1
|
Ou Z, Li L, Ren P, Zhou T, He F, Chen J, Cai H, Han X, Wu Y, Li J, Li X, Tan Q, Li W, Chen Q, Zhang N, He X, Chen W, Zhao Y, Sun J, Zhang Q, Wu Y, Liang Y, You J, Hu G, Tian X, Liao S, Fu B, Chen A, Cai X, Yang H, Wang J, Jin X, Xu X, Jia W, Li J, Yan H. Spatiotemporal Transcriptomic Profiling Reveals the Dynamic Immunological Landscape of Alveolar Echinococcosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405914. [PMID: 39985260 PMCID: PMC12079354 DOI: 10.1002/advs.202405914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/03/2024] [Indexed: 02/24/2025]
Abstract
Alveolar echinococcosis (AE) is caused by the chronic infection of E. multilocularis, whose tumor-like growth can lead to high fatality if improperly treated. The early diagnosis of infection and the treatment of advanced AE remain challenging. Herein, bulk RNA-seq, scRNA-seq, and spatial transcriptomics technologies are integrated, to reveal the host immune response mechanism against E. multilocularis both spatially and chronologically, collecting mouse liver samples at multiple timepoints up to 15 months post infection. These results unveil an unprecedented high-resolution spatial atlas of the E. multilocularis infection foci and the functional roles of neutrophils, Spp1+ macrophages, and fibroblasts during disease progression. The heterogeneity of neutrophil and macrophage subpopulations are critical in both parasite-killing and the occurrence of immunosuppression during AE progression. These findings indicate the transition of parasite control strategy from "active killing" to "negative segregation" by the host, providing instructive insights into the treatment strategy for echinococcosis.
Collapse
Affiliation(s)
- Zhihua Ou
- BGI ResearchBeijing102601China
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
| | - Li Li
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Peidi Ren
- BGI ResearchBeijing102601China
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
| | - Ting‐Ting Zhou
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Fan He
- BGI ResearchBeijing102601China
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jialing Chen
- BGI ResearchBeijing102601China
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Huimin Cai
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- BGI ResearchShenzhen518083China
| | - Xiumin Han
- Qinghai Provincial People's HospitalClinical Research Institute of Hydatid DiseaseXining810007China
| | - Yao‐Dong Wu
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Jiandong Li
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- BGI ResearchShenzhen518083China
| | - Xiu‐Rong Li
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Qiming Tan
- BGI ResearchBeijing102601China
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityGronostajowa 7Kraków30‐387Poland
| | - Wenhui Li
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Qi Chen
- BGI ResearchBeijing102601China
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Nian‐Zhang Zhang
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Xiuju He
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- BGI ResearchShenzhen518083China
| | - Wei‐Gang Chen
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Yanping Zhao
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- BGI ResearchShenzhen518083China
| | - Jiwen Sun
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Qian Zhang
- BGI ResearchBeijing102601China
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yan‐Tao Wu
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Yingan Liang
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- Department of Immunology and MicrobiologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Jie You
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Guohai Hu
- China National GeneBankBGI ResearchShenzhen518120China
| | - Xue‐Qi Tian
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | | | - Bao‐Quan Fu
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Ao Chen
- BGI ResearchChongqing401329China
- JFL‐BGI STOmics CenterJinfeng LaboratoryChongqing401329China
| | - Xue‐Peng Cai
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | | | - Jian Wang
- BGI ResearchShenzhen518083China
- China National GeneBankBGI ResearchShenzhen518120China
| | - Xin Jin
- BGI ResearchShenzhen518083China
- School of MedicineSouth China University of TechnologyGuangzhou510006China
- Shenzhen Key Laboratory of Transomics BiotechnologiesBGI ResearchShenzhen518083China
| | - Xun Xu
- BGI ResearchShenzhen518083China
- Guangdong Provincial Key Laboratory of Genome Read and WriteBGI ResearchShenzhen518083China
| | - Wan‐Zhong Jia
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| | - Junhua Li
- Shenzhen Key Laboratory of Unknown Pathogen IdentificationBGI ResearchShenzhen518083China
- BGI ResearchBelgrade11000Serbia
| | - Hong‐Bin Yan
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para‐reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhou730046China
| |
Collapse
|
2
|
Jing QD, A JD, Liu LX, Fan HN. Current status of drug therapy for alveolar echinococcosis. World J Hepatol 2024; 16:1243-1254. [PMID: 39606163 PMCID: PMC11586754 DOI: 10.4254/wjh.v16.i11.1243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Alveolar echinococcosis (AE) is a chronic zoonotic parasitic disease caused by infection with Echinococcus multilocularis. AE is associated with a high mortality rate and poses a significant threat to human health. The primary treatment for AE is surgical resection of the lesions; however, owing to its long incubation period and insidious disease progression, many patients are diagnosed only after the onset of complications such as liver cirrhosis, jaundice, and portal hypertension, which preclude curative surgical intervention. For patients who are unwilling or unable to undergo surgery, lifelong administration of anti-AE medications is necessary. Benzimidazole compounds, such as albendazole and mebendazole, are the current mainstays of treatment, offering good efficacy. Nevertheless, these medications primarily inhibit parasite proliferation rather than eradicate the infection, and their long-term use can lead to significant drug-related toxic effects. Consequently, there is an urgent need to develop new therapeutic strategies that convey better efficacy and reduce the adverse effects associated with current treatments. Recent advancements in AE therapy include novel synthetic compounds such as antiviral agents, antibiotics, antineoplastic agents, immunosuppressants, and antiangiogenic agents, as well as natural compounds derived from traditional Chinese and Tibetan medicine. These new drugs show promising clinical potential because they interfere with parasitic metabolic pathways and cellular structures. This review aims to discuss recent research on AE drug therapy, including mechanisms of action, dosing regimens, signalling pathways, and therapeutic outcomes, with a goal of providing new insights and directions for the development of anti-AE drugs and summarizing current advancements in AE pharmacotherapy.
Collapse
Affiliation(s)
- Qin-Dong Jing
- Department of General Surgery, Qinghai Provincial People's Hospital, Xining 810000, Qinghai Province, China
- School of Clinical Medicine, Qinghai University, Xining 810000, Qinghai Province, China
| | - Ji-De A
- Department of Hepatic Hydatidosis, Qinghai Provincial People's Hospital, Xining 810007, Qinghai Province, China
| | - Lin-Xun Liu
- Department of General Surgery, Qinghai Provincial People's Hospital, Xining 810000, Qinghai Province, China
| | - Hai-Ning Fan
- Department of Hepatobiliary and Pancreatic Surgery, Qinghai Province Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China.
| |
Collapse
|
3
|
Sun T, Yang Y, Qiu Y, Wang T, Yang M, Shen S, Wang W. High PD-1 and CTLA-4 expression correlates with host immune suppression in patients and a mouse model infected with Echinococcus multilocularis. Parasit Vectors 2024; 17:437. [PMID: 39456030 PMCID: PMC11515268 DOI: 10.1186/s13071-024-06511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Alveolar echinococcosis (AE), a fatal disease caused by Echinococcus multilocularis, often affects the liver, with tumor-like growth. However, the mechanism by which E. multilocularis evades host immune surveillance remains unclear. METHODS We collected liver specimens from hepatic alveolar echinococcosis (HAE) patients and established a mouse model of E. multilocularis infection. Immunofluorescence staining and flow cytometry were performed to analyze programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte associated antigen 4 (CTLA-4) expression in human samples, while flow cytometry and quantitative real-time polymerase chain reaction (PCR) were performed for similar analyses in mouse samples. Cell proliferation and protoscolex (PSC) killing assays were designed to explore how E. multilocularis induces host immunosuppression. RESULTS An inflammatory reaction band with high PD-1 and CTLA-4 expression was found in close liver tissue (CLT). The ratio of regulatory T cells (Tregs) was higher in CLT than in distant liver tissue (DLT), and Tregs in CLT tended to express higher levels of PD-1 and CTLA-4 than those in DLT from HAE patients. Echinococcus multilocularis-infected mice showed significantly elevated expression of PD-1 and CTLA-4 on splenocytes and peritoneal cells. PD-1/PD-L1 or CTLA-4 pathway blockade could relieve the immunosuppressive effects of Tregs from infected mice and enhance PSC killing by mouse splenocytes. CONCLUSIONS E. multilocularis regulated the function of T cells via the PD-1/PD-L1- and CTLA-4-dependent pathways and subsequently evaded host immune attacks. These findings provide insights for investigating the pathogenic mechanism of AE.
Collapse
Affiliation(s)
- Ting Sun
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yi Yang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yiwen Qiu
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tao Wang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ming Yang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Shu Shen
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wentao Wang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
4
|
Zhang C, Li T, Hou S, Tang J, Wen R, Wang C, Yuan S, Li Z, Zhao W. Enhancing the therapeutic potential of P29 protein-targeted monoclonal antibodies in the management of alveolar echinococcosis through CDC-mediated mechanisms. PLoS Pathog 2024; 20:e1012479. [PMID: 39178325 PMCID: PMC11376570 DOI: 10.1371/journal.ppat.1012479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/05/2024] [Accepted: 08/05/2024] [Indexed: 08/25/2024] Open
Abstract
Alveolar echinococcosis (AE) is a highly lethal helminth infection. Current chemotherapeutic strategies for AE primarily involve the use of benzimidazoles (BZs) such as mebendazole (MDZ) and albendazole (ABZ), which exhibit limited efficacy. In a previous study, the vaccine of recombinant Echinococcus granulosus P29 (rEgP29) showed significant immunoprotection against E. granulosus in both mice and sheep. In the current study, we utilized hybridoma technology to generate five monoclonal antibodies (mAbs) against P29, among which 4G10F4 mAb exhibited the highest antigen-specific binding capacity. This mAb was selected for further investigation of anti-AE therapy, both in vivo and in vitro. In vitro, 4G10F4 inhibited a noteworthy inhibition of E. multilocularis protoscoleces and primary cells viability through complement-dependent cytotoxicity (CDC) mechanism. In vivo, two experiments were conducted. In the first experiment, mice were intraperitoneally injected with Em protoscoleces, and subsequently treated with 4G10F4 mAb (2.5/5/10 mg/kg) at 12 weeks postinfection once per week for 8 times via tail vein injection. Mice that were treated with 4G10F4 mAb only in dosage of 5mg/kg exhibited a significant lower mean parasite burden (0.89±0.97 g) compared to isotype mAb treated control mice (2.21±1.30 g). In the second experiment, mice were infected through hepatic portal vein and treated with 4G10F4 mAb (5mg/kg) at one week after surgery once per week for 8 times. The numbers of hepatic metacestode lesions of the 4G10F4 treatment group were significantly lower in comparison to the isotype control group. Pathological analysis revealed severe disruption of the inner structure of the metacestode in both experiments, particularly affecting the germinal and laminated layers, resulting in the transformation into infertile vesicles after treatment with 4G10F4. In addition, the safety of 4G10F4 for AE treatment was confirmed through assessment of mouse weight and evaluation of liver and kidney function. This study presents antigen-specific monoclonal antibody immunotherapy as a promising therapeutic approach against E. multilocularis induced AE.
Collapse
Affiliation(s)
- Cuiying Zhang
- School of Basic Medicine, Ningxia Medical University at Yinchuan, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Disease at Yinchuan, Yinchuan, China
| | - Tao Li
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University at Yinchuan, Yinchuan, China
| | - Siyu Hou
- School of Basic Medicine, Ningxia Medical University at Yinchuan, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Disease at Yinchuan, Yinchuan, China
| | - Jing Tang
- School of Basic Medicine, Ningxia Medical University at Yinchuan, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Disease at Yinchuan, Yinchuan, China
| | - Rou Wen
- School of Basic Medicine, Ningxia Medical University at Yinchuan, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Disease at Yinchuan, Yinchuan, China
| | - Chan Wang
- School of Basic Medicine, Ningxia Medical University at Yinchuan, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Disease at Yinchuan, Yinchuan, China
| | - Shiqin Yuan
- School of Basic Medicine, Ningxia Medical University at Yinchuan, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Disease at Yinchuan, Yinchuan, China
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University at Yinchuan, Yinchuan, China
| | - Zihua Li
- School of Basic Medicine, Ningxia Medical University at Yinchuan, Yinchuan, Ningxia, China
| | - Wei Zhao
- School of Basic Medicine, Ningxia Medical University at Yinchuan, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Disease at Yinchuan, Yinchuan, China
| |
Collapse
|
5
|
Zhang C, Wang H, Aji T, Li Z, Li Y, Ainiwaer A, Rousu Z, Li J, Wang M, Deng B, Duolikun A, Kang X, Zheng X, Yu Q, Shao Y, Zhang W, Vuitton DA, Tian Z, Sun H, Wen H. Targeting myeloid-derived suppressor cells promotes antiparasitic T-cell immunity and enhances the efficacy of PD-1 blockade (15 words). Nat Commun 2024; 15:6345. [PMID: 39068159 PMCID: PMC11283557 DOI: 10.1038/s41467-024-50754-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Immune exhaustion corresponds to a loss of effector function of T cells that associates with cancer or chronic infection. Here, our objective was to decipher the mechanisms involved in the immune suppression of myeloid-derived suppressor cells (MDSCs) and to explore the potential to target these cells for immunotherapy to enhance checkpoint blockade efficacy in a chronic parasite infection. We demonstrated that programmed cell-death-1 (PD-1) expression was significantly upregulated and associated with T-cell dysfunction in advanced alveolar echinococcosis (AE) patients and in Echinococcus multilocularis-infected mice. PD-1 blockade ex vivo failed to reverse AE patients' peripheral blood T-cell dysfunction. PD-1/PD-L1 blockade or PD-1 deficiency had no significant effects on metacestode in mouse model. This was due to the inhibitory capacities of immunosuppressive granulocytic MDSCs (G-MDSCs), especially in the liver surrounding the parasite pseudotumor. MDSCs suppressed T-cell function in vitro in an indoleamine 2, 3 dioxygenase 1 (IDO1)-dependent manner. Although depleting MDSCs alone restored T-cell effector functions and led to some limitation of disease progression in E. multilocularis-infected mice, combination with PD-1 blockade was better to induce antiparasitic efficacy. Our findings provide preclinical evidence in support of targeting MDSC or combining such an approach with checkpoint blockade in patients with advanced AE. (200 words).
Collapse
Affiliation(s)
- Chuanshan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China.
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China.
- Key Laboratory of High Incidence Disease Research in Xingjiang, Ministry of Education, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China.
| | - Hui Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Key Laboratory of High Incidence Disease Research in Xingjiang, Ministry of Education, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, and WHO Collaborating Centre on Prevention and Case Management of Echinococcosis, Urumqi, Xinjiang, P. R. China
| | - Tuerganaili Aji
- Key Laboratory of High Incidence Disease Research in Xingjiang, Ministry of Education, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Zhide Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Yinshi Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Abidan Ainiwaer
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Zibigu Rousu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Jing Li
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Maolin Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Bingqing Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Adilai Duolikun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Xuejiao Kang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Xuran Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Qian Yu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Yingmei Shao
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, and WHO Collaborating Centre on Prevention and Case Management of Echinococcosis, Urumqi, Xinjiang, P. R. China
| | - Dominique A Vuitton
- WHO-Collaborating Centre for the Prevention and Treatment of Human Echinococcosis, Department of Parasitology, University Bourgogne Franche-Comté (EA 3181) and University Hospital, Besançon, France
| | - Zhigang Tian
- Hefei National Research Center for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Haoyu Sun
- Hefei National Research Center for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China.
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P. R. China.
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China.
| |
Collapse
|
6
|
Aimaitijiang Y, Jiang TM, Shao YM, Aji T. Fifty-five cases of hepatic alveolar echinococcosis combined with lymph node metastasis: A retrospective study. World J Gastroenterol 2024; 30:2981-2990. [PMID: 38946870 PMCID: PMC11212701 DOI: 10.3748/wjg.v30.i23.2981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Lymph node metastasis is a specific type of metastasis in hepatic alveolar echinococcosis (AE). Currently, there is a scarcity of describing the clinical characteristics and lymph node metastasis rules of patients with hepatic AE combined with lymph node metastasis and its mechanism and management are still controversial. Radical hepatectomy combined with regional lymph node dissection is a better treatment. AIM To analyse the clinical features of hepatic AE combined with lymph node metastasis to explore its treatment and efficacy. METHODS A total of 623 patients with hepatic AE admitted to the First Affiliated Hospital of Xinjiang Medical University from 1 January 2012 to 1 January 2022 were retrospectively analysed. Fifty-five patients with combined lymph node metastasis were analysed for their clinical data, diagnosis and treatment methods, follow-up efficacy, and characteristics of lymph node metastasis. Finally, we comparatively analysed the lymph node metastasis rates at different sites. Categorical variables are expressed as frequencies and percentages, and the analysis of difference was performed using the χ 2 test. The Bonferroni method was used for pairwise comparisons when statistical differences existed between multiple categorical variables. RESULTS A lymph node metastasis rate of 8.8% (55/623) was reported in patients with hepatic AE, with a female predilection (69.1%) and a statistically significant sex difference (χ 2 = 8.018, P = 0.005). Of the 55 patients with lymph node metastasis, 72.7% had a parasite lesion, neighbouring organ invasion, and metastasis stage of P3N1M0 and above, of which 67.3%, 78.2%, and 34.5% of hepatic AE lesions invaded the bile ducts, blood vessels, and distant metastases, respectively. Detection rates of lymph node metastasis of 16.4%, 21.7%, and 34.2% were reported for a preoperative abdominal ultrasound, magnetic resonance imaging, and computed tomography examinations. All patients were intraoperatively suspected with enlarged lymph nodes and underwent radical hepatectomy combined with regional lymph node dissection. After surgery, a routine pathological examination was conducted on the resected lymph nodes. A total of 106 positive lymph nodes were detected in six groups at various sites, including 51 single-group metastasis cases and four multi-group metastasis cases. When the metastasis rates at different sites were statistically analysed, we observed that the metastasis rate in the para-hepatoduodenal ligament lymph nodes was significantly higher than that of the other sites (χ 2 = 128.089, P = 0.000 < 0.05). No statistical difference was observed in the metastasis rate between the five other groups. Clavien-Dindo grade IIIa complication occurred in 14 cases, which improved after administering symptomatic treatment. Additionally, lymph node dissection-related complications were not observed. Recurrence after 2 years was observed in one patient. CONCLUSION Lymph node metastasis is a rare form of metastasis in hepatic AE, which is more frequent in women. Para-hepatoduodenal ligament lymph nodes are commonly observed. Radical hepatectomy combined with regional lymph node dissection is a safe, effective, and feasible treatment for liver AE combined with lymph node metastasis.
Collapse
Affiliation(s)
- Yilizhati Aimaitijiang
- State Key Laboratory on Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Clinical College, Xinjiang Medical University, Urumqi 830011, Xinjiang Uygur Autonomous Region, China
- The First Ward of Hepatobiliary and Pancreatic Surgery, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830011, Xinjiang Uygur Autonomous Region, China
| | - Tie-Min Jiang
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Ying-Mei Shao
- Xinjiang Clinical Research Center for Echinococcosis and Hepatobiliary Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Tuerganaili Aji
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
7
|
Yang Y, Wuren T, Wu B, Cheng S, Fan H. The expression of CTLA-4 in hepatic alveolar echinococcosis patients and blocking CTLA-4 to reverse T cell exhaustion in Echinococcus multilocularis-infected mice. Front Immunol 2024; 15:1358361. [PMID: 38605966 PMCID: PMC11007148 DOI: 10.3389/fimmu.2024.1358361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Alveolar echinococcosis (AE) is a zoonotic parasitic disease caused by the infection of Echinococcus multilocularis (E. multilocularis) larvae. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) produces inhibitory signals and induces T cell exhaustion, thereby inhibiting the parasiticidal efficacy of the liver immune system. Therefore, the purpose of this study is to explore how T-cell exhaustion contributes to AE and whether blocking CTLA-4 could reverse T cell exhaustion. Here we discovered that the expression of CTLA-4 was increased in the infiltrating margin around the lesion of the liver from AE patients by using western blot and immunohistochemistry assay. Multiple fluorescence immunohistochemistry identified that CTLA-4 and CD4/CD8 molecules were co-localized. For in vitro experiments, it was found that the sustained stimulation of E. multilocularis antigen could induce T cell exhaustion, blocking CTLA-4-reversed T cell exhaustion. For in vivo experiments, the expression of CTLA-4 was increased in the liver of E. multilocularis-infected mice, and the CTLA-4 and CD4/CD8 molecules were co-localized. Flow cytometry analysis demonstrated that the percentages of both CD4+ T cells and CD8+ T cells in the liver and peripheral blood were significantly increased and induced T exhaustion. When the mice were treated with anti-CTLA-4 antibodies, the number and weight of the lesions decreased significantly. Meanwhile, the flow cytometry results suggested that blocking CTLA-4 could effectively reverse T cell exhaustion and reactivate immune function. Our work reveals that blocking CTLA-4 could effectively reverse the T cell exhaustion caused by E. multilocularis and could be used as a novel target for the treatment of AE.
Collapse
Affiliation(s)
- Yuxuan Yang
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Xining, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai University, Xining, Qinghai, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Xining, Qinghai, China
| | - Binjie Wu
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Xining, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai University, Xining, Qinghai, China
| | - Shilei Cheng
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Xining, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai University, Xining, Qinghai, China
| | - Haining Fan
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai University, Xining, Qinghai, China
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, Qinghai, China
| |
Collapse
|
8
|
Li J, Zhao H, Lv G, Aimulajiang K, Li L, Lin R, Aji T. Phenotype and function of MAIT cells in patients with alveolar echinococcosis. Front Immunol 2024; 15:1343567. [PMID: 38550591 PMCID: PMC10973110 DOI: 10.3389/fimmu.2024.1343567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/29/2024] [Indexed: 04/02/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subpopulation of unconventional T cells widely involved in chronic liver diseases. However, the potential role and regulating factors of MAIT cells in alveolar echinococcosis (AE), a zoonotic parasitic disease by Echinococcus multilocularis (E. multilocularis) larvae chronically parasitizing liver organs, has not yet been studied. Blood samples (n=29) and liver specimens (n=10) from AE patients were enrolled. The frequency, phenotype, and function of MAIT cells in peripheral blood and liver tissues of AE patients were detected by flow cytometry. The morphology and fibrosis of liver tissue were examined by histopathology and immunohistochemistry. The correlation between peripheral MAIT cell frequency and serologic markers was assessed by collecting clinicopathologic characteristics of AE patients. And the effect of in vitro stimulation with E. multilocularis antigen (Emp) on MAIT cells. In this study, MAIT cells are decreased in peripheral blood and increased in the close-to-lesion liver tissues, especially in areas of fibrosis. Circulating MAIT exhibited activation and exhaustion phenotypes, and intrahepatic MAIT cells showed increased activation phenotypes with increased IFN-γ and IL-17A, and high expression of CXCR5 chemokine receptor. Furthermore, the frequency of circulating MAIT cells was correlated with the size of the lesions and liver function in patients with AE. After excision of the lesion site, circulating MAIT cells returned to normal levels, and the serum cytokines IL-8, IL-12, and IL-18, associated with MAIT cell activation and apoptosis, were altered. Our results demonstrate the status of MAIT cell distribution, functional phenotype, and migration in peripheral blood and tissues of AE patients, highlighting their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jintian Li
- School of Public Healthy, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hanyue Zhao
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Hepatobiliary & Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guodong Lv
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Liang Li
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Renyong Lin
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Hepatobiliary & Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tuerganaili Aji
- School of Public Healthy, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Hepatobiliary & Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
9
|
Toledo A, Fragoso G, Carrillo-Mezo R, Romo ML, Sciutto E, Fleury A. Can sPD-1 and sPD-L1 Plasma Concentrations Predict Treatment Response among Patients with Extraparenchymal Neurocysticercosis? Pathogens 2023; 12:1116. [PMID: 37764924 PMCID: PMC10535301 DOI: 10.3390/pathogens12091116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Extraparenchymal neurocysticercosis (EP-NC) is a chronic, potentially life-threatening disease that responds poorly to initial anthelmintic drug therapy. A depressed specific reactivity of peripheral lymphocytes and an increased level of specific Tregs accompanies EP-NC. The immune checkpoint pathway PD-1 and its ligand PD-L1 downregulates effector T cells, causing specific immune suppression in chronic diseases. This study explored whether their soluble forms, sPD-1/sPD-L1, are present in plasma among patients with EP-NC and if their levels could be associated with treatment response. A total of 21 patients with vesicular EP-NC and 22 healthy controls were included. Patients received standard treatment and were followed for six months to assess treatment response by assessing changes in cyst volume determined with 3D MRI. The presence of both sPD-1 and sPD-L1 was more frequently detected among patients with EP-NC than in healthy controls and had higher concentrations. Among patients, higher pre-treatment levels of both markers were associated with a poor treatment response, and the sensitivity and specificity of the sPD-1/sPD-L1 ratio for predicting any response to treatment were high. Our results are consistent with the presence of lymphocyte exhaustion and open new research perspectives to improve the prognosis of patients with this severe disease.
Collapse
Affiliation(s)
- Andrea Toledo
- Unidad de Neuro Inflamación, Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigación Biomédicas, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigación Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Roger Carrillo-Mezo
- Departamento de Neurorradiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
| | - Matthew L Romo
- Department of Epidemiology & Biostatistics, CUNY Graduate School of Public Health and Health Policy, City University of New York, New York, NY 10027, USA
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigación Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Agnès Fleury
- Unidad de Neuro Inflamación, Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigación Biomédicas, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
- Clínica de Neurocisticercosis, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
| |
Collapse
|
10
|
Li D, Ainiwaer A, Zheng X, Wang M, Shi Y, Rousu Z, Hou X, Kang X, Maimaiti M, Wang H, Li J, Zhang C. Upregulation of LAG3 modulates the immune imbalance of CD4+ T-cell subsets and exacerbates disease progression in patients with alveolar echinococcosis and a mouse model. PLoS Pathog 2023; 19:e1011396. [PMID: 37172058 DOI: 10.1371/journal.ppat.1011396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/24/2023] [Accepted: 05/01/2023] [Indexed: 05/14/2023] Open
Abstract
Infection with the cestode Echinococcus multilocularis (E. multilocularis) causes alveolar echinococcosis (AE), a tumor-like disease predominantly affecting the liver but able to spread to any organ. T cells develop functional defects during chronic E. multilocularis infection, mostly due to upregulation of inhibitory receptors such as T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) and programmed death-1 (PD-1). However, the role of lymphocyte activation gene-3 (LAG3), an inhibitory receptor, in AE infection remains to be determined. Here, we discovered that high expression of LAG3 was mainly found in CD4+ T cells and induced regulatory T cells (iTregs) in close liver tissue (CLT) from AE patients. In a mouse model of E. multilocularis infection, LAG3 expression was predominantly found in T helper 2 (Th2) and Treg subsets, which secreted significantly more IL-4 and IL-10, resulting in host immune tolerance and disease progression at a late stage. Furthermore, LAG3 deficiency was found to drive the development of effector memory CD4+ T cells and enhance the type 1 CD4+ T-cell immune response, thus inhibiting metacestode growth in vivo. In addition, CD4+ T cells from LAG3-deficient mice produced more IFN-γ and less IL-4 when stimulated by E. multilocularis protoscoleces (EmP) antigen in vitro. Finally, adoptive transfer experiments showed that LAG3-knockout (KO) CD4+ T cells were more likely to develop into Th1 cells and less likely to develop into Tregs in recipient mice. Our work reveals that high expression of LAG3 accelerates AE disease progression by modulating the immune imbalance of CD4+ T-cell subsets. These findings may provide a novel immunotherapeutic strategy against E. multilocularis infection.
Collapse
Affiliation(s)
- Dewei Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Abidan Ainiwaer
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xuran Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Maolin Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yang Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zibigu Rousu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xinling Hou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xuejiao Kang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Muesier Maimaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hui Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, and WHO Collaborating Centre on Prevention and Case Management of Echinococcosis, Urumqi, Xinjiang, China
| | - Jing Li
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chuanshan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, and WHO Collaborating Centre on Prevention and Case Management of Echinococcosis, Urumqi, Xinjiang, China
| |
Collapse
|
11
|
Joliat GR, Martins-Filho SN, Haefliger S, Demartines N, Halkic N, Labgaa I, Sempoux C. Programmed death-ligand1 is a determinant of recurrence in alveolar echinococcosis. Int J Infect Dis 2023; 129:285-288. [PMID: 36775187 DOI: 10.1016/j.ijid.2023.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
OBJECTIVES Alveolar echinococcosis (AE) recurrence is one of the major stakes in patients undergoing surgery, the main curative treatment. Preliminary data demonstrated an effect of programmed death-ligand1 (PD-L1) inhibitors on AE proliferation in animals. The current study aimed to analyze the prognostic value of PD-L1 expression in tissue samples of patients with AE undergoing surgery. METHODS A cross-sectional study of patients operated for AE between 2002 and 2017 was performed. Patients with recurrence were matched 1: 2 with patients without recurrence. The matching criteria were PNM staging (P = hepatic localization of the parasite, N = extra-hepatic involvement of neighboring organs, and M = absence or presence of metastasis), resection status, preoperative albendazole treatment, and lesion size. PD-L1 immunohistochemistry staining was performed in surgical liver specimens. The expression of PD-L1 was assessed in immune cells. Disease-free survival was calculated using the Kaplan-Meier method. RESULTS Among 68 consecutive patients, eight patients with recurrence were matched to 16 patients without recurrence. PD-L1 was overexpressed in patients with recurrence (recurrence: PD-L1 <1%: one, PD-L1 ≥1%: seven; no recurrence: PD-L1 <1%: nine, PD-L1 ≥1%: seven, P = 0.040). Moreover, patients with lower PD-L1 expression (<1%) showed better median disease-free survival (120 months, 95% confidence interval 104-135 vs 74, 95% confidence interval 44-104, P = 0.050). CONCLUSION These findings highlight the proof of concept of PD-L1 in AE, but further data on its prognostic importance and the role of immune checkpoint blockade as a promising therapeutical strategy are needed.
Collapse
Affiliation(s)
- Gaëtan-Romain Joliat
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | | | - Simon Haefliger
- Institute of Pathology, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland.
| | - Nermin Halkic
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ismail Labgaa
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Christine Sempoux
- Institute of Pathology, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
12
|
Bailly C. Contribution of the TIM-3/Gal-9 immune checkpoint to tropical parasitic diseases. Acta Trop 2023; 238:106792. [PMID: 36509129 DOI: 10.1016/j.actatropica.2022.106792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Neglected tropical parasitic diseases (NTD) are prevalent in many countries and cost-effective treatments remain urgently needed. Novel approaches have been proposed to address these diseases through an action on immune co-inhibitory checkpoints which are exploited by parasites to evade the immune system. Among these checkpoints, TIM-3 has been shown to play a key role in antiparasitic immunity via a repression and functional attenuation of CD4+ and/or CD8+ T-cells. The present review discusses the role of the TIM-3/galectin-9 checkpoint in seven major NTD: Chagas disease, leishmaniasis and malaria (3 trypanosomatid infections), schistosomiasis, toxoplasmosis, echinococcosis and filariasis (4 helminth infections). In each case, the role of the checkpoint has been analyzed and the use of anti-TIM-3 antibodies evaluated as a potential therapeutic approach. In general, the parasitic infection is coupled with an upregulation of TIM-3 expressed on T cells, but not necessarily with an exhaustion of those T cells. In several cases, the use of anti-TIM-3 antibodies represent a possible strategy to reinforce the clearance and to reduce the parasite load. Promising data have been reported in cases of leishmaniasis, malaria and schistosomiasis, whereas a similar approach proved much less efficient (if not deleterious) in cases of echinococcosis and the Chagas disease. Nevertheless, the TIM-3 checkpoint warrants further consideration as a potential immune target to combat these pathologies, using antibodies or drugs capable of reducing directly or indirectly the expression and function of the checkpoint, to restore an immune control.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille (Wasquehal), 59290, France; University of Lille, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, BP-83, F-59006, Lille, France.
| |
Collapse
|
13
|
Thuru X, Magnez R, El-Bouazzati H, Vergoten G, Quesnel B, Bailly C. Drug Repurposing to Enhance Antitumor Response to PD-1/PD-L1 Immune Checkpoint Inhibitors. Cancers (Basel) 2022; 14:3368. [PMID: 35884428 PMCID: PMC9322126 DOI: 10.3390/cancers14143368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Monoclonal antibodies targeting the PD-1/PD-L1 immune checkpoint have considerably improved the treatment of some cancers, but novel drugs, new combinations, and treatment modalities are needed to reinvigorate immunosurveillance in immune-refractory tumors. An option to elicit antitumor immunity against cancer consists of using approved and marketed drugs known for their capacity to modulate the expression and functioning of the PD-1/PD-L1 checkpoint. Here, we have reviewed several types of drugs known to alter the checkpoint, either directly via the blockade of PD-L1 or indirectly via an action on upstream effectors (such as STAT3) to suppress PD-L1 transcription or to induce its proteasomal degradation. Specifically, the repositioning of the approved drugs liothyronine, azelnidipine (and related dihydropyridine calcium channel blockers), niclosamide, albendazole/flubendazole, and a few other modulators of the PD-1/PD-L1 checkpoint (repaglinide, pimozide, fenofibrate, lonazolac, propranolol) is presented. Their capacity to bind to PD-L1 or to repress its expression and function offer novel perspectives for combination with PD-1 targeted biotherapeutics. These known and affordable drugs could be useful to improve the therapy of cancer.
Collapse
Affiliation(s)
- Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Romain Magnez
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Hassiba El-Bouazzati
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Gérard Vergoten
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, Inserm, INFINITE—U1286, 3 Rue du Professeur Laguesse, BP-83, F-59006 Lille, France;
| | - Bruno Quesnel
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | | |
Collapse
|
14
|
Zhu L, Kuang X, Zhang G, Liang L, Liu D, Hu B, Xie Z, Li H, Liu H, Ye M, Chen X, Liu J. Albendazole induces immunotherapy response by facilitating ubiquitin-mediated PD-L1 degradation. J Immunother Cancer 2022; 10:e003819. [PMID: 35577504 PMCID: PMC9115032 DOI: 10.1136/jitc-2021-003819] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have been increasingly used in patients with various cancers and have shown efficient therapeutic outcomes. However, fewer than 40% of cases across multiple cancer types show a response to ICIs. Therefore, developing more efficient combinational approaches with ICIs and revealing the underlying mechanisms are important goals for achieving rapid clinical transformation and application. METHODS The effects on antitumor immunity activity of albendazole (ABZ) and the synergistic effects of ABZ with CD73 blockade were investigated in the melanoma B16F10 and the Lewis lung cancer tumor-bearing immune-competent mice models. The mechanism of ABZ reducing PD-L1 protein level through suppressing UBQLN4 was identified and validated through immunoprecipitation-mass spectrometry and molecular methods. Bioinformatics and anti-PD-1 therapy melanoma patients samples analysis were used to assess the level of UBQLN4/PD-L1 in the therapeutic efficacy of anti-PD-1 therapy. RESULTS ABZ induces CD8+ T cell activity and subsequent immunotherapy response associated with suppression of PD-L1 protein level. Mechanistically, we revealed that ABZ promotes ubiquitin-mediated degradation of PD-L1 via suppressing UBQLN4, which was bound to PD-L1 and stabilized PD-L1 protein. Preclinically, genetic deletion or target inhibition of CD73 showed synergistic effects with ABZ treatment in the immune-competent mice models. Significantly, UBQLN4 and PD-L1 levels were higher in the tumor region of responders versus non-responders and correlated with better progression-free survival and overall survival in anti-PD-1 therapy melanoma patients. CONCLUSIONS Our findings revealed a previously unappreciated role of ABZ in antitumor immunity by inducing ubiquitin-mediated PD-L1 protein degradation, identified predictors for assessing the therapeutic efficacy of anti-PD-1 therapy, and provided novel therapeutic possibility by combination treatment of ABZ and CD73 blockade in cancers.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Molecular Biology Research Center, Center for Medical Genetics, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xinwei Kuang
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guanxiong Zhang
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Research and Development, Beijing GAP Biotechnology Co., Ltd, Beijing, China
| | - Long Liang
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Molecular Biology Research Center, Center for Medical Genetics, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Dandan Liu
- Molecular Biology Research Center, Center for Medical Genetics, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Bin Hu
- Molecular Biology Research Center, Center for Medical Genetics, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zuozhong Xie
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Li
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Molecular Biology Research Center, Center for Medical Genetics, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan, China
| | - Hong Liu
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center, Center for Medical Genetics, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
Chong S, Chen G, Dang Z, Niu F, Zhang L, Ma H, Zhao Y. Echinococcus multilocularis drives the polarization of macrophages by regulating the RhoA-MAPK signaling pathway and thus affects liver fibrosis. Bioengineered 2022; 13:8747-8758. [PMID: 35324411 PMCID: PMC9161885 DOI: 10.1080/21655979.2022.2056690] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Echinococcus multilocularis is a small parasite that causes alveolar echinococcosis. It primarily induces liver disorder, such as liver fibrosis and even liver cancer, which severely endangers human lives. This study aims to explore the efficacy of Echinococcus multilocularis soluble antigen in preventing and alleviating alveolar echinococcosis-induced liver fibrosis and determine the underlying mechanism. We first identified the optimal dose and time of Echinococcus multilocularis soluble antigen. The protein levels of key genes in the RhoA-MAPK signaling pathway were remarkably upregulated in RAW264.7 and Ana-1 cells induced with 80 μg/mL Echinococcus multilocularis soluble antigen for 8 h. Interestingly, the upregulated expression levels were remarkably reversed by the RhoA, JNK, ERK, or p38 inhibitor, confirming the significance of the RhoA-MAPK signaling pathway. In addition, the relative contents of M2 polarization markers IL-10 and Arg-1 in macrophages induced with 80 μg/mL Echinococcus multilocularis soluble antigen for 8 h increased, whereas those of M1 polarization markers IL-12 and NOS-2 decreased. Mouse hepatic stellate cells were the key components of the hepatocellular carcinoma tumor microenvironment. Hepatic stellate cells were activated by Echinococcus multilocularis soluble antigen and transformed into the morphology of myofibroblasts in response to liver disorders. By detecting the marker of myofibroblast formation, RhoA inhibitor remarkably reduced the positive expression of α-SMA in mouse hepatic stellate cells induced with Echinococcus multilocularis soluble antigen. Therefore, Echinococcus multilocularis soluble antigen remarkably activated the RhoA-MAPK pathways in macrophages, further inducing the polarization of macrophages and ultimately causing liver fibrosis. Hypothesis: We hypothesize that infection with Echinococcus multilocularis activates the RhoA-MAPK signaling pathway and subsequently induces macrophage polarization to promote hepatic stellate cells activation leading to liver fibrosis. Aims: To investigate the mechanism by which soluble antigen of Echinococcus multilocularis affects liver fibrosis through the RhoA-MAPK pathway driving polarization of macrophages. Goals: To identify new pathways of intervention and drug targets for the regulation of macrophage polarity phenotype switching and the attenuation or inhibition of the development and treatment of liver fibrosis caused by Echinococcus multilocularis infection.
Collapse
Affiliation(s)
- Shigui Chong
- Department of Parasitology, School of Basic Medicine, Gansu Medical University, Gansu, China.,Department of Parasitology, School of Basic Medicine, Guilin Medical University, Guilin, Guangxi, P.R. China
| | - Gen Chen
- Department of Parasitology, School of Basic Medicine, Guilin Medical University, Guilin, Guangxi, P.R. China
| | - Zhisheng Dang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, P.R. China
| | - Fuqiu Niu
- Department of Parasitology, School of Basic Medicine, Guilin Medical University, Guilin, Guangxi, P.R. China
| | - Linghui Zhang
- Department of Parasitology, School of Basic Medicine, Guilin Medical University, Guilin, Guangxi, P.R. China
| | - Hui Ma
- Department of Parasitology, School of Basic Medicine, Guilin Medical University, Guilin, Guangxi, P.R. China
| | - Yumin Zhao
- Department of Parasitology, School of Basic Medicine, Gansu Medical University, Gansu, China.,Department of Parasitology, School of Basic Medicine, Guilin Medical University, Guilin, Guangxi, P.R. China
| |
Collapse
|
16
|
Weingartner M, Stücheli S, Jebbawi F, Gottstein B, Beldi G, Lundström-Stadelmann B, Wang J, Odermatt A. Albendazole reduces hepatic inflammation and endoplasmic reticulum-stress in a mouse model of chronic Echinococcus multilocularis infection. PLoS Negl Trop Dis 2022; 16:e0009192. [PMID: 35030165 PMCID: PMC8794265 DOI: 10.1371/journal.pntd.0009192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 01/27/2022] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Echinococcus multilocularis causes alveolar echinococcosis (AE), a rising zoonotic disease in the northern hemisphere. Treatment of this fatal disease is limited to chemotherapy using benzimidazoles and surgical intervention, with frequent disease recurrence in cases without radical surgery. Elucidating the molecular mechanisms underlying E. multilocularis infections and host-parasite interactions ultimately aids developing novel therapeutic options. This study explored an involvement of unfolded protein response (UPR) and endoplasmic reticulum-stress (ERS) during E. multilocularis infection in mice. METHODS E. multilocularis- and mock-infected C57BL/6 mice were subdivided into vehicle, albendazole (ABZ) and anti-programmed death ligand 1 (αPD-L1) treated groups. To mimic a chronic infection, treatments of mice started six weeks post i.p. infection and continued for another eight weeks. Liver tissue was then collected to examine inflammatory cytokines and the expression of UPR- and ERS-related genes. RESULTS E. multilocularis infection led to an upregulation of UPR- and ERS-related proteins in the liver, including ATF6, CHOP, GRP78, ERp72, H6PD and calreticulin, whilst PERK and its target eIF2α were not affected, and IRE1α and ATF4 were downregulated. ABZ treatment in E. multilocularis infected mice reversed, or at least tended to reverse, these protein expression changes to levels seen in mock-infected mice. Furthermore, ABZ treatment reversed the elevated levels of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and interferon (IFN)-γ in the liver of infected mice. Similar to ABZ, αPD-L1 immune-treatment tended to reverse the increased CHOP and decreased ATF4 and IRE1α expression levels. CONCLUSIONS AND SIGNIFICANCE AE caused chronic inflammation, UPR activation and ERS in mice. The E. multilocularis-induced inflammation and consecutive ERS was ameliorated by ABZ and αPD-L1 treatment, indicating their effectiveness to inhibit parasite proliferation and downregulate its activity status. Neither ABZ nor αPD-L1 themselves affected UPR in control mice. Further research is needed to elucidate the link between inflammation, UPR and ERS, and if these pathways offer potential for improved therapies of patients with AE.
Collapse
Affiliation(s)
- Michael Weingartner
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Simon Stücheli
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Fadi Jebbawi
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Bruno Gottstein
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Guido Beldi
- Department of Visceral Surgery and Medicine, University Hospital of Bern, Bern, Switzerland
| | | | - Junhua Wang
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Manciulli T, Vola A, Brunetti E. Echinococcus. ENCYCLOPEDIA OF INFECTION AND IMMUNITY 2022:475-491. [DOI: 10.1016/b978-0-12-818731-9.00236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Tamarozzi F, Manciulli T, Brunetti E, Vuitton DA. Echinococcosis. HELMINTH INFECTIONS AND THEIR IMPACT ON GLOBAL PUBLIC HEALTH 2022:257-312. [DOI: 10.1007/978-3-031-00303-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Impact on Bile Acid Concentrations by Alveolar Echinococcosis and Treatment with Albendazole in Mice. Metabolites 2021; 11:metabo11070442. [PMID: 34357336 PMCID: PMC8307106 DOI: 10.3390/metabo11070442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 11/17/2022] Open
Abstract
Alveolar echinococcosis (AE) caused by Echinococcus multilocularis is a chronic, progressive liver disease widely distributed in the Northern Hemisphere. The main treatment options include surgical interventions and chemotherapy with benzimidazole albendazole (ABZ). To improve the current diagnosis and therapy of AE, further investigations into parasite-host interactions are needed. This study used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to assess serum and liver tissue bile acid profiles in the i.p. chronic E. multilocularis-infected mouse model and evaluated the effects of the anthelmintic drug ABZ. Additionally, hepatic mRNA and protein expression of enzymes and transporters regulating bile acid concentrations were analyzed. AE significantly decreased unconjugated bile acids in serum and liver tissue. Taurine-conjugated bile salts were unchanged or increased in the serum and unchanged or decreased in the liver. Ratios of unconjugated to taurine-conjugated metabolites are proposed as useful serum markers of AE. The expression of the bile acid synthesis enzymes cytochrome P450 (CYP) 7A1 and aldo-keto reductase (AKR) 1D1 tended to decrease or were decreased in mice with AE, along with decreased expression of the bile acid transporters Na+/taurocholate cotransporting polypeptide (NTCP) and bile salt efflux pump (BSEP). Importantly, treatment with ABZ partially or completely reversed the effects induced by E. multilocularis infection. ABZ itself had no effect on the bile acid profiles and the expression of relevant enzymes and transporters. Further research is needed to uncover the exact mechanism of the AE-induced changes in bile acid homeostasis and to test whether serum bile acids and ratios thereof can serve as biomarkers of AE and for monitoring therapeutic efficacy.
Collapse
|