiation has become an important environmental issue that is potentially threatening aquatic ecosystems. Considering that species exhibit different degrees of sensitivity to UVB radiation and that embryos are more sensitive than organisms at later life stages, the aim of this study was to characterize the effects of UVB radiation on subcellular compartments of embryos of the freshwater prawn Macrobrachium olfersi. This species lives and reproduces in clear and shallow waters, where UV radiation can fully penetrates. Embryos were irradiated with a UVB 6W lamp for 30min and examined after 1h, 12h, 24h and 48h of exposure. The irradiance of the UVB used simulates the UV radiation that embryos receive in the natural environment. The subcellular compartment most affected by the UVB radiation was the mitochondria, which exhibited a circular shape, a decrease in mitochondrial cristae, rupture of membranes and a morphology compatible with fission. These impairments were observed simultaneously with increased ROS production, just after 1h of UVB exposure. Thus, we investigated proteins related to mitochondrial fission (Drp-1) and fusion (Mfn-1), which are essential to cell maintenance. We found a significant increase in Drp-1 expression at all analyzed time-points and a significant decrease in Mfn-1 expression only after 24h of UVB exposure. Additionally, a decrease in embryonic cell viability was verified via the mitochondrial integrity assay. To conclude, we observed important mitochondrial dysfunctions against the environmental stress caused by UVB radiation. Moreover, the cellular responses found are critical and should not be disregarded, because they impact embryos that can potentially compromise the aquatic ecosystems.
Collapse
Affiliation(s)
- Thaline de Quadros
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Brazil
| | - Heloísa Schramm
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Brazil
| | - Eliane C Zeni
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Brazil
| | - Carmen Simioni
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Brazil
| | - Silvana Allodi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Yara M R Müller
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Brazil
| | - Dib Ammar
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Brazil; Centro Universitário Católica de Santa Catarina, Brazil
| | - Evelise M Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Brazil
| |
Collapse
|
8
|
Jaramillo ML, Guzman F, Paese CLB, Margis R, Nazari EM, Ammar D, Müller YMR. Exploring developmental gene toolkit and associated pathways in a potential new model crustacean using transcriptomic analysis. Dev Genes Evol 2016; 226:325-37. [PMID: 27278761 DOI: 10.1007/s00427-016-0551-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/19/2016] [Indexed: 11/24/2022]
Abstract
The crustaceans are one of the largest, most diverse, and most successful groups of invertebrates. The diversity among the crustaceans is also reflected in embryonic development models. However, the molecular genetics that regulates embryonic development is not known in those crustaceans that have a short germ-band development with superficial cleavage, such as Macrobrachium olfersi. This species is a freshwater decapod and has great potential to become a model for developmental biology, as well as for evolutionary and environmental studies. To obtain sequence data of M. olfersi from an embryonic developmental perspective, we performed de novo assembly and annotation of the embryonic transcriptome. Using a pooling strategy of total RNA, paired-end Illumina sequencing, and assembly with multiple k-mers, a total of 25,636,097 pair reads were generated. In total, 99,751 unigenes were identified, and 20,893 of these returned a Blastx hit. KEGG pathway analysis mapped a total of 6866 unigenes related to 129 metabolic pathways. In general, 21,845 unigenes were assigned to gene ontology (GO) categories: molecular function (19,604), cellular components (10,254), and biological processes (13,841). Of these, 2142 unigenes were assigned to the developmental process category. More specifically, a total of 35 homologs of embryonic development toolkit genes were identified, which included maternal effect (one gene), gap (six), pair-rule (six), segment polarity (seven), Hox (four), Wnt (eight), and dorsoventral patterning genes (three). In addition, genes of developmental pathways were found, including TGF-β, Wnt, Notch, MAPK, Hedgehog, Jak-STAT, VEGF, and ecdysteroid-inducible nuclear receptors. RT-PCR analysis of eight genes related to embryonic development from gastrulation to late morphogenesis/organogenesis confirmed the applicability of the transcriptome analysis.
Collapse
Affiliation(s)
- Michael L Jaramillo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Frank Guzman
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Christian L B Paese
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Rogerio Margis
- Departamento de Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Evelise M Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Dib Ammar
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Yara Maria Rauh Müller
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|