1
|
Dabbaghipour R, Ahmadi E, Entezam M, Farzam OR, Sohrabi S, Jamali S, Sichani AS, Paydar H, Baradaran B. Concise review: The heterogenous roles of BATF3 in cancer oncogenesis and dendritic cells and T cells differentiation and function considering the importance of BATF3-dependent dendritic cells. Immunogenetics 2024; 76:75-91. [PMID: 38358555 DOI: 10.1007/s00251-024-01335-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/23/2023] [Indexed: 02/16/2024]
Abstract
The transcription factor, known as basic leucine zipper ATF-like 3 (BATF3), is a crucial contributor to the development of conventional type 1 dendritic cells (cDC1), which is definitely required for priming CD8 + T cell-mediated immunity against intracellular pathogens and malignancies. In this respect, BATF3-dependent cDC1 can bring about immunological tolerance, an autoimmune response, graft immunity, and defense against infectious agents such as viruses, microbes, parasites, and fungi. Moreover, the important function of cDC1 in stimulating CD8 + T cells creates an excellent opportunity to develop a highly effective target for vaccination against intracellular pathogens and diseases. BATF3 has been clarified to control the development of CD8α+ and CD103+ DCs. The presence of BATF3-dependent cDC1 in the tumor microenvironment (TME) reinforces immunosurveillance and improves immunotherapy approaches, which can be beneficial for cancer immunotherapy. Additionally, BATF3 acts as a transcriptional inhibitor of Treg development by decreasing the expression of the transcription factor FOXP3. However, when overexpressed in CD8 + T cells, it can enhance their survival and facilitate their transition to a memory state. BATF3 induces Th9 cell differentiation by binding to the IL-9 promoter through a BATF3/IRF4 complex. One of the latest research findings is the oncogenic function of BATF3, which has been approved and illustrated in several biological processes of proliferation and invasion.
Collapse
Affiliation(s)
- Reza Dabbaghipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mona Entezam
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Jamali
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Saber Sichani
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Hadi Paydar
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Oyong DA, Duffy FJ, Neal ML, Du Y, Carnes J, Schwedhelm KV, Hertoghs N, Jun SH, Miller H, Aitchison JD, De Rosa SC, Newell EW, McElrath MJ, McDermott SM, Stuart KD. Distinct immune responses associated with vaccination status and protection outcomes after malaria challenge. PLoS Pathog 2023; 19:e1011051. [PMID: 37195999 PMCID: PMC10228810 DOI: 10.1371/journal.ppat.1011051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/30/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Understanding immune mechanisms that mediate malaria protection is critical for improving vaccine development. Vaccination with radiation-attenuated Plasmodium falciparum sporozoites (PfRAS) induces high level of sterilizing immunity against malaria and serves as a valuable tool for the study of protective mechanisms. To identify vaccine-induced and protection-associated responses during malarial infection, we performed transcriptome profiling of whole blood and in-depth cellular profiling of PBMCs from volunteers who received either PfRAS or noninfectious mosquito bites, followed by controlled human malaria infection (CHMI) challenge. In-depth single-cell profiling of cell subsets that respond to CHMI in mock-vaccinated individuals showed a predominantly inflammatory transcriptome response. Whole blood transcriptome analysis revealed that gene sets associated with type I and II interferon and NK cell responses were increased in prior to CHMI while T and B cell signatures were decreased as early as one day following CHMI in protected vaccinees. In contrast, non-protected vaccinees and mock-vaccinated individuals exhibited shared transcriptome changes after CHMI characterized by decreased innate cell signatures and inflammatory responses. Additionally, immunophenotyping data showed different induction profiles of vδ2+ γδ T cells, CD56+ CD8+ T effector memory (Tem) cells, and non-classical monocytes between protected vaccinees and individuals developing blood-stage parasitemia, following treatment and resolution of infection. Our data provide key insights in understanding immune mechanistic pathways of PfRAS-induced protection and infective CHMI. We demonstrate that vaccine-induced immune response is heterogenous between protected and non-protected vaccinees and that inducted-malaria protection by PfRAS is associated with early and rapid changes in interferon, NK cell and adaptive immune responses. Trial Registration: ClinicalTrials.gov NCT01994525.
Collapse
Affiliation(s)
- Damian A. Oyong
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Fergal J. Duffy
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Ying Du
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jason Carnes
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Katharine V. Schwedhelm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Nina Hertoghs
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Seong-Hwan Jun
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Helen Miller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - John D. Aitchison
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Evan W. Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Suzanne M. McDermott
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Kenneth D. Stuart
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Pohl K, Cockburn IA. Innate immunity to malaria: The good, the bad and the unknown. Front Immunol 2022; 13:914598. [PMID: 36059493 PMCID: PMC9437427 DOI: 10.3389/fimmu.2022.914598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Malaria is the cause of 600.000 deaths annually. However, these deaths represent only a tiny fraction of total malaria cases. Repeated natural infections with the causative agent, Plasmodium sp. parasites, induce protection from severe disease but not sterile immunity. Thus, immunity to Plasmodium is incomplete. Conversely, immunization with attenuated sporozoite stage parasites can induce sterile immunity albeit after multiple vaccinations. These different outcomes are likely to be influenced strongly by the innate immune response to different stages of the parasite lifecycle. Even small numbers of sporozoites can induce a robust proinflammatory type I interferon response, which is believed to be driven by the sensing of parasite RNA. Moreover, induction of innate like gamma-delta cells contributes to the development of adaptive immune responses. Conversely, while blood stage parasites can induce a strong proinflammatory response, regulatory mechanisms are also triggered. In agreement with this, intact parasites are relatively weakly sensed by innate immune cells, but isolated parasite molecules, notably DNA and RNA can induce strong responses. Thus, the innate response to Plasmodium parasite likely represents a trade-off between strong pro-inflammatory responses that may potentiate immunity and regulatory processes that protect the host from cytokine storms that can induce life threatening illness.
Collapse
Affiliation(s)
- Kai Pohl
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University Canberra, Canberra, ACT, Australia
| | - Ian A. Cockburn
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University Canberra, Canberra, ACT, Australia
- *Correspondence: Ian A. Cockburn,
| |
Collapse
|
4
|
Kuehlwein JM, Borsche M, Korir PJ, Risch F, Mueller A, Hübner MP, Hildner K, Hoerauf A, Dunay IR, Schumak B. Protection of Batf3-deficient mice from experimental cerebral malaria correlates with impaired cytotoxic T-cell responses and immune regulation. Immunology 2020; 159:193-204. [PMID: 31631339 PMCID: PMC6954726 DOI: 10.1111/imm.13137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022] Open
Abstract
Excessive inflammatory immune responses during infections with Plasmodium parasites are responsible for severe complications such as cerebral malaria (CM) that can be studied experimentally in mice. Dendritic cells (DCs) activate cytotoxic CD8+ T-cells and initiate immune responses against the parasites. Batf3-/- mice lack a DC subset, which efficiently induces strong CD8 T-cell responses by cross-presentation of exogenous antigens. Here we show that Batf3-/- mice infected with Plasmodium berghei ANKA (PbA) were protected from experimental CM (ECM), characterized by a stable blood-brain barrier (BBB) and significantly less infiltrated peripheral immune cells in the brain. Importantly, the absence of ECM in Batf3-/- mice correlated with attenuated responses of cytotoxic T-cells, as their parasite-specific lytic activity as well as the production of interferon gamma and granzyme B were significantly decreased. Remarkably, spleens of ECM-protected Batf3-/- mice had elevated levels of regulatory immune cells and interleukin 10. Thus, protection from ECM in PbA-infected Batf3-/- mice was associated with the absence of strong CD8+ T-cell activity and induction of immunoregulatory mediators and cells.
Collapse
MESH Headings
- Animals
- Basic-Leucine Zipper Transcription Factors/deficiency
- Basic-Leucine Zipper Transcription Factors/genetics
- Blood-Brain Barrier/immunology
- Blood-Brain Barrier/parasitology
- Brain/immunology
- Brain/metabolism
- Brain/parasitology
- Cells, Cultured
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/parasitology
- Disease Models, Animal
- Female
- Granzymes/immunology
- Granzymes/metabolism
- Host-Parasite Interactions
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Malaria, Cerebral/immunology
- Malaria, Cerebral/metabolism
- Malaria, Cerebral/parasitology
- Malaria, Cerebral/prevention & control
- Mice, Inbred C57BL
- Mice, Knockout
- Plasmodium berghei/immunology
- Plasmodium berghei/pathogenicity
- Repressor Proteins/deficiency
- Repressor Proteins/genetics
- Spleen/immunology
- Spleen/metabolism
- Spleen/parasitology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/parasitology
Collapse
Affiliation(s)
- Janina M. Kuehlwein
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| | - Max Borsche
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| | - Patricia J. Korir
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| | - Frederic Risch
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| | - Ann‐Kristin Mueller
- Parasitology UnitCentre for Infectious DiseasesHeidelberg University HospitalHeidelbergGermany
- DZIF German Center for Infection ResearchPartner Site HeidelbergHeidelbergGermany
| | - Marc P. Hübner
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| | - Kai Hildner
- Medical Department 1University Hospital ErlangenErlangenGermany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
- DZIF German Center for Infection ResearchPartner Site Bonn‐CologneBonnGermany
| | - Ildiko Rita Dunay
- Institute of Inflammation and NeurodegenerationUniversity of MagdeburgMagdeburgGermany
| | - Beatrix Schumak
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| |
Collapse
|
5
|
Goswami D, Minkah NK, Kappe SHI. Designer Parasites: Genetically Engineered Plasmodium as Vaccines To Prevent Malaria Infection. THE JOURNAL OF IMMUNOLOGY 2019; 202:20-28. [PMID: 30587570 DOI: 10.4049/jimmunol.1800727] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022]
Abstract
A highly efficacious malaria vaccine that prevents disease and breaks the cycle of infection remains an aspirational goal of medicine. Whole parasite vaccines based on the sporozoite forms of the parasite that target the clinically silent pre-erythrocytic stages of infection have emerged as one of the leading candidates. In animal models of malaria, these vaccines elicit potent neutralizing Ab responses against the sporozoite stage and cytotoxic T cells that eliminate parasite-infected hepatocytes. Among whole-sporozoite vaccines, immunization with live, replication-competent whole parasites engenders superior immunity and protection when compared with live replication-deficient sporozoites. As such, the genetic design of replication-competent vaccine strains holds the promise for a potent, broadly protective malaria vaccine. In this report, we will review the advances in whole-sporozoite vaccine development with a particular focus on genetically attenuated parasites both as malaria vaccine candidates and also as valuable tools to interrogate protective immunity against Plasmodium infection.
Collapse
Affiliation(s)
- Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109; and
| | - Nana K Minkah
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109; and
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109; and .,Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
6
|
Malaria Immunity: The Education of an Unnatural Response. Cell Host Microbe 2019; 25:479-481. [PMID: 30974081 DOI: 10.1016/j.chom.2019.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this issue of Cell Host & Microbe, Kurup et al. report that infection of the liver by Plasmodium parasites promotes the recruitment of dendritic cells that acquire and present parasite antigen from infected hepatocytes. These cells then prime parasite-specific CD8 T cells in liver-draining lymph nodes.
Collapse
|
7
|
Parmar R, Patel H, Yadav N, Parikh R, Patel K, Mohankrishnan A, Bhurani V, Joshi U, Dalai SK. Infectious Sporozoites of Plasmodium berghei Effectively Activate Liver CD8α + Dendritic Cells. Front Immunol 2018; 9:192. [PMID: 29472929 PMCID: PMC5809440 DOI: 10.3389/fimmu.2018.00192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/23/2018] [Indexed: 11/13/2022] Open
Abstract
Immunization with radiation-attenuated sporozoites (RAS) shown to confer complete sterile protection against Plasmodia liver-stage (LS) infection that lasts about 6 to 9 months in mice. We have found that the intermittent infectious sporozoite challenge to immune mice following RAS vaccination extends the longevity of sterile protection by maintaining CD8+ T cell memory responses to LS infection. It is reported that CD8α+ dendritic cells (DCs) are involved in the induction of LS-specific CD8+ T cells following RAS or genetically attenuated parasite (GAP) vaccination. In this study, we demonstrate that CD8α+ DCs respond differently to infectious sporozoite or RAS inoculation. The higher accumulation and activation of CD8α+ DCs was seen in the liver in response to infectious sporozoite 72 h postinoculation and found to be associated with higher expression of chemokines (CCL-20 and CCL-21) and type I interferon response via toll-like receptor signaling in liver. Moreover, the infectious sporozoites were found to induce qualitative changes in terms of the increased MHCII expression as well as costimulatory molecules including CD40 on the CD8α+ DCs compared to RAS inoculation. We have also found that infectious sporozoite challenge increased CD40L-expressing CD4+ T cells, which could help CD8+ T cells in the liver through "licensing" of the antigen-presenting cells. Our results suggest that infectious sporozoite challenge to prior RAS immunized mice modulates the CD8α+ DCs, which might be shaping the fate of memory CD8+ T cells against Plasmodium LS infection.
Collapse
Affiliation(s)
- Rajesh Parmar
- Institute of Science, Nirma University, Ahmedabad, India
| | - Hardik Patel
- Institute of Science, Nirma University, Ahmedabad, India
| | - Naveen Yadav
- Institute of Science, Nirma University, Ahmedabad, India
| | - Ritika Parikh
- Institute of Science, Nirma University, Ahmedabad, India
| | - Khyati Patel
- Institute of Science, Nirma University, Ahmedabad, India
| | | | | | - Urja Joshi
- Institute of Science, Nirma University, Ahmedabad, India
| | | |
Collapse
|
8
|
Neonatal mice possess two phenotypically and functionally distinct lung-migratory CD103 + dendritic cell populations following respiratory infection. Mucosal Immunol 2018; 11:186-198. [PMID: 28378805 PMCID: PMC5628111 DOI: 10.1038/mi.2017.28] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/28/2017] [Indexed: 02/06/2023]
Abstract
The CD103+ subset of lung-migratory dendritic cells (DCs) plays an important role in the generation of CD8+ T cell responses following respiratory infection. Here, we demonstrate that the dependence on CD103+ DCs for stimulation of RSV-specific T cells is both epitope and age-dependent. CD103+ DCs in neonatal mice develop two phenotypically and functionally distinct populations following respiratory infection. Neonatal CD103+ DCs expressing low levels of CD103 (CD103lo DCs) and other lineage and maturation markers including costimulatory molecules are phenotypically immature and functionally limited. CD103lo DCs sorted from infected neonates were unable to stimulate cells of the KdM282-90 specificity, which are potently stimulated by CD103hi DCs sorted from the same animals. These data suggest that the delayed maturation of CD103+ DCs in the neonate limits the KdM282-90-specific response and explain the distinct CD8+ T cell response hierarchy displayed in neonatal mice that differs from the hierarchy seen in adult mice. These findings have implications for the development of early-life vaccines, where the promotion of responses with less age bias may prove advantageous. Alternately, specific approaches may be used to enhance the maturation and function of the CD103lo DC population in neonates to promote more adult-like T cell responses.
Collapse
|
9
|
Silvie O, Amino R, Hafalla JC. Tissue-specific cellular immune responses to malaria pre-erythrocytic stages. Curr Opin Microbiol 2017; 40:160-167. [PMID: 29217460 DOI: 10.1016/j.mib.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 11/30/2022]
Abstract
Complete and long-lasting protective immunity against malaria can be achieved through vaccination with invasive live attenuated Plasmodium sporozoites, the motile stage inoculated in the host skin during a mosquito bite. Protective immunity relies primarily on effector CD8+ T cells targeting the parasite in the liver. Understanding the tissue-specific features of the immune response is emerging as a vital requirement for understanding protective immunity. The small parasite inoculum, the scarcity of infected cells and the tolerogenic properties of the liver represent hurdles for the establishment of protective immunity in endemic areas. In this review, we discuss recent advances on liver-specific features of immunity including innate recognition of malaria pre-erythrocytic stages, CD8+ T cell interactions with infected hepatocytes, antigen presentation for effective CD8+ T cell responses and generation of liver-resident memory CD8+ T cells. A better understanding of the factors involved in the induction and maintenance of effector CD8+ T cell immunity against malaria pre-erythrocytic stages is crucial for the development of an effective vaccine targeting the initial phase of malaria infection.
Collapse
Affiliation(s)
- Olivier Silvie
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France.
| | - Rogerio Amino
- Unit of Malaria Infection and Immunity, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.
| | - Julius Clemence Hafalla
- Immunology and Infection Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| |
Collapse
|
10
|
Zaidi I, Diallo H, Conteh S, Robbins Y, Kolasny J, Orr-Gonzalez S, Carter D, Butler B, Lambert L, Brickley E, Morrison R, Sissoko M, Healy SA, Sim BKL, Doumbo OK, Hoffman SL, Duffy PE. γδ T Cells Are Required for the Induction of Sterile Immunity during Irradiated Sporozoite Vaccinations. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:3781-3788. [PMID: 29079696 PMCID: PMC5698172 DOI: 10.4049/jimmunol.1700314] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/02/2017] [Indexed: 11/19/2022]
Abstract
Whole-sporozoite vaccines confer sterilizing immunity to malaria-naive individuals by unknown mechanisms. In the first PfSPZ Vaccine trial ever in a malaria-endemic population, Vδ2 γδ T cells were significantly elevated and Vγ9/Vδ2 transcripts ranked as the most upregulated in vaccinees who were protected from Plasmodium falciparum infection. In a mouse model, absence of γδ T cells during vaccination impaired protective CD8 T cell responses and ablated sterile protection. γδ T cells were not required for circumsporozoite protein-specific Ab responses, and γδ T cell depletion before infectious challenge did not ablate protection. γδ T cells alone were insufficient to induce protection and required the presence of CD8α+ dendritic cells. In the absence of γδ T cells, CD8α+ dendritic cells did not accumulate in the livers of vaccinated mice. Altogether, our results show that γδ T cells were essential for the induction of sterile immunity during whole-organism vaccination.
Collapse
Affiliation(s)
- Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Hama Diallo
- Malaria Research and Training Center, Mali-National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Science, Techniques and Technologies of Bamako, Bamako, Mali; and
| | - Solomon Conteh
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Yvette Robbins
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Jacqueline Kolasny
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Sachy Orr-Gonzalez
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Dariyen Carter
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Brandi Butler
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Lynn Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Elizabeth Brickley
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Robert Morrison
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Mahamadou Sissoko
- Malaria Research and Training Center, Mali-National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Science, Techniques and Technologies of Bamako, Bamako, Mali; and
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | | | - Ogobara K Doumbo
- Malaria Research and Training Center, Mali-National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Science, Techniques and Technologies of Bamako, Bamako, Mali; and
| | | | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852;
| |
Collapse
|
11
|
Haeberlein S, Chevalley-Maurel S, Ozir-Fazalalikhan A, Koppejan H, Winkel BMF, Ramesar J, Khan SM, Sauerwein RW, Roestenberg M, Janse CJ, Smits HH, Franke-Fayard B. Protective immunity differs between routes of administration of attenuated malaria parasites independent of parasite liver load. Sci Rep 2017; 7:10372. [PMID: 28871201 PMCID: PMC5583236 DOI: 10.1038/s41598-017-10480-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/10/2017] [Indexed: 12/27/2022] Open
Abstract
In humans and murine models of malaria, intradermal immunization (ID-I) with genetically attenuated sporozoites that arrest in liver induces lower protective immunity than intravenous immunization (IV-I). It is unclear whether this difference is caused by fewer sporozoites migrating into the liver or by suboptimal hepatic and injection site-dependent immune responses. We therefore developed a Plasmodium yoelii immunization/boost/challenge model to examine parasite liver loads as well as hepatic and lymph node immune responses in protected and unprotected ID-I and IV-I animals. Despite introducing the same numbers of genetically attenuated parasites in the liver, ID-I resulted in lower sterile protection (53-68%) than IV-I (93-95%). Unprotected mice developed less sporozoite-specific CD8+ and CD4+ effector T-cell responses than protected mice. After immunization, ID-I mice showed more interleukin-10-producing B and T cells in livers and skin-draining lymph nodes, but fewer hepatic CD8 memory T cells and CD8+ dendritic cells compared to IV-I mice. Our results indicate that the lower protection efficacy obtained by intradermal sporozoite administration is not linked to low hepatic parasite numbers as presumed before, but correlates with a shift towards regulatory immune responses. Overcoming these immune suppressive responses is important not only for live-attenuated malaria vaccines but also for other live vaccines administered in the skin.
Collapse
Affiliation(s)
- Simone Haeberlein
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Institute of Parasitology, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Séverine Chevalley-Maurel
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Arifa Ozir-Fazalalikhan
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Hester Koppejan
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Beatrice M F Winkel
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Jai Ramesar
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Shahid M Khan
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Geert-Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Blandine Franke-Fayard
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
12
|
Cockburn IA, Zavala F. Dendritic cell function and antigen presentation in malaria. Curr Opin Immunol 2016; 40:1-6. [DOI: 10.1016/j.coi.2016.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
|