1
|
Maestre-Reyna M, Hosokawa Y, Wang PH, Saft M, Caramello N, Engilberge S, Franz-Badur S, Gusti Ngurah Putu EP, Nakamura M, Wu WJ, Wu HY, Lee CC, Huang WC, Huang KF, Chang YK, Yang CH, Fong MI, Lin WT, Yang KC, Ban Y, Imura T, Kazuoka A, Tanida E, Owada S, Joti Y, Tanaka R, Tanaka T, Kang J, Luo F, Tono K, Kiontke S, Korf L, Umena Y, Tosha T, Bessho Y, Nango E, Iwata S, Royant A, Tsai MD, Yamamoto J, Essen LO. Capturing structural intermediates in an animal-like cryptochrome photoreceptor by time-resolved crystallography. SCIENCE ADVANCES 2025; 11:eadu7247. [PMID: 40378212 DOI: 10.1126/sciadv.adu7247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/15/2025] [Indexed: 05/18/2025]
Abstract
Animal-like cryptochromes are photoreceptors that control circadian rhythm and signaling in many eukaryotes. Transient photoreduction of the cryptochrome flavin chromophore initiated signaling via a poorly understood mechanism. By serial femtosecond crystallography (SFX), we show that the photoreduction mechanism of Chlamydomonas reinhardtii cryptochrome involves three loci [carboxyl-terminal region, a transient protonation pathway, and flavin adenine dinucleotide (FAD)-binding site] acting in unison to accomplish three effects: radical pair stabilization, protonation of FAD radical, and formation of the signaling state. Using 19 time-resolved SFX snapshots between 10 nanoseconds and 233 milliseconds, we found that light-driven FAD•-/tyrosyl-373 radical pair (RP) formation primes α22 unfolding. Electron transfer-dependent protonation of aspartate-321 by tyrosine-373 is the epicenter of unfolding by disrupting salt bridges between α22 and the photolyase homology region. Before helix unfolding, another pathway opens transiently for FAD•- protonation and RP stabilization. This link between RP formation and conformational changes provides a structural basis for signaling by animal-like cryptochromes.
Collapse
Affiliation(s)
- Manuel Maestre-Reyna
- Department of Chemistry, National Taiwan University, 1Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Yuhei Hosokawa
- Department of Chemistry, National Taiwan University, 1Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Po-Hsun Wang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Martin Saft
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Nicolas Caramello
- European Synchrotron Radiation Facility, 38043 Grenoble, France
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38044 Grenoble, France
| | - Sylvain Engilberge
- European Synchrotron Radiation Facility, 38043 Grenoble, France
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38044 Grenoble, France
| | - Sophie Franz-Badur
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | | | - Mai Nakamura
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Hsiang-Yi Wu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Wei-Cheng Huang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Yao-Kai Chang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Meng-Iao Fong
- Department of Chemistry, National Taiwan University, 1Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
| | - Wei-Ting Lin
- Department of Chemistry, National Taiwan University, 1Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
| | - Kai-Chun Yang
- Department of Chemistry, National Taiwan University, 1Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
| | - Yuki Ban
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Tomoki Imura
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Atsuo Kazuoka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Eisho Tanida
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jungmin Kang
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Fangjia Luo
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Stephan Kiontke
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Lukas Korf
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Yasufumi Umena
- AICHI SR Center, Nagoya University, 250-3 Minamiyamaguchi-cho, Seto-shi, Aichi 464-8603, Japan
| | - Takehiko Tosha
- School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshitaka Bessho
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Antoine Royant
- European Synchrotron Radiation Facility, 38043 Grenoble, France
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38044 Grenoble, France
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| |
Collapse
|
2
|
Yang X, Huang J, Guo J, Fang S, Wang Z, Wu G, Wu Y, Zhong F. Bridging chemistry and biology for light-driven new-to-nature enantioselective photoenzymatic catalysis. Chem Soc Rev 2025. [PMID: 40351234 DOI: 10.1039/d4cs00561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Merging enzymes with light-driven photocatalysis has given rise to the burgeoning field of photoenzymatic catalysis. This approach combines the high reactivity from photoexcitation with the exceptional selectivity of biocatalysis, providing exciting opportunities to tackle challenges in enantioselective radical reactions and to access new-to-nature enzyme reactivities. This tutorial review aims to provide a comprehensive introduction to this interdisciplinary topic, catering to the growing interest from communities in asymmetric catalysis, photocatalysis, radical chemistry, enzyme engineering, and synthetic biology. We summarize the fundamental principles of utilizing light to power enzymatic reactions and different strategies exploring enantioselective photoenzymatic systems, including natural cofactor-based photoenzymatic catalysis, photocatalyst/enzyme synergistic catalysis, synthetic cofactor-based artificial photoenzymes, and cofactor-free photoenzymatic catalysis. We also discuss the challenges and prospects of enantioselective photoenzymatic catalysis in advancing sustainable asymmetric synthesis.
Collapse
Affiliation(s)
- Xinjie Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Institute for Advanced Study & School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
| | - Jianjian Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Juan Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Key Laboratory for Green Chemical Process of Ministry of Education & Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuran Fang
- State Key Laboratory of Materials Processing and Die & Mould Technology, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Zhiming Wang
- Institute for Advanced Study & School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
| | - Guojiao Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Yuzhou Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Fangrui Zhong
- State Key Laboratory of Materials Processing and Die & Mould Technology, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
3
|
Bartölke R, Nießner C, Reinhard K, Wolfrum U, Meimann S, Bolte P, Feederle R, Mouritsen H, Dedek K, Peichl L, Winklhofer M. Full-Length Cryptochrome 1 in the Outer Segments of the Retinal Blue Cone Photoreceptors in Humans and Great Apes Suggests a Role Beyond Transcriptional Repression. FASEB J 2025; 39:e70523. [PMID: 40277221 PMCID: PMC12023722 DOI: 10.1096/fj.202402614r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
Mammalian cryptochrome 1 (CRY1) is a central player in the circadian transcription-translation feedback loop, crucial for maintaining a roughly 24-h rhythm. CRY1 was suggested to also function as a blue-light photoreceptor in humans and has been found to be expressed at the mRNA level in various cell types of the inner retina. However, attempts to detect CRY1 at the protein level in the human retina have remained unsuccessful so far. Using various C-terminal specific antibodies recognizing full-length CRY1 protein, we consistently detected selective labeling in the outer segments of short wavelength-sensitive (SWS1, "blue") cone photoreceptor cells across human, bonobo, and gorilla retinae. No other retinal cell types were stained, which is in contrast to what would be expected of a ubiquitous clock protein. Subcellular fractionation experiments in transfected HEK cells using a C-terminal specific antibody located full-length CRY1 in the cytosol and membrane fractions. Our findings indicate that human CRY1 has several different functions including at least one nonclock function. Our results also raise the likely possibility that several different versions of CRY1 exist in humans. We suggest that truncation of the C-terminal tail, maybe to different degrees, may affect the localization and function of human CRY1.
Collapse
Affiliation(s)
- Rabea Bartölke
- Institute for Biology and Environmental Sciences (IBU)Carl von Ossietzky University of OldenburgOldenburgGermany
| | - Christine Nießner
- Max Planck Institute for Brain ResearchFrankfurt am MainGermany
- Ernst Strüngmann Institute for NeuroscienceFrankfurt am MainGermany
| | - Katja Reinhard
- Retinal Circuits and Optogenetics, Centre for Integrative Neuroscience and Bernstein Center for Computational NeuroscienceUniversity of TübingenTübingenGermany
- Neuroscience Graduate SchoolUniversity of TübingenTübingenGermany
- Scuola Internazionale Superiore di Studi Avanzati (SISSA)TriesteItaly
| | - Uwe Wolfrum
- Institute of Molecular PhysiologyJohannes Gutenberg UniversityMainzGermany
| | - Sonja Meimann
- Institute of Cellular and Molecular AnatomyDr. Senckenberg Anatomy, Goethe UniversityFrankfurt am MainGermany
| | - Petra Bolte
- Institute for Biology and Environmental Sciences (IBU)Carl von Ossietzky University of OldenburgOldenburgGermany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences (IBU)Carl von Ossietzky University of OldenburgOldenburgGermany
- Forschungszentrum Neurosensorik, Carl von Ossietzky Universität OldenburgOldenburgGermany
| | - Karin Dedek
- Institute for Biology and Environmental Sciences (IBU)Carl von Ossietzky University of OldenburgOldenburgGermany
- Forschungszentrum Neurosensorik, Carl von Ossietzky Universität OldenburgOldenburgGermany
| | - Leo Peichl
- Max Planck Institute for Brain ResearchFrankfurt am MainGermany
- Ernst Strüngmann Institute for NeuroscienceFrankfurt am MainGermany
- Institute of Cellular and Molecular AnatomyDr. Senckenberg Anatomy, Goethe UniversityFrankfurt am MainGermany
- Institute of Clinical NeuroanatomyDr. Senckenberg Anatomy, Goethe UniversityFrankfurt am MainGermany
| | - Michael Winklhofer
- Institute for Biology and Environmental Sciences (IBU)Carl von Ossietzky University of OldenburgOldenburgGermany
- Forschungszentrum Neurosensorik, Carl von Ossietzky Universität OldenburgOldenburgGermany
| |
Collapse
|
4
|
Mei Q, Zheng Y, Feng J, Wang Z, Cao H, Lian J. Transcriptome Profiling Revealed Light-Mediated Gene Expression Patterns of Plants in Forest Vertical Structures. BIOLOGY 2025; 14:434. [PMID: 40282299 PMCID: PMC12024868 DOI: 10.3390/biology14040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Light is a critical environmental factor that shapes forest communities. The canopy trees intercept the light, thus understory plants become shaded. Shade leads to the attenuation of light intensity and a shift in the spectrum through the forest vertical structure. The capacity of forest trees to survive and grow under conditions of light heterogeneity is closely related to the intrinsic property of these species. Therefore, identifying how plants interact with light-regime variability is an important research objective of community ecology. In this study, we investigated the light-mediated gene expression patterns in forest vertical structures utilizing transcriptome profiling. The expression levels of 20 annotated genes closely related to photosynthesis, light receptors, and photoprotection were used as traits to estimate how variable light environments influence the plants in forest vertical structures. In summary, the shade-tolerant species were characterized by higher levels of photoreceptor (phot1/2 and phyA/B), photorespiration (pglp1/2), and photoprotection genes (Lhca5, Lhca7, and PsbS and photolyases), but with a lower abundance of photosynthetic light-harvesting genes (Lhca1/2 and Lhcb1/2). Also, the expression of light-harvesting and photoprotection genes were generally up-regulated by intense light, while the expression of photoreceptor genes was up-regulated by shade. This research highlights how differential plant responses to light shape the vertical structure of plant communities in a subtropical forest.
Collapse
Affiliation(s)
- Qiming Mei
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.M.); (Y.Z.); (J.F.); (Z.W.); (H.C.)
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangzhou Urban Planning & Designing Research Institute Co., Ltd., Guangzhou 510060, China
| | - Yi Zheng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.M.); (Y.Z.); (J.F.); (Z.W.); (H.C.)
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jiayi Feng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.M.); (Y.Z.); (J.F.); (Z.W.); (H.C.)
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhengfeng Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.M.); (Y.Z.); (J.F.); (Z.W.); (H.C.)
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Honglin Cao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.M.); (Y.Z.); (J.F.); (Z.W.); (H.C.)
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Juyu Lian
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.M.); (Y.Z.); (J.F.); (Z.W.); (H.C.)
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
5
|
Akyel YK, Seyhan NO, Gül Ş, Çelik M, Taşkın AC, Selby CP, Sancar A, Kavakli IH, Okyar A. The impact of circadian rhythm disruption on oxaliplatin tolerability and pharmacokinetics in Cry1 -/-Cry2 -/- mice under constant darkness. Arch Toxicol 2025; 99:1417-1429. [PMID: 39903276 PMCID: PMC11968489 DOI: 10.1007/s00204-025-03968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Circadian rhythms, the 24-h oscillations of biological activities guided by the molecular clock, play a pivotal role in regulating various physiological processes in organisms. The intricate relationship between the loss of circadian rhythm and its influence on the tolerability and pharmacokinetic properties of anticancer drugs is poorly understood. In our study, we investigated the effects of oxaliplatin, a commonly used anticancer drug, on Cry1-/- and Cry2-/- mice (Cry DKO mice) under darkness conditions, where they exhibit free-running phenotype. We administered oxaliplatin at a dosage of 12 mg/kg/day at two distinct circadian times, CT8 and CT16, under constant darkness conditions to Cry DKO mice and their wild type littermates. Our results revealed a striking disparity in oxaliplatin tolerance between Cry DKO mice and their wild-type counterparts. Oxaliplatin exhibited severe toxicity in Cry DKO mice at both CT8 and CT16, in contrast to the wild type mice. Pharmacokinetic analyses suggested that such toxicity was a result of high concentrations of oxaliplatin in the serum and liver of Cry DKO mice after repeated dose injections. To understand the molecular basis of such intolerance, we performed RNA-seq studies using mouse livers. Our findings from the RNA-seq analysis highlighted the substantial impact of circadian rhythm disruption on gene expression, particularly affecting genes involved in detoxification and xenobiotic metabolism, such as the Gstm gene family. This dysregulation in detoxification pathways in Cry DKO mice likely contributes to the increased toxicity of oxaliplatin. In conclusion, our study highlights the crucial role of an intact molecular clock in dictating the tolerability of oxaliplatin. These findings emphasize the necessity of considering circadian rhythms in the administration of anticancer drugs, providing valuable insights into optimizing treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Yasemin Kubra Akyel
- Department of Medical Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, TR-34116, Beyazit-Istanbul, Türkiye
| | - Narin Ozturk Seyhan
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, TR-34116, Beyazit-Istanbul, Türkiye
| | - Şeref Gül
- Biotechnology Division, Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
- Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Türkiye
| | - Melis Çelik
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Türkiye
| | - Ali Cihan Taşkın
- Department of Laboratory Animal Science, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye
- Translational Medicine Research Center, Experimental Animals Laboratory, Koc University, Istanbul, Türkiye
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Türkiye.
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Türkiye.
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, TR-34116, Beyazit-Istanbul, Türkiye.
| |
Collapse
|
6
|
Okyar A, Ozturk Civelek D, Akyel YK, Surme S, Pala Kara Z, Kavakli IH. The role of the circadian timing system on drug metabolism and detoxification: an update. Expert Opin Drug Metab Toxicol 2024; 20:503-517. [PMID: 38753451 DOI: 10.1080/17425255.2024.2356167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The 24-hour variations in drug absorption, distribution, metabolism, and elimination, collectively known as pharmacokinetics, are fundamentally influenced by rhythmic physiological processes regulated by the molecular clock. Recent advances have elucidated the intricacies of the circadian timing system and the molecular interplay between biological clocks, enzymes and transporters in preclinical level. AREA COVERED Circadian rhythm of the drug metabolizing enzymes and carrier efflux functions possess a major role for drug metabolism and detoxification. The efflux and metabolism function of intestines and liver seems important. The investigations revealed that the ABC and SLC transporter families, along with cytochrome p-450 systems in the intestine, liver, and kidney, play a dominant role in the circadian detoxification of drugs. Additionally, the circadian control of efflux by the blood-brain barrier is also discussed. EXPERT OPINION The influence of the circadian timing system on drug pharmacokinetics significantly impacts the efficacy, adverse effects, and toxicity profiles of various drugs. Moreover, the emergence of sex-related circadian changes in the metabolism and detoxification processes has underscored the importance of considering gender-specific differences in drug tolerability and pharmacology. A better understanding of coupling between central clock and circadian metabolism/transport contributes to the development of more rational drug utilization and the implementation of chronotherapy applications.
Collapse
Affiliation(s)
- Alper Okyar
- Department of Pharmacology, Istanbul University Faculty of Pharmacy, Istanbul, Turkiye
| | - Dilek Ozturk Civelek
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkiye
| | - Yasemin Kubra Akyel
- Department of Medical Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Saliha Surme
- Molecular Biology and Genetics, Koc University, Istanbul, Türkiye
- Chemical and Biological Engineering, Koc University, Istanbul, Türkiye
| | - Zeliha Pala Kara
- Department of Pharmacology, Istanbul University Faculty of Pharmacy, Istanbul, Turkiye
| | - I Halil Kavakli
- Molecular Biology and Genetics, Koc University, Istanbul, Türkiye
- Chemical and Biological Engineering, Koc University, Istanbul, Türkiye
| |
Collapse
|
7
|
Zangl R, Soravia S, Saft M, Löffler JG, Schulte J, Rosner CJ, Bredenbeck J, Essen LO, Morgner N. Time-Resolved Ion Mobility Mass Spectrometry to Solve Conformational Changes in a Cryptochrome. J Am Chem Soc 2024; 146:14468-14478. [PMID: 38757172 DOI: 10.1021/jacs.3c13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Many biological mechanisms rely on the precise control of conformational changes in proteins. Understanding such dynamic processes requires methods for determining structures and their temporal evolution. In this study, we introduce a novel approach to time-resolved ion mobility mass spectrometry. We validated the method on a simple photoreceptor model and applied it to a more complex system, the animal-like cryptochrome from Chlamydomonas reinhardtii (CraCRY), to determine the role of specific amino acids affecting the conformational dynamics as reaction to blue light activation. In our setup, using a high-power LED mounted in the source region of an ion mobility mass spectrometer, we allow a time-resolved evaluation of mass and ion mobility spectra. Cryptochromes like CraCRY are a widespread type of blue light photoreceptors and mediate various light-triggered biological functions upon excitation of their inbuilt flavin chromophore. Another hallmark of cryptochromes is their flexible carboxy-terminal extension (CTE), whose structure and function as well as the details of its interaction with the photolyase homology region are not yet fully understood and differ among different cryptochromes types. Here, we addressed the highly conserved C-terminal domain of CraCRY, to study the effects of single mutations on the structural transition of the C-terminal helix α22 and the attached CTE upon lit-state formation. We show that D321, the putative proton acceptor of the terminal proton-coupled electron transfer event from Y373, is essential for triggering the large-scale conformational changes of helix α22 and the CTE in the lit state, while D323 influences the timing.
Collapse
Affiliation(s)
- Rene Zangl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Sejla Soravia
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Martin Saft
- Department of Chemistry, Philipps University Marburg Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Jan Gerrit Löffler
- Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main, Germany
| | - Jonathan Schulte
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Christian Joshua Rosner
- Department of Chemistry, Philipps University Marburg Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Jens Bredenbeck
- Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main, Germany
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps University Marburg Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| |
Collapse
|
8
|
Aguida B, Babo J, Baouz S, Jourdan N, Procopio M, El-Esawi MA, Engle D, Mills S, Wenkel S, Huck A, Berg-Sørensen K, Kampranis SC, Link J, Ahmad M. 'Seeing' the electromagnetic spectrum: spotlight on the cryptochrome photocycle. FRONTIERS IN PLANT SCIENCE 2024; 15:1340304. [PMID: 38495372 PMCID: PMC10940379 DOI: 10.3389/fpls.2024.1340304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 03/19/2024]
Abstract
Cryptochromes are widely dispersed flavoprotein photoreceptors that regulate numerous developmental responses to light in plants, as well as to stress and entrainment of the circadian clock in animals and humans. All cryptochromes are closely related to an ancient family of light-absorbing flavoenzymes known as photolyases, which use light as an energy source for DNA repair but themselves have no light sensing role. Here we review the means by which plant cryptochromes acquired a light sensing function. This transition involved subtle changes within the flavin binding pocket which gave rise to a visual photocycle consisting of light-inducible and dark-reversible flavin redox state transitions. In this photocycle, light first triggers flavin reduction from an initial dark-adapted resting state (FADox). The reduced state is the biologically active or 'lit' state, correlating with biological activity. Subsequently, the photoreduced flavin reoxidises back to the dark adapted or 'resting' state. Because the rate of reoxidation determines the lifetime of the signaling state, it significantly modulates biological activity. As a consequence of this redox photocycle Crys respond to both the wavelength and the intensity of light, but are in addition regulated by factors such as temperature, oxygen concentration, and cellular metabolites that alter rates of flavin reoxidation even independently of light. Mechanistically, flavin reduction is correlated with conformational change in the protein, which is thought to mediate biological activity through interaction with biological signaling partners. In addition, a second, entirely independent signaling mechanism arises from the cryptochrome photocycle in the form of reactive oxygen species (ROS). These are synthesized during flavin reoxidation, are known mediators of biotic and abiotic stress responses, and have been linked to Cry biological activity in plants and animals. Additional special properties arising from the cryptochrome photocycle include responsivity to electromagnetic fields and their applications in optogenetics. Finally, innovations in methodology such as the use of Nitrogen Vacancy (NV) diamond centers to follow cryptochrome magnetic field sensitivity in vivo are discussed, as well as the potential for a whole new technology of 'magneto-genetics' for future applications in synthetic biology and medicine.
Collapse
Affiliation(s)
- Blanche Aguida
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Jonathan Babo
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Soria Baouz
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Nathalie Jourdan
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Maria Procopio
- Department of Biophysics, Faculty of Arts and Sciences, Johns Hopkins University, Baltimore, MD, United States
| | | | - Dorothy Engle
- Biology Department, Xavier University, Cincinnati, OH, United States
| | - Stephen Mills
- Chemistry Department, Xavier University, Cincinnati, OH, United States
| | - Stephan Wenkel
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Alexander Huck
- DTU Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Sotirios C. Kampranis
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Justin Link
- Physics and Engineering Department, Cincinnati, OH, United States
| | - Margaret Ahmad
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
- Biology Department, Xavier University, Cincinnati, OH, United States
| |
Collapse
|
9
|
Parlak GC, Baris I, Gul S, Kavakli IH. Functional characterization of the CRY2 circadian clock component variant p.Ser420Phe revealed a new degradation pathway for CRY2. J Biol Chem 2023; 299:105451. [PMID: 37951306 PMCID: PMC10731238 DOI: 10.1016/j.jbc.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023] Open
Abstract
Cryptochromes (CRYs) are essential components of the circadian clock, playing a pivotal role as transcriptional repressors. Despite their significance, the precise mechanisms underlying CRYs' involvement in the circadian clock remain incompletely understood. In this study, we identified a rare CRY2 variant, p.Ser420Phe, from the 1000 Genomes Project and Ensembl database that is located in the functionally important coiled-coil-like helix (CC-helix) region. Functional characterization of this variant at the cellular level revealed that p.Ser420Phe CRY2 had reduced repression activity on CLOCK:BMAL1-driven transcription due to its reduced affinity to the core clock protein PER2 and defective translocation into the nucleus. Intriguingly, the CRY2 variant exhibited an unexpected resistance to degradation via the canonical proteasomal pathway, primarily due to the loss of interactions with E3 ligases (FBXL3 and FBXL21), which suggests Ser-420 of CRY2 is required for the interaction with E3 ligases. Further studies revealed that wild-type and CRY2 variants are degraded by the lysosomal-mediated degradation pathway, a mechanism not previously associated with CRY2. Surprisingly, our complementation study with Cry1-/-Cry2-/- double knockout mouse embryonic fibroblast cells indicated that the CRY2 variant caused a 7 h shorter circadian period length in contrast to the observed prolonged period length in CRY2-/- cell lines. In summary, this study reveals a hitherto unknown degradation pathway for CRY2, shedding new light on the regulation of circadian rhythm period length.
Collapse
Affiliation(s)
- Gizem Cagla Parlak
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkiye
| | - Ibrahim Baris
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkiye
| | - Seref Gul
- Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, Turkiye
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkiye; Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkiye.
| |
Collapse
|
10
|
Ozcan O, Gul S, Kavakli IH. Dynamic regulation of the serine loop by distant mutations reveals allostery in cryptochrome1. J Biomol Struct Dyn 2023; 42:10417-10428. [PMID: 37705288 DOI: 10.1080/07391102.2023.2256882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
Cryptochromes (CRYs) are essential components of the molecular clock that generates circadian rhythm. They inhibit BMAL1/CLOCK-driven transcription at the molecular level. There are two CRYs that have differential functions in the circadian clock in mammals. It is not precisely known how they achieve such differential functions. In this study, we performed molecular dynamic simulations on eight CRY mutants that have been experimentally shown to exhibit reduced repressor activities. Our results revealed that mutations in CRY1 affect the dynamic behavior of the serine loop and the availability of the secondary pocket, but not in CRY2. Further analysis of these CRY1 mutants indicated that the differential flexibility of the serine loop leads to changes in the volume of the secondary pocket. We also investigated the weak interactions between the amino acids in the serine loop and those in close proximity. Our findings highlighted the crucial roles of S44 and S45 in the dynamic behavior of the serine loop, specifically through their interactions with E382 in CRY1. Considering the clinical implications of altered CRY1 function, our study opens up new possibilities for the development of drugs that target the allosteric regulation of CRY1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Onur Ozcan
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Seref Gul
- Department of Biology Biotechnology Division, Istanbul University, Istanbul, Turkey
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
11
|
Emmerich HJ, Schneider L, Essen LO. Structural and Functional Analysis of a Prokaryotic (6-4) Photolyase from the Aquatic Pathogen Vibrio Cholerae †. Photochem Photobiol 2023; 99:1248-1257. [PMID: 36692077 DOI: 10.1111/php.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Photolyases are flavoproteins, which are able to repair UV-induced DNA lesions in a light-dependent manner. According to their substrate, they can be distinguished as CPD- and (6-4) photolyases. While CPD-photolyases repair the predominantly occurring cyclobutane pyrimidine dimer lesion, (6-4) photolyases catalyze the repair of the less prominent (6-4) photoproduct. The subgroup of prokaryotic (6-4) photolyases/FeS-BCP is one of the most ancient types of flavoproteins in the ubiquitously occurring photolyase & cryptochrome superfamily (PCSf). In contrast to canonical photolyases, prokaryotic (6-4) photolyases possess a few particular characteristics, including a lumazine derivative as antenna chromophore besides the catalytically essential flavin adenine dinucleotide as well as an elongated linker region between the N-terminal α/β-domain and the C-terminal all-α-helical domain. Furthermore, they can harbor an additional short subdomain, located at the C-terminus, with a binding site for a [4Fe-4S] cluster. So far, two crystal structures of prokaryotic (6-4) photolyases have been reported. Within this study, we present the high-resolution structure of the prokaryotic (6-4) photolyase from Vibrio cholerae and its spectroscopic characterization in terms of in vitro photoreduction and DNA-repair activity.
Collapse
Affiliation(s)
- Hans-Joachim Emmerich
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Marburg, Germany
| | - Leonie Schneider
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Marburg, Germany
| | - Lars-Oliver Essen
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
12
|
Nischwitz E, Schoonenberg VA, Fradera-Sola A, Dejung M, Vydzhak O, Levin M, Luke B, Butter F, Scheibe M. DNA damage repair proteins across the Tree of Life. iScience 2023; 26:106778. [PMID: 37250769 PMCID: PMC10220248 DOI: 10.1016/j.isci.2023.106778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Genome maintenance is orchestrated by a highly regulated DNA damage response with specific DNA repair pathways. Here, we investigate the phylogenetic diversity in the recognition and repair of three well-established DNA lesions, primarily repaired by base excision repair (BER) and ribonucleotide excision repair (RER): (1) 8-oxoguanine, (2) abasic site, and (3) incorporated ribonucleotide in DNA in 11 species: Escherichia coli, Bacillus subtilis, Halobacterium salinarum, Trypanosoma brucei, Tetrahymena thermophila, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans, Homo sapiens, Arabidopsis thaliana, and Zea mays. Using quantitative mass spectrometry, we identified 337 binding proteins across these species. Of these proteins, 99 were previously characterized to be involved in DNA repair. Through orthology, network, and domain analysis, we linked 44 previously unconnected proteins to DNA repair. Our study presents a resource for future study of the crosstalk and evolutionary conservation of DNA damage repair across all domains of life.
Collapse
Affiliation(s)
| | | | | | - Mario Dejung
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Olga Vydzhak
- Institute of Developmental Biology and Neurobiology (IDN), Johannes-Gutenberg-University, 55128 Mainz, Germany
| | - Michal Levin
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology (IDN), Johannes-Gutenberg-University, 55128 Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Marion Scheibe
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
13
|
Schiffthaler B, van Zalen E, Serrano AR, Street NR, Delhomme N. Seiðr: Efficient calculation of robust ensemble gene networks. Heliyon 2023; 9:e16811. [PMID: 37313140 PMCID: PMC10258422 DOI: 10.1016/j.heliyon.2023.e16811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023] Open
Abstract
Gene regulatory and gene co-expression networks are powerful research tools for identifying biological signal within high-dimensional gene expression data. In recent years, research has focused on addressing shortcomings of these techniques with regard to the low signal-to-noise ratio, non-linear interactions and dataset dependent biases of published methods. Furthermore, it has been shown that aggregating networks from multiple methods provides improved results. Despite this, few useable and scalable software tools have been implemented to perform such best-practice analyses. Here, we present Seidr (stylized Seiðr), a software toolkit designed to assist scientists in gene regulatory and gene co-expression network inference. Seidr creates community networks to reduce algorithmic bias and utilizes noise corrected network backboning to prune noisy edges in the networks. Using benchmarks in real-world conditions across three eukaryotic model organisms, Saccharomyces cerevisiae, Drosophila melanogaster, and Arabidopsis thaliana, we show that individual algorithms are biased toward functional evidence for certain gene-gene interactions. We further demonstrate that the community network is less biased, providing robust performance across different standards and comparisons for the model organisms. Finally, we apply Seidr to a network of drought stress in Norway spruce (Picea abies (L.) H. Krast) as an example application in a non-model species. We demonstrate the use of a network inferred using Seidr for identifying key components, communities and suggesting gene function for non-annotated genes.
Collapse
Affiliation(s)
- Bastian Schiffthaler
- Department of Plant Physiology, Umea Plant Science Center, Umea University, Umea, Sweden
| | - Elena van Zalen
- Department of Plant Physiology, Umea Plant Science Center, Umea University, Umea, Sweden
| | - Alonso R. Serrano
- Department of Plant Physiology, Umea Plant Science Center, Swedish University of Agricultural Sciences, Umea, Sweden
| | - Nathaniel R. Street
- Department of Plant Physiology, Umea Plant Science Center, Umea University, Umea, Sweden
| | - Nicolas Delhomme
- Department of Plant Physiology, Umea Plant Science Center, Swedish University of Agricultural Sciences, Umea, Sweden
| |
Collapse
|
14
|
Akyel YK, Ozturk Civelek D, Ozturk Seyhan N, Gul S, Gazioglu I, Pala Kara Z, Lévi F, Kavakli IH, Okyar A. Diurnal Changes in Capecitabine Clock-Controlled Metabolism Enzymes Are Responsible for Its Pharmacokinetics in Male Mice. J Biol Rhythms 2023; 38:171-184. [PMID: 36762608 PMCID: PMC10037547 DOI: 10.1177/07487304221148779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The circadian timing system controls absorption, distribution, metabolism, and elimination processes of drug pharmacokinetics over a 24-h period. Exposure of target tissues to the active form of the drug and cytotoxicity display variations depending on the chronopharmacokinetics. For anticancer drugs with narrow therapeutic ranges and dose-limiting side effects, it is particularly important to know the temporal changes in pharmacokinetics. A previous study indicated that pharmacokinetic profile of capecitabine was different depending on dosing time in rat. However, it is not known how such difference is attributed with respect to diurnal rhythm. Therefore, in this study, we evaluated capecitabine-metabolizing enzymes in a diurnal rhythm-dependent manner. To this end, C57BL/6J male mice were orally treated with 500 mg/kg capecitabine at ZT1, ZT7, ZT13, or ZT19. We then determined pharmacokinetics of capecitabine and its metabolites, 5'-deoxy-5-fluorocytidine (5'DFCR), 5'-deoxy-5-fluorouridine (5'DFUR), 5-fluorouracil (5-FU), in plasma and liver. Results revealed that plasma Cmax and AUC0-6h (area under the plasma concentration-time curve from 0 to 6 h) values of capecitabine, 5'DFUR, and 5-FU were higher during the rest phase (ZT1 and ZT7) than the activity phase (ZT13 and ZT19) (p < 0.05). Similarly, Cmax and AUC0-6h values of 5'DFUR and 5-FU in liver were higher during the rest phase than activity phase (p < 0.05), while there was no significant difference in liver concentrations of capecitabine and 5'DFCR. We determined the level of the enzymes responsible for the conversion of capecitabine and its metabolites at each ZT. Results indicated the levels of carboxylesterase 1 and 2, cytidine deaminase, uridine phosphorylase 2, and dihydropyrimidine dehydrogenase (p < 0.05) are being rhythmically regulated and, in turn, attributed different pharmacokinetics profiles of capecitabine and its metabolism. This study highlights the importance of capecitabine administration time to increase the efficacy with minimum adverse effects.
Collapse
Affiliation(s)
- Yasemin Kubra Akyel
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Department of Medical Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Dilek Ozturk Civelek
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Narin Ozturk Seyhan
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Seref Gul
- Biotechnology Division, Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Isil Gazioglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Zeliha Pala Kara
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Francis Lévi
- UPR "Chronotherapy, Cancer and Transplantation," Medical School, Paris-Saclay University, Villejuif, France
- Medical Oncology Department, Paul Brousse Hospital, Villejuif, France
- Cancer Chronotherapy Team, Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
15
|
Tong L, Lin Y, Kou X, Shen Y, Shen Y, Huang S, Zhu F, Chen G, Ouyang G. Pore-Environment-Dependent Photoresponsive Oxidase-Like Activity in Hydrogen-Bonded Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202218661. [PMID: 36719177 DOI: 10.1002/anie.202218661] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/01/2023]
Abstract
Mimicking the bioactivity of native enzymes through synthetic chemistry is an efficient means to advance the biocatalysts in a cell-free environment, however, remains long-standing challenges. Herein, we utilize structurally explicit hydrogen-bonded organic frameworks (HOFs) to mimic photo-responsive oxidase, and uncover the important role of pore environments on mediating oxidase-like activity by means of constructing isostructural HOFs. We discover that the HOF pore with suitable geometry can stabilize and spatially organize the catalytic substrate into a favorable catalytic route, as with the function of the native enzyme pocket. Based on the desirable photo-responsive oxidase-like activity, a visual and sensitive HOFs biosensor is established for the detection of phosphatase, an important biomarker of skeletal and hepatobiliary diseases. This work demonstrates that the pore environments significantly influence the nanozymes' activity in addition to the active center.
Collapse
Affiliation(s)
- Linjing Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuhong Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yujian Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yong Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
16
|
Cakilkaya B, Kavakli IH, DeMirci H. The crystal structure of Vibrio cholerae (6-4) photolyase reveals interactions with cofactors and a DNA-binding region. J Biol Chem 2023; 299:102794. [PMID: 36528063 PMCID: PMC9852545 DOI: 10.1016/j.jbc.2022.102794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Photolyases (PLs) reverse UV-induced DNA damage using blue light as an energy source. Of these PLs, (6-4) PLs repair (6-4)-lesioned photoproducts. We recently identified a gene from Vibrio cholerae (Vc) encoding a (6-4) PL, but structural characterization is needed to elucidate specific interactions with the chromophore cofactors. Here, we determined the crystal structure of Vc (6-4) PL at 2.5 Å resolution. Our high-resolution structure revealed that the two well-known cofactors, flavin adenine dinucleotide and the photoantenna 6,7-dimethyl 8-ribityl-lumazin (DMRL), stably interact with an α-helical and an α/β domain, respectively. Additionally, the structure has a third cofactor with distinct electron clouds corresponding to a [4Fe-4S] cluster. Moreover, we identified that Asp106 makes a hydrogen bond with water and DMRL, which indicates further stabilization of the photoantenna DMRL within Vc (6-4) PL. Further analysis of the Vc (6-4) PL structure revealed a possible region responsible for DNA binding. The region located between residues 478 to 484 may bind the lesioned DNA, with Arg483 potentially forming a salt bridge with DNA to stabilize further the interaction of Vc (6-4) PL with its substrate. Our comparative analysis revealed that the DNA lesion could not bind to the Vc (6-4) PL in a similar fashion to the Drosophila melanogaster (Dm, (6-4)) PL without a significant conformational change of the protein. The 23rd helix of the bacterial (6-4) PLs seems to have remarkable plasticity, and conformational changes facilitate DNA binding. In conclusion, our structure provides further insight into DNA repair by a (6-4) PL containing three cofactors.
Collapse
Affiliation(s)
- Baris Cakilkaya
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey; Department Chemical and Biological Engineering, Koc University, Istanbul, Turkey; Koc University Isbank Center for Infectious Diseases (KUIS-CID), Koc University, Istanbul, Turkey.
| | - Hasan DeMirci
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey; Koc University Isbank Center for Infectious Diseases (KUIS-CID), Koc University, Istanbul, Turkey; PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California, USA.
| |
Collapse
|
17
|
Insights into Molecular Structure of Pterins Suitable for Biomedical Applications. Int J Mol Sci 2022; 23:ijms232315222. [PMID: 36499560 PMCID: PMC9737128 DOI: 10.3390/ijms232315222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Pterins are an inseparable part of living organisms. Pterins participate in metabolic reactions mostly as tetrahydropterins. Dihydropterins are usually intermediates of these reactions, whereas oxidized pterins can be biomarkers of diseases. In this review, we analyze the available data on the quantum chemistry of unconjugated pterins as well as their photonics. This gives a comprehensive overview about the electronic structure of pterins and offers some benefits for biomedicine applications: (1) one can affect the enzymatic reactions of aromatic amino acid hydroxylases, NO synthases, and alkylglycerol monooxygenase through UV irradiation of H4pterins since UV provokes electron donor reactions of H4pterins; (2) the emission properties of H2pterins and oxidized pterins can be used in fluorescence diagnostics; (3) two-photon absorption (TPA) should be used in such pterin-related infrared therapy because single-photon absorption in the UV range is inefficient and scatters in vivo; (4) one can affect pathogen organisms through TPA excitation of H4pterin cofactors, such as the molybdenum cofactor, leading to its detachment from proteins and subsequent oxidation; (5) metal nanostructures can be used for the UV-vis, fluorescence, and Raman spectroscopy detection of pterin biomarkers. Therefore, we investigated both the biochemistry and physical chemistry of pterins and suggested some potential prospects for pterin-related biomedicine.
Collapse
|
18
|
Gul S, Akyel YK, Gul ZM, Isin S, Ozcan O, Korkmaz T, Selvi S, Danis I, Ipek OS, Aygenli F, Taskin AC, Akarlar BA, Ozlu N, Ozturk N, Ozturk N, Ünal DÖ, Guzel M, Turkay M, Okyar A, Kavakli IH. Discovery of a small molecule that selectively destabilizes Cryptochrome 1 and enhances life span in p53 knockout mice. Nat Commun 2022; 13:6742. [PMID: 36347873 PMCID: PMC9643396 DOI: 10.1038/s41467-022-34582-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Cryptochromes are negative transcriptional regulators of the circadian clock in mammals. It is not clear how reducing the level of endogenous CRY1 in mammals will affect circadian rhythm and the relation of such a decrease with apoptosis. Here, we discovered a molecule (M47) that destabilizes Cryptochrome 1 (CRY1) both in vitro and in vivo. The M47 selectively enhanced the degradation rate of CRY1 by increasing its ubiquitination and resulted in increasing the circadian period length of U2OS Bmal1-dLuc cells. In addition, subcellular fractionation studies from mice liver indicated that M47 increased degradation of the CRY1 in the nucleus. Furthermore, M47-mediated CRY1 reduction enhanced oxaliplatin-induced apoptosis in Ras-transformed p53 null fibroblast cells. Systemic repetitive administration of M47 increased the median lifespan of p53-/- mice by ~25%. Collectively our data suggest that M47 is a promising molecule to treat forms of cancer depending on the p53 mutation.
Collapse
Affiliation(s)
- Seref Gul
- grid.15876.3d0000000106887552Department of Chemical and Biological Engineering, Koc University, 34450 Sariyer-Istanbul, Turkey ,grid.9601.e0000 0001 2166 6619Present Address: Department of Biology, Biotechnology Division, İstanbul University, TR-34116 Beyazit-Istanbul, Turkey
| | - Yasemin Kubra Akyel
- grid.9601.e0000 0001 2166 6619Faculty of Pharmacy, Department of Pharmacology, İstanbul University, TR-34116 Beyazit-Istanbul, Turkey ,grid.411781.a0000 0004 0471 9346Present Address: School of Medicine, Department of Medical Pharmacology, Istanbul Medipol University, Istanbul, Turkey
| | - Zeynep Melis Gul
- grid.15876.3d0000000106887552Department of Molecular Biology and Genetics, Koc University, İstanbul, Turkey
| | - Safak Isin
- grid.15876.3d0000000106887552Department of Molecular Biology and Genetics, Koc University, İstanbul, Turkey
| | - Onur Ozcan
- grid.15876.3d0000000106887552Department of Molecular Biology and Genetics, Koc University, İstanbul, Turkey
| | - Tuba Korkmaz
- grid.448834.70000 0004 0595 7127Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Saba Selvi
- grid.448834.70000 0004 0595 7127Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Ibrahim Danis
- grid.9601.e0000 0001 2166 6619Faculty of Pharmacy, Department of Analytical Chemistry, İstanbul University, TR-34116 Beyazit-Istanbul, Turkey ,grid.9601.e0000 0001 2166 6619İstanbul University Drug Research and Application Center (ILAM), TR-34116 Beyazıt-Istanbul, Turkey
| | - Ozgecan Savlug Ipek
- grid.411781.a0000 0004 0471 9346Regenerative and Restorative Medicine Research Center (REMER), İstanbul Medipol University, Kavacik Campus, Kavacik-Beykoz/Istanbul, 34810 Turkey ,grid.38575.3c0000 0001 2337 3561Department of Chemistry, Graduate School of Natural and Applied Sciences, Yildiz Technical University, Besiktas/Istanbul, 34349 Turkey
| | - Fatih Aygenli
- grid.448834.70000 0004 0595 7127Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Ali Cihan Taskin
- grid.15876.3d0000000106887552Animal Research Facility, Research Center for Translational Medicine, Koc University, Rumelifeneri yolu, 34450 Sariyer-Istanbul, Turkey
| | - Büşra Aytül Akarlar
- grid.15876.3d0000000106887552Department of Molecular Biology and Genetics, Koc University, İstanbul, Turkey
| | - Nurhan Ozlu
- grid.15876.3d0000000106887552Department of Molecular Biology and Genetics, Koc University, İstanbul, Turkey
| | - Nuri Ozturk
- grid.448834.70000 0004 0595 7127Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Narin Ozturk
- grid.9601.e0000 0001 2166 6619Faculty of Pharmacy, Department of Pharmacology, İstanbul University, TR-34116 Beyazit-Istanbul, Turkey
| | - Durişehvar Özer Ünal
- grid.9601.e0000 0001 2166 6619Faculty of Pharmacy, Department of Analytical Chemistry, İstanbul University, TR-34116 Beyazit-Istanbul, Turkey ,grid.9601.e0000 0001 2166 6619İstanbul University Drug Research and Application Center (ILAM), TR-34116 Beyazıt-Istanbul, Turkey
| | - Mustafa Guzel
- grid.411781.a0000 0004 0471 9346Regenerative and Restorative Medicine Research Center (REMER), İstanbul Medipol University, Kavacik Campus, Kavacik-Beykoz/Istanbul, 34810 Turkey ,grid.411781.a0000 0004 0471 9346International School of Medicine, Department of Medical Pharmacology, Kavacik Campus, İstanbul Medipol University, Kavacik-Beykoz/Istanbul, 34810 Turkey
| | - Metin Turkay
- grid.15876.3d0000000106887552Department of Industrial Engineering, Koc University, Istanbul, Turkey
| | - Alper Okyar
- grid.9601.e0000 0001 2166 6619Faculty of Pharmacy, Department of Pharmacology, İstanbul University, TR-34116 Beyazit-Istanbul, Turkey
| | - Ibrahim Halil Kavakli
- grid.15876.3d0000000106887552Department of Chemical and Biological Engineering, Koc University, 34450 Sariyer-Istanbul, Turkey ,grid.15876.3d0000000106887552Department of Molecular Biology and Genetics, Koc University, İstanbul, Turkey
| |
Collapse
|
19
|
Cerón-Bustamante M, Balducci E, Beccari G, Nicholson P, Covarelli L, Benincasa P. Effect of light spectra on cereal fungal pathogens, a review. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Deppisch P, Helfrich-Förster C, Senthilan PR. The Gain and Loss of Cryptochrome/Photolyase Family Members during Evolution. Genes (Basel) 2022; 13:1613. [PMID: 36140781 PMCID: PMC9498864 DOI: 10.3390/genes13091613] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
The cryptochrome/photolyase (CRY/PL) family represents an ancient group of proteins fulfilling two fundamental functions. While photolyases repair UV-induced DNA damages, cryptochromes mainly influence the circadian clock. In this study, we took advantage of the large number of already sequenced and annotated genes available in databases and systematically searched for the protein sequences of CRY/PL family members in all taxonomic groups primarily focusing on metazoans and limiting the number of species per taxonomic order to five. Using BLASTP searches and subsequent phylogenetic tree and motif analyses, we identified five distinct photolyases (CPDI, CPDII, CPDIII, 6-4 photolyase, and the plant photolyase PPL) and six cryptochrome subfamilies (DASH-CRY, mammalian-type MCRY, Drosophila-type DCRY, cnidarian-specific ACRY, plant-specific PCRY, and the putative magnetoreceptor CRY4. Manually assigning the CRY/PL subfamilies to the species studied, we have noted that over evolutionary history, an initial increase of various CRY/PL subfamilies was followed by a decrease and specialization. Thus, in more primitive organisms (e.g., bacteria, archaea, simple eukaryotes, and in basal metazoans), we find relatively few CRY/PL members. As species become more evolved (e.g., cnidarians, mollusks, echinoderms, etc.), the CRY/PL repertoire also increases, whereas it appears to decrease again in more recent organisms (humans, fruit flies, etc.). Moreover, our study indicates that all cryptochromes, although largely active in the circadian clock, arose independently from different photolyases, explaining their different modes of action.
Collapse
Affiliation(s)
| | | | - Pingkalai R. Senthilan
- Neurobiology & Genetics, Theodor-Boveri Institute, Biocenter, Julius-Maximilians-University Würzburg, 97074 Wurzburg, Germany
| |
Collapse
|
21
|
Parlak GC, Camur BB, Gul S, Ozcan O, Baris I, Kavakli IH. The secondary pocket of cryptochrome 2 is important for the regulation of its stability and localization. J Biol Chem 2022; 298:102334. [PMID: 35933018 PMCID: PMC9442382 DOI: 10.1016/j.jbc.2022.102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022] Open
Abstract
Human clock-gene variations contribute to the phenotypic differences observed in various behavioral and physiological processes, such as diurnal preference, sleep, metabolism, mood regulation, addiction, and fertility. However, little is known about the possible effects of identified variations at the molecular level. In this study, we performed a functional characterization at the cellular level of rare cryptochrome 2 (CRY2) missense variations that were identified from the Ensembl database. Our structural studies revealed that three variations (p.Pro123Leu, p.Asp406His, and p.Ser410Ile) are located at the rim of the secondary pocket of CRY2. We show that these variants were unable to repress CLOCK (circadian locomotor output cycles kaput)/BMAL1 (brain and muscle ARNT-like-1)-driven transcription in a cell-based reporter assay and had reduced affinity to CLOCK-BMAL1. Furthermore, our biochemical studies indicated that the variants were less stable than the WT CRY2, which could be rescued in the presence of period 2 (PER2), another core clock protein. Finally, we found that these variants were unable to properly localize to the nucleus and thereby were unable to rescue the circadian rhythm in a Cry1-/-Cry2-/- double KO mouse embryonic fibroblast cell line. Collectively, our data suggest that the rim of the secondary pocket of CRY2 plays a significant role in its nuclear localization independently of PER2 and in the intact circadian rhythm at the cellular level.
Collapse
Affiliation(s)
- Gizem Cagla Parlak
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Bilge Bahar Camur
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Seref Gul
- Biotechnology Division, Department of Biology, Istanbul University, Istanbul, Turkey
| | - Onur Ozcan
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Ibrahim Baris
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey; Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey.
| |
Collapse
|
22
|
Squire MS, Townsend HA, Islam A, Actis LA. Light Regulates Acinetobacter baumannii Chromosomal and pAB3 Plasmid Genes at 37°C. J Bacteriol 2022; 204:e0003222. [PMID: 35604222 PMCID: PMC9210970 DOI: 10.1128/jb.00032-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
The opportunistic pathogen A. baumannii has a remarkable capacity to persist in the hospital environment and cause devastating human infections. This capacity can be attributed partly to the sensing and regulatory systems that enable this pathogen to modify its physiology based on environmental cues. One of the signals that A. baumannii senses and responds to is light through the sensing and regulatory roles of the BlsA photoreceptor protein in cells cultured at temperatures below 30°C. This report presents evidence that a light stimulon is operational at 37°C, a condition at which the BlsA production and activity are drastically impaired. Global transcriptional analysis showed that the 37°C light stimulon includes the differential expression of chromosomal genes encoding a wide range of functions that are known to be involved in the adaptation to different metabolic conditions, as well as virulence and persistence in the host and the medical environment. Unexpectedly, the 37°C light stimulon also includes the differential expression of conjugation functions encoded by pAB3 plasmid genes. Our work further demonstrates that the TetR1 and H-NS regulators encoded by this conjugative plasmid control the expression of H2O2 resistance and surface motility, respectively. Furthermore, our data showed that pAB3 has an overall negative effect on the expression of these phenotypes and plays no significant virulence role. Although the nature of the bacterial factors and the mechanisms by which the regulation is attained at 37°C remain unknown, taken together, our work expands the current knowledge about light sensing and gene regulation in A. baumannii. IMPORTANCE As a facultative pathogen, Acinetobacter baumannii persists in various environments by sensing different environmental cues, including light. This report provides evidence of light-dependent regulation at 37°C of the expression of genes coding for a wide range of functions, including those involved in the conjugation of the pAB3 plasmid. Although this plasmid affects the expression of virulence traits when tested under laboratory conditions, it does not have a significant impact when tested using ex vivo and in vivo experimental models. These findings provide a better understanding of the interplay between light regulation and plasmid persistence in the pathobiology of A. baumannii.
Collapse
Affiliation(s)
| | | | - Aminul Islam
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| |
Collapse
|
23
|
Protein interaction networks of the mammalian core clock proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:207-233. [PMID: 35871891 DOI: 10.1016/bs.apcsb.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Circadian rhythm is a 24-h cycle that regulates the biochemical and behavioral changes of organisms. It controls a wide range of functions, from gene expression to behavior, allowing organisms to anticipate daily changes in their environment. In mammals, circadian rhythm is generated by a complex transcriptional and translational feedback loop mechanism. The binding of CLOCK/BMAL1 heterodimer to the E-box of DNA located within the promoter region initiates transcription of clock control genes including the transcription of the other two core clock genes of Periods (Pers) and Cryptochromes (Crys). Then PERs and CRYs along with casein kinase 1ɛ/Δ translocate into the nucleus where they suppress CLOCK/BMAL1 transactivation and, in turn, clock-regulated gene expression. Various clock components must be operational to aid in their stabilization and period extension in circadian rhythm. In this review, we have highlighted the recent progress for the core clock interacting proteins to maintain and to stabilize circadian rhythm in mammals.
Collapse
|
24
|
Abstract
Harnessing biocatalysts for novel abiological transformations is a longstanding goal of synthetic chemistry. Combining the merits of biocatalysis and photocatalysis allows for selective transformations fueled by visible light and offers many advantages including new reactivity, high enantioselectivity, greener syntheses, and high yields. Photoinduced electron or energy transfer enables synthetic methodologies that complement conventional two electron processes or offer orthogonal pathways for developing new reactions. Enzymes are well suited and can be tuned by directed evolution to exert control over open-shell intermediates, thereby suppressing undesirable reactions and delivering high chemo- and stereoselectivities. Within the past decade, the combination of biocatalysis and photocatalysis was mainly focused on exploiting light-regenerated cofactors to function native enzymatic activity. However, recent developments have demonstrated that the combination can unlock new-to-nature chemistry. Particularly, the discovery and application of new strategies are well poised to expand the applications of photobiocatalysis.In the past five years, our lab has been studying the combinations of photocatalysis and biocatalysis that can be applied to create new synthetic methodologies and solve challenges in synthetic organic chemistry. Our efforts have expanded the strategies for combining external photocatalysts with enzymes through the construction of a synergistic cooperative stereoconvergent reduction system consisting of photosensitized energy transfer and ene-reductase-catalyzed alkene reduction. Additionally, our efforts have also extended the capability of cofactor-dependent photoenzymatic systems to include enantioselective bimolecular radical hydroalkylations of alkenes by irradiating electron donor-acceptor complexes comprised of enzymatic redox active cofactors and unnatural substrates.In this Account, we highlight strategies developed by our group and others for combining biocatalysis and photocatalysis with the aim of introducing non-natural reactivity to enzymes. Presently, strategies applied to achieve this goal include the repurposing of natural photoenzymes, the elucidation of new photoreactivity within cofactor-dependent enzymes, the combination of external photocatalysts with enzymes, and the construction of artificial photoenzymes. By demonstrating the successful applications of these strategies for achieving selective new-to-nature transformations, we hope to spur interest in expanding the scope of photobiocatalytic systems through the use and extension of these strategies and creation of new strategies. Additionally, we hope to elucidate the intuition in synergizing the unique capabilities of biocatalysis and photocatalysis so that photobiocatalysis can be recognized as a potential solution to difficult challenges in synthetic organic chemistry.
Collapse
Affiliation(s)
- Wesley Harrison
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 S. Matthews Avenue, Urbana, Illinois 61801, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana−Champaign, 1206 W. Gregory Drive, Urbana, Illinois 61801, United States
| | - Xiaoqiang Huang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 S. Matthews Avenue, Urbana, Illinois 61801, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana−Champaign, 1206 W. Gregory Drive, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 S. Matthews Avenue, Urbana, Illinois 61801, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana−Champaign, 1206 W. Gregory Drive, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
25
|
Identification of novel small molecules targeting core clock proteins to regulate circadian rhythm. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Mukhia S, Kumar A, Kumari P, Kumar R, Kumar S. Multilocus sequence based identification and adaptational strategies of Pseudomonas sp. from the supraglacial site of Sikkim Himalaya. PLoS One 2022; 17:e0261178. [PMID: 35073328 PMCID: PMC8786180 DOI: 10.1371/journal.pone.0261178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022] Open
Abstract
Microorganisms inhabiting the supraglacial ice are biotechnologically significant as they are equipped with unique adaptive features in response to extreme environmental conditions of high ultraviolet radiations and frequent freeze-thaw. In the current study, we obtained eleven strains of Pseudomonas from the East Rathong supraglacial site in Sikkim Himalaya that showed taxonomic ambiguity in terms of species affiliation. Being one of the most complex and diverse genera, deciphering the correct taxonomy of Pseudomonas species has always been challenging. So, we conducted multilocus sequence analysis (MLSA) using five housekeeping genes, which concluded the taxonomic assignment of these strains to Pseudomonas antarctica. This was further supported by the lesser mean genetic distances with P. antarctica (0.73%) compared to P. fluorescens (3.65%), and highest ANI value of ~99 and dDDH value of 91.2 of the representative strains with P. antarctica PAMC 27494. We examined the multi-tolerance abilities of these eleven Pseudomonas strains. Indeed the studied strains displayed significant tolerance to freezing for 96 hours compared to the mesophilic control strain, while except for four strains, seven strains exhibited noteworthy tolerance to UV-C radiations. The genome-based findings revealed many cold and radiation resistance-associated genes that supported the physiological findings. Further, the bacterial strains produced two or more cold-active enzymes in plate-based assays. Owing to the polyadaptational attributes, the strains ERGC3:01 and ERGC3:05 could be most promising for bioprospection.
Collapse
Affiliation(s)
- Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Poonam Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
27
|
Gul S, Kavakli IH. The Structure-Based Molecular-Docking Screen Against Core Clock Proteins to Identify Small Molecules to Modulate the Circadian Clock. Methods Mol Biol 2022; 2482:15-34. [PMID: 35610417 DOI: 10.1007/978-1-0716-2249-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Circadian rhythms are part of the body's clock, which regulates several physiological and biochemical variables according to the 24-h cycle. Ample evidence indicated disturbance of the circadian clock leads to an increased susceptibility to several diseases. Therefore, a great effort has been made to find small molecules that regulate circadian rhythm by high-throughput methods. Having crystal structures of core clock proteins, makes them amenable to structure-based drug design studies. Here, we describe virtual screening methods that can be utilized for the identification of small molecules regulating the activity of core clock protein Cryptochrome 1.
Collapse
Affiliation(s)
- Seref Gul
- Chemical and Biological Engineering, Koç University, Istanbul, Turkey
| | - Ibrahim Halil Kavakli
- Chemical and Biological Engineering, Koç University, Istanbul, Turkey.
- Molecular Biology and Genetics, Koç University, Istanbul, Turkey.
| |
Collapse
|
28
|
Vechtomova YL, Telegina TA, Buglak AA, Kritsky MS. UV Radiation in DNA Damage and Repair Involving DNA-Photolyases and Cryptochromes. Biomedicines 2021; 9:biomedicines9111564. [PMID: 34829793 PMCID: PMC8615538 DOI: 10.3390/biomedicines9111564] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023] Open
Abstract
Prolonged exposure to ultraviolet radiation on human skin can lead to mutations in DNA, photoaging, suppression of the immune system, and other damage up to skin cancer (melanoma, basal cell, and squamous cell carcinoma). We reviewed the state of knowledge of the damaging action of UVB and UVA on DNA, and also the mechanisms of DNA repair with the participation of the DNA-photolyase enzyme or of the nucleotide excision repair (NER) system. In the course of evolution, most mammals lost the possibility of DNA photoreparation due to the disappearance of DNA photolyase genes, but they retained closely related cryptochromes that regulate the transcription of the NER system enzymes. We analyze the published relationships between DNA photolyases/cryptochromes and carcinogenesis, as well as their possible role in the prevention and treatment of diseases caused by UV radiation.
Collapse
Affiliation(s)
- Yuliya L. Vechtomova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (T.A.T.); (M.S.K.)
- Correspondence:
| | - Taisiya A. Telegina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (T.A.T.); (M.S.K.)
| | - Andrey A. Buglak
- Faculty of Physics, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Mikhail S. Kritsky
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (T.A.T.); (M.S.K.)
| |
Collapse
|
29
|
Parsa SM, Momeni S, Hemmat A, Afrand M. Effectiveness of solar water disinfection in the era of COVID-19 (SARS-CoV-2) pandemic for contaminated water/wastewater treatment considering UV effect and temperature. JOURNAL OF WATER PROCESS ENGINEERING 2021; 43:102224. [PMID: 35592836 PMCID: PMC8285244 DOI: 10.1016/j.jwpe.2021.102224] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 05/09/2023]
Abstract
Long is the way and hard, that out of COVID-19 leads up to light. The virus is highly contagious and spread rapidly and the number of infections increases exponentially. The colossal number of infections and presence of the novel coronavirus RNA in human wastes (e.g. Excreta/urine) even after the patients recovered and the RT-PCR tests were negative, results in massive load of the viral in water environments. Numerous studies reported the presence of SARS-CoV-2 in wastewater samples. The risk of contaminating water bodies in the regions which suffer from the lack of proper sanitation system and wastewater treatment plants (mostly in developing countries) is higher. Since solar water disinfection (SODIS) is usually used by people in developing countries, there is a concern about using this method during the pandemic. Because the SARS-CoV-2 can be eliminated by high temperature (>56 °C) and UVC wavelength (100-280 nm) while SODIS systems mainly work at lower temperature (<45 °C) and use the available UVA (315-400 nm). Thus, during a situation like the ongoing pandemic using SODIS method for wastewater treatment (or providing drinking water) is not a reliable method. It should be reminded that the main aim of the present study is not just to give insights about the possibilities and risks of using SODIS during the ongoing pandemic but it has broader prospect for any future outbreak/pandemic that results in biological contamination of water bodies. Nevertheless, some experimental studies seem to be necessary by all researchers under conditions similar to developing countries.
Collapse
Affiliation(s)
- Seyed Masoud Parsa
- Department of Energy Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saba Momeni
- Guilan University of Medical Science, Anzali International Campus, Bandar Anzali, Iran
| | - Ahmadreza Hemmat
- Department of Medicine, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Masoud Afrand
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
30
|
Wang H, Liu H, Yu Q, Fan F, Liu S, Feng G, Zhang P. A CPD photolyase gene PnPHR1 from Antarctic moss Pohlia nutans is involved in the resistance to UV-B radiation and salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:235-244. [PMID: 34385002 DOI: 10.1016/j.plaphy.2021.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/05/2021] [Accepted: 08/05/2021] [Indexed: 05/24/2023]
Abstract
In Antarctic continent, the organisms are exposed to high ultraviolet (UV) radiation because of damaged stratospheric ozone. UV causes DNA lesions due to the accumulation of photoproducts. Photolyase can repair UV-damaged DNA in a light-dependent process by electron transfer mechanism. Here, we isolated a CPD photolyase gene PnPHR1 from Antarctic moss Pohlia nutans, which encodes a protein of theoretical molecular weight of 69.1 KDa. The expression level of PnPHR1 was increased by UV-B irradiation. Enzyme activity assay in vitro showed that PnPHR1 exhibited photoreactivation activity, which can repair CPD photoproducts in a light-dependent manner. The complementation assay of repair-deficient E. coli strain SY2 demonstrated that PnPHR1 gene enhanced the survival rate of SY2 strain after UV-B radiation. Additionally, overexpression of PnPHR1 enhanced the Arabidopsis resistance to UV-B radiation and salinity stress, which also conferred plant tolerance to oxidative stress by decreasing ROS production and increasing ROS clearance. Our work shows that PnPHR1 encodes an active CPD photolyase, which may participate in the adaptation of P. nutans to polar environments.
Collapse
Affiliation(s)
- Huijuan Wang
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China
| | - Hongwei Liu
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China; Medical Administration Department, Shinan District Health Bureau, Qingdao, 266073, China
| | - Qian Yu
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China
| | - Fenghua Fan
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shenghao Liu
- Marine Ecology Research Center, First Institute of Oceanography, Natural Resources Ministry, Qingdao, 266061, China
| | - Guihua Feng
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China
| | - Pengying Zhang
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
31
|
- R, Mondal S, Pathak J, Singh PR, Singh SP, Sinha RP. Computational Studies on Photolyase (Phr) Proteins of Cyanobacteria. Can J Microbiol 2021; 68:111-137. [PMID: 34587467 DOI: 10.1139/cjm-2021-0167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Photolyases (Phrs) are enzymes that utilize blue/ultraviolet (UV-A) region of light for repairing UV-induced cyclopyramidine dimer. We have studied Phr groups by bioinformatic analyses as well as active-site and structural modeling. The analysis of 238 amino acid sequences from 85 completely sequenced cyanobacterial genomes revealed five classes of Phrs, i.e., CPD Gr I, 6-4 Phrs/cryptochrome, Cry-DASH, Fe-S bacteria Phrs, and a group having fewer number of amino acids (276-385) in length. Distribution of Phr groups in cyanobacteria belonging to the order Synechococcales was found to be influenced by the habitats of the organisms. Class V Phrs were exclusively present in cyanobacteria. Unique motif and binding sites were reported in Group II and III. Fe-S protein binding site was only present in Group V. Active site residues and putative CPD/6-4pp binding residues are charged amino acids which were present on the surface of the proteins. Majority of hydrophilic amino acid residues were present on surface of Phrs. Sequence analysis confirmed the diverse nature of Phrs, though, sequence diversity does not affect their overall 3D structure. Protein-ligand interaction analysis identified novel CPD/6-4PP binding sites on Phrs. This structural information of Phrs can be used for the preparation of efficient Phr based formulations.
Collapse
Affiliation(s)
- Rajneesh -
- Banaras Hindu University Faculty of Science, 163931, Varanasi, Uttar Pradesh, India;
| | - Soumila Mondal
- Banaras Hindu University Faculty of Science, 163931, Varanasi, Uttar Pradesh, India;
| | - Jainendra Pathak
- Pt Jawaharlal Nehru College (Affiliated to Bundelkhand University Jhansi), Department of Botany, Banda, India;
| | - Prashant R Singh
- Banaras Hindu University Faculty of Science, 163931, Varanasi, Uttar Pradesh, India;
| | - Shailendra P Singh
- Banaras Hindu University Faculty of Science, 163931, Varanasi, Uttar Pradesh, India;
| | - Rajeshwar P Sinha
- Banaras Hindu University Faculty of Science, 163931, Varanasi, India, 221005;
| |
Collapse
|
32
|
Gul S, Rahim F, Isin S, Yilmaz F, Ozturk N, Turkay M, Kavakli IH. Structure-based design and classifications of small molecules regulating the circadian rhythm period. Sci Rep 2021; 11:18510. [PMID: 34531414 PMCID: PMC8445970 DOI: 10.1038/s41598-021-97962-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/27/2021] [Indexed: 11/09/2022] Open
Abstract
Circadian rhythm is an important mechanism that controls behavior and biochemical events based on 24 h rhythmicity. Ample evidence indicates disturbance of this mechanism is associated with different diseases such as cancer, mood disorders, and familial delayed phase sleep disorder. Therefore, drug discovery studies have been initiated using high throughput screening. Recently the crystal structures of core clock proteins (CLOCK/BMAL1, Cryptochromes (CRY), Periods), responsible for generating circadian rhythm, have been solved. Availability of structures makes amenable core clock proteins to design molecules regulating their activity by using in silico approaches. In addition to that, the implementation of classification features of molecules based on their toxicity and activity will improve the accuracy of the drug discovery process. Here, we identified 171 molecules that target functional domains of a core clock protein, CRY1, using structure-based drug design methods. We experimentally determined that 115 molecules were nontoxic, and 21 molecules significantly lengthened the period of circadian rhythm in U2OS cells. We then performed a machine learning study to classify these molecules for identifying features that make them toxic and lengthen the circadian period. Decision tree classifiers (DTC) identified 13 molecular descriptors, which predict the toxicity of molecules with a mean accuracy of 79.53% using tenfold cross-validation. Gradient boosting classifiers (XGBC) identified 10 molecular descriptors that predict and increase in the circadian period length with a mean accuracy of 86.56% with tenfold cross-validation. Our results suggested that these features can be used in QSAR studies to design novel nontoxic molecules that exhibit period lengthening activity.
Collapse
Affiliation(s)
- Seref Gul
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istabul, Turkey
| | - Fatih Rahim
- Department of Industrial Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istabul, Turkey
| | - Safak Isin
- Department of Molecular Biology and Genetics, Rumelifeneri Yolu, Sariyer, Istabul, Turkey
| | - Fatma Yilmaz
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| | - Nuri Ozturk
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| | - Metin Turkay
- Department of Industrial Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istabul, Turkey.
| | - Ibrahim Halil Kavakli
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istabul, Turkey.
- Department of Molecular Biology and Genetics, Rumelifeneri Yolu, Sariyer, Istabul, Turkey.
| |
Collapse
|
33
|
Cellini A, Yuan Wahlgren W, Henry L, Pandey S, Ghosh S, Castillon L, Claesson E, Takala H, Kübel J, Nimmrich A, Kuznetsova V, Nango E, Iwata S, Owada S, Stojković EA, Schmidt M, Ihalainen JA, Westenhoff S. The three-dimensional structure of Drosophila melanogaster (6-4) photolyase at room temperature. Acta Crystallogr D Struct Biol 2021; 77:1001-1009. [PMID: 34342273 PMCID: PMC8329860 DOI: 10.1107/s2059798321005830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/06/2021] [Indexed: 11/10/2022] Open
Abstract
(6-4) photolyases are flavoproteins that belong to the photolyase/cryptochrome family. Their function is to repair DNA lesions using visible light. Here, crystal structures of Drosophila melanogaster (6-4) photolyase [Dm(6-4)photolyase] at room and cryogenic temperatures are reported. The room-temperature structure was solved to 2.27 Å resolution and was obtained by serial femtosecond crystallography (SFX) using an X-ray free-electron laser. The crystallization and preparation conditions are also reported. The cryogenic structure was solved to 1.79 Å resolution using conventional X-ray crystallography. The structures agree with each other, indicating that the structural information obtained from crystallography at cryogenic temperature also applies at room temperature. Furthermore, UV-Vis absorption spectroscopy confirms that Dm(6-4)photolyase is photoactive in the crystals, giving a green light to time-resolved SFX studies on the protein, which can reveal the structural mechanism of the photoactivated protein in DNA repair.
Collapse
Affiliation(s)
- Andrea Cellini
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Léocadie Henry
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Suraj Pandey
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Leticia Castillon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Elin Claesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, 40014 Jyvaskyla, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Box 63, 00014 Helsinki, Finland
| | - Joachim Kübel
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Amke Nimmrich
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Valentyna Kuznetsova
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Eriko Nango
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shigeki Owada
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Emina A. Stojković
- Department of Biology, Northeastern Illinois University, 5500 North St Louis Avenue, Chicago, IL 60625, USA
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Janne A. Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| |
Collapse
|
34
|
Wang Y, Veglia G, Zhong D, Gao J. Activation mechanism of Drosophila cryptochrome through an allosteric switch. SCIENCE ADVANCES 2021; 7:7/25/eabg3815. [PMID: 34144991 PMCID: PMC8213227 DOI: 10.1126/sciadv.abg3815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Cryptochromes are signaling proteins activated by photoexcitation of the flavin adenine dinucleotide (FAD) cofactor. Although extensive research has been performed, the mechanism for this allosteric process is still unknown. We constructed three computational models, corresponding to different redox states of the FAD cofactor in Drosophila cryptochrome (dCRY). Analyses of the dynamics trajectories reveal that the activation process occurs in the semiquinone state FAD-●, resulting from excited-state electron transfer. The Arg381-Asp410 salt bridge acts as an allosteric switch, regulated by the change in the redox state of FAD. In turn, Asp410 forms new hydrogen bonds, connecting allosteric networks of the amino-terminal and carboxyl-terminal domains initially separated in the resting state. The expansion to a global dynamic network leads to enhanced protein fluctuations, an increase in the radius of gyration, and the expulsion of the carboxyl-terminal tail. These structural features are in accord with mutations and spectroscopic experiments.
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Gianluigi Veglia
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dongping Zhong
- Departments of Physics and Chemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Beijing University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
35
|
Losi A, Gärtner W. A light life together: photosensing in the plant microbiota. Photochem Photobiol Sci 2021; 20:451-473. [PMID: 33721277 DOI: 10.1007/s43630-021-00029-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Bacteria and fungi of the plant microbiota can be phytopathogens, parasites or symbionts that establish mutually advantageous relationships with plants. They are often rich in photoreceptors for UVA-Visible light, and in many cases, they exhibit light regulation of growth patterns, infectivity or virulence, reproductive traits, and production of pigments and of metabolites. In addition to the light-driven effects, often demonstrated via the generation of photoreceptor gene knock-outs, microbial photoreceptors can exert effects also in the dark. Interestingly, some fungi switch their attitude towards plants in dependence of illumination or dark conditions in as much as they may be symbiotic or pathogenic. This review summarizes the current knowledge about the roles of light and photoreceptors in plant-associated bacteria and fungi aiming at the identification of common traits and general working ideas. Still, reports on light-driven infection of plants are often restricted to the description of macroscopically observable phenomena, whereas detailed information on the molecular level, e.g., protein-protein interaction during signal transduction or induction mechanisms of infectivity/virulence initiation remains sparse. As it becomes apparent from still only few molecular studies, photoreceptors, often from the red- and the blue light sensitive groups interact and mutually modulate their individual effects. The topic is of great relevance, even in economic terms, referring to plant-pathogen or plant-symbionts interactions, considering the increasing usage of artificial illumination in greenhouses, the possible light-regulation of the synthesis of plant-growth stimulating substances or herbicides by certain symbionts, and the biocontrol of pests by selected fungi and bacteria in a sustainable agriculture.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy.
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103, Leipzig, Germany
| |
Collapse
|
36
|
Emisoglu-Kulahli H, Gul S, Morgil H, Ozcan O, Aygenli F, Selvi S, Kavakli IH, Ozturk N. Transcriptome analysis of the circadian clock gene BMAL1 deletion with opposite carcinogenic effects. Funct Integr Genomics 2021; 21:1-16. [PMID: 33111200 DOI: 10.1007/s10142-020-00757-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022]
Abstract
We have previously reported that the deletion of BMAL1 gene has opposite effects in respect to its contribution to the pathways that are effective in the multistage carcinogenesis process. BMAL1 deletion sensitized nearly normal breast epithelial (MCF10A) and invasive breast cancer cells (MDA-MB-231) to cisplatin- and doxorubicin-induced apoptosis, while this deletion also aggravated the invasive potential of MDA-MB-231 cells. However, the mechanistic relationship of the seemingly opposite contribution of BMAL1 deletion to carcinogenesis process is not known at genome-wide level. In this study, an RNA-seq approach was taken to uncover the differentially expressed genes (DEGs) and pathways after treating BMAL1 knockout (KO) or wild-type (WT) MDA-MB-231 cells with cisplatin and doxorubicin to initiate apoptosis. Gene set enrichment analysis with the DEGs demonstrated that enrichment in multiple genes/pathways contributes to sensitization to cisplatin- or doxorubicin-induced apoptosis in BMAL1-dependent manner. Additionally, our DEG analysis suggested that non-coding transcript RNA (such as lncRNA and processed pseudogenes) may have role in cisplatin- or doxorubicin-induced apoptosis. Protein-protein interaction network obtained from common DEGs in cisplatin and doxorubicin treatments revealed that GSK3β, NACC1, and EGFR are the principal genes regulating the response of the KO cells. Moreover, the analysis of DEGs among untreated BMAL1 KO and WT cells revealed that epithelial-mesenchymal transition genes are up-regulated in KO cells. As a negative control, we have also analyzed the DEGs following treatment with an endoplasmic reticulum (ER) stress-inducing agent, tunicamycin, which was affected by BMAL1 deletion minimally. Collectively, the present study suggests that BMAL1 regulates many genes/pathways of which the alteration in BMAL1 KO cells may shed light on pleotropic phenotype observed.
Collapse
Affiliation(s)
- Handan Emisoglu-Kulahli
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Seref Gul
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Hande Morgil
- Department of Biology, Istanbul University, Istanbul, Turkey
- Istanbul University Centre for Plant and Herbal Products Research-Development, 34126, Istanbul, Turkey
| | - Onur Ozcan
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Fatih Aygenli
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Saba Selvi
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Nuri Ozturk
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|
37
|
Cal-Kayitmazbatir S, Kulkoyluoglu-Cotul E, Growe J, Selby CP, Rhoades SD, Malik D, Oner H, Asimgil H, Francey LJ, Sancar A, Kruger WD, Hogenesch JB, Weljie A, Anafi RC, Kavakli IH. CRY1-CBS binding regulates circadian clock function and metabolism. FEBS J 2021; 288:614-639. [PMID: 32383312 PMCID: PMC7648728 DOI: 10.1111/febs.15360] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/09/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Circadian disruption influences metabolic health. Metabolism modulates circadian function. However, the mechanisms coupling circadian rhythms and metabolism remain poorly understood. Here, we report that cystathionine β-synthase (CBS), a central enzyme in one-carbon metabolism, functionally interacts with the core circadian protein cryptochrome 1 (CRY1). In cells, CBS augments CRY1-mediated repression of the CLOCK/BMAL1 complex and shortens circadian period. Notably, we find that mutant CBS-I278T protein, the most common cause of homocystinuria, does not bind CRY1 or regulate its repressor activity. Transgenic CbsZn/Zn mice, while maintaining circadian locomotor activity period, exhibit reduced circadian power and increased expression of E-BOX outputs. CBS function is reciprocally influenced by CRY1 binding. CRY1 modulates enzymatic activity of the CBS. Liver extracts from Cry1-/- mice show reduced CBS activity that normalizes after the addition of exogenous wild-type (WT) CRY1. Metabolomic analysis of WT, CbsZn/Zn , Cry1-/- , and Cry2-/- samples highlights the metabolic importance of endogenous CRY1. We observed temporal variation in one-carbon and transsulfuration pathways attributable to CRY1-induced CBS activation. CBS-CRY1 binding provides a post-translational switch to modulate cellular circadian physiology and metabolic control.
Collapse
Affiliation(s)
- Sibel Cal-Kayitmazbatir
- Department Molecular Biology and Genetics, Koc University
Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Eylem Kulkoyluoglu-Cotul
- Department Chemical and Biological Engineering Koc
University Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Jacqueline Growe
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher P. Selby
- Department of Biochemistry and Biophysics, University of
North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Seth D. Rhoades
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dania Malik
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hasimcan Oner
- Department Chemical and Biological Engineering Koc
University Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Hande Asimgil
- Department Chemical and Biological Engineering Koc
University Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Lauren J. Francey
- Divisions of Human Genetics and Immunobiology, Cincinnati
Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of
North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Warren D. Kruger
- Cancer Biology Program, Fox Chase Cancer Center,
Philadelphia, PA, USA
| | - John B. Hogenesch
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Divisions of Human Genetics and Immunobiology, Cincinnati
Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Aalim Weljie
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ron C. Anafi
- Department of Medicine, Chronobiology and Sleep Institute,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ibrahim Halil Kavakli
- Department Molecular Biology and Genetics, Koc University
Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
- Department Chemical and Biological Engineering Koc
University Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| |
Collapse
|
38
|
Inactivation of Salmonella on black peppercorns using an integrated ultraviolet-C and cold plasma intervention. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
Gul S, Aydin C, Ozcan O, Gurkan B, Surme S, Baris I, Kavakli IH. The Arg-293 of Cryptochrome1 is responsible for the allosteric regulation of CLOCK-CRY1 binding in circadian rhythm. J Biol Chem 2020; 295:17187-17199. [PMID: 33028638 PMCID: PMC7863883 DOI: 10.1074/jbc.ra120.014333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/01/2020] [Indexed: 11/06/2022] Open
Abstract
Mammalian circadian clocks are driven by transcription/translation feedback loops composed of positive transcriptional activators (BMAL1 and CLOCK) and negative repressors (CRYPTOCHROMEs (CRYs) and PERIODs (PERs)). CRYs, in complex with PERs, bind to the BMAL1/CLOCK complex and repress E-box-driven transcription of clock-associated genes. There are two individual CRYs, with CRY1 exhibiting higher affinity to the BMAL1/CLOCK complex than CRY2. It is known that this differential binding is regulated by a dynamic serine-rich loop adjacent to the secondary pocket of both CRYs, but the underlying features controlling loop dynamics are not known. Here we report that allosteric regulation of the serine-rich loop is mediated by Arg-293 of CRY1, identified as a rare CRY1 SNP in the Ensembl and 1000 Genomes databases. The p.Arg293His CRY1 variant caused a shortened circadian period in a Cry1-/-Cry2-/- double knockout mouse embryonic fibroblast cell line. Moreover, the variant displayed reduced repressor activity on BMAL1/CLOCK driven transcription, which is explained by reduced affinity to BMAL1/CLOCK in the absence of PER2 compared with CRY1. Molecular dynamics simulations revealed that the p.Arg293His CRY1 variant altered a communication pathway between Arg-293 and the serine loop by reducing its dynamicity. Collectively, this study provides direct evidence that allosterism in CRY1 is critical for the regulation of circadian rhythm.
Collapse
Affiliation(s)
- Seref Gul
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Cihan Aydin
- Department of Molecular Biology and Genetics, Istanbul Medeniyet University, Istanbul, Turkey
| | - Onur Ozcan
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Berke Gurkan
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Saliha Surme
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Ibrahim Baris
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Ibrahim Halil Kavakli
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey; Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.
| |
Collapse
|
40
|
Navarro E, Niemann N, Kock D, Dadaeva T, Gutiérrez G, Engelsdorf T, Kiontke S, Corrochano LM, Batschauer A, Garre V. The DASH-type Cryptochrome from the Fungus Mucor circinelloides Is a Canonical CPD-Photolyase. Curr Biol 2020; 30:4483-4490.e4. [DOI: 10.1016/j.cub.2020.08.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
|
41
|
Cloning, expression, and characterization of a novel plant type cryptochrome gene from the green alga Haematococcus pluvialis. Protein Expr Purif 2020; 172:105633. [PMID: 32259580 DOI: 10.1016/j.pep.2020.105633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/30/2020] [Indexed: 11/20/2022]
Abstract
A full-length cDNA sequence of plant type CRY (designated Hae-P-CRY) was cloned from the green alga Haematococcus pluvialis. The cDNA sequence was 3608 base pairs (bp) in length, which contained a 2988-bp open reading frame encoding 995 amino acids with molecular mass of 107.7 kDa and isoelectric point of 6.19. Multiple alignment analysis revealed that the deduced amino acid sequence of Hae-P-CRY shared high identity of 47-66% with corresponding plant type CRYs from other eukaryotes. The catalytic motifs of plant type CRYs were detected in the amino acid sequence of Hae-P-CRY including the typical PHR and CTE domains. Phylogenetic analysis showed that the Hae-P-CRY was grouped together with other plant type CRYs from green algae and higher plants, which distinguished from other distinct groups. The transcriptional level of Hae-P-CRY was strongly decreased after 0-4 h under HL stress. In addition, the Hae-P-CRY gene was heterologously expressed in Escherichia coli BL21 (DE3) and successfully purified. The typical spectroscopic characteristics of plant type CRYs were present in Hae-P-CRY indicated that it may be an active enzyme, which provided valuable clue for further functional investigation in the green alga H. pluvialis. These results lay the foundation for further function and interaction protein identification involved in CRYs mediated signal pathway under HL stress in H. pluvialis.
Collapse
|
42
|
Doruk YU, Yarparvar D, Akyel YK, Gul S, Taskin AC, Yilmaz F, Baris I, Ozturk N, Türkay M, Ozturk N, Okyar A, Kavakli IH. A CLOCK-binding small molecule disrupts the interaction between CLOCK and BMAL1 and enhances circadian rhythm amplitude. J Biol Chem 2020; 295:3518-3531. [PMID: 32019867 DOI: 10.1074/jbc.ra119.011332] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/28/2020] [Indexed: 12/31/2022] Open
Abstract
Proper function of many physiological processes requires a robust circadian clock. Disruptions of the circadian clock can result in metabolic diseases, mood disorders, and accelerated aging. Therefore, identifying small molecules that specifically modulate regulatory core clock proteins may potentially enable better management of these disorders. In this study, we applied a structure-based molecular-docking approach to find small molecules that specifically bind to the core circadian regulator, the transcription factor circadian locomotor output cycles kaput (CLOCK). We identified 100 candidate molecules by virtual screening of ∼2 million small molecules for those predicted to bind closely to the interface in CLOCK that interacts with its transcriptional co-regulator, Brain and muscle Arnt-like protein-1 (BMAL1). Using a mammalian two-hybrid system, real-time monitoring of circadian rhythm in U2OS cells, and various biochemical assays, we tested these compounds experimentally and found one, named CLK8, that specifically bound to and interfered with CLOCK activity. We show that CLK8 disrupts the interaction between CLOCK and BMAL1 and interferes with nuclear translocation of CLOCK both in vivo and in vitro Results from further experiments indicated that CLK8 enhances the amplitude of the cellular circadian rhythm by stabilizing the negative arm of the transcription/translation feedback loop without affecting period length. Our results reveal CLK8 as a tool for further studies of CLOCK's role in circadian rhythm amplitude regulation and as a potential candidate for therapeutic development to manage disorders associated with dampened circadian rhythms.
Collapse
Affiliation(s)
- Yagmur Umay Doruk
- Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Darya Yarparvar
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Yasemin Kubra Akyel
- Department of Pharmacology, Istanbul University Faculty of Pharmacy, TR-34116 Beyazit, Istanbul, Turkey
| | - Seref Gul
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Ali Cihan Taskin
- Embryo Manipulation Laboratory, Animal Research Facility, Research Center For Translational Medicine, Koc University, Rumelifeneri yolu, Sariyer, Istanbul, Turkey
| | - Fatma Yilmaz
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ibrahim Baris
- Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Nuri Ozturk
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Metin Türkay
- Department of Industrial Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Narin Ozturk
- Department of Pharmacology, Istanbul University Faculty of Pharmacy, TR-34116 Beyazit, Istanbul, Turkey
| | - Alper Okyar
- Department of Pharmacology, Istanbul University Faculty of Pharmacy, TR-34116 Beyazit, Istanbul, Turkey
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey; Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey.
| |
Collapse
|
43
|
Hammad M, Albaqami M, Pooam M, Kernevez E, Witczak J, Ritz T, Martino C, Ahmad M. Cryptochrome mediated magnetic sensitivity in Arabidopsis occurs independently of light-induced electron transfer to the flavin. Photochem Photobiol Sci 2020; 19:341-352. [DOI: 10.1039/c9pp00469f] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arabidopsis cryptochrome-dependent magnetosensitivity occurs via a reaction that does not require light. This excludes radical pairs formed during light-triggered electron transfer to the flavin.
Collapse
Affiliation(s)
- M. Hammad
- Sorbonne Universités – UPMC Paris 6 – CNRS
- UMR8256 - IBPS
- Photobiology Research Group
- 75005 Paris
- France
| | - M. Albaqami
- Sorbonne Universités – UPMC Paris 6 – CNRS
- UMR8256 - IBPS
- Photobiology Research Group
- 75005 Paris
- France
| | - M. Pooam
- Sorbonne Universités – UPMC Paris 6 – CNRS
- UMR8256 - IBPS
- Photobiology Research Group
- 75005 Paris
- France
| | - E. Kernevez
- Sorbonne Universités – UPMC Paris 6 – CNRS
- UMR8256 - IBPS
- Photobiology Research Group
- 75005 Paris
- France
| | - J. Witczak
- Sorbonne Universités – UPMC Paris 6 – CNRS
- UMR8256 - IBPS
- Photobiology Research Group
- 75005 Paris
- France
| | - T. Ritz
- Department of Physics and Astronomy
- University of California at Irvine
- USA
| | - C. Martino
- Department of Biomedical and Chemical Engineering and Science
- Florida Institute of Technology
- Melbourne
- USA
| | - M. Ahmad
- Sorbonne Universités – UPMC Paris 6 – CNRS
- UMR8256 - IBPS
- Photobiology Research Group
- 75005 Paris
- France
| |
Collapse
|
44
|
Nimeth BA, Riegler S, Kalyna M. Alternative Splicing and DNA Damage Response in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:91. [PMID: 32140165 PMCID: PMC7042379 DOI: 10.3389/fpls.2020.00091] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/21/2020] [Indexed: 05/06/2023]
Abstract
Plants are exposed to a variety of abiotic and biotic stresses that may result in DNA damage. Endogenous processes - such as DNA replication, DNA recombination, respiration, or photosynthesis - are also a threat to DNA integrity. It is therefore essential to understand the strategies plants have developed for DNA damage detection, signaling, and repair. Alternative splicing (AS) is a key post-transcriptional process with a role in regulation of gene expression. Recent studies demonstrate that the majority of intron-containing genes in plants are alternatively spliced, highlighting the importance of AS in plant development and stress response. Not only does AS ensure a versatile proteome and influence the abundance and availability of proteins greatly, it has also emerged as an important player in the DNA damage response (DDR) in animals. Despite extensive studies of DDR carried out in plants, its regulation at the level of AS has not been comprehensively addressed. Here, we provide some insights into the interplay between AS and DDR in plants.
Collapse
|
45
|
Dikbas UM, Tardu M, Canturk A, Gul S, Ozcelik G, Baris I, Ozturk N, Kavakli IH. Identification and Characterization of a New Class of (6-4) Photolyase from Vibrio cholerae. Biochemistry 2019; 58:4352-4360. [PMID: 31578858 DOI: 10.1021/acs.biochem.9b00766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Light is crucial for many biological activities of most organisms, including vision, resetting of circadian rhythm, photosynthesis, and DNA repair. The cryptochrome/photolyase family (CPF) represents an ancient group of UV-A/blue light sensitive proteins that perform different functions such as DNA repair, circadian photoreception, and transcriptional regulation. The CPF is widely distributed throughout all organisms, including marine prokaryotes. The bacterium Vibrio cholerae was previously shown to have a CPD photolyase that repairs UV-induced thymine dimers and two CRY-DASHs that repair UV-induced single-stranded DNA damage. Here, we characterize a hypothetical gene Vca0809 encoding a new member of CPF in this organism. The spectroscopic analysis of the purified protein indicated that this enzyme possessed a catalytic cofactor, FAD, and photoantenna chromophore 6,7-dimethyl 8-ribityl-lumazin. With a slot blot-based DNA repair assay, we showed that it possessed (6-4) photolyase activity. Further phylogenetic and computational analyses enabled us to classify this gene as a member of the family of iron-sulfur bacterial cryptochromes and photolyases (FeS-BCP). Therefore, we named this gene Vc(6-4) FeS-BCP.
Collapse
Affiliation(s)
- Ugur Meric Dikbas
- Department of Molecular Biology and Genetics , Koc University , Rumelifeneri Yolu, Sariyer , Istanbul 34450 , Turkey
| | - Mehmet Tardu
- Department of Chemical and Biological Engineering , Koc University , Rumelifeneri Yolu, Sariyer , Istanbul 34450 , Turkey
| | - Asena Canturk
- Department of Molecular Biology and Genetics , Gebze Technical University , Gebze 41400 , Kocaeli , Turkey
| | - Seref Gul
- Department of Chemical and Biological Engineering , Koc University , Rumelifeneri Yolu, Sariyer , Istanbul 34450 , Turkey
| | - Gozde Ozcelik
- Department of Molecular Biology and Genetics , Gebze Technical University , Gebze 41400 , Kocaeli , Turkey
| | - Ibrahim Baris
- Department of Molecular Biology and Genetics , Koc University , Rumelifeneri Yolu, Sariyer , Istanbul 34450 , Turkey
| | - Nuri Ozturk
- Department of Molecular Biology and Genetics , Gebze Technical University , Gebze 41400 , Kocaeli , Turkey
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics , Koc University , Rumelifeneri Yolu, Sariyer , Istanbul 34450 , Turkey.,Department of Chemical and Biological Engineering , Koc University , Rumelifeneri Yolu, Sariyer , Istanbul 34450 , Turkey
| |
Collapse
|
46
|
|
47
|
Berntsson O, Rodriguez R, Henry L, Panman MR, Hughes AJ, Einholz C, Weber S, Ihalainen JA, Henning R, Kosheleva I, Schleicher E, Westenhoff S. Photoactivation of Drosophila melanogaster cryptochrome through sequential conformational transitions. SCIENCE ADVANCES 2019; 5:eaaw1531. [PMID: 31328161 PMCID: PMC6636987 DOI: 10.1126/sciadv.aaw1531] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/13/2019] [Indexed: 05/27/2023]
Abstract
Cryptochromes are blue-light photoreceptor proteins, which provide input to circadian clocks. The cryptochrome from Drosophila melanogaster (DmCry) modulates the degradation of Timeless and itself. It is unclear how light absorption by the chromophore and the subsequent redox reactions trigger these events. Here, we use nano- to millisecond time-resolved x-ray solution scattering to reveal the light-activated conformational changes in DmCry and the related (6-4) photolyase. DmCry undergoes a series of structural changes, culminating in the release of the carboxyl-terminal tail (CTT). The photolyase has a simpler structural response. We find that the CTT release in DmCry depends on pH. Mutation of a conserved histidine, important for the biochemical activity of DmCry, does not affect transduction of the structural signal to the CTT. Instead, molecular dynamics simulations suggest that it stabilizes the CTT in the resting-state conformation. Our structural photocycle unravels the first molecular events of signal transduction in an animal cryptochrome.
Collapse
Affiliation(s)
- Oskar Berntsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
- MAX IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Ryan Rodriguez
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Léocadie Henry
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Matthijs R. Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Ashley J. Hughes
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Christopher Einholz
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Stefan Weber
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Janne A. Ihalainen
- Nanoscience Center, Department of Biological and Environmental Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Erik Schleicher
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
48
|
Cavga AD, Tardu M, Korkmaz T, Keskin O, Ozturk N, Gursoy A, Kavakli IH. Cryptochrome deletion in p53 mutant mice enhances apoptotic and anti-tumorigenic responses to UV damage at the transcriptome level. Funct Integr Genomics 2019; 19:729-742. [DOI: 10.1007/s10142-019-00680-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/05/2019] [Accepted: 04/15/2019] [Indexed: 10/26/2022]
|
49
|
Comparative RNA-seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under short- and long-term water deficits. Funct Integr Genomics 2019; 19:715-727. [DOI: 10.1007/s10142-019-00675-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 02/26/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
|
50
|
Portero LR, Alonso-Reyes DG, Zannier F, Vazquez MP, Farías ME, Gärtner W, Albarracín VH. Photolyases and Cryptochromes in UV-resistant Bacteria from High-altitude Andean Lakes. Photochem Photobiol 2019; 95:315-330. [DOI: 10.1111/php.13061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/18/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Luciano Raúl Portero
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA); Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; Tucumán Argentina
- Centro de Investigaciones y Servicios de Microscopía Electrónica (CISME-CONICET-UNT); CCT, CONICET; Tucumán Argentina
| | - Daniel G. Alonso-Reyes
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA); Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; Tucumán Argentina
- Centro de Investigaciones y Servicios de Microscopía Electrónica (CISME-CONICET-UNT); CCT, CONICET; Tucumán Argentina
| | - Federico Zannier
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA); Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; Tucumán Argentina
- Centro de Investigaciones y Servicios de Microscopía Electrónica (CISME-CONICET-UNT); CCT, CONICET; Tucumán Argentina
| | - Martín P. Vazquez
- Instituto de Agrobiotecnología de Rosario (INDEAR); Predio CCT Rosario; Santa Fe Argentina
| | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA); Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; Tucumán Argentina
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry; University of Leipzig; Leipzig Germany
| | - Virginia Helena Albarracín
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA); Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; Tucumán Argentina
- Centro de Investigaciones y Servicios de Microscopía Electrónica (CISME-CONICET-UNT); CCT, CONICET; Tucumán Argentina
- Facultad de Ciencias Naturales; Instituto Miguel Lillo; Universidad Nacional de Tucumán; Tucumán Argentina
| |
Collapse
|