1
|
Muralitharan RV, Masre SF, Basri DF, Ghazali AR. Pterostilbene and resveratrol: Exploring their protective mechanisms against skin photoaging - A scoping review. Biochem Biophys Rep 2025; 42:102011. [PMID: 40290806 PMCID: PMC12022656 DOI: 10.1016/j.bbrep.2025.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Prolonged ultraviolet (UV) exposure depletes the skin's endogenous antioxidants, leading to photoaging. Exogenous antioxidants are essential to counter this, with stilbenes such as pterostilbene and resveratrol emerging as promising candidates due to their antioxidant, anti-inflammatory and anti-cancer properties. The current scoping review presents an overview of the evidence on the effects of pterostilbene and resveratrol on skin photoaging. A literature search was conducted using PubMed, Scopus, and Web of Science databases in April 2025. Original research articles that investigated the effects of pterostilbene and resveratrol on skin photoaging in cells, animals, or humans were included. 9 eligible articles were included in this review. The findings suggest that resveratrol significantly improves skin photoaging, while preliminary evidence indicates that pterostilbene may offer advantages over resveratrol. However, due to the limited research on pterostilbene, further studies are required to confirm its efficacy. Key considerations in establishing valid in vitro and in vivo models, alongside macroscopic and histologic features of photoaging, were also discussed. In conclusion, while resveratrol shows significant promise in combating skin photoaging, pterostilbene is still in the early exploration phases. Advancing to human trials is crucial to confirm the efficacy of these stilbenes in preventing and treating photoaging.
Collapse
Affiliation(s)
- Raveena Vaidheswary Muralitharan
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Fathiah Masre
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Dayang Fredalina Basri
- Center for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ahmad Rohi Ghazali
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Putri PHL, Alamudi SH, Dong X, Fu Y. Extracellular vesicles in age-related diseases: disease pathogenesis, intervention, and biomarker. Stem Cell Res Ther 2025; 16:263. [PMID: 40437603 PMCID: PMC12121224 DOI: 10.1186/s13287-025-04374-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/02/2025] [Indexed: 06/01/2025] Open
Abstract
Aging is a multifactorial biological process characterized by the irreversible accumulation of molecular damage, leading to an increased risk of age-related diseases. With the global prominent rise in aging populations, elucidating the mechanisms underlying the aging process and developing strategies to combat age-related diseases have become a pressing priority. Extracellular vesicles (EVs) have gained significant attention due to their role in intercellular communication. EVs are known for their ability to deliver biocargoes, such as miRNA, proteins, and lipids, implicating their involvement in disease pathogenesis and intervention. In this review article, we explore the dual role of EVs in age-related diseases: contributing to the pathogenesis of diseases by transferring deleterious molecules, while also offering therapeutic ability by transferring beneficial molecules. We also highlight the application of EVs as biomarkers for early diagnosis of age-related diseases, paving the way for early intervention and precision medicine. Additionally, we discuss how analysing the composition of EVs cargo can provide insights into disease progression. Finally, we address the challenges and future perspectives of EV-based-therapy in clinical translation, including standardization of EVs isolation methods and improving cargo specificity.
Collapse
Affiliation(s)
- Puan Haliza Lintang Putri
- BGI Research, Hangzhou, 310030, China
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16242, Indonesia
| | - Samira Husen Alamudi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16242, Indonesia
| | - Xuan Dong
- BGI Research, Hangzhou, 310030, China
| | - Ying Fu
- BGI Research, Hangzhou, 310030, China.
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Zhang L, Yu Z, Liu S, Liu F, Zhou S, Zhang Y, Tian Y. Advanced progress of adipose-derived stem cells-related biomaterials in maxillofacial regeneration. Stem Cell Res Ther 2025; 16:110. [PMID: 40038758 PMCID: PMC11881347 DOI: 10.1186/s13287-025-04191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025] Open
Abstract
The tissue injury in maxillofacial region affects patients' physical function and specific mental health. This decade, utilizing regenerative medicine to achieve tissue regeneration has been proved a hopeful direction. Seed cells play a vital role in regeneration strategy. Among various kinds of stem cells that effectively to regenerate the soft and hard tissue of maxillofacial region, adipose-derived stem cells (ADSCs) have gained increasing interests of researchers due to their abundant sources, easy availability and multi-differentiation potentials in recent decades. Thus, this review focuses on the advances of ADSCs-based biomaterial in maxillofacial regeneration from the progress and strategies perspective. It is structured as introducing the properties of ADSCs, biomaterials (polymers, ceramics and metals) within ADSCs and the latest applications of ADSCs in maxillofacial regeneration, including temporomandibular joint (TMJ), bone, periodontal tissue, tooth, nerve as well as cosmetic field. In order to further facilitate ADSCs-based therapies as an emerging platform for regenerative medicine, this review also emphasized current challenges in translating ADSC-based therapies into clinical application and dissussed the strategies to solve these obstacles.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Zihang Yu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Shuchang Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Fan Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Shijie Zhou
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Yuanyuan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Yulou Tian
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China.
| |
Collapse
|
4
|
Hu L, Huang Z, Weng J, Huang C, Zhang L. Effect and Mechanism of Tricholoma matsutake Extract on UVA and UVB Radiation-Induced Skin Aging. J Microbiol Biotechnol 2025; 35:e2411085. [PMID: 40147922 PMCID: PMC11985413 DOI: 10.4014/jmb.2411.11085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 03/29/2025]
Abstract
Ultraviolet (UV) radiation often causes skin aging, inflammation, cancer and other related skin diseases. In this study, the main components of Tricholoma matsutake extract (TME) were identified using UPLC-Q-TOF-MS, and their anti-photoaging effects were assessed through UV-induced cell and animal models. The key components identified were D-mannitol (27.41%), DL-malic acid (14%), alginate (12.5%), isoleucine (4.82%), and phenylalanine (4.31%), all of which played roles in anti-aging and UV protection. TME (50-100 mg/ml) significantly alleviated UVA/UVB-induced erythema and wrinkles in mice. Pathological staining showed that TME suppressed UV-induced epidermal hyperplasia (p < 0.05), reduced collagen damage (p < 0.01), and decreased mast cell infiltration (p < 0.01), while down-regulating inflammatory markers such as IL-6, IL-1β, and TNF-α. TME also upregulated type I collagen (COL-1). Flow cytometry results demonstrated that high-dose TME inhibited UV-induced apoptosis and reduced reactive oxygen species (ROS) in HaCaT cells (p < 0.05). Immunofluorescence and scratch migration assays showed that TME promoted PPAR-α expression, reduced inflammation, and supported skin repair (p < 0.01). Transcriptomic and metabolomic analyses indicated that TME regulated inflammation-related signaling pathways, helping to prevent skin aging. TME is a promising natural product for skin care and treatment of oxidative stress and inflammation-related diseases.
Collapse
Affiliation(s)
- Lu Hu
- SHE LOG (Guangzhou) Biotechnology Co., Ltd., Guangzhou 510000, P.R. China
| | - Zhenhai Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510000, P.R. China
| | - Jiyu Weng
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510000, P.R. China
| | - Chujie Huang
- SHE LOG (Guangzhou) Biotechnology Co., Ltd., Guangzhou 510000, P.R. China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510000, P.R. China
| |
Collapse
|
5
|
Wang Y, Zhou Y, Li K. The role of lncRNA in the differentiation of adipose-derived stem cells: from functions to mechanism. J Mol Med (Berl) 2025; 103:125-135. [PMID: 39708157 DOI: 10.1007/s00109-024-02507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Adipose-derived stem cells (ADSCs) have become one of the best seed cells widely studied and concerned in tissue engineering because of their rich sources and excellent multi-directional differentiation ability, which are expected to play a practical application role in tissue defect, osteoporosis, plastic surgery, and other fields. However, the differentiation direction of ADSCs is regulated by complex factors. Long non-coding RNAs (lncRNAs) are RNA molecules longer than 500 nucleotides that do not encode proteins and can act as signaling RNAs in response to intracellular and extracellular stimuli. Recently, accumulating evidence has revealed that lncRNAs could regulate the cell cycle and differentiation direction of ADSCs through various mechanisms, including histone modification, binding to RNA-binding proteins, and regulating the expression of miRNAs. Therefore, enriching and elucidating its mechanism of action as well as targeting lncRNAs to regulate ADSCs differentiation have potential prospects in tissue regeneration applications such as bone, blood vessels, and adipose. In this review, we summarize the role and mechanism of lncRNAs and its complexes in the multi-directional differentiation of ADSCs and discuss some potential approaches that can exert therapeutic effects on tissue defects by modulating the expression level of lncRNAs in ADSCs. Our work might provide some new research directions for the clinical applications of tissue engineering.
Collapse
Affiliation(s)
- Yujing Wang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Yuxi Zhou
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Kun Li
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Central South University, Changsha, 410000, China.
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Han J, Xu K, Xu T, Song Q, Duan T, Yang J. The functional regulation between extracellular vesicles and the DNA damage responses. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025; 795:108532. [PMID: 39828141 DOI: 10.1016/j.mrrev.2025.108532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The DNA damage response (DDR) is a crucial regulatory mechanism for the survival of organisms, and irregularity of DDR may contribute to the development of various diseases, including tumors, making it is a prominent topic in therapeutic research. Extracellular vesicles (EVs), as important mediators of intercellular communication, have been extensively studied in recent years. Notably, an increasing number of studies have revealed a strong connection between DDR and EVs. On one hand, DNA damage affects the release of EVs and their compositional content; on the other hand, EVs can dictate cell survival or death by modulating DDR in both the parental and the recipient cells. This review outlines current progress in the inter-regulatory relationship between EVs and DDR, with special emphasis on the effects of EVs derived from various sources on DDR in recipient cells. In addition, the potential applications of EVs in research and tumor therapy are discussed.
Collapse
Affiliation(s)
- Jinyi Han
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Kexin Xu
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Ting Xu
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Qin Song
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Ting Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jun Yang
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China; Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research, The Affiliated Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Cui H, Fu LQ, Teng Y, He JJ, Shen YY, Bian Q, Wang TZ, Wang MX, Pang XW, Lin ZW, Zhu MG, Cai Y, Li YY, Chen JY, Mou XZ, Fan YB. Human Hair Follicle Mesenchymal Stem Cell-Derived Exosomes Attenuate UVB-Induced Photoaging via the miR-125b-5p/TGF-β1/Smad Axis. Biomater Res 2025; 29:0121. [PMID: 39807308 PMCID: PMC11725759 DOI: 10.34133/bmr.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 10/09/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored. We successfully isolated HFMSC-Exos using the ultracentrifugation technique. In cellular experiments, we assessed the migration of human dermal fibroblasts (HDFs) through scratch and transwell assays, evaluated the angiogenesis of human umbilical vein endothelial cells through angiogenesis assays, and examined the expression levels of collagen and matrix metalloproteinase 1 (MMP-1) using Western blotting and quantitative reverse transcription polymerase chain reaction. Furthermore, we established a nude mouse model of photoaging to observe wrinkle formation on the dorsal surface of the animals, as well as to assess dermal thickness and collagen fiber generation through histological staining. Ultimately, we performed RNA sequencing on skin tissues from mice before and after treatment to elucidate the relevant underlying mechanisms. Our findings revealed that HFMSC-Exos effectively enhanced the migration and proliferation of HDFs and upregulated the expressions of transforming growth factor-β1 (TGF-β1), p-Smad2/p-Smad3, collagen type 1, and collagen type 3 while concurrently down-regulating MMP-1 levels in HDFs. Additionally, mice in the HFMSC-Exo group showed quicker wrinkle healing and increased collagen production. HFMSC-Exos miR-125b-5p was demonstrated to reduce skin photoaging by increasing profibrotic levels via TGF-β1 expression. UV-irradiated HDFs and photoaged nude mouse skin showed low TGF-β1 expressions, whereas overexpression of TGF-β1 in HDFs increased collagen type 1, collagen type 3, and p-Smad2/p-Smad3 expressions while decreasing MMP-1 expression. HDFs overexpressing TGF-β1 produced more collagen and altered the Smad pathway. This study demonstrated, both in vitro and in vivo, that HFMSC-Exos increased collagen formation, promoted HDF cell proliferation and migration, and reversed the senescence of UV-irradiated HDFs. TGF-β1 was identified as a target of HFMSC-Exos miR-125b-5p, which controls photoaging via regulating the Smad pathway. The antiphotoaging capabilities of HFMSC-Exos may occur via the miR-125b-5p/TGF-β1/Smad axis, suggesting a promising therapeutic approach for treating skin photoaging.
Collapse
Affiliation(s)
- Hong Cui
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou 310014, China
| | - Luo-Qin Fu
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou 310014, China
| | - Yan Teng
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Jun-Jia He
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou 310014, China
| | - Ye-Yu Shen
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou 310014, China
| | - Qiong Bian
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou 310014, China
| | - Ting-Zhang Wang
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province,
Zhejiang Institute of Microbiology, Hangzhou 310012, China
| | - Mei-Xia Wang
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province,
Zhejiang Institute of Microbiology, Hangzhou 310012, China
| | - Xiang-Wei Pang
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province,
Zhejiang Institute of Microbiology, Hangzhou 310012, China
| | - Zhi-Wei Lin
- HealthRegen (Hangzhou) Biotechnology Co., Ltd, Hangzhou 310052, China
| | - Min-Gang Zhu
- Department of Dermatology,
The First People’s Hospital of Jiashan, Jiaxing 314100, China
| | - Yu Cai
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou 310014, China
| | - Yang-Yang Li
- Women’s Hospital,
Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jin-Yang Chen
- Department of Dermatology,
The First People’s Hospital of Jiashan, Jiaxing 314100, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou 310014, China
| | - Yi-Bin Fan
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| |
Collapse
|
8
|
Chen X, Zhou F, Lin Y, Xia Y, Zhang J, Hou W, Sun Y, Lai W, Zheng Y. MiR-4298 and lncKRTAP5-6-3 regulated Cathepsin D expression through ERK-MAPK signaling pathway in chronic UVB-damaged HaCaT cells. Front Med (Lausanne) 2025; 11:1485224. [PMID: 39871835 PMCID: PMC11769817 DOI: 10.3389/fmed.2024.1485224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/23/2024] [Indexed: 01/29/2025] Open
Abstract
Objective MiRNAs and lncRNAs are important regulators in the process of skin photoaging. In this study, we investigated the expression changes and interactions between miR4298 and lncKRTAP5-6-3 in chronically UVB-damaged human keratinocyte cell line (HaCaT) cells and explored miR4298-MAPK/ERK signaling pathway-Cathepsin D-lncKRTAP5-6-3 mechanisms in photoaging cells. Methods HaCaT cells were irradiated with 12 mJ/cm2 UVB once a day for 7 days. miR-4298 mimics and miR-4298 inhibitors were transfected into HaCaT cells by lipo3000 transfection reagent, and the HaCaT cells were divided into three groups: blank control group; UVB-damaged group; and UVB damage+miR-4298 regulation (overexpression or inhibition) group. The expression levels of miR4298 and lncKRTAP5-6-3 were quantitatively analyzed using RT-PCR, while the expression of Cathepsin D and MAPK/ERK signaling pathway proteins was detected using Western blot. Results After 7 consecutive days of UVB irradiation, the expression of miR-4298 decreased by 0.64 ± 0.06 (P < 0.001) compared to the un-irradiated HaCaT cells, and the expression of the KRTAP5-6-3 decreased by 0.80 ± 0.13 (P < 0.001) compared to the control group. The expression of p-ERK signaling was increased by 0.9437 ± 0.1186 (P < 0.0001), and Cathepsin D was decreased by 0.6163 ± 0.075 (P < 0.0001). In HaCaT cells transfected with miR-4298 mimics and then irradiated by UVB for 7 days, the expression of lncKRTAP5-6-3 was increased to 0.5114 ± 0.1438 (P < 0.05)-fold, and the phosphorylation level of ERK signaling was decreased by 0.3880 ± 0.1185 (P < 0.01), while Cathepsin D expression was increased by 0.2617 ± 0.0749 (P < 0.0001) compared to the UVB-damaged group. In HaCaT cells transfected with miR-4298 inhibitors and then irradiated by UVB for 7 days, lncKRTAP5-6-3 was decreased by 0.1697 ± 0.1383, the phosphorylation level of ERK signaling was increased by 1.096 ± 0.7836 (P < 0.05), while Cathepsin D expression was decreased by 0.05197 ± 0.24827 compared to the UVB-damaged group. Conclusion The synergistic effects of miR4298 and lncKRTAP5-6-3 play important roles in chronic UVB-damaged HaCaT cells by regulating the MAPK/ERK signaling pathway and Cathepsin D expression. This study presents novel targets for intervening in chronic ultraviolet damage (photoaging) skin and UV-related dermatoses.
Collapse
Affiliation(s)
- Xinling Chen
- Department of Dermato-Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Feng Zhou
- Department of Dermato-Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yao Lin
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Xia
- Department of Dermato-Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Zhang
- Department of Dermato-Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenyi Hou
- Department of Dermato-Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Sun
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Lai
- Department of Dermato-Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Zheng
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Wang N, Ma F, Song H, He N, Zhang H, Li J, Liu Q, Xu C. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Regenerative Applications and Radiotherapy. Cell Transplant 2025; 34:9636897241311019. [PMID: 39780320 PMCID: PMC11713979 DOI: 10.1177/09636897241311019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Tissue repair is an extremely crucial part of clinical treatment. During the course of disease treatment, surgery, chemotherapy, and radiotherapy cause tissue damage. On the other hand, Normal tissue from accidental or therapeutic exposure to high-dose radiation can cause severe tissue damage. There is an urgent need for developing medical countermeasures against radiation injury for tissue repair. Tissue repair involves the regeneration, proliferation, differentiation, and migration of tissue cells; imbalance of local tissue homeostasis, progressive chronic inflammation; decreased cell activity and stem cell function; and wound healing. Although many clinical treatments are currently available for tissue repair, they are expensive. The long recovery time and some unavoidable complications such as cell damage and the inflammatory reaction caused by radiotherapy have led to unsatisfactory results. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have similar tissue repair functions as MSCs. In tissue damage, EVs can be used as an alternative to stem cell therapy, thereby avoiding related complications such as immunological rejection. EVs play a major role in regulating tissue damage, anti-inflammation, pro-proliferation, and immune response, thus providing a diversified and efficient solution for the repair of disease- and radiotherapy-induced tissue damage. This article reviews the research progress of mesenchymal stem cell-derived EVs in promoting the repair of tissue including heart, lung, liver, intestine, skin, blood system, central nervous system, and tissue damage caused by radiotherapy, thereby aiming to offer new directions and ideas for the radiotherapy and regenerative applications.
Collapse
Affiliation(s)
- Ning Wang
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, China
| | - Feifei Ma
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, China
| | - Huijuan Song
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Huanteng Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Jianguo Li
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, China
| | - Qiang Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Chang Xu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| |
Collapse
|
10
|
Zhu X, Li W, Lu M, Shang J, Zhou J, Lin L, Liu Y, Xing J, Zhang M, Zhao S, Lu J, Shi X. M 6A demethylase FTO-stabilized exosomal circBRCA1 alleviates oxidative stress-induced granulosa cell damage via the miR-642a-5p/FOXO1 axis. J Nanobiotechnology 2024; 22:367. [PMID: 38918838 PMCID: PMC11197183 DOI: 10.1186/s12951-024-02583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is an important cause of female infertility and seriously impacts the physical and psychological health of patients. Human umbilical cord mesenchymal stem cell-derived exosomes (HucMSCs-Exs, H-Exs) have exhibited protective effects on ovarian function with unclear mechanisms. METHODS A comprehensive analysis of the Gene Expression Omnibus (GEO) database were used to identify POI-associated circRNAs and miRNAs. The relationship between HucMSC-derived exosomal circBRCA1/miR-642a-5p/FOXO1 axis and POI was examined by RT-qPCR, Western blotting, reactive oxygen species (ROS) staining, senescence-associated β-gal (SA-β-gal) staining, JC-1 staining, TEM, oxygen consumption rate (OCR) measurements and ATP assay in vivo and in vitro. RT-qPCR detected the expression of circBRCA1 in GCs and serum of patients with normal ovarian reserve function (n = 50) and patients with POI (n = 50); then, the correlation of circBRCA1 with ovarian reserve function indexes was analyzed. RESULTS Herein, we found that circBRCA1 was decreased in the serum and ovarian granulosa cells (GCs) of patients with POI and was associated with decreased ovarian reserve. H-Exs improved the disorder of the estrous cycles and reproductive hormone levels, reduced the number of atretic follicles, and alleviated the apoptosis and senescence of GCs in rats with POI. Moreover, H-Exs mitigated mitochondrial damage and reversed the reduced circBRCA1 expression induced by oxidative stress in GCs. Mechanistically, FTO served as an eraser to increase the stability and expression of circBRCA1 by mediating the m6A demethylation of circBRCA1, and exosomal circBRCA1 sponged miR-642a-5p to block its interaction with FOXO1. CircBRCA1 insufficiency aggravated mitochondrial dysfunction, mimicking FTO or FOXO1 depletion effects, which was counteracted by miR-642a-5p inhibition. CONCLUSION H-Exs secreted circBRCA1 regulated by m6A modification, directly sponged miR-642a-5p to upregulate FOXO1, resisted oxidative stress injuries in GCs and protected ovarian function in rats with POI. Exosomal circBRCA1 supplementation may be a general prospect for the prevention and treatment of POI.
Collapse
Affiliation(s)
- Xiaolan Zhu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20 Zhengdong Road, Zhenjiang, 212001, Jiangsu, China.
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.
| | - Wenxin Li
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20 Zhengdong Road, Zhenjiang, 212001, Jiangsu, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Minjun Lu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20 Zhengdong Road, Zhenjiang, 212001, Jiangsu, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Junyu Shang
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20 Zhengdong Road, Zhenjiang, 212001, Jiangsu, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jiamin Zhou
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20 Zhengdong Road, Zhenjiang, 212001, Jiangsu, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Li Lin
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20 Zhengdong Road, Zhenjiang, 212001, Jiangsu, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yueqin Liu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20 Zhengdong Road, Zhenjiang, 212001, Jiangsu, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Xing
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20 Zhengdong Road, Zhenjiang, 212001, Jiangsu, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mengxue Zhang
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20 Zhengdong Road, Zhenjiang, 212001, Jiangsu, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shijie Zhao
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20 Zhengdong Road, Zhenjiang, 212001, Jiangsu, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jingjing Lu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20 Zhengdong Road, Zhenjiang, 212001, Jiangsu, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuyan Shi
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, No. 20 Zhengdong Road, Zhenjiang, 212001, Jiangsu, China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Gao W, Yuan L, Zhang Y, Huang F, Ai C, Lv T, Chen J, Wang H, Ling Y, Wang YS. miR-1246-overexpressing exosomes improve UVB-induced photoaging by activating autophagy via suppressing GSK3β. Photochem Photobiol Sci 2024; 23:957-972. [PMID: 38613601 DOI: 10.1007/s43630-024-00567-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
Stem cell paracrine has shown potential application in skin wound repair and photoaging treatment. Our previous study demonstrated that miR-1246-overexpressing Exosomes (OE-EXs) isolated from adipose-derived stem cells (ADSCs) showed superior photo-protecting effects on UVB-induced photoaging than that of the vector, however, the underlying mechanism was unclear. The simultaneous bioinformatics analysis indicated that miR-1246 showed potential binding sites with GSK3β which acted as a negative regulator for autophagy. This study was aimed to explore whether OE-EXs ameliorate skin photoaging by activating autophagy via targeting GSK3β. The results demonstrated that OE-EXs significantly decreased GSK3β expression, enhanced autophagy flux and autophagy-related proteins like LC3II, while suppressed p62 expression. Meanwhile, OE-EXs markedly reversed the levels of intracellular ROS, MMP-1, procollagen type I and DNA damage in human skin fibroblasts caused by UVB irradiation, but the ameliorating effects were significantly inhibited when 3-Methyladenine (3-MA) was introduced to block the autophagy pathway. Further, OE-EXs could reverse UVB-induced wrinkles, epidermal hyperplasia, and collagen fibers reduction in Kunming mice, nevertheless, the therapeutical effects of OE-EXs were attenuated when it was combinative treated with 3-MA. In conclusion, OE-EXs could cure UVB induced skin photoaging by activating autophagy via targeting GSK3β.
Collapse
Affiliation(s)
- Wei Gao
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Department of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Limin Yuan
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Department of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Yue Zhang
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Department of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Fangzhou Huang
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Department of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Chen Ai
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Department of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Tianci Lv
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Department of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Jiale Chen
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Department of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Hui Wang
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Department of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Yixin Ling
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Department of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Yu-Shuai Wang
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Department of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China.
| |
Collapse
|
12
|
Erana-Perez Z, Igartua M, Santos-Vizcaino E, Hernandez RM. Genetically engineered loaded extracellular vesicles for drug delivery. Trends Pharmacol Sci 2024; 45:350-365. [PMID: 38508958 DOI: 10.1016/j.tips.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
The use of extracellular vesicles (EVs) for drug delivery is being widely explored by scientists from several research fields. To fully exploit their therapeutic potential, multiple methods for loading EVs have been developed. Although exogenous methods have been extensively utilized, in recent years the endogenous method has gained significant attention. This approach, based on parental cell genetic engineering, is suitable for loading large therapeutic biomolecules such as proteins and nucleic acids. We review the most commonly used EV loading methods and emphasize the inherent advantages of the endogenous method over the others. We also examine the most recent advances and applications of this innovative approach to inform on the diverse therapeutic opportunities that lie ahead in the field of EV-based therapies.
Collapse
Affiliation(s)
- Zuriñe Erana-Perez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
13
|
Hajialiasgary Najafabadi A, Soheilifar MH, Masoudi-Khoram N. Exosomes in skin photoaging: biological functions and therapeutic opportunity. Cell Commun Signal 2024; 22:32. [PMID: 38217034 PMCID: PMC10785444 DOI: 10.1186/s12964-023-01451-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024] Open
Abstract
Exosomes are tiny extracellular vesicles secreted by most cell types, which are filled with proteins, lipids, and nucleic acids (non-coding RNAs, mRNA, DNA), can be released by donor cells to subsequently modulate the function of recipient cells. Skin photoaging is the premature aging of the skin structures over time due to repeated exposure to ultraviolet (UV) which is evidenced by dyspigmentation, telangiectasias, roughness, rhytides, elastosis, and precancerous changes. Exosomes are associated with aging-related processes including, oxidative stress, inflammation, and senescence. Anti-aging features of exosomes have been implicated in various in vitro and pre-clinical studies. Stem cell-derived exosomes can restore skin physiological function and regenerate or rejuvenate damaged skin tissue through various mechanisms such as decreased expression of matrix metalloproteinase (MMP), increased collagen and elastin production, and modulation of intracellular signaling pathways as well as, intercellular communication. All these evidences are promising for the therapeutic potential of exosomes in skin photoaging. This review aims to investigate the molecular mechanisms and the effects of exosomes in photoaging.
Collapse
Affiliation(s)
- Amirhossein Hajialiasgary Najafabadi
- Department of Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, 37077, Goettingen, Germany
- Department of Pathology, Research Group Translational Epigenetics, University of Goettingen, 37075, Goettingen, Germany
| | | | - Nastaran Masoudi-Khoram
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|