1
|
Dos-Santos JS, Firmino-Cruz L, Oliveira-Maciel D, da Fonseca-Martins AM, Ramos TD, Nunes-Sousa L, Bittencourt Dos Santos I, Pedro Soares R, Claudio Oliveira Gomes D, Mengel J, Silva-Santos B, de Matos Guedes HL. IL-17A/IFN-γ producing γδ T cell functional dichotomy impacts cutaneous leishmaniasis in mice. J Leukoc Biol 2025; 117:qiae251. [PMID: 39656754 DOI: 10.1093/jleuko/qiae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/04/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
γδ T cells play diverse roles in immune responses, producing either interleukin (IL)-17A or interferon γ (IFN-γ). Here, we investigated the impact of this functional dichotomy on cutaneous leishmaniasis. We demonstrate that in Sv129 mice susceptible to Leishmania amazonensis, Vγ4+ γδ T cells are the main source of IL-17A. In type 1 IFN receptor-deficient (A129) mice with heightened susceptibility, there is an increased frequency of IL-17A-producing γδ T cells. L. amazonensis' lipophosphoglycan induces these IL-17A-producing γδ T cells. Notably, C57BL/6 mice deficient in γδ T cells or IL-17 receptor exhibit smaller lesions, indicating a pathogenic role of IL-17A-producing γδ T cells in cutaneous leishmaniasis. Conversely, adoptive transfer of fluorescence-activated cell sorting (FACS)-sorted γδ T cells lead to an accumulation of IFN-γ-producing γδ T cells, associated with control of lesion development. On the other hand, adoptive transfer of FACS-sorted IFN-γ-deficient γδ T cells abolished the control of lesion development. These data demonstrate a pathophysiological dichotomy in which IL-17A-producing γδ T cells promote pathogenesis, while IFN-γ-producing γδ T cells offer therapeutic potential in cutaneous leishmaniasis.
Collapse
MESH Headings
- Animals
- Interleukin-17/biosynthesis
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/pathology
- Leishmaniasis, Cutaneous/parasitology
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Adoptive Transfer
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Júlio Souza Dos-Santos
- Immunobiotechnology Laboratory, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Clinical Immunology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Luan Firmino-Cruz
- Mucosal B Cell Laboratory, Department of Pathology, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, United States
| | - Diogo Oliveira-Maciel
- Immunobiotechnology Laboratory, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Clinical Immunology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Alessandra Marcia da Fonseca-Martins
- Immunobiotechnology Laboratory, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Clinical Immunology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Tadeu Diniz Ramos
- Immunobiotechnology Laboratory, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Clinical Immunology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Letícia Nunes-Sousa
- Immunobiotechnology Laboratory, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Clinical Immunology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Igor Bittencourt Dos Santos
- Immunobiotechnology Laboratory, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Clinical Immunology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Rodrigo Pedro Soares
- Instituto René Rachou, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, MG, Brazil
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas/Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitoria 29047-100, SC, Brazil
| | - José Mengel
- Clinical Immunology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Bruno Silva-Santos
- Institute of Molecular Medicine João Lobo Antunes, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Herbert Leonel de Matos Guedes
- Immunobiotechnology Laboratory, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Clinical Immunology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| |
Collapse
|
2
|
Fowler EA, Farias Amorim C, Mostacada K, Yan A, Amorim Sacramento L, Stanco RA, Hales ED, Varkey A, Zong W, Wu GD, de Oliveira CI, Collins PL, Novais FO. Neutrophil-mediated hypoxia drives pathogenic CD8+ T cell responses in cutaneous leishmaniasis. J Clin Invest 2024; 134:e177992. [PMID: 38833303 PMCID: PMC11245163 DOI: 10.1172/jci177992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Cutaneous leishmaniasis caused by Leishmania parasites exhibits a wide range of clinical manifestations. Although parasites influence disease severity, cytolytic CD8+ T cell responses mediate disease. Although these responses originate in the lymph node, we found that expression of the cytolytic effector molecule granzyme B was restricted to lesional CD8+ T cells in Leishmania-infected mice, suggesting that local cues within inflamed skin induced cytolytic function. Expression of Blimp-1 (Prdm1), a transcription factor necessary for cytolytic CD8+ T cell differentiation, was driven by hypoxia within the inflamed skin. Hypoxia was further enhanced by the recruitment of neutrophils that consumed oxygen to produce ROS and ultimately increased the hypoxic state and granzyme B expression in CD8+ T cells. Importantly, lesions from patients with cutaneous leishmaniasis exhibited hypoxia transcription signatures that correlated with the presence of neutrophils. Thus, targeting hypoxia-driven signals that support local differentiation of cytolytic CD8+ T cells may improve the prognosis for patients with cutaneous leishmaniasis, as well as for other inflammatory skin diseases in which cytolytic CD8+ T cells contribute to pathogenesis.
Collapse
Affiliation(s)
- Erin A. Fowler
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Klauss Mostacada
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Allison Yan
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Rae A. Stanco
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Emily D.S. Hales
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Aditi Varkey
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Wenjing Zong
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Camila I. de Oliveira
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Salvador, Brazil
| | - Patrick L. Collins
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Fernanda O. Novais
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Morales-Primo AU, Becker I, Pedraza-Zamora CP, Zamora-Chimal J. Th17 Cell and Inflammatory Infiltrate Interactions in Cutaneous Leishmaniasis: Unraveling Immunopathogenic Mechanisms. Immune Netw 2024; 24:e14. [PMID: 38725676 PMCID: PMC11076297 DOI: 10.4110/in.2024.24.e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 05/12/2024] Open
Abstract
The inflammatory response during cutaneous leishmaniasis (CL) involves immune and non-immune cell cooperation to contain and eliminate Leishmania parasites. The orchestration of these responses is coordinated primarily by CD4+ T cells; however, the disease outcome depends on the Th cell predominant phenotype. Although Th1 and Th2 phenotypes are the most addressed as steers for the resolution or perpetuation of the disease, Th17 cell activities, especially IL-17 release, are recognized to be vital during CL development. Th17 cells perform vital functions during both acute and chronic phases of CL. Overall, Th17 cells induce the migration of phagocytes (neutrophils, macrophages) to the infection site and CD8+ T cells and NK cell activation. They also provoke granzyme and perforin secretion from CD8+ T cells, macrophage differentiation towards an M2 phenotype, and expansion of B and Treg cells. Likewise, immune cells from the inflammatory infiltrate have modulatory activities over Th17 cells involving their differentiation from naive CD4+ T cells and further expansion by generating a microenvironment rich in optimal cytokines such as IL-1β, TGF-β, IL-6, and IL-21. Th17 cell activities and synergies are crucial for the resistance of the infection during the early and acute stages; however, if unchecked, Th17 cells might lead to a chronic stage. This review discusses the synergies between Th17 cells and the inflammatory infiltrate and how these interactions might destine the course of CL.
Collapse
Affiliation(s)
- Abraham U. Morales-Primo
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| | - Ingeborg Becker
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| | - Claudia Patricia Pedraza-Zamora
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Jaime Zamora-Chimal
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| |
Collapse
|
4
|
Khafaei M, Asghari R, Zafari F, Sadeghi M. Impact of IL-6 rs1800795 and IL-17A rs2275913 gene polymorphisms on the COVID-19 prognosis and susceptibility in a sample of Iranian patients. Cytokine 2024; 174:156445. [PMID: 38056249 DOI: 10.1016/j.cyto.2023.156445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/23/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND From asymptomatic to acute and life-threatening pulmonary infection, the clinical manifestations of COVID-19 are highly variable. Interleukin (IL)-6 and IL-17A are key drivers of hyper inflammation status in COVID-19, and their elevated levels are hallmarks of the infection progression. To explore whether prognosis and susceptibility to COVID-19 are linked to IL-6 rs1800795 and IL-17A rs2275913, these single-nucleotide polymorphisms (SNPs) were assessed in a sample of Iranian COVID-19 patients. METHODS This study enrolled two hundred and eighty COVID-19 patients (140 non-severe and 140 severe). Genotyping for IL-6 rs1800795 and IL-17A rs2275913 was performed using tetra primer-amplification refractory mutation system-polymerase chain reaction (tetra-ARMS-PCR). IL-6 and IL-17A circulating levels were measured using enzyme-linked immunosorbent assay (ELISA). Also, mortality predictors of COVID-19 were investigated. RESULTS The rs1800795 GG genotype (78/140 (55.7 %)) and G allele (205/280 (73.2 %)) were significantly associated with a positive risk of COVID-19 severe infection (OR = 2.19, 95 %CI: 1.35-3.54, P =.006 and OR = 1.79, 95 %CI: 1.25-2.56, P <.001, respectively). Also, rs1800795 GG genotype was significantly linked to disease mortality (OR = 1.95, 95 %CI: 1.06-3.61, P =.04). The rs2275913 GA genotype was protective against severe COVID-19 (OR = 0.5, 95 %CI: 0.31--0.80, P =.012). However, the present study did not reveal any significant link between rs2275913 genotypes with disease mortality. INR ≥ 1.2 (OR = 2.19, 95 %CI: 1.61-3.78, P =.007), D-dimer ≥ 565.5 ng/mL (OR = 3.12, 95 %CI: 1.27-5.68, P =.019), respiratory rate ≥ 29 (OR = 1.19, 95 %CI: 1.12-1.28, P =.001), IL-6 serum concentration ≥ 28.5 pg/mL (OR = 1.97, 95 %CI: 1.942-2.06, P =.013), and IL-6 rs1800795 GG genotype (OR = 1.95, 95 %CI: 1.06-3.61, P =.04) were predictive of COVID-19 mortality. CONCLUSION The rs1800795 GG genotype and G allele were associated with disease severity, and INR, D-dimer, respiratory rate, IL-6 serum concentration, and IL-6 rs1800795 GG genotype were predictive of COVID-19 mortality.
Collapse
Affiliation(s)
- Mostafa Khafaei
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Reza Asghari
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Fariba Zafari
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Morteza Sadeghi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Singh TP, Farias Amorim C, Lovins VM, Bradley CW, Carvalho LP, Carvalho EM, Grice EA, Scott P. Regulatory T cells control Staphylococcus aureus and disease severity of cutaneous leishmaniasis. J Exp Med 2023; 220:e20230558. [PMID: 37812390 PMCID: PMC10561556 DOI: 10.1084/jem.20230558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Cutaneous leishmaniasis causes alterations in the skin microbiota, leading to pathologic immune responses and delayed healing. However, it is not known how these microbiota-driven immune responses are regulated. Here, we report that depletion of Foxp3+ regulatory T cells (Tregs) in Staphylococcus aureus-colonized mice resulted in less IL-17 and an IFN-γ-dependent skin inflammation with impaired S. aureus immunity. Similarly, reducing Tregs in S. aureus-colonized and Leishmania braziliensis-infected mice increased IFN-γ, S. aureus, and disease severity. Importantly, analysis of lesions from L. braziliensis patients revealed that low FOXP3 gene expression is associated with high IFNG expression, S. aureus burden, and delayed lesion resolution compared to patients with high FOXP3 expression. Thus, we found a critical role for Tregs in regulating the balance between IL-17 and IFN-γ in the skin, which influences both bacterial burden and disease. These results have clinical ramifications for cutaneous leishmaniasis and other skin diseases associated with a dysregulated microbiome when Tregs are limited or dysfunctional.
Collapse
Affiliation(s)
- Tej Pratap Singh
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Camila Farias Amorim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria M. Lovins
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles W. Bradley
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lucas P. Carvalho
- Servico de Imunologia, Complexo Hospitalar Universitario Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Laboratorio de Pesquisas Clinicas do Instituto de Pesquisas Goncalo Moniz, Fiocruz, Salvador, Brazil
| | - Edgar M. Carvalho
- Servico de Imunologia, Complexo Hospitalar Universitario Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Laboratorio de Pesquisas Clinicas do Instituto de Pesquisas Goncalo Moniz, Fiocruz, Salvador, Brazil
| | - Elizabeth A. Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Fowler EA, Amorim CF, Mostacada K, Yan A, Sacramento LA, Stanco RA, Hales EDS, Varkey A, Zong W, Wu GD, de Oliveira CI, Collins PL, Novais FO. Pathogenic CD8 T cell responses are driven by neutrophil-mediated hypoxia in cutaneous leishmaniasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562926. [PMID: 37904953 PMCID: PMC10614852 DOI: 10.1101/2023.10.18.562926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Cutaneous leishmaniasis caused by Leishmania parasites exhibits a wide range of clinical manifestations. Although parasites influence disease severity, cytolytic CD8 T cell responses mediate disease. While these responses originate in the lymph node, we find that expression of the cytolytic effector molecule granzyme B is restricted to lesional CD8 T cells in Leishmania - infected mice, suggesting that local cues within inflamed skin induce cytolytic function. Expression of Blimp-1 ( Prdm1 ), a transcription factor necessary for cytolytic CD8 T cell differentiation, is driven by hypoxia within the inflamed skin. Hypoxia is further enhanced by the recruitment of neutrophils that consume oxygen to produce reactive oxygen species, ultimately increasing granzyme B expression in CD8 T cells. Importantly, lesions from cutaneous leishmaniasis patients exhibit hypoxia transcription signatures that correlate with the presence of neutrophils. Thus, targeting hypoxia-driven signals that support local differentiation of cytolytic CD8 T cells may improve the prognosis for patients with cutaneous leishmaniasis, as well as other inflammatory skin diseases where cytolytic CD8 T cells contribute to pathogenesis.
Collapse
|
7
|
Saini I, Joshi J, Kaur S. Unwelcome prevalence of leishmaniasis with several other infectious diseases. Int Immunopharmacol 2022; 110:109059. [DOI: 10.1016/j.intimp.2022.109059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
|
8
|
Maione F, Casillo GM, Raucci F, Salvatore C, Ambrosini G, Costa L, Scarpa R, Caso F, Bucci M. Interleukin-17A (IL-17A): A silent amplifier of COVID-19. Biomed Pharmacother 2021; 142:111980. [PMID: 34364043 PMCID: PMC8318692 DOI: 10.1016/j.biopha.2021.111980] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
One of the hallmarks of COVID-19 is the cytokine storm that provokes primarily pneumonia followed by systemic inflammation. Emerging evidence has identified a potential link between elevated interleukin-17A (IL-17A) levels and disease severity and progression. Considering that per se, IL-17A can activate several inflammatory pathways, it is plausible to hypothesize an involvement of this cytokine in COVID-19 clinical outcomes. Thus, IL-17A could represent a marker of disease progression and/or a target to develop therapeutic strategies. This hypothesis paper aims to propose this "unique" cytokine as a silent amplifier of the COVID-19 immune response and (potentially) related therapy.
Collapse
Affiliation(s)
- Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Gian Marco Casillo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Federica Raucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Cristian Salvatore
- New.Fa.DEm SRL, Viale Ferrovie Dello Stato, 1, 80014 Giugliano in Campania, Naples, Italy
| | - Giovanna Ambrosini
- New.Fa.DEm SRL, Viale Ferrovie Dello Stato, 1, 80014 Giugliano in Campania, Naples, Italy
| | - Luisa Costa
- Department of Clinical Medicine and Surgery, School of Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini, 5, 80131 Naples, Italy
| | - Raffaele Scarpa
- Department of Clinical Medicine and Surgery, School of Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini, 5, 80131 Naples, Italy
| | - Francesco Caso
- Department of Clinical Medicine and Surgery, School of Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini, 5, 80131 Naples, Italy.
| | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
9
|
Passelli K, Billion O, Tacchini-Cottier F. The Impact of Neutrophil Recruitment to the Skin on the Pathology Induced by Leishmania Infection. Front Immunol 2021; 12:649348. [PMID: 33732265 PMCID: PMC7957080 DOI: 10.3389/fimmu.2021.649348] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 12/29/2022] Open
Abstract
Leishmania (L.) are obligate intracellular protozoan parasites that cause the leishmaniases, a spectrum of neglected infectious vector-borne diseases with a broad range of clinical manifestations ranging from local cutaneous, to visceral forms of the diseases. The parasites are deposited in the mammalian skin during the blood meal of an infected female phlebotomine sand fly. The skin is a complex organ acting as the first line of physical and immune defense against pathogens. Insults to skin integrity, such as that occurring during insect feeding, induces the local secretion of pro-inflammatory molecules generating the rapid recruitment of neutrophils. At the site of infection, skin keratinocytes play a first role in host defense contributing to the recruitment of inflammatory cells to the infected dermis, of which neutrophils are the first recruited cells. Although neutrophils efficiently kill various pathogens including Leishmania, several Leishmania species have developed mechanisms to survive in these cells. In addition, through their rapid release of cytokines, neutrophils modulate the skin microenvironment at the site of infection, a process shaping the subsequent development of the adaptive immune response. Neutrophils may also be recruited later on in unhealing forms of cutaneous leishmaniasis and to the spleen and liver in visceral forms of the disease. Here, we will review the mechanisms involved in neutrophil recruitment to the skin following Leishmania infection focusing on the role of keratinocytes in this process. We will also discuss the distinct involvement of neutrophils in the outcome of leishmaniasis.
Collapse
Affiliation(s)
- Katiuska Passelli
- Department of Biochemistry, WHO Collaborative Centre for Research and Training in Immunology, University of Lausanne, Lausanne, Switzerland
| | - Oaklyne Billion
- Department of Biochemistry, WHO Collaborative Centre for Research and Training in Immunology, University of Lausanne, Lausanne, Switzerland
| | - Fabienne Tacchini-Cottier
- Department of Biochemistry, WHO Collaborative Centre for Research and Training in Immunology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Kirchner FR, LeibundGut-Landmann S. Tissue-resident memory Th17 cells maintain stable fungal commensalism in the oral mucosa. Mucosal Immunol 2021; 14:455-467. [PMID: 32719409 PMCID: PMC7946631 DOI: 10.1038/s41385-020-0327-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/06/2020] [Indexed: 02/04/2023]
Abstract
Keeping a stable equilibrium between the host and commensal microbes to which we are constantly exposed, poses a major challenge for the immune system. The host mechanisms that regulate homeostasis of the microbiota to prevent infection and inflammatory disorders are not fully understood. Here, we provide evidence that CD4+ tissue-resident memory T (TRM) cells act as central players in this process. Using a murine model of C. albicans commensalism we show that IL-17 producing CD69+CD103+CD4+ memory T cells persist in the colonized tissue long-term and independently of circulatory supplies. Consistent with the requirement of Th17 cells for limiting fungal growth, IL-17-producing TRM cells in the mucosa were sufficient to maintain prolonged colonization, while circulatory T cells were dispensable. Although TRM cells were first proposed to protect from pathogens causing recurrent acute infections, our results support a central function of TRM cells in the maintenance of commensalism.
Collapse
Affiliation(s)
- Florian R Kirchner
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 266a, CH-8057, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 266a, CH-8057, Zürich, Switzerland.
- Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
11
|
Ikeogu NM, Edechi CA, Akaluka GN, Feiz-Barazandeh A, Zayats RR, Salako ES, Onwah SS, Onyilagha C, Jia P, Mou Z, Shan L, Murooka TT, Gounni AS, Uzonna JE. Semaphorin 3E Promotes Susceptibility to Leishmania major Infection in Mice by Suppressing CD4 + Th1 Cell Response. THE JOURNAL OF IMMUNOLOGY 2020; 206:588-598. [PMID: 33443083 DOI: 10.4049/jimmunol.2000516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022]
Abstract
Protective immunity to cutaneous leishmaniasis is mediated by IFN-γ-secreting CD4+ Th1 cells. IFN-γ binds to its receptor on Leishmania-infected macrophages, resulting in their activation, production of NO, and subsequent destruction of parasites. This study investigated the role of Semaphorin 3E (Sema3E) in host immunity to Leishmania major infection in mice. We observed a significant increase in Sema3E expression at the infection site at different timepoints following L. major infection. Sema3E-deficient (Sema3E knockout [KO]) mice were highly resistant to L. major infection, as evidenced by significantly (p < 0.05-0.01) reduced lesion sizes and lower parasite burdens at different times postinfection when compared with their infected wild-type counterpart mice. The enhanced resistance of Sema3E KO mice was associated with significantly (p < 0.05) increased IFN-γ production by CD4+ T cells. CD11c+ cells from Sema3E KO mice displayed increased expression of costimulatory molecules and IL-12p40 production following L. major infection and were more efficient at inducing the differentiation of Leishmania-specific CD4+ T cells to Th1 cells than their wild-type counterpart cells. Furthermore, purified CD4+ T cells from Sema3E KO mice showed increased propensity to differentiate into Th1 cells in vitro, and this was significantly inhibited by the addition of recombinant Sema3E in vitro. These findings collectively show that Sema3E is a negative regulator of protective CD4+ Th1 immunity in mice infected with L. major and suggest that its neutralization may be a potential therapeutic option for treating individuals suffering from cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Nnamdi M Ikeogu
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Chidalu A Edechi
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P5, Canada; and
| | - Gloria N Akaluka
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Aida Feiz-Barazandeh
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Romaniya R Zayats
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Enitan S Salako
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Somtochukwu S Onwah
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Chukuwunonso Onyilagha
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba R3E 3M4, Canada
| | - Ping Jia
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Zhirong Mou
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Lianyu Shan
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Thomas T Murooka
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Jude E Uzonna
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada;
| |
Collapse
|
12
|
Gupta G, Mou Z, Jia P, Sharma R, Zayats R, Viana SM, Shan L, Barral A, Boaventura VS, Murooka TT, Soussi-Gounni A, de Oliveira CI, Uzonna JE. The Long Pentraxin 3 (PTX3) Suppresses Immunity to Cutaneous Leishmaniasis by Regulating CD4 + T Helper Cell Response. Cell Rep 2020; 33:108513. [PMID: 33326783 DOI: 10.1016/j.celrep.2020.108513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/30/2020] [Accepted: 11/19/2020] [Indexed: 02/01/2023] Open
Abstract
The long pentraxin 3 (PTX3) plays a critical role in inflammation, tissue repair, and wound healing. Here, we show that PTX3 regulates disease pathogenesis in cutaneous leishmaniasis (CL). PTX3 expression increases in skin lesions in patients and mice during CL, with higher expression correlating with severe disease. PTX3-deficient (PTX3-/-) mice are highly resistant to L. major and L. braziliensis infections. This enhanced resistance is associated with increases in Th17 and IL-17A responses. The neutralization of IL-17A abolishes this enhanced resistance, while rPTX3 treatment results in decrease in Th17 and IL-17A responses and increases susceptibility. PTX3-/- CD4+ T cells display increased differentiation to Th17 and expression of Th17-specific transcription factors. The addition of rPTX3 suppresses the expression of Th17 transcription factors, Th17 differentiation, and IL-17A production by CD4+ T cells from PTX3-/- mice. Collectively, our results show that PTX3 contributes to the pathogenesis of CL by negatively regulating Th17 and IL-17A responses.
Collapse
Affiliation(s)
- Gaurav Gupta
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; NIIT University, Rajasthan, India
| | - Zhirong Mou
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ping Jia
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rohit Sharma
- Instituto Gonçalo Muniz (IGM), FIOCRUZ, Salvador, Brazil
| | - Romaniya Zayats
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Lianyu Shan
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Aldina Barral
- Instituto Gonçalo Muniz (IGM), FIOCRUZ, Salvador, Brazil
| | | | - Thomas T Murooka
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Abdel Soussi-Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Jude E Uzonna
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
13
|
Rodríguez-Serrato MA, Salinas-Carmona MC, Limón-Flores AY. Immune response to Leishmania mexicana: the host-parasite relationship. Pathog Dis 2020; 78:5917983. [PMID: 33016312 DOI: 10.1093/femspd/ftaa060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/01/2020] [Indexed: 11/12/2022] Open
Abstract
Leishmaniosis is currently considered a serious public health problem and it is listed as a neglected tropical disease by World Health Organization (WHO). Despite the efforts of the scientific community, it has not been possible to develop an effective vaccine. Current treatment consists of antimonials that is expensive and can cause adverse effects. It is essential to fully understand the immunopathogenesis of the disease to develop new strategies to prevent, treat and eradicate the disease. Studies on animal models have shown a new paradigm in the resolution or establishment of infection by Leishmania mexicana where a wide range of cytokines, antibodies and cells are involved. In recent years, the possibility of a new therapy with monoclonal antibodies has been considered, where isotype, specificity and concentration are critical for effective therapy. Would be better to create/generate a vaccine to induce host protection or produce passive immunization with engineering monoclonal antibodies to a defined antigen? This review provides an overview that includes the current known information on the immune response that are involved in the complex host-parasite relationship infection caused by L. mexicana.
Collapse
Affiliation(s)
- Mayra A Rodríguez-Serrato
- Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario Dr. Jose Eleuterio González, Servicio y Departamento de Inmunología, Av. Madero y Av. Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo León, México
| | - Mario C Salinas-Carmona
- Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario Dr. Jose Eleuterio González, Servicio y Departamento de Inmunología, Av. Madero y Av. Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo León, México
| | - Alberto Yairh Limón-Flores
- Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario Dr. Jose Eleuterio González, Servicio y Departamento de Inmunología, Av. Madero y Av. Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo León, México
| |
Collapse
|
14
|
Konczal M, Ellison AR, Phillips KP, Radwan J, Mohammed RS, Cable J, Chadzinska M. RNA-Seq analysis of the guppy immune response against Gyrodactylus bullatarudis infection. Parasite Immunol 2020; 42:e12782. [PMID: 32738163 DOI: 10.1111/pim.12782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Gyrodactylids are ubiquitous ectoparasites of teleost fish, but our understanding of the host immune response against them is fragmentary. Here, we used RNA-Seq to investigate genes involved in the primary response to infection with Gyrodactylus bullatarudis on the skin of guppies, Poecilia reticulata, an important evolutionary model, but also one of the most common fish in the global ornamental trade. Analysis of differentially expressed genes identified several immune-related categories, including IL-17 signalling pathway and Th17 cell differentiation, cytokine-cytokine receptor interaction, chemokine signalling pathway, NOD-like receptor signalling pathway, natural killer cell-mediated cytotoxicity and pathways involved in antigen recognition, processing and presentation. Components of both the innate and the adaptive immune responses play a role in response to gyrodactylid infection. Genes involved in IL-17/Th17 response were particularly enriched among differentially expressed genes, suggesting a significant role for this pathway in fish responses to ectoparasites. Our results revealed a sizable list of genes potentially involved in the teleost-gyrodactylid immune response.
Collapse
Affiliation(s)
- Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Amy R Ellison
- School of Natural Sciences, Bangor University, Bangor, UK
| | - Karl P Phillips
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,Marine Institute, Furnace, Newport, Ireland.,School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Ryan S Mohammed
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies Zoology Museum, St. Augustine, Trinidad and Tobago
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
15
|
Araujo Flores GV, Sandoval Pacheco CM, Sosa Ochoa WH, Gomes CMC, Zúniga C, Corbett CP, Laurenti MD. Th17 lymphocytes in atypical cutaneous leishmaniasis caused by Leishmania (L.) infantum chagasi in Central America. Parasite Immunol 2020; 42:e12772. [PMID: 32603482 DOI: 10.1111/pim.12772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Skin lesions in nonulcerated cutaneous leishmaniasis (NUCL) caused by Leishmania (L.) infantum chagasi are characterized by a mononuclear inflammatory infiltrate in the dermis, which is composed mainly of lymphocytes, followed by macrophages, few plasma cells and epithelioid granulomas with mild tissue parasitism. Previous studies have shown that the main population of lymphocytes present in the dermal infiltrate is CD8+ T cells, followed by CD4+ T cells, which are correlated with IFN-γ+ cells. To improve the knowledge of cellular immune responses in NUCL, skin biopsies were submitted to immunohistochemistry using anti-ROR-γt, anti-IL-17, anti-IL-6, anti-TGF-β, and anti-IL-23 antibodies to characterize the involvement of Th17 cells in the skin lesions of patients affected by NUCL. ROR-γt+ , IL-17+ , IL-6+ , TGF-β+ and IL-23+ cells were observed in the dermal inflammatory infiltrate of NUCL skin lesions. A positive correlation between CD4+ T-lymphocytes and ROR-γt+ and IL-17+ cells suggests that some of the CD4+ T-lymphocytes in NUCL could be Th17 lymphocytes. Moreover, a positive correlation between ROR-γt+ cells and TGF-β+ , IL-6+ , IL-17+ and IL-23+ cells could indicate the role of these cytokines in the differentiation and maintenance of Th17 lymphocytes. Our findings improve knowledge of the pathogenesis of this rare and atypical clinical form of leishmaniasis.
Collapse
Affiliation(s)
| | | | - Wilfredo Humberto Sosa Ochoa
- Laboratory of Pathology of Infectious Diseases, Medical School, São Paulo University, São Paulo, Brazil.,Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | | | - Concepción Zúniga
- Health Surveillance Department, University School Hospital, Tegucigalpa, Honduras
| | - Carlos P Corbett
- Laboratory of Pathology of Infectious Diseases, Medical School, São Paulo University, São Paulo, Brazil
| | - Marcia Dalastra Laurenti
- Laboratory of Pathology of Infectious Diseases, Medical School, São Paulo University, São Paulo, Brazil
| |
Collapse
|
16
|
Liang X, Liu T, Zhang Z, Yu Z. Airway Inflammation Biomarker for Precise Management of Neutrophil-Predominant COPD. Methods Mol Biol 2020; 2204:181-191. [PMID: 32710325 DOI: 10.1007/978-1-0716-0904-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) course can be divided into stable stage and acute exacerbation. Deepen the understanding to the function and role of airway inflammatory cells in stable COPD is important for developing new therapies to restore airway dysfunction and preventing stable stage COPD progress to acute exacerbation COPD. Neutrophil is a feature of lower airways and lung inflammation in majority COPD patients at stable stage and increased neutrophils usually means COPD patients are in a more serious stage. Neutrophil-predominant COPD always accompanied by increased numbers of macrophages, lymphocytes, and dendritic cells. The composition proportion of different inflammatory cells are changed with disease severity. Recently, neutrophilic inflammation has been proved to be correlated with the disturbance of airway resident microbiota, which promote neutrophil influx and exacerbates inflammation. Consequently, understanding the details of increased neutrophils and dysbacteriosis in COPD is necessary for making precise management strategy against neutrophil-associated COPD.
Collapse
Affiliation(s)
- Xue Liang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China.
- State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China.
| | - Ting Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Zhiming Zhang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ziyu Yu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
17
|
Dos-Santos JS, Firmino-Cruz L, Ramos TD, da Fonseca-Martins AM, Oliveira-Maciel D, De-Medeiros JVR, Chaves SP, Gomes DCO, de Matos Guedes HL. Characterization of Sv129 Mice as a Susceptible Model to Leishmania amazonensis. Front Med (Lausanne) 2019; 6:100. [PMID: 31192210 PMCID: PMC6548835 DOI: 10.3389/fmed.2019.00100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/24/2019] [Indexed: 11/30/2022] Open
Abstract
Leishmaniasis is a complex of neglected diseases caused by parasites of the genus Leishmania, such as Leishmania (Leishmania) amazonensis, the ethiologic agent of diffuse cutaneous leishmaniasis in Brazil. In this work, we investigated a new experimental model of infection for L. amazonensis: the Sv129 mouse. First, we subcutaneously infected Sv129 mice with 2 × 105 or 2 × 106L. amazonensis parasites of the Josefa strain. A progressive lesion developed for both inoculation doses, showing that Sv129 mice are susceptible, independent of parasite dose. We next investigated the mechanisms associated with the pathogenesis of infection. We did not observe an increase of frequency of interferon-gamma (IFN- γ)-producing CD4+ and CD8+ T cells, a phenotype similar to that seen in BALB/c mice. There was an increased of frequency and number of IL-17-producing γδ (gamma-delta) T cells in infected Sv129 mice compared to naïve SV129 and an increased frequency of this population compared to infected BALB/c mice. In addition, Sv129 mice presented high levels of both IgG1 and IgG2a, suggesting a mixed Th1 and Th2 response with a skew toward IgG1 production based on IgG1/IgG2a ratio. Susceptibility of the Sv129 mice was further confirmed with the use of another strain of L. amazonensis, LTB0016. In this work, we characterized the Sv129 mice as a new model of susceptibility to Leishmania amazonensis infection, during infection there was controlled IFN-γ production by CD4+ or CD8+ T cells and induced IL-17 production by γδ T cells.
Collapse
Affiliation(s)
- Júlio Souza Dos-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luan Firmino-Cruz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tadeu Diniz Ramos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Diogo Oliveira-Maciel
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Herbert Leonel de Matos Guedes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Núcleo Multidisciplinar de Pesquisa UFRJ - Xerém em Biologia, UFRJ Campus Duque de Caxias Professor Geraldo Cidade - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Borbón TY, Scorza BM, Clay GM, Lima Nobre de Queiroz F, Sariol AJ, Bowen JL, Chen Y, Zhanbolat B, Parlet CP, Valadares DG, Cassel SL, Nauseef WM, Horswill AR, Sutterwala FS, Wilson ME. Coinfection with Leishmania major and Staphylococcus aureus enhances the pathologic responses to both microbes through a pathway involving IL-17A. PLoS Negl Trop Dis 2019; 13:e0007247. [PMID: 31107882 PMCID: PMC6527190 DOI: 10.1371/journal.pntd.0007247] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is a parasitic disease causing chronic, ulcerating skin lesions. Most humans infected with the causative Leishmania protozoa are asymptomatic. Leishmania spp. are usually introduced by sand flies into the dermis of mammalian hosts in the presence of bacteria from either the host skin, sand fly gut or both. We hypothesized that bacteria at the dermal inoculation site of Leishmania major will influence the severity of infection that ensues. A C57BL/6 mouse ear model of single or coinfection with Leishmania major, Staphylococcus aureus, or both showed that single pathogen infections caused localized lesions that peaked after 2–3 days for S. aureus and 3 weeks for L. major infection, but that coinfection produced lesions that were two-fold larger than single infection throughout 4 weeks after coinfection. Coinfection increased S. aureus burdens over 7 days, whereas L. major burdens (3, 7, 28 days) were the same in singly and coinfected ears. Inflammatory lesions throughout the first 4 weeks of coinfection had more neutrophils than did singly infected lesions, and the recruited neutrophils from early (day 1) lesions had similar phagocytic and NADPH oxidase capacities. However, most neutrophils were apoptotic, and transcription of immunomodulatory genes that promote efferocytosis was not upregulated, suggesting that the increased numbers of neutrophils may, in part, reflect defective clearance and resolution of the inflammatory response. In addition, the presence of more IL-17A-producing γδ and non-γδ T cells in early lesions (1–7 days), and L. major antigen-responsive Th17 cells after 28 days of coinfection, with a corresponding increase in IL-1β, may recruit more naïve neutrophils into the inflammatory site. Neutralization studies suggest that IL-17A contributed to an enhanced inflammatory response, whereas IL-1β has an important role in controlling bacterial replication. Taken together, these data suggest that coinfection of L. major infection with S. aureus exacerbates disease, both by promoting more inflammation and neutrophil recruitment and by increasing neutrophil apoptosis and delaying resolution of the inflammatory response. These data illustrate the profound impact that coinfecting microorganisms can exert on inflammatory lesion pathology and host adaptive immune responses. Cutaneous leishmaniasis (CL) is a vector-borne ulcerating skin disease affecting several million people worldwide. The causative Leishmania spp. protozoa are transmitted by infected phlebotomine sand flies. During a sand fly bite, bacteria can be coincidentally inoculated into the dermis with the parasite. Staphylococcus aureus is the most common bacterium in CL skin lesions. Symptomatic CL is characterized by papulonodular skin lesions that ulcerate and resolve with scarring, although most cutaneous Leishmania infections are asymptomatic. We sought to explore factors that determine whether infection with a cutaneous Leishmania species would result in symptomatic CL rather than asymptomatic infection. We hypothesized that local bacteria promote the development of symptomatic CL lesions during infection with Leishmania major. We discovered that cutaneous lesions were significantly larger in mice inoculated simultaneously with S. aureus and L. major than in mice infected with either organism alone. Coinfection led to increased S. aureus growth in skin lesions, whereas L. major parasite numbers were unchanged by coinfection. The size of the exacerbated lesion correlated with early increased numbers of neutrophils and elevated levels of proinflammatory cytokines IL-1β and IL-17A during the first 7 days, and with sustained increases in IL-17A through 28 days of coinfection. Neutralizing antibody experiments suggested IL-17A was partially responsible for lesion exacerbation during coinfection, whereas IL-1β was important for both control of early lesion exacerbation and promotion of IL-17A production. These data suggest that treatment of symptomatic CL targeting the parasite, local commensal bacteria, and host proinflammatory IL-17A immune responses might improve the outcome of CL.
Collapse
Affiliation(s)
- Tiffany Y. Borbón
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
- Medical Scientist Training Program and the Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Breanna M. Scorza
- Interdisciplinary Ph.D. Program in Immunology, University of Iowa, Iowa City, IA, United States of America
| | - Gwendolyn M. Clay
- Medical Scientist Training Program and the Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
- Interdisciplinary Ph.D. Program in Molecular Medicine, University of Iowa, Iowa City, IA, United States of America
| | | | - Alan J. Sariol
- Interdisciplinary Ph.D. Program in Immunology, University of Iowa, Iowa City, IA, United States of America
| | - Jayden L. Bowen
- Medical Scientist Training Program and the Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Yani Chen
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa City, IA, United States of America
- Iowa Inflammation Program, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
- Veterans’ Affairs Medical Center, Iowa City, IA, United States of America
| | - Bayan Zhanbolat
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa City, IA, United States of America
- Iowa Inflammation Program, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
- Veterans’ Affairs Medical Center, Iowa City, IA, United States of America
| | - Corey P. Parlet
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa City, IA, United States of America
- Iowa Inflammation Program, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Diogo G. Valadares
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa City, IA, United States of America
- Iowa Inflammation Program, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
- Veterans’ Affairs Medical Center, Iowa City, IA, United States of America
- Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq), Brasilia, Brazil
| | - Suzanne L. Cassel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - William M. Nauseef
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa City, IA, United States of America
- Iowa Inflammation Program, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
- Veterans’ Affairs Medical Center, Iowa City, IA, United States of America
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO, United States of America
| | - Fayyaz S. Sutterwala
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Mary E. Wilson
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
- Medical Scientist Training Program and the Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
- Interdisciplinary Ph.D. Program in Immunology, University of Iowa, Iowa City, IA, United States of America
- Interdisciplinary Ph.D. Program in Molecular Medicine, University of Iowa, Iowa City, IA, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa City, IA, United States of America
- Iowa Inflammation Program, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
- Veterans’ Affairs Medical Center, Iowa City, IA, United States of America
- * E-mail:
| |
Collapse
|
19
|
Bezerra IPDS, Oliveira-Silva G, Braga DSFS, de Mello MF, Pratti JES, Pereira JC, da Fonseca-Martins AM, Firmino-Cruz L, Maciel-Oliveira D, Ramos TD, Vale AM, Gomes DCO, Rossi-Bergmann B, de Matos Guedes HL. Dietary Vitamin D3 Deficiency Increases Resistance to Leishmania (Leishmania) amazonensis Infection in Mice. Front Cell Infect Microbiol 2019; 9:88. [PMID: 31024859 PMCID: PMC6467002 DOI: 10.3389/fcimb.2019.00088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/12/2019] [Indexed: 01/23/2023] Open
Abstract
The leishmaniases are a group of diseases caused by Leishmania parasites, which have different clinical manifestations. Leishmania (Leishmania) amazonensis is endemic in South America and causes cutaneous leishmaniasis (CL), which can evolve into a diffuse form, characterized by an anergic immune response. Since the leishmaniases mainly affect poor populations, it is important to understand the involvement of immunonutrition, how the immune system is modulated by dietary nutrients and the effect this has on Leishmania infection. Vitamin D3 (VitD) is an immunonutrient obtained from diet or endogenously synthesized, which suppresses Th1 and Th17 responses by favoring T helper (Th) 2 and regulatory T cell (Treg) generation. Based on these findings, this study aims to evaluate dietary VitD influence on L. (L.) amazonensis experimental infection in C57BL/6 and BALB/c mice. Thus, C57BL/6 and BALB/c VitD deficient (VDD) mice were generated through dietary VitD restriction 45 days prior to infection. Both strains of VDD mice showed a more controlled lesion development compared to mice on a regular diet (Ctrl). There were no differences in serum levels of anti-Leishmania IgG1 and IgG2a, but there was a decrease in IgE levels in BALB/c VDD mice. Although CD4+ T cell number was not changed, the CD4+ IFN-y+ T cell population was increased in both absolute number and percentage in C57BL/6 and BALB/c VDD mice compared to Ctrl mice. There was also no difference in IL-4 and IL-17 production, however, there was reduction of IL-10 production in VDD mice. Together, our data indicate that VitD contributes to murine cutaneous leishmaniasis susceptibility and that the Th1 cell population may be related to the resistance of VDD mice to L. (L.) amazonensis infection.
Collapse
Affiliation(s)
| | - Gabriel Oliveira-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mirian França de Mello
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Joyce Carvalho Pereira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Luan Firmino-Cruz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo Maciel-Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tadeu Diniz Ramos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Macedo Vale
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Núcleo Multidisciplinar de Pesquisa UFRJ - Xerém em Biologia, UFRJ Campus Duque de Caxias Professor Geraldo Cidade - Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil
| |
Collapse
|
20
|
Maione F, Iqbal AJ, Raucci F, Letek M, Bauer M, D'Acquisto F. Repetitive Exposure of IL-17 Into the Murine Air Pouch Favors the Recruitment of Inflammatory Monocytes and the Release of IL-16 and TREM-1 in the Inflammatory Fluids. Front Immunol 2018; 9:2752. [PMID: 30555461 PMCID: PMC6284009 DOI: 10.3389/fimmu.2018.02752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022] Open
Abstract
The infiltration of Th17 cells in tissues and organs during the development of many autoimmune diseases is considered a key step toward the establishment of chronic inflammation. Indeed, the localized and prolonged release of IL-17 in specific tissues has been associated with an increased severity of the inflammatory response that remains sustained over time. The cellular and molecular mechanisms behind these effects are far from being clear. In this study we investigated the effects of two repetitive administration of recombinant IL-17 into the murine air pouch to simulate a scenario where IL-17 is released over time in a pre-inflamed tissue. Consistent with our previous observations, mice receiving a single dose of IL-17 showed a transitory influx of neutrophils into the air pouch that peaked at 24 h and declined at 48 h. Conversely, mice receiving a double dose of the cytokine—one at time 0 and the second after 24 h—showed a more dramatic inflammatory response with almost 2-fold increase in the number of infiltrated leukocytes and significant higher levels of TNF-α and IL-6 in the inflammatory fluids. Further analysis of the exacerbated inflammatory response of double-injected IL-17 mice showed a unique cellular and biochemical profile with inflammatory monocytes as the second main population emigrating to the pouch and IL-16 and TREM-1 as the most upregulated cytokines found in the inflammatory fluids. Most interestingly, mice receiving a double injection of IL-1β did not show any change in the cellular or biochemical inflammatory response compared to those receiving a single injection or just vehicle. Collectively these results shed some light on the function of IL-17 as pro-inflammatory cytokine and provide possible novel ways to target therapeutically the pathogenic effects of IL-17 in autoimmune conditions.
Collapse
Affiliation(s)
- Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Asif Jilani Iqbal
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Federica Raucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Michal Letek
- Health Science Research Centre, Department of Life Science, University of Roehampton, London, United Kingdom
| | - Martina Bauer
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Fulvio D'Acquisto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Health Science Research Centre, Department of Life Science, University of Roehampton, London, United Kingdom
| |
Collapse
|
21
|
Interleukin-17A Exacerbates Disease Severity in BALB/c Mice Susceptible to Lung Infection with Mycoplasma pulmonis. Infect Immun 2018; 86:IAI.00292-18. [PMID: 29986888 DOI: 10.1128/iai.00292-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022] Open
Abstract
Mycoplasmas are atypical bacteria that disrupt the immune response to promote respiratory tract infections and secondary complications. However, not every immunologic response that protects or damages the host during mycoplasma infection is known. Interleukin-17A (IL-17A) is elevated in individuals infected with mycoplasmas, but how IL-17A and its cellular sources dictate disease outcome remains unclear. Here, IL-17A is hypothesized to worsen disease in individuals susceptible to mycoplasma infection. Thus, monoclonal anti-IL-17A antibodies were given to disease-susceptible BALB/c mice and disease-resistant C57BL/6 mice infected with Mycoplasma pulmonis Neutralizing the function of IL-17A using anti-IL-17A antibodies reduced disease severity during M. pulmonis infection in BALB/c, but not C57BL/6, mice. Neutralizing IL-17A also reduced the incidence of neutrophilic lung lesions during infection in BALB/c mice. Reduced pathology occurred without impacting the bacterial burden, demonstrating that IL-17A is not required for mycoplasma clearance. The main source of IL-17A throughout infection in BALB/c mice was CD4+ T cells, and neutralizing IL-17A after infiltration of the lungs by T cells reduced disease severity, identifying the Th17 response as a herald of late mycoplasma pathology in susceptible mice. Neutralizing IL-17A did not further reduce disease during M. pulmonis infection in BALB/c mice depleted of neutrophils, suggesting that IL-17A requires the presence of pulmonary neutrophils to worsen respiratory pathology. IL-17A is a pathological element of murine respiratory mycoplasma infection. Using monoclonal antibodies to neutralize IL-17A could reduce disease severity during mycoplasma infection in humans and domesticated animals.
Collapse
|
22
|
Human Interleukin-32γ Plays a Protective Role in an Experimental Model of Visceral Leishmaniasis in Mice. Infect Immun 2018; 86:IAI.00796-17. [PMID: 29483288 DOI: 10.1128/iai.00796-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/03/2018] [Indexed: 12/17/2022] Open
Abstract
Visceral leishmaniasis (VL) is a chronic parasitic disease caused by Leishmania infantum in the Americas. During VL, several proinflammatory cytokines are produced in spleen, liver, and bone marrow. However, the role of interleukin-32 (IL-32) has not been explored in this disease. IL-32 can induce production of proinflammatory cytokines in innate immune cells and polarize the adaptive immune response. Herein, we discovered that L. infantum antigens induced expression of mRNA mainly for the IL-32γ isoform but also induced low levels of the IL-32β transcript in human peripheral blood mononuclear cells. Furthermore, infection of human IL-32γ transgenic mice (IL-32γTg mice) with L. infantum promastigote forms increased IL-32γ expression in the spleen and liver. Interestingly, IL-32γTg mice harbored less parasitism in the spleen and liver than wild-type (WT) mice. In addition, IL-32γTg mice showed increased granuloma formation in the liver compared to WT mice. The protection against VL was associated with increased production of nitric oxide (NO), interferon gamma (IFN-γ), IL-17A, and tumor necrosis factor alpha by splenic cells restimulated ex vivo with L. infantum antigens. In parallel, there was an increase in the number of Th1 and Th17 T cells in the spleens of IL-32γTg mice infected with L. infantum IL-32γ induction of IFN-γ and IL-17A expression was found to be essential for NO production by splenic cells of infected animals. These data indicate that IL-32γ potentiates the Th1/Th17 immune response during experimental VL, thus contributing to the control of L. infantum infection.
Collapse
|
23
|
Hashemi SA, Badirzadeh A, Sabzevari S, Nouri A, Seyyedin M. First case report of atypical disseminated cutaneous leishmaniasis in an opium abuser in Iran. Rev Inst Med Trop Sao Paulo 2018; 60:e5. [PMID: 29451599 PMCID: PMC5813668 DOI: 10.1590/s1678-9946201860005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022] Open
Abstract
Leishmaniasis is a worldwide tropical infectious disease caused by different species of intracellular protozoa parasites of the genus Leishmania . Herein, we report a 78-year-old man with unusual diffuse cutaneous leishmaniasis (DCL) who had a history of opium abuse and chronic obstructive pulmonary disease (COPD). He had multiple papular, crusted and severely ulcerated lesions extended to his arm and chest. Direct smears and skin punch biopsy of the lesions were suggestive of leishmaniasis. Parasite DNA was amplified from ulcers, and identified as Leishmania major by PCR-RFLP, confirmed by sequencing analyses. The aim of the current study was to bring to attention this atypical form of disease in CL endemic countries. Thus, this is the first case of DCL in an opium abuser with COPD due to L. major in Northeastern Iran indicating that atypical and extensive forms of CL (DCL) owing to L. major are increasing in Iran.
Collapse
Affiliation(s)
- Seyed Ahmad Hashemi
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Alireza Badirzadeh
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadaf Sabzevari
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ali Nouri
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | |
Collapse
|
24
|
Badirzadeh A, Taheri T, Abedi-Astaneh F, Taslimi Y, Abdossamadi Z, Montakhab-Yeganeh H, Aghashahi M, Niyyati M, Rafati S. Arginase activity of Leishmania isolated from patients with cutaneous leishmaniasis. Parasite Immunol 2017; 39. [PMID: 28731592 DOI: 10.1111/pim.12454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 07/17/2017] [Indexed: 01/15/2023]
Abstract
Cutaneous leishmaniasis (CL) is one of the most important vector-borne parasitic diseases, highly endemic in Iran, and its prevalence is increasing all over the country. Arginase (ARG) activity in isolated Leishmania parasites from CL patients is yet to be explored. This study aimed to compare the ARG activity of isolated Leishmania promastigotes from CL patients with a standard strain of Leishmania major and its influences on the disease pathogenesis. We recruited 16 confirmed CL patients from Qom Province, in central Iran; after detection of Leishmania species using PCR-RFLP, we assessed the levels of ARG in the isolated promastigotes and determined the parasites' growth rate. Only L. major was identified from CL patients. The level of ARG activity in the isolated Leishmania promastigotes from CL patients was significantly higher than that obtained from the standard strain of L. major. No significant correlations between ARG activity and lesion size, number or duration were observed; in contrast, a significant negative correlation was seen between ARG level and Leishmania' growth rate. The obtained results suggest that increased ARG expression and activity in the isolated Leishmania promastigotes might contribute to the higher parasite infectivity and play a major role in the pathogenicity of the CL.
Collapse
Affiliation(s)
- A Badirzadeh
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - T Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - F Abedi-Astaneh
- Department of Communicable Disease, Deputy of Health, Qom University of Medical Sciences, Qom, Iran
| | - Y Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Z Abdossamadi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - H Montakhab-Yeganeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - M Aghashahi
- Department of Communicable Disease, Deputy of Health, Qom University of Medical Sciences, Qom, Iran
| | - M Niyyati
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
25
|
Hurdayal R, Brombacher F. Interleukin-4 Receptor Alpha: From Innate to Adaptive Immunity in Murine Models of Cutaneous Leishmaniasis. Front Immunol 2017; 8:1354. [PMID: 29176972 PMCID: PMC5686050 DOI: 10.3389/fimmu.2017.01354] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022] Open
Abstract
The interleukin (IL)-4 receptor alpha (IL-4Rα), ubiquitously expressed on both innate and adaptive immune cells, controls the signaling of archetypal type 2 immune regulators; IL-4 and IL-13, which elicit their signaling action by the type 1 IL-4Rα/gamma common and/or the type 2 IL-4Rα/IL-13Rα complexes. Global gene-deficient mouse models targeting IL-4, IL-13, or the IL-4Rα chain, followed by the development of conditional mice and generation of important cell-type-specific IL-4Rα-deficient mouse models, were indeed critical to gaining in-depth understanding of detrimental T helper (Th) 2 mechanisms in type 1-controlled diseases. A primary example being cutaneous leishmaniasis, which is caused by the protozoan parasite Leishmania major, among others. The disease is characterized by localized self-healing cutaneous lesions and necrosis for which, currently, not a single vaccine has made it to a stage that can be considered effective. The spectrum of human leishmaniasis belongs to the top 10 infectious diseases according to the World Health Organization. As such, 350 million humans are at risk of infection and disease, with an incidence of 1.5–2 million new cases being reported annually. A major aim of our research is to identify correlates of host protection and evasion, which may aid in vaccine design and therapeutic interventions. In this review, we focus on the immune-regulatory role of the IL-4Rα chain from innate immune responses to the development of beneficial type 1 and detrimental type 2 adaptive immune responses during cutaneous Leishmania infection. We discuss the cell-specific requirements of the IL-4Rα chain on crucial innate immune cells during L. major infection, including, IL-4Rα-responsive skin keratinocytes, macrophages, and neutrophils, as well as dendritic cells (DCs). The latter, contributing to one of the paradigm shifts with respect to the role of IL-4 instructing DCs in vivo, to promote Th1 responses against L. major. Finally, we extend these innate responses and mechanisms to control of adaptive immunity and the effect of IL-4Rα-responsiveness on T and B lymphocytes orchestrating the development of CD4+ Th1/Th2 and B effector 1/B effector 2 B cells in response to L. major infection in the murine host.
Collapse
Affiliation(s)
- Ramona Hurdayal
- Faculty of Health Sciences, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Department of Molecular and Cell Biology Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Faculty of Health Sciences, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| |
Collapse
|
26
|
Gonçalves-de-Albuquerque SDC, Pessoa-e-Silva R, Trajano-Silva LAM, de Goes TC, de Morais RCS, da C. Oliveira CN, de Lorena VMB, de Paiva-Cavalcanti M. The Equivocal Role of Th17 Cells and Neutrophils on Immunopathogenesis of Leishmaniasis. Front Immunol 2017; 8:1437. [PMID: 29163510 PMCID: PMC5670345 DOI: 10.3389/fimmu.2017.01437] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/16/2017] [Indexed: 01/17/2023] Open
Abstract
Advances in the understanding of leishmaniasis progression indicate that cellular interactions more complex than the Th1/Th2 paradigm define the course of infection. Th17 cells are a crucial modulator of adaptive immunity against Leishmania parasites acting mainly on neutrophil recruitment and playing a dual role at the site of infection. This review describes the roles of both these cell types in linking innate defense responses to the establishment of specific immunity. We focus on the Th17-neutrophil interaction as a crucial component of anti-Leishmania immunity, and the clinical evolution of cutaneous or visceral leishmaniasis. To date, information obtained through experimental models and patient evaluations suggests that the influence of the presence of interleukin (IL)-17 (the main cytokine produced by Th17 cells) and neutrophils during Leishmania infections is strictly dependent on the tissue (skin or liver/spleen) and parasite species. Also, the time at which neutrophils are recruited, and the persistence of IL-17 in the infection microenvironment, may also be significant. A clearer understanding of these interactions will enable better measurement of the influence of IL-17 and its regulators, and contribute to the identification of disease/resistance biomarkers.
Collapse
Affiliation(s)
| | - Rômulo Pessoa-e-Silva
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Lays A. M. Trajano-Silva
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Tayná Correia de Goes
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Rayana C. S. de Morais
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Cíntia N. da C. Oliveira
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Virgínia M. B. de Lorena
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Milena de Paiva-Cavalcanti
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| |
Collapse
|
27
|
Berger BA, Bartlett AH, Saravia NG, Galindo Sevilla N. Pathophysiology of Leishmania Infection during Pregnancy. Trends Parasitol 2017; 33:935-946. [PMID: 28988681 DOI: 10.1016/j.pt.2017.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Abstract
The pathological processes resulting from parasitic infection are known to have important impacts on the mother child dyad during pregnancy. The roles of parasite transmission and the maternal immune response have been described in diseases such as malaria, toxoplasmosis, and trypanosomiasis. However, the impact of parasites of the genus Leishmania, etiological agents of the neglected tropical diseases tegumentary leishmaniasis (TL) and visceral leishmaniasis (VL), is comparatively less well known, though it is an increasingly recognized concern for infected mothers and their fetuses. In this review, we first consider the pathophysiology of placental infection and transplacental transmission of this parasite, and then discuss the role and mechanisms of the maternal immune system in simultaneously mediating maternal-fetal infection and adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Brandon A Berger
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA.
| | - Allison H Bartlett
- University of Chicago Comer Children's Hospital, Section of Infectious Disease, Chicago, IL, USA
| | - Nancy Gore Saravia
- Centro Internacional de Entrenamiento e Investigaciones Médicas, Cali, Colombia
| | - Norma Galindo Sevilla
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| |
Collapse
|