1
|
Chowdhury NB, Simons-Senftle M, Decouard B, Quillere I, Rigault M, Sajeevan KA, Acharya B, Chowdhury R, Hirel B, Dellagi A, Maranas C, Saha R. A multi-organ maize metabolic model connects temperature stress with energy production and reducing power generation. iScience 2023; 26:108400. [PMID: 38077131 PMCID: PMC10709110 DOI: 10.1016/j.isci.2023.108400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 02/18/2024] Open
Abstract
Climate change has adversely affected maize productivity. Thereby, a holistic understanding of metabolic crosstalk among its organs is important to address this issue. Thus, we reconstructed the first multi-organ maize metabolic model, iZMA6517, and contextualized it with heat and cold stress transcriptomics data using expression distributed reaction flux measurement (EXTREAM) algorithm. Furthermore, implementing metabolic bottleneck analysis on contextualized models revealed differences between these stresses. While both stresses had reducing power bottlenecks, heat stress had additional energy generation bottlenecks. We also performed thermodynamic driving force analysis, revealing thermodynamics-reducing power-energy generation axis dictating the nature of temperature stress responses. Thus, a temperature-tolerant maize ideotype can be engineered by leveraging the proposed thermodynamics-reducing power-energy generation axis. We experimentally inoculated maize root with a beneficial mycorrhizal fungus, Rhizophagus irregularis, and as a proof-of-concept demonstrated its efficacy in alleviating temperature stress. Overall, this study will guide the engineering effort of temperature stress-tolerant maize ideotypes.
Collapse
Affiliation(s)
- Niaz Bahar Chowdhury
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Berengere Decouard
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Isabelle Quillere
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Martine Rigault
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | | | - Bibek Acharya
- Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Ratul Chowdhury
- Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Bertrand Hirel
- Centre de Versailles-Grignon, Institut National de Recherche pour l’Agriculture, Versailles, France
| | - Alia Dellagi
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Costas Maranas
- Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Rajib Saha
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
2
|
Pan L, Yang N, Sui Y, Li Y, Zhao W, Zhang L, Mu L, Tang Z. Altitudinal Variation on Metabolites, Elements, and Antioxidant Activities of Medicinal Plant Asarum. Metabolites 2023; 13:1193. [PMID: 38132875 PMCID: PMC10745449 DOI: 10.3390/metabo13121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Asarum (Asarum sieboldii Miq. f. seoulense (Nakai) C. Y. Cheng et C. S. Yang) is a medicinal plant that contains asarinin and sesamin, which possess extensive medicinal value. The adaptation and distribution of Asarum's plant growth are significantly affected by altitude. Although most studies on Asarum have concentrated on its pharmacological activities, little is known about its growth and metabolites with respect to altitude. In this study, the physiology, ionomics, and metabolomics were investigated and conducted on the leaves and roots of Asarum along an altitude gradient, and the content of its medicinal components was determined. The results showed that soil pH and temperature both decreased along the altitude, which restricts the growth of Asarum. The accumulation of TOC, Cu, Mg, and other mineral elements enhanced the photosynthetic capacity and leaf plasticity of Asarum in high-altitude areas. A metabolomics analysis revealed that, at high altitude, nitrogen metabolism in leaves was enhanced, while carbon metabolism in roots was enhanced. Furthermore, the metabolic pathways of some phenolic substances, including syringic acid, vanillic acid, and ferulic acid, were altered to enhance the metabolism of organic acids. The study uncovered the growth and metabolic responses of Asarum to varying altitudes, providing a theoretical foundation for the utilization and cultivation of Asarum.
Collapse
Affiliation(s)
- Liben Pan
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China;
| | - Nan Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China;
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| | - Yushu Sui
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| | - Yi Li
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
| | - Wen Zhao
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
| | - Liqiu Zhang
- School of Medicine and Pharmacy, Tonghua Normal University, Tonghua 134002, China;
| | - Liqiang Mu
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
| | - Zhonghua Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China;
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|
3
|
Chen ZJ, Huang J, Li S, Shao JF, Shen RF, Zhu XF. Salylic acid minimize cadmium accumulation in rice through regulating the fixation capacity of the cell wall to cadmium. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111839. [PMID: 37643701 DOI: 10.1016/j.plantsci.2023.111839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/05/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Although salylic acid (SA) has been linked to how plants react to cadmium (Cd) stress, the exact mechanism is still unknown. The endogenous SA concentration in the rice (Oryza sativa L.) roots was enhanced by Cd stress in the current investigation, and exogenous SA reduced the hemicellulose content in root cell wall, which in turn inhibited its Cd binding capacity. What's more, exogenous SA also decreased the transcription level of genes such as Natural Resistance-Associated Macrophage Protein 5 (OsNRAMP5) and a major facilitator superfamily gene-OsCd1 that responsible for root Cd absorption. Finally, less Cd was accumulated in the rice as a result of the higher expression of Heavy Metal ATPase 3 (OsHMA3), Cation/Ca exchanger 2 (OsCCX2) and Pleiotropic Drug Resistance 9 (OsPDR9/OsABCG36) that were responsible for separating Cd into vacuole and getting Cd out of cells, respectively. In contrast, mutant with low SA level accumulated more Cd. Additionally, SA enhanced endogenous nitric oxide (NO) levels, and its alleviatory effects were mimicked by a NO donor, sodium nitroprusside (SNP). In conclusion, SA enhanced rice's Cd resistance through regulating the binding capacity of the cell wall to Cd, a pathway that might dependent on the NO accumulation.
Collapse
Affiliation(s)
- Zhi Jian Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Su Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Feng Shao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Assessing Vegetation Decline Due to Pollution from Solid Waste Management by a Multitemporal Remote Sensing Approach. REMOTE SENSING 2022. [DOI: 10.3390/rs14020428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nowadays, the huge production of Municipal Solid Waste (MSW) is one of the most strongly felt environmental issues. Consequently, the European Union (EU) delivers laws and regulations for better waste management, identifying the essential requirements for waste disposal operations and the characteristics that make waste hazardous to human health and the environment. In Italy, environmental regulations define, among other things, the characteristics of sites to be classified as “potentially contaminated”. From this perspective, the Basilicata region is currently one of the Italian regions with the highest number of potentially polluted sites in proportion to the number of inhabitants. This research aimed to identify the possible effects of potentially toxic element (PTE) pollution due to waste disposal activities in three “potentially contaminated” sites in southern Italy. The area was affected by a release of inorganic pollutants with values over the thresholds ruled by national/European legislation. Potential physiological efficiency variations of vegetation were analyzed through the multitemporal processing of satellite images. Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) images were used to calculate the trend in the Normalized Difference Vegetation Index (NDVI) over the years. The multitemporal trends were analyzed using the median of the non-parametric Theil–Sen estimator. Finally, the Mann–Kendall test was applied to evaluate trend significance featuring areas according to the contamination effects on investigated vegetation. The applied procedure led to the exclusion of significant effects on vegetation due to PTEs. Thus, waste disposal activities during previous years do not seem to have significantly affected vegetation around targeted sites.
Collapse
|
5
|
Guo J, Ye D, Zhang X, Huang H, Wang Y, Zheng Z, Li T, Yu H. Characterization of cadmium accumulation in the cell walls of leaves in a low-cadmium rice line and strengthening by foliar silicon application. CHEMOSPHERE 2022; 287:132374. [PMID: 34592211 DOI: 10.1016/j.chemosphere.2021.132374] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) remobilization in leaves is affected by whether Cd is stored in nonlabile subcellular compartments, which might be regulated by silicon (Si) application. However, the underlying mechanism is still far from being completely understood. In this research, the Cd distribution pattern in leaves and a Cd-binding characterization in the cell wall of the low-Cd rice line YaHui2816 were investigated through one hydroponic experiment with 10 μM Cd in solutions. Foliar Si application was further adopted to explore its influence on the Cd accumulation in the cell walls of leaves in YaHui2816. Most of the Cd (69.4%) was distributed in the cell walls of YaHui2816 leaves, whereas the isolated cell walls of leaves from YaHui2816 exhibited a lower capacity for Cd chemisorption than the contrasting line C268A, which was resulted from its fewer relative peak areas of functional groups in the cell wall, such as carboxyl CO and OH stretching. Foliar Si application significantly increased the Cd concentration in leaves and various cell wall fractions (pectin, hemicellulose 1 and residue) by 191% and 137-160%, respectively. RNA-seq analysis revealed that foliar Si application depressed the expression of the metal transporters OsZIP7 and OsZIP8, up-regulated the expression of genes participating in the glutathione metabolism and the cellulose synthesis. Overall, the influence of foliar Si application on Cd-accumulation in the cell wall of leaves in a low-Cd rice line was demonstrated in this research, which inspires further avenues to ensure the food safety of rice grains.
Collapse
Affiliation(s)
- Jingyi Guo
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China.
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
6
|
Gąsecka M, Drzewiecka K, Magdziak Z, Piechalak A, Budka A, Waliszewska B, Szentner K, Goliński P, Niedzielski P, Budzyńska S, Mleczek M. Arsenic uptake, speciation and physiological response of tree species (Acer pseudoplatanus, Betula pendula and Quercus robur) treated with dimethylarsinic acid. CHEMOSPHERE 2021; 263:127859. [PMID: 32841871 DOI: 10.1016/j.chemosphere.2020.127859] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The aim of the study was to evaluate the effect of dimethylarsinic acid (DMA) on growth parameters and levels of stress-related metabolites in Acer pseudoplatanus, Betula pendula and Quercus robur. The increase of DMA concentration in the solution led to a notable growth retardation of trees. An intense As accumulation (mainly As(III) and As(V)) expressed as BCF and TF > 1 was recorded only for Q. robur. Generally a decrease in contents of cellulose, hemicellulose and holocellulose with a simultaneous increase in lignin content were recorded. Phenolic composition of leaf extracts was modified by DMA, while root and rhizosphere extracts were poor in phenolics. Toxicity of DMA leads to a significant drop in salicylic acid content in leaves observed at lower doses. Higher DMA levels caused a second, probably ROS-derived depletion of the metabolite accompanied with a severe growth retardation, most pronounced in the case of B. pendula. DMA caused the inhibition of LMWOA biosynthesis in roots of A. pseudoplatanus, B. pendula and their exudation into the rhizosphere, while in Q. robur roots and leaves a stimulation of their accumulation was observed. Disturbances in the activity of enzymatic antioxidants were observed for all the species following the increasing level of DMA.
Collapse
Affiliation(s)
- Monika Gąsecka
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Kinga Drzewiecka
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Zuzanna Magdziak
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Aneta Piechalak
- Adam Mickiewicz University in Poznań, Department of Genome Biology, Institute of Molecular Biology and Biotechnology, Umultowska 89, 61-614, Poznań, Poland
| | - Anna Budka
- Poznań University of Life Sciences, Department of Mathematical and Statistical Methods, Wojska Polskiego 28, 60-637, Poznań, Poland
| | - Bogusława Waliszewska
- Institute of Chemical Wood Technology, Wojska Polskiego 38/42, 60-637, Poznań, Poland
| | - Kinga Szentner
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Piotr Goliński
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Przemysław Niedzielski
- Adam Mickiewicz University in Poznań, Department of Analytical Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Sylwia Budzyńska
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Mirosław Mleczek
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland.
| |
Collapse
|
7
|
Sujkowska-Rybkowska M, Muszyńska E, Labudda M. Structural Adaptation and Physiological Mechanisms in the Leaves of Anthyllis vulneraria L. from Metallicolous and Non-Metallicolous Populations. PLANTS (BASEL, SWITZERLAND) 2020; 9:E662. [PMID: 32456189 PMCID: PMC7284905 DOI: 10.3390/plants9050662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 01/24/2023]
Abstract
Calamine wastes highly contaminated with trace metals (TMs) are spontaneously inhabited by a legume plant Anthyllis vulneraria L. This study determined an adaptation strategy of metallicolous (M) A. vulneraria and compared it with that of the non-metallicolous (NM) ecotype. We hypothesized that TMs may lead to (i) leaf apoplast modifications and (ii) changes in the antioxidant machinery efficiency that facilitate plant growth under severe contamination. To verify our hypothesis, we implemented immunolabelling, transmission electron microscopy and biochemical measurements. NM leaves were larger and thicker compared to the M ecotype. Microscopic analysis of M leaves showed a lack of dysfunctions in mesophyll cells exposed to TMs. However, changes in apoplast composition and thickening of the mesophyll and epidermal cell walls in these plants were observed. Thick walls were abundant in xyloglucan, pectins, arabinan, arabinogalactan protein and extensin. The tested ecotypes differed also in their physiological responses. The metallicolous ecotype featured greater accumulation of photosynthetic pigments, enhanced activity of superoxide dismutase and increased content of specific phenol groups in comparison with the NM one. Despite this, radical scavenging activity at the level of 20% was similar in M and NM ecotypes, which may implicate effective reduction of oxidative stress in M plants. In summary, our results confirmed hypotheses and suggest that TMs induced cell wall modifications of leaves, which may play a role in metal stress avoidance in Anthyllis species. However, when TMs reach the protoplast, activation of antioxidant machinery may significantly strengthen the status of plants naturally growing in TM-polluted environment.
Collapse
Affiliation(s)
- Marzena Sujkowska-Rybkowska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| |
Collapse
|
8
|
Scenedesnus rotundus isolated from the petroleum effluent employs alternate mechanisms of tolerance to elevated levels of Cadmium and Zinc. Sci Rep 2019; 9:8485. [PMID: 31186431 PMCID: PMC6560090 DOI: 10.1038/s41598-019-44374-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/19/2019] [Indexed: 01/24/2023] Open
Abstract
Scenedesmus rotundus was isolated from metal contaminated petroleum industry effluent and its tolerance to Cadmium and Zinc was tested using different concentrations of CdCl2 and ZnCl2 ranging from 0.001 mM to 1.0 mM of Cd and 0.03 mM to 1.21 mM of Zn amended in Bolds Basal medium. The changes in cell count recorded at regular intervals upto a period of 24 days revealed a concentration dependent inhibition in growth. Concentration of the metal, at which 50% of the cells are live and metabolically active referred to as EC50 was calculated as 0.04 mM for Cd and 0.2 mM for Zn. Further, the effect of EC50 of the metals on the protein content, uptake of metals at varying pH, oxidative stress markers including lipid peroxidation, protein oxidation andnd oxygen uptake, levels of enzymatic antioxidants such as catalase and superoxide dismutase and non-enzymatic antioxidants namely, GSH and PC4 were determined. Though a direct correlation could not be drawn between pH and metal uptake, the compartmentalization of the metal during the lag phase and exponential phase was evident, most of the metal was present in extracellular fractions in the former, while in the later it was internalized. Our study shows a clear correlation between toxicity of Cd and the ability of the algae to synthesize PC4 from GSH and chelate it leading to detoxification, while Zn treatment led to an increase in the activity of catalase and superoxide dismutase and replete GSH pools. Further the changes in the cell wall structure at EC50 of Cd and Zn were studied. This is the first report on effect of heavy metals on the structural modifications of the cell wall of Scenedesmus in general and Scenedesmus rotundus in particular, indicating appearance of granules on the entire cell surface in both Cd and Zn treatments, with the degree of granulation increasing in the order of pH 12 > 10 > 8 in Cd treatment. Further structures of higher order resembling minute wheels are observed in Cd treated cells are also reported.
Collapse
|
9
|
Santi C, Zamboni A, Varanini Z, Pandolfini T. Growth Stimulatory Effects and Genome-Wide Transcriptional Changes Produced by Protein Hydrolysates in Maize Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:433. [PMID: 28424716 PMCID: PMC5371660 DOI: 10.3389/fpls.2017.00433] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/14/2017] [Indexed: 05/07/2023]
Abstract
Protein hydrolysates are an emerging class of crop management products utilized for improving nutrient assimilation and mitigating crop stress. They generally consist of a mixture of peptides and free amino acids derived from the hydrolysis of plant or animal sources. The present work was aimed at studying the effects and the action mechanisms of a protein hydrolysate derived from animal residues on maize root growth and physiology in comparison with the effects induced by either free amino acids or inorganic N supply. The application of the protein hydrolysate caused a remarkable enhancement of root growth. In particular, in the protein hydrolysate-treated plants the length and surface area of lateral roots were about 7 and 1.5 times higher than in plants treated with inorganic N or free amino acids, respectively. The root growth promoting effect of the protein hydrolysate was associated with an increased root accumulation of K, Zn, Cu, and Mn when compared with inorganic N and amino acids treatments. A microarray analysis allowed to dissect the transcriptional changes induced by the different treatments demonstrating treatment-specific effects principally on cell wall organization, transport processes, stress responses and hormone metabolism.
Collapse
|
10
|
Transcriptional reprogramming of genes related to ascorbate and glutathione biosynthesis, turnover and translocation in aphid-challenged maize seedlings. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Arenas-Lago D, Carvalho LC, Santos ES, Abreu MM. The physiological mechanisms underlying the ability of Cistus monspeliensis L. from São Domingos mine to withstand high Zn concentrations in soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 129:219-227. [PMID: 27054705 DOI: 10.1016/j.ecoenv.2016.03.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/16/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Cistus monspeliensis L. is a species that grows spontaneously in contaminated mining areas from the Iberian Pyrite Belt. This species can have high concentrations of Zn in the shoots without visible signs of phytotoxicity. In order to understand the physiological mechanisms underlying this tolerance, C. monspeliensis was grown at several concentrations of Zn(2+) (0, 500, 1000, 1500, 2000µM) and the effects of this metal on plant development and on the defence mechanisms against oxidative stress were evaluated. Independently of the treatment, Zn was mainly retained in the roots. The plants with the highest concentrations of Zn showed toxicity symptoms such as chlorosis, low leaf size and decrease in biomass production. At 2000µM of Zn, the dry biomass of the shoots decreased significantly. High concentrations of Zn in shoots did not induce deficiencies of other nutrients, except Cu. Plants with high concentrations of Zn had low amounts of chlorophyll, anthocyanins and glutathione and high contents of H2O2. The highest concentrations of Zn in shoots of C. monspeliensis triggered defence mechanisms against oxidative stress, namely by triggering antioxidative enzyme activity and by direct reactive oxygen species (ROS) scavenging through carotenoids, that are unaffected by stress due to stabilisation by ascorbic acid.
Collapse
Affiliation(s)
- Daniel Arenas-Lago
- Universidad de Vigo, Department of Plant Biology and Soil Science, Vigo, Spain.
| | - Luísa C Carvalho
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Erika S Santos
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal; Centro de Investigação em Ciências do Ambiente e Empresariais, Instituto Superior Dom Afonso III, Loulé, Portugal
| | - M Manuela Abreu
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
12
|
Largo-Gosens A, Encina A, de Castro M, Mélida H, Acebes JL, García-Angulo P, Álvarez JM. Early habituation of maize (Zea mays) suspension-cultured cells to 2,6-dichlorobenzonitrile is associated with the enhancement of antioxidant status. PHYSIOLOGIA PLANTARUM 2016; 157:193-204. [PMID: 26612685 DOI: 10.1111/ppl.12411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 10/23/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
The cellulose biosynthesis inhibitor 2,6-dichlorobenzonitrile (DCB) has been widely used to gain insights into cell wall composition and architecture. Studies of changes during early habituation to DCB can provide information on mechanisms that allow tolerance/habituation to DCB. In this context, maize-cultured cells with a reduced amount of cellulose (∼20%) were obtained by stepwise habituation to low DCB concentrations. The results reported here attempt to elucidate the putative role of an antioxidant strategy during incipient habituation. The short-term exposure to DCB of non-habituated maize-cultured cells induced a substantial increase in oxidative damage. Concomitantly, short-term treated cells presented an increase in class III peroxidase and glutathione S-transferase activities and total glutathione content. Maize cells habituated to 0.3-1 µM DCB (incipient habituation) were characterized by a reduction in the relative cell growth rate, an enhancement of ascorbate peroxidase and class III peroxidase activities, and a net increment in total glutathione content. Moreover, these cell lines showed increased levels of glutathione S-transferase activity. Changes in antioxidant/conjugation status enabled 0.3 and 0.5 µM DCB-habituated cells to control lipid peroxidation levels, but this was not the case of maize cells habituated to 1 μM DCB, which despite showing an increased antioxidant capacity were not capable of reducing the oxidative damage to control levels. The results reported here confirm that exposure and incipient habituation of maize cells to DCB are associated with an enhancement in antioxidant/conjugation activities which could play a role in incipient DCB habituation of maize-cultured cells.
Collapse
Affiliation(s)
- Asier Largo-Gosens
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
| | - Antonio Encina
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
| | - María de Castro
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid, Madrid, E-28223, Spain
| | - José L Acebes
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
| | - Penélope García-Angulo
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
| | - Jesús M Álvarez
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
| |
Collapse
|
13
|
Morina F, Jovanović L, Prokić L, Veljović-Jovanović S, Smith JAC. Physiological basis of differential zinc and copper tolerance of Verbascum populations from metal-contaminated and uncontaminated areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10005-20. [PMID: 26865485 DOI: 10.1007/s11356-016-6177-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/25/2016] [Indexed: 05/20/2023]
Abstract
Metal contamination represents a strong selective pressure favoring tolerant genotypes and leading to differentiation between plant populations. We investigated the adaptive capacity of early-colonizer species of Verbascum recently exposed to Zn- and Cu-contaminated soils (10-20 years). Two Verbascum thapsus L. populations from uncontaminated sites (NMET1, NMET2), one V. thapsus from a zinc-contaminated site (MET1), and a Verbascum lychnitis population from an open-cast copper mine (MET2) were exposed to elevated Zn or Cu in hydroponic culture under glasshouse conditions. MET populations showed considerably higher tolerance to both Zn and Cu than NMET populations as assessed by measurements of growth and net photosynthesis, yet they accumulated higher tissue Zn concentrations in the shoot. Abscisic acid (ABA) concentration increased with Zn and Cu treatment in the NMET populations, which was correlated to stomatal closure, decrease of net photosynthesis, and nutritional imbalance, indicative of interference with xylem loading and divalent-cation homeostasis. At the cellular level, the sensitivity of NMET2 to Zn and Cu was reflected in significant metal-induced ROS accumulation and ion leakage from roots as well as strong induction of peroxidase activity (POD, EC 1.11.1.7), while Zn had no significant effect on ABA concentration and POD activity in MET1. Interestingly, MET2 had constitutively higher root ABA concentration and POD activity. We propose that ABA distribution between shoots and roots could represent an adaptive mechanism for maintaining low ABA levels and unaffected stomatal conductance. The results show that metal tolerance can occur in Verbascum populations after relatively short time of exposure to metal-contaminated soil, indicating their potential use for phytostabilization.
Collapse
Affiliation(s)
- Filis Morina
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030, Belgrade, Serbia.
| | | | - Ljiljana Prokić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade, Serbia
| | - Sonja Veljović-Jovanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030, Belgrade, Serbia
| | | |
Collapse
|
14
|
Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C. Cell Wall Metabolism in Response to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2015; 4:112-66. [PMID: 27135320 PMCID: PMC4844334 DOI: 10.3390/plants4010112] [Citation(s) in RCA: 636] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.
Collapse
Affiliation(s)
- Hyacinthe Le Gall
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Florian Philippe
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Jean-Marc Domon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Françoise Gillet
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Jérôme Pelloux
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Catherine Rayon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| |
Collapse
|
15
|
Hadži-Tašković Šukalović V, Vuletić M, Marković K, Cvetić Antić T, Vučinić Ž. Comparative biochemical characterization of peroxidases (class III) tightly bound to the maize root cell walls and modulation of the enzyme properties as a result of covalent binding. PROTOPLASMA 2015; 252:335-343. [PMID: 25081230 DOI: 10.1007/s00709-014-0684-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 07/22/2014] [Indexed: 06/03/2023]
Abstract
Comparative biochemical characterization of class III peroxidase activity tightly bound to the cell walls of maize roots was performed. Ionically bound proteins were solubilized from isolated walls by salt washing, and the remaining covalently bound peroxidases were released, either by enzymatic digestion or by a novel alkaline extraction procedure that released covalently bound alkali-resistant peroxidase enzyme. Solubilized fractions, as well as the salt-washed cell wall fragments containing covalently bound proteins, were analyzed for peroxidase activity. Peroxidative and oxidative activities indicated that peroxidase enzymes were predominately associated with walls by ionic interactions, and this fraction differs from the covalently bound one according to molecular weight, isozyme patterns, and biochemical parameters. The effect of covalent binding was evaluated by comparison of the catalytic properties of the enzyme bound to the salt-washed cell wall fragments with the corresponding solubilized and released enzyme. Higher thermal stability, improved resistance to KCN, increased susceptibility to H2O2, stimulated capacity of wall-bound enzyme to oxidize indole-3-acetic acid (IAA) as well as the difference in kinetic parameters between free and bound enzymes point to conformational changes due to covalent binding. Differences in biochemical properties of ionically and covalently bound peroxidases, as well as the modulation of the enzyme properties as a result of covalent binding to the walls, indicate that these two fractions of apoplastic peroxidases play different roles.
Collapse
|