1
|
Islam J, Rahman MT, Ali M, Kc E, Lee HJ, Hyun SH, Park YS. CaMKIIα-NpHR-Mediated Optogenetic Inhibition of DRG Glutamatergic Neurons by Flexible Optic Fiber Alleviates Chronic Neuropathic Pain. Neuromolecular Med 2025; 27:26. [PMID: 40227491 DOI: 10.1007/s12017-025-08848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/22/2025] [Indexed: 04/15/2025]
Abstract
Glutamatergic neurons of the dorsal root ganglion (DRGg) exert a significant effect on peripheral nociceptive signal transmission. However, assessing the explicit modulatory effect of DRGg during chronic neuropathic pain (CNP) with neuromodulation techniques remains largely unexplored. Therefore, we inhibited DRGg by optogenetic stimulation and examined whether it could alleviate CNP and associated anxiety-related behaviors in a chronic compressed DRG (CCD) rat model. The CCD pain model was established by inserting an L-shaped rod into the lumbar 5 (L5) intervertebral foramen, and either AAV2-CaMKIIα-eNpHR3.0-mCherry or AAV2-CaMKIIα-mCherry was injected into the L5 DRG. Flexible optic fibers were implanted to direct yellow light into the L5 DRG. Pain and anxiety-related behavioral responses were assessed using mechanical threshold, mechanical latency, thermal latency, and open field tests. In vivo single-unit extracellular recording from the DRG and ventral posterolateral (VPL) thalamus was performed. CNP and anxiety-related behavioral responses along with increased neural firing activity of the DRG and VPL thalamus were observed in CCD animals. Enhanced expression of nociception-influencing molecules was found in the DRG and spinal dorsal horn (SDH). In contrast during optogenetic stimulation, specific DRGg inhibition markedly alleviated the CNP responses and reduced the DRG and VPL thalamic neural hyperactivity in CCD animals. Inhibition of DRGg also reduced the active expression of nociceptive signal mediators in the DRG and SDH. Taken together, our findings suggest that CaMKIIα-NpHR-mediated optogenetic inhibition of DRGg can produce antinociceptive effects in CCD rats during peripheral nerve injury-induced CNP condition by altering peripheral nociceptive signal input in the spinothalamic tract.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Md Taufiqur Rahman
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Muhammad Ali
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Elina Kc
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Sang Hwan Hyun
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Young Seok Park
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, 776, 1 Sunhwanro, Seowon-gu, Cheongju, 28644, Chungbuk, Korea.
| |
Collapse
|
2
|
Zhang Y, Zhang H, Wang K, Liu X, Li Z. Can Spinal Cord Stimulation be Considered as a Frontier for Chronic Pain in Diabetic Foot? Pain Ther 2025; 14:589-616. [PMID: 39910016 PMCID: PMC11914475 DOI: 10.1007/s40122-025-00710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Chronic pain in the diabetic foot (DF) is a common complication of diabetes, bringing a significant burden to patients, their families, and even society. There is no very effective treatment for it, traditional treatments such as medication, lumbar sympathetic nerve block, and alternative therapies are often not very effective and have more adverse effects. The emergence of neuromodulation technology has brought new hope for the treatment of DF, among which spinal cord stimulation (SCS) is a hotspot in current research and has achieved remarkable efficacy in the study of DF treatment by blocking pain signaling and improving circulation and other mechanisms. This article reviews the SCS technique and clinical trails of SCS for chronic DF pain, and describes the prospects and current challenges of SCS.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Huifeng Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Kaizhong Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Xiangyan Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China.
| |
Collapse
|
3
|
Hwang SM, Rahman MM, Go EJ, Roh J, Park R, Lee SG, Nahm M, Berta T, Kim YH, Park CK. Modulation of pain sensitivity by Ascl1- and Lhx6-dependent GABAergic neuronal function in streptozotocin diabetic mice. Mol Ther 2025; 33:786-804. [PMID: 39741412 PMCID: PMC11852955 DOI: 10.1016/j.ymthe.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/24/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Painful diabetic neuropathy commonly affects the peripheral nervous system in individuals with diabetes. However, the pathological processes and mechanisms underlying diabetic neuropathic pain remain unclear. We aimed to identify the overall profiles and screen for genes potentially involved in pain mechanisms using transcriptome analysis of the dorsal root ganglion of diabetic mice treated with streptozotocin (STZ). Using RNA sequencing, we identified differentially expressed genes between streptozotocin-treated diabetic mice and controls, focusing on altered GABAergic neuron-related genes and inflammatory pathways. Behavioral and molecular analyses revealed a marked reduction in GABAergic neuronal markers (GAD65, GAD67, VGAT) and increased pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) in the diabetic group compared with controls. Intrathecal administration of lentiviral vectors expressing transcription factors Ascl1 and Lhx6 reversed pain hypersensitivity and restored normal expression of GABAergic genes and inflammatory mediators. Protein-protein interaction network analysis revealed five key proteins influenced by Ascl1 and Lhx6 treatment, including those in the JunD/FosB/C-fos signaling pathway. These findings suggest that Ascl1 and Lhx6 mitigate diabetic neuropathic pain by modulating GABAergic neuronal function, pro-inflammatory responses, and pain-related channels (TRPV1, Nav1.7). These results provide a basis for developing transcription factor-based therapies targeting GABAergic neurons for diabetic neuropathic pain relief.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Md Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Eun Jin Go
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Jueun Roh
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Rayoung Park
- Bio-IT Foundry Center of Chonnam National University and FromDATA, Buk-Gu, Gwangju, South Korea
| | - Sung-Gwon Lee
- Section of Genetics and Physiology, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea.
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea.
| |
Collapse
|
4
|
Acevedo‐Gonzalez JC, Ariza‐Piñeros CF, Vega‐Corredor JM. Anatomical and morphological variations in the dorsal root ganglion: Technical implications for chronic pain treatment with neuromodulation-A systematic review. Pain Pract 2025; 25:e70008. [PMID: 39831397 PMCID: PMC11744492 DOI: 10.1111/papr.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
OBJECTIVES In the last 20 years, we have seen the flourishing of multiple treatments targeting the dorsal root ganglion (DRG) for pain. However, there is concern regarding the variation in the location of the DRG, which could influence the long-term clinical outcomes. The aim of this work was to determine the exact position of the DRG in the spine and propose a pre-surgical planning. MATERIALS AND METHODS A systematic search was conducted following the principles recommended by PRISMA. Search terms "ganglia," "DRG," "dorsal root ganglia, anatomy," "radiological," "neuromodulation," "dorsal root ganglion stimulation" (PubMed, Scopus, Medline, Web of Science, and Embase) were identified 177 articles and subjected to the selection criteria (inclusion/exclusion) based on the independent review of the abstracts. RESULTS Eighteen articles were selected (seven anatomical dissections on cadavers, five radiological studies, and six narrative reviews). DISCUSSION Percutaneous procedure targeting the DRG for the treatment of chronic pain requires preoperative planning independent to the study of the etiology of pain. The DRG should be typified using magnetic resonance imaging. We propose a preoperative evaluation scale based on four specific items: A-position in the vertebral canal, B-position of the DRG within the foramen, C-number of ganglia in the root, and D-ratio (proportion) of foramen/DRG. CONCLUSION Percutaneous treatments for chronic pain directed at the DRG are effective. Clinical outcomes depend of good preoperative planning that allows for optimizing its effects. We propose a DRG morphology evaluation scale useful for the planning process prior to any treatment directed at the ganglion.
Collapse
Affiliation(s)
- Juan Carlos Acevedo‐Gonzalez
- Facultad de Medicina, Departamento de NeurocienciasPontificia Universidad Javeriana, Hospital Universitario San IgnacioBogotáColombia
| | | | | |
Collapse
|
5
|
Grundtner S, Sondermann JR, Xian F, Malzl D, Segelcke D, Pogatzki-Zahn EM, Menche J, Gómez-Varela D, Schmidt M. Deep proteomics and network pharmacology reveal sex- and age-shared neuropathic pain signatures in mouse dorsal root ganglia. Pharmacol Res 2025; 211:107552. [PMID: 39694124 DOI: 10.1016/j.phrs.2024.107552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Our understanding of how sex and age influence chronic pain at the molecular level is still limited with wide-reaching consequences for adolescent patients. Here, we leveraged deep proteome profiling of mouse dorsal root ganglia (DRG) from adolescent (4-week-old) and adult (12-week-old) male and female mice to investigate the establishment of neuropathic pain in the spared nerve injury (SNI)-model in parallel. We quantified over 12,000 proteins, including notable ion channels involved in pain, highlighting the sensitivity of our approach. Differential expression revealed sex- and age-dependent proteome changes upon nerve injury. In contrast to most previous studies, our comprehensive dataset enabled us to determine differentially expressed proteins (DEPs), which were shared between male and female mice of both age groups. Among these, the vast majority (94 %) were also expressed and, in part, altered in human DRG of neuropathic pain patients, indicating evolutionary conservation. Proteome signatures represented numerous targets of FDA-approved drugs comprising both (i) known pain therapeutics (e.g. Pregabalin and opioids) and, importantly, (ii) compounds with high potential for future re-purposing, e.g. Ptprc-modulators and Epoetins. Protein network and multidimensional analysis uncovered distinct hubs of sex- and age-shared biological pathways impacted by neuropathic pain, such as neuronal activity and synaptic function, DNA-damage, and neuroimmune interactions. Taken together, our results capture the complexity of nerve injury-associated DRG alterations in mice at the network level, moving beyond single-candidate studies. Consequently, we provide an innovative resource of the molecular landscape of neuropathic pain, enabling novel opportunities for translational pain research and network-based drug discovery.
Collapse
Affiliation(s)
- Sabrina Grundtner
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Julia R Sondermann
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Feng Xian
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Daniel Malzl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Daniel Segelcke
- Clinic for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Muenster, Germany
| | - Esther M Pogatzki-Zahn
- Clinic for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Muenster, Germany
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Network Medicine at the University of Vienna, Vienna, Austria; Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - David Gómez-Varela
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Manuela Schmidt
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Ahmadi R, Kuner R, Weidner N, Keßler J, Bendszus M, Krieg SM. The Diagnosis and Treatment of Neuropathic Pain. DEUTSCHES ARZTEBLATT INTERNATIONAL 2024; 121:825-832. [PMID: 39475707 DOI: 10.3238/arztebl.m2024.0215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 02/13/2025]
Abstract
BACKGROUND The reported prevalence of neuropathic pain in the general population in Germany is from 6.9% to 10%. There are both medical and surgical treatment options. METHODS This review is based on pertinent publications retrieved by a selective search in PubMed, with consideration of clinical trials, meta-analyses, and guidelines. RESULTS Neuropathic pain is diagnosed when pain of the appropriate character is accompanied by further features such as hypesthesia/anesthesia, allodynia, or hyperalgesia. It is generally treated initially with drugs (antidepressant drugs, anticonvulsant drugs, opioids, topical agents, and others); the number needed to treat (NNT) is between 7 and 8 for gabapentin and 3.6 for amitryptiline, as estimated in meta-analyses. For nerve compression and entrapment syndromes, surgical decompression is a treatment directed against the cause of the problem, which can therefore be curative. Microvascular decompression (MVD) is often used to treat supposed compression syndromes of cranial nerves, above all classic trigeminal neuralgia; according to a meta-analysis, MVD brings about a pain-free state in 92.9% [89.1; 96.8] of patients after 5 months to 5 years of follow-up. Ablative surgical procedures are used for symptom control in patients with refractory and/or cancer-related pain. Further symptomdirected treatment options for medically intractable neuropathic pain include neuromodulatory techniques, which involve minimally invasive electrical stimulation of neural structures, and the chronic intrathecal application of drugs such as opioids and ziconotide. CONCLUSION The treatment of neuropathic pain can be either cause-directed or symptom-directed, depending on its origin. Multidisciplinary collaboration can facilitate both the diagnostic evaluation and the selection of the optional modality and timing of treatment.
Collapse
Affiliation(s)
- Rezvan Ahmadi
- Medical Faculty Heidelberg, Department of Neurosurgery, University Heidelberg, Heidelberg, Germany; Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany; Universität Heidelberg, Medizinische Fakultät Heidelberg, Klinik für Anästhesiologie; Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany; Consortium of the Collaborative Research Center 1158 of the German Research Foundation: From nociception to chronic pain
| | | | | | | | | | | |
Collapse
|
7
|
Vargas AJ, Elkhateb R, Tobey-Moore L, Van Hemert RL, Fuccello A, Goree JH. Dorsal Root Ganglion Size in Patients With Complex Regional Pain Syndrome of the Lower Extremity: A Retrospective Pilot Study. Neuromodulation 2024; 27:1435-1440. [PMID: 39230528 DOI: 10.1016/j.neurom.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVE Complex regional pain syndrome (CRPS) is a debilitating chronic condition characterized by severe, nociplastic pain along with various other symptoms. Neuromodulation, particularly electrical stimulation of the dorsal root ganglion (DRG), has emerged as a promising intervention for patients with CRPS unresponsive to conventional treatments. However, little is known about the anatomical characteristics of DRGs in patients with CRPS. This study aimed to assess DRG size in patients with CRPS compared with healthy controls. MATERIALS AND METHODS A retrospective pilot study was conducted in 12 patients with unilateral lower extremity CRPS who have a history of lumbar magnetic resonance imaging, and evaluated DRG sizes bilaterally. Patients were age-, race-, and sex-matched to patients in the control group who were asymptomatic at matched spinal level. DRG sizes were evaluated by a neuroradiologist. Statistical analyses including paired t-tests were performed to compare the difference in DRG size in contralateral sides in patients with CRPS and their matched controls. RESULTS Patients with CRPS exhibited a statistically significant reduction in DRG size on the affected side compared with the unaffected side (4.4 mm-4.8 mm, respectively). This difference was significant when compared with the difference observed in healthy controls (4.9 mm-5.0 mm, respectively). In addition, the mean DRG size difference between the affected and unaffected side showed a greater difference in DRG size in patients with CRPS (0.6 mm difference) than in control patients (0.2 mm difference). CONCLUSIONS The findings suggest that CRPS is associated with a smaller DRG size in affected dermatomes, potentially indicating neuronal atrophy. Importantly, the study offers insights for DRG stimulation therapy especially among concerns for DRG compression after placement. This pilot study reveals a significant size difference in DRGs between affected and unaffected sides in patients with CRPS compared with controls, highlighting potential implications for treating CRPS. Further research is warranted to validate these findings and explore implications for clinical practice, including optimized neuromodulation strategies.
Collapse
Affiliation(s)
| | - Rania Elkhateb
- Department of Anesthesiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Leah Tobey-Moore
- Department of Psychiatry, Center for Health Services Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rudy L Van Hemert
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ashlynn Fuccello
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Johnathan H Goree
- Department of Anesthesiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
8
|
Karcz M, Abd-Elsayed A, Chakravarthy K, Aman MM, Strand N, Malinowski MN, Latif U, Dickerson D, Suvar T, Lubenow T, Peskin E, D’Souza R, Cornidez E, Dudas A, Lam C, Farrell II M, Sim GY, Sebai M, Garcia R, Bracero L, Ibrahim Y, Mahmood SJ, Lawandy M, Jimenez D, Shahgholi L, Sochacki K, Ramadan ME, Tieppo Francio V, Sayed D, Deer T. Pathophysiology of Pain and Mechanisms of Neuromodulation: A Narrative Review (A Neuron Project). J Pain Res 2024; 17:3757-3790. [PMID: 39583192 PMCID: PMC11581984 DOI: 10.2147/jpr.s475351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Pain serves as a vital innate defense mechanism that can significantly impact an individual's quality of life. Understanding the physiological effects of pain well plays an important role in developing novel pain treatments. Nociceptor neurons play a key role in pain and inflammation. Interactions between nociceptors and the immune system occur both at the site of injury and within the central nervous system. Modulating chemical mediators and nociceptor activity offers promising new approaches to pain management. Essentially, the sensory nervous system is essential for modulating the body's protective response, making it critical to understand these interactions to discover new pain treatment strategies. New innovations in neuromodulation have led to alternatives to opioids individuals with chronic pain with consequent improvement in disease-based treatment and nerve targeting. New neural targets from cellular and structural perspectives have revolutionized the field of neuromodulation. This narrative review aims to elucidate the mechanisms of pain transmission and processing, examine the characteristics and properties of nociceptors, and explore how the immune system influences pain perception. It further provides an updated overview of the physiology of pain and neuromodulatory mechanisms essential for managing acute and chronic pain. We assess the current understanding of different pain types, focusing on key molecules involved in each type and their physiological effects. Additionally, we compare painful and painless neuropathies and discuss the neuroimmune interactions involved in pain manifestation.
Collapse
Affiliation(s)
- Marcin Karcz
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | | | - Mansoor M Aman
- Aurora Pain Management, Aurora Health Care, Oshkosh, WI, USA
| | - Natalie Strand
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Mark N Malinowski
- OhioHealth Neurological Physicians, OhioHealth Inc, Columbus, OH, USA
| | - Usman Latif
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - David Dickerson
- Department of Pain Medicine, Northshore University Health System, Skokie, IL, USA
| | - Tolga Suvar
- Department of Anesthesiology and Pain Medicine, Rush University Medical Center, Oak Park, IL, USA
| | - Timothy Lubenow
- Department of Anesthesiology and Pain Medicine, Rush University Medical Center, Oak Park, IL, USA
| | - Evan Peskin
- Department of Pain Management, Insight Institute of Neurosurgery & Neuroscience, Flint, MI, USA
| | - Ryan D’Souza
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | | | - Andrew Dudas
- Mays and Schnapp Neurospine and Pain, Memphis, TN, USA
| | - Christopher Lam
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michael Farrell II
- Department of Pain Management, Erie County Medical Center, Buffalo, NY, USA
| | - Geum Yeon Sim
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Mohamad Sebai
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rosa Garcia
- Department of Physical Medicine & Rehabilitation, Larkin Hospital Health System, Miami, FL, USA
| | - Lucas Bracero
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| | - Yussr Ibrahim
- Department of Pain Management at Northern Light Health – Eastern Maine Medical Center, Bangor, ME, USA
| | - Syed Jafar Mahmood
- Department of Pain Medicine, University of California Davis Health System, Sacramento, CA, USA
| | - Marco Lawandy
- Department of Physical Medicine & Rehabilitation, Montefiore Medical Center, Bronx, NY, USA
| | - Daniel Jimenez
- Department of Physical Medicine & Rehabilitation, Michigan State University, Lansing, MI, USA
| | - Leili Shahgholi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kamil Sochacki
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson, New Brunswick, NJ, USA
| | - Mohamed Ehab Ramadan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vinicius Tieppo Francio
- Division of Pain Medicine, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Dawood Sayed
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Timothy Deer
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| |
Collapse
|
9
|
Kim S, Jang S, Lee O. Muscle structure assessment using synchrotron radiation X-ray micro-computed tomography in murine with cerebral ischemia. Sci Rep 2024; 14:26825. [PMID: 39501018 PMCID: PMC11538359 DOI: 10.1038/s41598-024-78324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
Muscles are crucial for balance and walking, activities which depend specifically on the lower extremity muscles. Therefore, the evaluation of stroke induced atrophy and paralysis is essential; however, determining the extent of damage in the days after its occurrence remains challenging. In this study, we evaluated ischemic stroke-induced soleus muscle damage in gerbils using synchrotron radiation X-ray micro-computed tomography (SR-µCT), comparing a control group (n = 3), animals 7 days after stroke (7 d, n = 3), and animals 14 days after stroke (14 d, n = 3). The left muscle was paralyzed, whereas the right muscle was not. Subsequently, we quantified the assessment by segmenting the soleus muscle based on the extracellular space/matrix and fiber region to determine the degree of damage. The muscle fiber-to-extracellular space/matrix ratio were significantly damaged due to paralysis on the left side (control vs. 14 d, P = 0.040). Muscle area was significantly different at 14 d between the left and right sides (P = 0.010). Additionally, the left local fascicle surface area, thickness, global pennation angle, and local fascicle angle were significantly different between the control and 14 d groups (P = 0.002, P = 0.007, P = 0.005, and P = 0.014 respectively). These findings underscore the potential of post-stroke animal studies in improving rehabilitation treatment for the central nervous system by assessing the degree of muscle recovery.
Collapse
Affiliation(s)
- Subok Kim
- Department of Software Convergence, Graduate School, Soonchunhyang University, 22, Soonchunhyang-ro, 31538, Asan City, Chungnam, Republic of Korea
| | - Sanghun Jang
- Department of Physical Therapy, College of Health and Life Sciences, Korea National University of Transportation, 61, Daehak-ro, 27909, Jeungpyeong-eup, Chungbuk, Republic of Korea
| | - Onseok Lee
- Department of Software Convergence, Graduate School, Soonchunhyang University, 22, Soonchunhyang-ro, 31538, Asan City, Chungnam, Republic of Korea.
- Department of Medical IT Engineering, College of Medical Sciences, Soonchunhyang University, 22, Soonchunhyang-ro, 31538, Asan City, Chungnam, Republic of Korea.
| |
Collapse
|
10
|
Borgonetti V, Vozella V, Ware T, Cruz B, Bullard R, Cravatt BF, Galeotti N, Roberto M. Excessive alcohol intake produces persistent mechanical allodynia and dysregulates the endocannabinoid system in the lumbar dorsal root ganglia of genetically-selected Marchigian Sardinian alcohol-preferring rats. Pharmacol Res 2024; 209:107462. [PMID: 39396766 PMCID: PMC11834946 DOI: 10.1016/j.phrs.2024.107462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024]
Abstract
Epidemiological data indicate a strong association between alcohol use disorder (AUD) and neuropathic pain. Genetically-selected Marchigian Sardinian alcohol-preferring (msP) rats exhibit a high preference for alcohol compared with their background strain (Wistar rats), but their sensitivity to mechanical allodynia after chronic alcohol exposure is unknown. The present study compared the development of mechanical allodynia between "low, non-pathological drinker" Wistar rats and "high drinker" msP rats using the two-bottle choice (2BC) free-access procedure. Several studies reported the involvement of endocannabinoids (eCBs) in modulating mechanical allodynia, but there are no data on their role in alcohol-related allodynia. Thus, the present study assessed eCBs and their related lipid species in lumbar dorsal root ganglia (DRG) and correlated them with mechanical allodynia in our model. We found that male and female msP rats developed persistent mechanical allodynia during protracted abstinence from alcohol, presenting no sign of recovery, as opposed to Wistar rats. This effect directly correlated with their total alcohol intake. Notably, we found a correlation between lower lumbar DRG 2-arachidonoylglycerol (2-AG) levels and the development of higher mechanical allodynia during abstinence in msP rats of both sexes but not in Wistar rats. Moreover, alcohol-exposed and abstinent msP and Wistar females but not males exhibited significant alterations of thromboxane B2 and prostaglandin E2/prostaglandin D2 compared with naive rats. These findings demonstrate that DRG 2-AG metabolism is altered in msP rats during prolonged abstinence and represents a potentially interesting pharmacological target for the treatment of mechanical allodynia during alcohol abstinence.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA; Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Tim Ware
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Ryan Bullard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
11
|
Billet B, Goudman L, Rigoard P, Billot M, Roulaud M, Verstraete S, Nagels W, Moens M. Effect of neuromodulation for chronic pain on the autonomic nervous system: a systematic review. BJA OPEN 2024; 11:100305. [PMID: 39319097 PMCID: PMC11419894 DOI: 10.1016/j.bjao.2024.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/25/2024] [Indexed: 09/26/2024]
Abstract
Background In recent years, there has been a growing interest in the use of neuromodulation as an alternative treatment option for chronic pain. Neuromodulation techniques, such as spinal cord stimulation (SCS), dorsal root ganglion (DRG) stimulation, deep brain stimulation (DBS), and peripheral nerve stimulation, have shown promising results in the management of various chronic pain conditions and involve targeted modulation of neural activity to alleviate pain and restore functional capacity. The autonomic nervous system (ANS) plays a crucial role in the regulation of various bodily functions including pain perception. However, the effects of neuromodulation on the ANS in the context of chronic pain remain poorly understood. This systematic review aimed to comprehensively assess the existing literature about the effects of neuromodulation on the ANS in chronic pain settings. Methods Searches were conducted using four electronic databases (PubMed, EMBASE, SCOPUS, and Web of Science). The study protocol was registered before initiation of the review process. The Office of Health Assessment and Translation (OHAT) Risk of Bias tool was used to evaluate risk of bias. Results A total of 43 studies were included, of which only one was an animal study. Several studies have reported more than one outcome parameter in the same population of chronic pain patients. Cardiovascular parameters were the most frequently used outcomes. More specifically, 18 outcome parameters were revealed to evaluate the function of the ANS, namely heart rate variability (n=17), arterial blood pressure (n=15), tissue oxygenation/perfusion (n=5), blood markers (n=6), multiunit postganglionic sympathetic nerve activity (n=4), skin temperature (n=3), skin conductance (n=3), cephalic autonomic symptoms (n=2), ventilatory frequency (n=2), vasomotor tone (n=1), baroreflex sensitivity (n=1), sympathetic innervation of the heart, neural activity of intrinsic cardiac neurons (n=1), vascular conductance (n=1), arterial diameter (n=1), blood pulse volume (n=1), and vagal efficiency (n=1). Most studies evaluated SCS (62.79%), followed by DBS (18.6%), peripheral nerve stimulation (9.3%), DRG stimulation (4.65%), and vagus nerve stimulation (4.65%). Overall, inconsistent results were revealed towards contribution of SCS, DBS, and peripheral nerve stimulation on ANS parameters. For DRG stimulation, included studies pointed towards a decrease in sympathetic activity. Conclusions There are indications that neuromodulation alters the ANS, supported by high or moderate confidence in the body of evidence, however, heterogeneity in ANS outcome measures drives towards inconclusive results. Further research is warranted to elucidate the indirect or direct mechanisms of action on the ANS, with a potential benefit for optimisation of patient selection for these interventions. Systematic review protocol PROSPERO (CRD42021297287).
Collapse
Affiliation(s)
- Bart Billet
- Pain Clinic, AZ Delta, Roeselare, Belgium
- STIMULUS Research Group, Cluster Neurosciences, Center for Neurosciences (C4N) and Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Anesthesia, AZ Delta, Roeselare, Belgium
| | - Lisa Goudman
- STIMULUS Research Group, Cluster Neurosciences, Center for Neurosciences (C4N) and Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Cluster Neurosciences, Center for Neurosciences (C4N) and Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Research Foundation-Flanders (FWO), Brussels, Belgium
- Charles E. Schmidt College of Medicine, Faculty Affairs Department, Florida Atlantic University, Boca Raton, FL, USA
| | - Philippe Rigoard
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery) and Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, Poitiers, France
- Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, Poitiers, France
- Pprime Institute UPR 3346, CNRS, ISAE-ENSMA, University of Poitiers, Chasseneuil-du-Poitou, France
| | - Maxime Billot
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery) and Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, Poitiers, France
| | - Manuel Roulaud
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery) and Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, Poitiers, France
| | | | - Werner Nagels
- Pain Clinic, AZ Delta, Roeselare, Belgium
- Department of Anesthesia, AZ Delta, Roeselare, Belgium
| | - Maarten Moens
- STIMULUS Research Group, Cluster Neurosciences, Center for Neurosciences (C4N) and Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Cluster Neurosciences, Center for Neurosciences (C4N) and Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
12
|
Her YF, Churchill RA. Case Report: Rescue of Relapsed Pain in a Patient with Complex Regional Pain Syndrome Type II by Adding Another Dorsal Root Ganglion Lead. Int Med Case Rep J 2024; 17:765-769. [PMID: 39220373 PMCID: PMC11363934 DOI: 10.2147/imcrj.s477303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
We present on a patient with complex regional pain syndrome (CRPS) following ankle surgery. Pain was refractory to both conservative and surgical measures including neurotomies, ankle fusion, hardware removal, and spinal cord stimulation (SCS) trial. A dorsal root ganglion (DRG) stimulation trial with lead placements at L4, L5, and S1 provided significant pain and functional improvement. However, during the implantation, we were able to place only two DRG leads at L4 and L5 and not S1 due to difficulties with advancing the lead to the desired location. Nonetheless, the two DRG leads provided 90% pain relief and 75% functional improvement for 9 months. However, the patient experienced pain symptoms similar to that of pre-implant without a clear trigger after 9 months despite no DRG stimulator hardware malfunction or lead migration. A decision was made to re-try implanting the S1 DRG lead, which was successful and provided significant pain relief.
Collapse
Affiliation(s)
- Yeng F Her
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Robert A Churchill
- Mayo Clinic Alix School of Medicine, Mayo Clinic Hospital, Rochester, MN, 55905, USA
| |
Collapse
|
13
|
Deer TR, Russo M, Grider JS, Sayed D, Lamer TJ, Dickerson DM, Hagedorn JM, Petersen EA, Fishman MA, FitzGerald J, Baranidharan G, De Ridder D, Chakravarthy KV, Al-Kaisy A, Hunter CW, Buchser E, Chapman K, Gilligan C, Hayek SM, Thomson S, Strand N, Jameson J, Simopoulos TT, Yang A, De Coster O, Cremaschi F, Christo PJ, Varshney V, Bojanic S, Levy RM. The Neurostimulation Appropriateness Consensus Committee (NACC)®: Recommendations for Spinal Cord Stimulation Long-Term Outcome Optimization and Salvage Therapy. Neuromodulation 2024; 27:951-976. [PMID: 38904643 DOI: 10.1016/j.neurom.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION The International Neuromodulation Society (INS) has recognized a need to establish best practices for optimizing implantable devices and salvage when ideal outcomes are not realized. This group has established the Neurostimulation Appropriateness Consensus Committee (NACC)® to offer guidance on matters needed for both our members and the broader community of those affected by neuromodulation devices. MATERIALS AND METHODS The executive committee of the INS nominated faculty for this NACC® publication on the basis of expertise, publications, and career work on the issue. In addition, the faculty was chosen in consideration of diversity and inclusion of different career paths and demographic categories. Once chosen, the faculty was asked to grade current evidence and along with expert opinion create consensus recommendations to address the lapses in information on this topic. RESULTS The NACC® group established informative and authoritative recommendations on the salvage and optimization of care for those with indwelling devices. The recommendations are based on evidence and expert opinion and will be expected to evolve as new data are generated for each topic. CONCLUSIONS NACC® guidance should be considered for any patient with less-than-optimal outcomes with a stimulation device implanted for treating chronic pain. Consideration should be given to these consensus points to salvage a potentially failed device before explant.
Collapse
Affiliation(s)
- Timothy R Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA.
| | - Marc Russo
- Hunter Pain Specialists, Newcastle, Australia
| | - Jay S Grider
- UKHealthCare Pain Services, Department of Anesthesiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Dawood Sayed
- The University of Kansas Health System, Kansas City, KS, USA
| | | | | | - Jonathan M Hagedorn
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | - Erika A Petersen
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | - Ganesan Baranidharan
- Leeds Teaching Hospital National Health Service (NHS) Trust, University of Leeds, Leeds, UK
| | - Dirk De Ridder
- Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Adnan Al-Kaisy
- Guy's and St Thomas NHS Foundation Trust, The Walton Centre for Neurology and Neurosurgery, Liverpool, UK
| | - Corey W Hunter
- Ainsworth Institute, Ichan School of Medicine, Mt Sinai Hospital, New York, NY, USA
| | | | | | - Chris Gilligan
- Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Salim M Hayek
- Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA
| | - Simon Thomson
- Pain & Neuromodulation Consulting Ltd, Nuffield Health Brentwood and The London Clinic, Brentwood, UK; Pain & Neuromodulation Centre, Mid & South Essex University NHS Hospitals, Basildon, UK
| | - Natalie Strand
- Department of Anesthesiology, Division of Pain Medicine, Mayo Clinic, Phoenix, AZ, USA
| | | | - Thomas T Simopoulos
- Arnold Warfield Pain Management Center, Harvard Medical School, Boston, MA, USA
| | - Ajax Yang
- Spine and Pain Consultant, PLLC, Staten Island, NY, USA
| | | | - Fabián Cremaschi
- Department of Neurosciences, National University of Cuyo, Mendoza, Argentina
| | - Paul J Christo
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vishal Varshney
- Providence Healthcare, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stana Bojanic
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert M Levy
- Neurosurgical Services, Clinical Research, Anesthesia Pain Care Consultants, Tamarac, FL, USA
| |
Collapse
|
14
|
Liu J, Wang C, Li X, Guan J, Song X, Song Y, Wang C. Analysis of factors selectively related to herpes zoster involving peripheral sensory ganglia: Retrospective study. J Med Virol 2024; 96:e29821. [PMID: 39175267 DOI: 10.1002/jmv.29821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 08/24/2024]
Abstract
Herpes zoster (HZ), resulting from the reactivation of the varicella-zoster virus, is a significant disease. This study aimed to explore the factors influencing sensory neuron involvement in HZ at different locations and its association with postherpetic neuralgia (PHN). A total of 3143 cases were retrieved from an electronic medical record system, including 2676 cases of HZ and 467 cases of PHN. Gender, age, site of onset, past surgical history, and comorbidities were analyzed using a multifactorial logistic regression model. The results revealed correlations between age, gender, comorbidities (diabetes, coronary heart disease, percutaneous coronary intervention [PCI]), and sensory neuron involvement in HZ. Specifically, older age, female gender, and comorbid conditions such as diabetes/coronary heart disease were associated with sacral dorsal root ganglion (DRG) involvement, while PCI history was associated with lumbar DRG involvement. Additionally, sensory neuron involvement at different locations by HZ was linked to PHN. Furthermore, independent risk factors for PHN included thoracic DRG involvement, older age, and comorbidities (diabetes, surgical history, malignancy). It is crucial to prevent damage to the DRG, especially in individuals with comorbidities, through activities avoidance and active treatment, to minimize the occurrence of PHN.
Collapse
Affiliation(s)
- Jing Liu
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Cihan Wang
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Xin Li
- Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Jingjing Guan
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of Pain, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Yangzhou Clinical College, Xuzhou Medical University, Yangzhou, China
| | - Xiaowei Song
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yinghao Song
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of Pain, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Yangzhou Clinical College, Xuzhou Medical University, Yangzhou, China
| | - Cunjin Wang
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Yangzhou Clinical College, Xuzhou Medical University, Yangzhou, China
| |
Collapse
|
15
|
Walk R, Broz K, Jing L, Potter R, Gonzalez CE, Beeve A, Scheller E, Gupta M, Setton L, Tang SY. The progression of neurovascular features and chemokine signatures of the intervertebral disc with degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603182. [PMID: 39071400 PMCID: PMC11275839 DOI: 10.1101/2024.07.12.603182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Inflammatory cytokine production and de novo neurovascularization have been identified in painful, degenerated intervertebral discs (IVDs). However, the temporal trajectories of these key pathoanatomical features, including the cascade of inflammatory chemokines and neo- vessel and neurite infiltration, and their associations with IVD degeneration, remain relatively unknown. Investigating this process in the caudal mouse IVD enables the opportunity to study the tissue-specific response without confounding inflammatory signaling from neighboring structures. Thus this study aims to define the progression of chemokine production and neurovascular invasion during the IVD degeneration initiated by injury in the caudal spine 3-month-old C57BL6/J mice. Forty-nine IVD-secreted chemokines and matrix metalloproteinases (MMPs) was measured using multiplex ELISA, and the intradiscal infiltrating vessels (endomucin) and nerves (protein-gene-product 9.5) was quantified in the tissue volume using immunohistochemistry. Injury provoked the increase secretion of IL6, CCL2, CCL12, CCL17, CCL20, CCL21, CCL22, CXCL2 and MMP2 proteins. The centrality and structure of inflammatory networks in IVDs evolved over the 12 post-injury weeks, highlighting distinct responses between the acute and chronic phases. Neurites propagated rapidly within 2-weeks post-injury and remained relatively constant until 12-weeks. Vascular vessel length was observed to peak at 4-weeks post-injury and it regressed by 12-weeks. These findings identified the temporal flux of inflammatory chemokines and pain-associated pathoanatomy in a model of IVD degeneration using the mouse caudal spine.
Collapse
|
16
|
Testa L, Dotta S, Vercelli A, Marvaldi L. Communicating pain: emerging axonal signaling in peripheral neuropathic pain. Front Neuroanat 2024; 18:1398400. [PMID: 39045347 PMCID: PMC11265228 DOI: 10.3389/fnana.2024.1398400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
Peripheral nerve damage often leads to the onset of neuropathic pain (NeuP). This condition afflicts millions of people, significantly burdening healthcare systems and putting strain on families' financial well-being. Here, we will focus on the role of peripheral sensory neurons, specifically the Dorsal Root Ganglia neurons (DRG neurons) in the development of NeuP. After axotomy, DRG neurons activate regenerative signals of axons-soma communication to promote a gene program that activates an axonal branching and elongation processes. The results of a neuronal morphological cytoskeleton change are not always associated with functional recovery. Moreover, any axonal miss-targeting may contribute to NeuP development. In this review, we will explore the epidemiology of NeuP and its molecular causes at the level of the peripheral nervous system and the target organs, with major focus on the neuronal cross-talk between intrinsic and extrinsic factors. Specifically, we will describe how failures in the neuronal regenerative program can exacerbate NeuP.
Collapse
Affiliation(s)
- Livia Testa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Sofia Dotta
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Letizia Marvaldi
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| |
Collapse
|
17
|
Creanga-Murariu I, Filipiuc LE, Gogu MR, Ciorpac M, Cumpat CM, Tamba BI, Alexa-Stratulat T. The potential neuroprotective effects of cannabinoids against paclitaxel-induced peripheral neuropathy: in vitro study on neurite outgrowth. Front Pharmacol 2024; 15:1395951. [PMID: 38933665 PMCID: PMC11199736 DOI: 10.3389/fphar.2024.1395951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction: Chemotherapy-induced peripheral neuropathy (CIPN) is a shared burden for 68.1% of oncological patients undergoing chemotherapy with Paclitaxel (PTX). The symptoms are intense and troublesome, patients reporting paresthesia, loss of sensation, and dysesthetic pain. While current medications focus on decreasing the symptom intensity, often ineffective, no medication is yet recommended by the guidelines for the prevention of CIPN. Cannabinoids are an attractive option, as their neuroprotective features have already been demonstrated in neuropathies with other etiologies, by offering the peripheral neurons protection against toxic effects, which promotes analgesia. Methods: We aim to screen several new cannabinoids for their potential use as neuroprotective agents for CIPN by investigating the cellular toxicity profile and by assessing the potential neuroprotective features against PTX using a primary dorsal root ganglion neuronal culture. Results: Our study showed that synthetic cannabinoids JWH-007, AM-694 and MAB-CHMINACA and phytocannabinoids Cannabixir® Medium dried flowers (NC1) and Cannabixir® THC full extract (NC2) preserve the viability of fibroblasts and primary cultured neurons, in most of the tested dosages and time-points. The combination between the cannabinoids and PTX conducted to a cell viability of 70%-89% compared to 40% when PTX was administered alone for 48 h. When assessing the efficacy for neuroprotection, the combination between cannabinoids and PTX led to better preservation of neurite length at all tested time-points compared to controls, highly drug and exposure-time dependent. By comparison, the combination of the cannabinoids and PTX administered for 24 h conducted to axonal shortening between 23% and 44%, as opposed to PTX only, which shortened the axons by 63% compared to their baseline values. Discussion and Conclusion: Cannabinoids could be potential new candidates for the treatment of paclitaxel-induced peripheral neuropathy; however, our findings need to be followed by additional tests to understand the exact mechanism of action, which would support the translation of the cannabinoids in the oncological clinical practice.
Collapse
Affiliation(s)
- Ioana Creanga-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Oncology Department, Regional Institute of Oncology, Iasi, Romania
| | - Leontina-Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Maria-Raluca Gogu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
| | - Mitica Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
| | - Carmen Marinela Cumpat
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Iasi, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Teodora Alexa-Stratulat
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Oncology Department, Regional Institute of Oncology, Iasi, Romania
| |
Collapse
|
18
|
Huang S, Zhang Y, Shu H, Liu W, Zhou X, Zhou X. Advances of the MAPK pathway in the treatment of spinal cord injury. CNS Neurosci Ther 2024; 30:e14807. [PMID: 38887853 PMCID: PMC11183187 DOI: 10.1111/cns.14807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Spinal cord injury (SCI) represents a complex pathology within the central nervous system (CNS), leading to severe sensory and motor impairments. It activates various signaling pathways, notably the mitogen-activated protein kinase (MAPK) pathway. Present treatment approaches primarily focus on symptomatic relief, lacking efficacy in addressing the underlying pathophysiological mechanisms. Emerging research underscores the significance of the MAPK pathway in neuronal differentiation, growth, survival, axonal regeneration, and inflammatory responses post-SCI. Modulating this pathway post-injury has shown promise in attenuating inflammation, minimizing apoptosis, alleviating neuropathic pain, and fostering neural regeneration. Given its pivotal role, the MAPK pathway emerges as a potential therapeutic target in SCI management. This review synthesizes current knowledge on SCI pathology, delineates the MAPK pathway's characteristics, and explores its dual roles in SCI pathology and therapeutic interventions. Furthermore, it addresses the existing challenges in MAPK research in the context of SCI, proposing solutions to overcome these hurdles. Our aim is to offer a comprehensive reference for future research on the MAPK pathway and SCI, laying the groundwork for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Shixue Huang
- Department of Orthopedics, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Yinuo Zhang
- Department of Orthopedics, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Haoming Shu
- Department of Orthopedics, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Wei Liu
- Department of Orthopedics, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Xin Zhou
- Department of Orthopedics, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
- Translational Research Centre of Orthopedics, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
19
|
Villalón Landeros E, Kho SC, Church TR, Brennan A, Türker F, Delannoy M, Caterina MJ, Margolis SS. The nociceptive activity of peripheral sensory neurons is modulated by the neuronal membrane proteasome. Cell Rep 2024; 43:114058. [PMID: 38614084 PMCID: PMC11157458 DOI: 10.1016/j.celrep.2024.114058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/15/2024] Open
Abstract
Proteasomes are critical for peripheral nervous system (PNS) function. Here, we investigate mammalian PNS proteasomes and reveal the presence of the neuronal membrane proteasome (NMP). We show that specific inhibition of the NMP on distal nerve fibers innervating the mouse hind paw leads to reduction in mechanical and pain sensitivity. Through investigating PNS NMPs, we demonstrate their presence on the somata and proximal and distal axons of a subset of dorsal root ganglion (DRG) neurons. Single-cell RNA sequencing experiments reveal that the NMP-expressing DRGs are primarily MrgprA3+ and Cysltr2+. NMP inhibition in DRG cultures leads to cell-autonomous and non-cell-autonomous changes in Ca2+ signaling induced by KCl depolarization, αβ-meATP, or the pruritogen histamine. Taken together, these data support a model whereby NMPs are expressed on a subset of somatosensory DRGs to modulate signaling between neurons of distinct sensory modalities and indicate the NMP as a potential target for controlling pain.
Collapse
Affiliation(s)
- Eric Villalón Landeros
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Samuel C Kho
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Taylor R Church
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anna Brennan
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fulya Türker
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Delannoy
- Microscopy Facility, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael J Caterina
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurosurgery and Neurosurgery Pain Research Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth S Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Chen X, Chen Z, Ma G, Sha J, Zhao S, Liu Z, Chen N, Yang H. Reactive Oxygen Species Induced Upregulation of TRPV1 in Dorsal Root Ganglia Results in Low Back Pain in Rats. J Inflamm Res 2024; 17:2245-2256. [PMID: 38623469 PMCID: PMC11017985 DOI: 10.2147/jir.s446841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
Background Dorsal root ganglia (DRGs) contain sensory neurons that innervate intervertebral discs (IVDs) and may play a critical role in mediating low-back pain (LBP), but the potential pathophysiological mechanism needs to be clarified. Methods A discogenic LBP model in rats was established by penetration of a lumbar IVD. The severity of LBP was evaluated through behavioral analysis, and the gene and protein expression levels of pro-algesic peptide substance P (SP) and calcitonin gene-related peptide (CGRP) in DRGs were quantified. The level of reactive oxygen species (ROS) in bilateral lumbar DRGs was also quantified using dihydroethidium staining. Subsequently, hydrogen peroxide solution or N-acetyl-L-cysteine was injected into DRGs to evaluate the change in LBP, and gene and protein expression levels of transient receptor potential vanilloid-1 (TRPV1) in DRGs were analyzed. Finally, an inhibitor or activator of TRPV1 was injected into DRGs to observe the change in LBP. Results The rats had remarkable LBP after disc puncture, manifesting as mechanical and cold allodynia and increased expression of the pro-algesic peptides SP and CGRP in DRGs. Furthermore, there was significant overexpression of ROS in bilateral lumbar DRGs, while manipulation of the level of ROS in DRGs attenuated or aggravated LBP in rats. In addition, excessive ROS in DRGs stimulated upregulation of TRPV1 in DRGs. Finally, activation or inhibition of TRPV1 in DRGs resulted in a significant increase or decrease of discogenic LBP, respectively, suggesting that ROS-induced TRPV1 has a strong correlation with discogenic LBP. Conclusion Increased ROS in DRGs play a primary pathological role in puncture-induced discogenic LBP, and excessive ROS-induced upregulation of TRPV1 in DRGs may be the underlying pathophysiological mechanism to cause nerve sensitization and discogenic LBP. Therapeutic targeting of ROS or TRPV1 in DRGs may provide a promising method for the treatment of discogenic LBP.
Collapse
Affiliation(s)
- Xinyong Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215000, People’s Republic of China
- Department of Orthopedics, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 200025, People’s Republic of China
| | - Zhe Chen
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Gongchang Ma
- Department of Orthopedics, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 200025, People’s Republic of China
| | - Jianjun Sha
- Department of Orthopedics, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 200025, People’s Republic of China
| | - Shan Zhao
- Department of Orthopedics, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 200025, People’s Republic of China
| | - Zuoqing Liu
- Department of Orthopedics, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 200025, People’s Republic of China
| | - Nong Chen
- Department of Orthopedics, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 200025, People’s Republic of China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215000, People’s Republic of China
| |
Collapse
|
21
|
Brenneman DE, Kinney WA, McDonnell ME, Ippolito MJ, Ward SJ. Knockdown siRNA Targeting GPR55 Reveals Significant Differences Between the Anti-inflammatory Actions of KLS-13019 and Cannabidiol. J Mol Neurosci 2024; 74:41. [PMID: 38602576 DOI: 10.1007/s12031-024-02217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
KLS-13019 was reported previously to reverse paclitaxel-induced mechanical allodynia in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN). Recent studies demonstrated that paclitaxel-induced increases in inflammatory markers (GPR55, NLRP3, and IL-1β) of dorsal root ganglion (DRG) cultures were shown to be reversed by KLS-13019 treatment. The mechanism of action for KLS-13019-mediated reversal of paclitaxel-induced neuroinflammation now has been explored using GPR55 siRNA. Pre-treatment of DRG cultures with GPR55 siRNA produced a 21% decrease of immunoreactive (IR) area for GPR55 in cell bodies and a 59% decrease in neuritic IR area, as determined by high-content imaging. Using a 24-h reversal treatment paradigm, paclitaxel-induced increases in the inflammatory markers were reversed back to control levels after KLS-3019 treatment. Decreases in these inflammatory markers produced by KLS-13019 were significantly attenuated by GPR55 siRNA co-treatment, with mean IR area responses being attenuated by 56% in neurites and 53% in cell bodies. These data indicate that the percentage decreases in siRNA-mediated attenuation of KLS-13019-related efficacy on the inflammatory markers were similar to the percentage knockdown observed for neuritic GPR55 IR area. Similar studies conducted with cannabidiol (CBD), the parent compound of KLS-13019, produced low efficacy (25%) reversal of all inflammatory markers that were poorly attenuated (29%) by GPR55 siRNA. CBD was shown previously to be ineffective in reversing paclitaxel-induced mechanical allodynia. The present studies indicated significant differences between the anti-inflammatory properties of KLS-13019 and CBD which may play a role in their observed differences in the reversibility of mechanical allodynia in a mouse model of CIPN.
Collapse
Affiliation(s)
- Douglas E Brenneman
- Kannalife Sciences, Inc, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
| | - William A Kinney
- Kannalife Sciences, Inc, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Mark E McDonnell
- Kannalife Sciences, Inc, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Michael J Ippolito
- Department of Neural Science, Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sara Jane Ward
- Department of Neural Science, Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
22
|
Abd-Elsayed A, Vardhan S, Aggarwal A, Vardhan M, Diwan SA. Mechanisms of Action of Dorsal Root Ganglion Stimulation. Int J Mol Sci 2024; 25:3591. [PMID: 38612402 PMCID: PMC11011701 DOI: 10.3390/ijms25073591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
The dorsal root ganglion (DRG) serves as a pivotal site for managing chronic pain through dorsal root ganglion stimulation (DRG-S). In recent years, the DRG-S has emerged as an attractive modality in the armamentarium of neuromodulation therapy due to its accessibility and efficacy in alleviating chronic pain refractory to conventional treatments. Despite its therapeutic advantages, the precise mechanisms underlying DRG-S-induced analgesia remain elusive, attributed in part to the diverse sensory neuron population within the DRG and its modulation of both peripheral and central sensory processing pathways. Emerging evidence suggests that DRG-S may alleviate pain by several mechanisms, including the reduction of nociceptive signals at the T-junction of sensory neurons, modulation of pain gating pathways within the dorsal horn, and regulation of neuronal excitability within the DRG itself. However, elucidating the full extent of DRG-S mechanisms necessitates further exploration, particularly regarding its supraspinal effects and its interactions with cognitive and affective networks. Understanding these mechanisms is crucial for optimizing neurostimulation technologies and improving clinical outcomes of DRG-S for chronic pain management. This review provides a comprehensive overview of the DRG anatomy, mechanisms of action of the DRG-S, and its significance in neuromodulation therapy for chronic pain.
Collapse
Affiliation(s)
- Alaa Abd-Elsayed
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| | - Swarnima Vardhan
- Department of Internal Medicine, Yale New Haven Health, Bridgeport Hospital, Bridgeport, CT 06605, USA; (S.V.); (A.A.)
- Advanced Spine on Park Avenue, New York, NY 10461, USA;
| | - Abhinav Aggarwal
- Department of Internal Medicine, Yale New Haven Health, Bridgeport Hospital, Bridgeport, CT 06605, USA; (S.V.); (A.A.)
| | - Madhurima Vardhan
- Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, IL 60439, USA;
| | | |
Collapse
|
23
|
Verma A, Francois E, Maiti T, Cassidy L, Tolba R. Dorsal root ganglion stimulator-A targeted therapy for post-herpetic neuralgia: The Middle East Experience. Pain Pract 2024; 24:567-572. [PMID: 38050874 DOI: 10.1111/papr.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
BACKGROUND Post herpetic neuralgia (PHN) is a chronic neuropathic pain syndrome which presents after an episode of herpes zoster caused by the reactivation of varicella zoster virus. Conservative treatment starts with pharmacological measures using Anti-epileptics and Antidepressants. Some patients also respond well to epidural steroid injections too, but the effect is usually short lasting. Dorsal Root Ganglion Stimulator (DRG-S) has recently been suggested as a new treatment modality for PHN due to its selective targeting of the pathophysiologic focus. CASE SERIES We are reporting three cases, who were suffering from neuropathic pain after an episode of herpes zoster. Pain and pain related suffering scores were high, even with multiple antiepileptics and opioid medications. They underwent DRG-S implant and appreciated more than 50% reduction of their pain score, meaningful reduction in the dose of medications along with significant improvement of their general well being measured using Generalized Anxiety Disorder Questionnaire (GAD-7), pain disability index (PDI), and 9 Question Patient Health Questionnaire (PHQ-9). To our knowledge this is the first report on DRG stimulator from the Middle East Region. CONCLUSION DRG-S has potential to be a preferable treatment option in patients with refractory PHN and acts as a specific targeted therapy in the treatment of these patients.
Collapse
Affiliation(s)
- Amit Verma
- Anaesthesiology Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Eric Francois
- Anaesthesiology Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Tanmoy Maiti
- Neurosurgical Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Leanne Cassidy
- Anaesthesiology Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Reda Tolba
- Anaesthesiology Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
24
|
Brenneman DE, Kinney WA, McDonnell ME, Ippolito MJ, Ward SJ. Knockdown siRNA targeting GPR55 reveals significant differences between the anti-inflammatory actions of KLS-13019 and cannabidiol. RESEARCH SQUARE 2024:rs.3.rs-3982851. [PMID: 38464007 PMCID: PMC10925471 DOI: 10.21203/rs.3.rs-3982851/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
KLS-13019 was reported previously to reverse paclitaxel-induced mechanical allodynia in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN). Recent studies demonstrated that paclitaxel-induced increases in inflammatory markers (GPR55, NLRP3 and IL-1b) of dorsal root ganglion (DRG) cultures were shown to be reversed by KLS-13019 treatment. The mechanism of action for KLS-13019-mediated reversal of paclitaxel-induced neuroinflammation now has been explored using GPR55 siRNA. Pretreatment of DRG cultures with GPR55 siRNA produced a 21% decrease of immunoreactive (IR) area for GPR55 in cell bodies and a 59% decrease in neuritic IR area, as determined by high content imaging. Using a 24-hour reversal treatment paradigm, paclitaxel-induced increases in the inflammatory markers were reversed back to control levels after KLS-3019 treatment. Decreases in these inflammatory markers produced by KLS-13019 were significantly attenuated by GPR55 siRNA co-treatment, with mean IR area responses being attenuated by 56% in neurites and 53% in cell bodies. These data indicate that the percentage decreases in siRNA-mediated attenuation of KLS-13019-related efficacy on the inflammatory markers were similar to the percentage knockdown observed for neuritic GPR55 IR area. Similar studies conducted with cannabidiol (CBD), the parent compound of KLS-13019, produced low efficacy (25%) reversal of all inflammatory markers that were poorly attenuated (29%) by GPR55 siRNA. CBD was shown previously to be ineffective in reversing paclitaxel-induced mechanical allodynia. The present studies indicated significant differences between the anti-inflammatory properties of KLS-13019 and CBD which may play a role in their observed differences in the reversibility of mechanical allodynia in a mouse model of CIPN.
Collapse
|
25
|
Wahezi SE, Caparo MA, Malhotra R, Sundaram L, Batti K, Ejindu P, Veeramachaneni R, Anitescu M, Hunter CW, Naeimi T, Farah F, Kohan L. Current Waveforms in Spinal Cord Stimulation and Their Impact on the Future of Neuromodulation: A Scoping Review. Neuromodulation 2024; 27:47-58. [PMID: 38184341 DOI: 10.1016/j.neurom.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/16/2023] [Accepted: 11/13/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Neuromodulation is a standard and well-accepted treatment for chronic refractory neuropathic pain. There has been progressive innovation in the field over the last decade, particularly in areas of spinal cord stimulation (SCS) and dorsal root ganglion stimulation. Improved outcomes using proprietary waveforms have become customary in the field, leading to an unprecedented expansion of these products and a plethora of options for the management of pain. Although advances in waveform technology have improved our fundamental understanding of neuromodulation, a scoping review describing new energy platforms and their associated clinical effects and outcomes is needed. The authors submit that understanding electrophysiological neuromodulation may be important for clinical decision-making and programming selection for personalized patient care. OBJECTIVE This review aims to characterize ways differences in mechanism of action and clinical outcomes of current spinal neuromodulation products may affect contemporary clinical decision-making while outlining a possible path for the future SCS. STUDY DESIGN The study is a scoping review of the literature about newer generation SCS waveforms. MATERIALS AND METHODS A literature report was performed on PubMed and chapters to include articles on spine neuromodulation mechanism of action and efficacy. RESULTS A total of 8469 studies were identified, 75 of which were included for the scoping review after keywords defining recent waveform technology were added. CONCLUSIONS Clinical data suggest that neuromodulation remains a promising tool in the treatment of chronic pain. The evidence for SCS for treating chronic pain seems compelling; however, more long-term and comparative data are needed for a comparison of waveforms when it comes to the etiology of pain. In addition, an exploration into combination waveform therapy and waveform cycling may be paramount for future clinical studies and the development of new technologies.
Collapse
Affiliation(s)
- Sayed E Wahezi
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA.
| | - Moorice A Caparo
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Ria Malhotra
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Lakshman Sundaram
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Kevin Batti
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Prince Ejindu
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | | | - Magdalena Anitescu
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Corey W Hunter
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Tahereh Naeimi
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Fadi Farah
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Lynn Kohan
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
26
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
27
|
Cho YH, Seo TB. The role of walking exercise on axonal regrowth and neuropathic pain markers in dorsal root ganglion after sciatic nerve injury. J Exerc Rehabil 2023; 19:320-326. [PMID: 38188130 PMCID: PMC10766449 DOI: 10.12965/jer.2346522.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
The aim of this study was to determine whether walking exercise can regulate the expression level of neuropathic pain- and inflammatory response markers in the ipsilateral lumbar 4 to 6 dorsal root ganglion neurons after sciatic nerve injury (SNI). The experimental rats were randomly divided into seven groups: the normal control group, sedentary groups for 3, 7, and, 14 days postinjury (dpi), and walking exercise groups for 3, 7, and 14 dpi. Western blot techniques were used to evaluate specific neuropathic pain- and cytokine markers and mechanical allodynia was confirmed by paw withdrawal test. Mechanical allodynia was significantly improved in the walking exercise group compared to the sedentary group at all 7, 10, and 14 dpi. Furthermore, growth associated protein 43 and brain-derived neurotrophic factor levels were significantly increased in the walking exercise groups compared to the sedentary group at all 3, 7, and 14 dpi. Conversely, nuclear factor kappa-light-chain-enhancer of activated B cells, interleukin-6, tumor necrosis factor α, calcitonin gene-related peptide, and c-Fos expression levels were significantly decreased in the walking exercise groups compared to the sedentary group at all 3, 7, and 14 dpi. These findings suggest meaningful information that aggressive rehabilitation walking exercise applied early after SNI might be improve mechanical allodynia, neuropathic pain and inflammatory response markers following SNI.
Collapse
Affiliation(s)
- Yeong-Hyun Cho
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju,
Korea
| | - Tae-Beom Seo
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju,
Korea
| |
Collapse
|
28
|
Xian H, Guo H, Liu YY, Zhang JL, Hu WC, Yu MJ, Zhao R, Xie RG, Zhang H, Cong R. Peripheral BDNF Regulates Somatosensory-Sympathetic Coupling in Brachial Plexus Avulsion-Induced Neuropathic Pain. Neurosci Bull 2023; 39:1789-1806. [PMID: 37335428 PMCID: PMC10661543 DOI: 10.1007/s12264-023-01075-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/19/2023] [Indexed: 06/21/2023] Open
Abstract
Brachial plexus avulsion (BPA) is a combined injury involving the central and peripheral nervous systems. Patients with BPA often experience severe neuropathic pain (NP) in the affected limb. NP is insensitive to the existing treatments, which makes it a challenge to researchers and clinicians. Accumulated evidence shows that a BPA-induced pain state is often accompanied by sympathetic nervous dysfunction, which suggests that the excitation state of the sympathetic nervous system is correlated with the existence of NP. However, the mechanism of how somatosensory neural crosstalk with the sympathetic nerve at the peripheral level remains unclear. In this study, through using a novel BPA C7 root avulsion mouse model, we found that the expression of BDNF and its receptor TrκB in the DRGs of the BPA mice increased, and the markers of sympathetic nervous system activity including α1 and α2 adrenergic receptors (α1-AR and α2-AR) also increased after BPA. The phenomenon of superexcitation of the sympathetic nervous system, including hypothermia and edema of the affected extremity, was also observed in BPA mice by using CatWalk gait analysis, an infrared thermometer, and an edema evaluation. Genetic knockdown of BDNF in DRGs not only reversed the mechanical allodynia but also alleviated the hypothermia and edema of the affected extremity in BPA mice. Further, intraperitoneal injection of adrenergic receptor inhibitors decreased neuronal excitability in patch clamp recording and reversed the mechanical allodynia of BPA mice. In another branch experiment, we also found the elevated expression of BDNF, TrκB, TH, α1-AR, and α2-AR in DRG tissues from BPA patients compared with normal human DRGs through western blot and immunohistochemistry. Our results revealed that peripheral BDNF is a key molecule in the regulation of somatosensory-sympathetic coupling in BPA-induced NP. This study also opens a novel analgesic target (BDNF) in the treatment of this pain with fewer complications, which has great potential for clinical transformation.
Collapse
Affiliation(s)
- Hang Xian
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Huan Guo
- Pain and Related Diseases Research Laboratory, Medical College of Shantou University, Shantou, 515041, China
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Yuan-Ying Liu
- School of Life Science and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, China
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Jian-Lei Zhang
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Wen-Chao Hu
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
- The Sixth Regiment, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Ming-Jun Yu
- The Tenth Squadron of the Third Regiment, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Rui Zhao
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China.
| | - Hang Zhang
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| | - Rui Cong
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
29
|
Graca MJ, Lubenow TR, Landphair WR, McCarthy RJ. Efficacy and Safety of Cervical and High-Thoracic Dorsal Root Ganglion Stimulation Therapy for Complex Regional Pain Syndrome of the Upper Extremities. Neuromodulation 2023; 26:1781-1787. [PMID: 36402657 DOI: 10.1016/j.neurom.2022.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/05/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate analgesic and safety considerations for high thoracic and cervical dorsal root ganglion (DRG) neuromodulation for complex regional pain syndrome (CRPS). We hypothesized that DRG neuromodulation would provide sustained analgesia with complications like that of low thoracic or lumbar electrode implantation. MATERIALS AND METHODS A single-center, retrospective study was conducted of patients with CRPS I or II of the upper extremities, refractory to previous therapies, who were treated with DRG neuromodulation in the upper thoracic and cervical spine. The primary outcome was successful DRG therapy, defined as ≥ 50% pain relief on a Numeric Rating Scale (NRS) 0 to 10 pain scale at six months after implantation. A secondary outcome was a reduction in daily opioid use after DRG therapy. RESULTS After a DRG stimulation trial, 17 of 20 patients (85%) had ≥ 50% improvement in NRS pain and underwent a permanent pulse generator implant, with 100% endorsing ≥ 50% pain relief at six months. Mean NRS pain scores before DRG neuromodulation were 9.3 ± 1.1, with a mean reduction of 5.5 (95% CI, 4.5-6.6; p < 0.001) at six months. Ten patients were taking opioids at baseline; the median (interquartile range) dose was 45 mg (23 to 120) morphine equivalents (MME), which was reduced to 20 MME (15 to 40) at six months. The median reduction in daily MME use was -25 (95% CI, -100 to 20; p = 0.099). Six of 20 patients (30%) experienced a complication: three had lead migration; two experienced paresthesias; and one had a reduction in shoulder mobility. One patient had symptoms of a reversible spinal cord compression immediately after implant, requiring emergent electrode removal. CONCLUSIONS DRG neuromodulation for patients with CRPS of the upper extremities produced clinically important analgesia and reduced opioid use for ≥ six months but was associated with one serious complication.
Collapse
Affiliation(s)
- Mateusz J Graca
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - Timothy R Lubenow
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA.
| | - William R Landphair
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - Robert J McCarthy
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
30
|
Yazar U, Guvercin AR, Rouhikia M, Aktoklu M, Demirci MA, Erbay I, Ayar A. Cerebrolysin provides effective protection on high glucose-induced neuropathy in cultured rat dorsal root ganglion neurons. J Recept Signal Transduct Res 2023; 43:109-114. [PMID: 38079610 DOI: 10.1080/10799893.2023.2291566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/23/2023] [Indexed: 01/25/2024]
Abstract
Cerebrolysin, an endogenous peptide with neuroprotective and neurotrophic properties, indicated to be beneficial on diabetic neuropathy by preliminary clinical and experimental studies but without evidence on central or peripheral action. Dorsal root ganglion (DRG) neurons, based on involvement of pain sensation in both health and disease as first relay centers for transmission and processing of peripheral nociceptive sensory signals, was used to investigate possible effects of Cerebrolysin on high glucose-induced neuropathy, as model. DRG's were obtained from adult rats and the isolated neurons were seeded on E-Plate®'s equipped with gold microelectrodes, and incubated in culture media in a CO2 incubator at 37 C. DRGs were exposed to high glucose (50 mM) in the absence and presence of different concentrations of Cerebrolysin ® (2-40 mg/ml). Cell index (derived from cell viability and neurite outgrowth) was recorded with Real-Time Cell Analyzer and was used as primary outcome measure. High glucose-induced cellular neuropathy and neuroprotective effects of Cerebrolysin was evaluated from area under the curve (AUC) of cell index-time graphs. Exposure of DRG neurons to high glucose caused a rapid and persistent decrease in the mean AUC values compared to normoglycemic controls. Co-treatment with Cerebrolysin (40 mg/ml) attenuated this high glucose-induced effect in a concentration-dependent manner. In normoglycemic conditions, treatment with Cerebrolysin caused a dose-dependent increase in the mean AUC values. Cerebrolysin treatment resulted in maintenance of the functional integrity, survival, and promotion of neurite outgrowth of the cultured DRG neurons exposed to high glucose, indicating involvement of peripheral sensory neurons.
Collapse
Affiliation(s)
- Ugur Yazar
- Departments of Neurosurgery, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ali Rıza Guvercin
- Departments of Neurosurgery, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mahindokht Rouhikia
- Departments of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mehmet Aktoklu
- Departments of Neurosurgery, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mehmet Ali Demirci
- Departments of Neurosurgery, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ibrahim Erbay
- Departments of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ahmet Ayar
- Departments of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
31
|
Sousa JM, Silva JL, Gamelas J, Guimarães Consciência J. Transiliac Endoscopic-Assisted L5S1 Intraforaminal Lumbar Interbody Fusion: Technical Considerations and Potential Complications. World Neurosurg 2023; 178:e741-e749. [PMID: 37544596 DOI: 10.1016/j.wneu.2023.07.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE We sought to determine the clinical outcomes, complications, and fusion rates in transiliac endoscopic-assisted L5S1 intraforaminal lumbar interbody fusion (iLIF). METHODS Between September 2020 and September 2021, patients with L5S1 degenerative disk disease were enrolled in a prospective study on transiliac L5S1 iLIF and followed for a minimum of 12 months. Conflict of the preoperative planned approach with the ilium was mandatory. The primary outcome measures were the Oswestry Disability Index, the visual analog scale (VAS) score for low back pain (VAS back) and leg pain (VAS leg), and the modified MacNab criteria. The secondary outcomes were complications and fusion rates. RESULTS Five consecutive patients were enrolled: 2 males and 3 females with a mean age of 50 ± 12.9. All had 12 months' follow-up. The mean improvement in the Oswestry Disability Index, VAS back, and VAS leg (44 ± 11.75, 6.6 ± 1.7, and 4.7 ± 4.2, respectively) was more than 3 times the minimum clinically important difference. The modified MacNab criteria were good or excellent in 80% of cases at all endpoints. Three patients had ipsilateral lower limb dysesthesia. One patient had revision surgery for foraminal bone fragment removal. All patients achieved fusion. CONCLUSIONS The transiliac iLIF is a feasible but demanding surgical technique that allows overcoming cases in which the ilium prevents endoscopic transforaminal access to L5S1. Our preliminary results had good clinical outcomes and high fusion rates. The main complication was late-onset dysesthesia of the ipsilateral lower limb, 10 to 14 days after surgery. Special care must be taken to prevent L5 dorsal root ganglion injury.
Collapse
Affiliation(s)
- José Miguel Sousa
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal; Centro Hospitalar Lisboa Ocidental, Orthopaedics Department, Lisbon, Portugal.
| | - João Luís Silva
- Centro Hospitalar Lisboa Ocidental, Orthopaedics Department, Lisbon, Portugal
| | - João Gamelas
- Centro Hospitalar Lisboa Ocidental, Orthopaedics Department, Lisbon, Portugal
| | - José Guimarães Consciência
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal; Centro Hospitalar Lisboa Ocidental, Orthopaedics Department, Lisbon, Portugal
| |
Collapse
|
32
|
Wan K, Jia M, Zhang H, Lan Y, Wang S, Zhang K, Wang Z, Zhu H, Zheng X, Luo Y, Pei L, Wu C, Liu Y, Li M. Electroacupuncture Alleviates Neuropathic Pain by Suppressing Ferroptosis in Dorsal Root Ganglion via SAT1/ALOX15 Signaling. Mol Neurobiol 2023; 60:6121-6132. [PMID: 37421564 DOI: 10.1007/s12035-023-03463-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023]
Abstract
Neuropathic pain affects globally about 7-10% of the general population. Electroacupuncture (EA) effectively relieves neuropathic pain symptoms without causing any side effects; however, the underlying molecular mechanisms remain unclear. We established a chronic constriction injury (CCI)-induced rat model of neuropathic pain. RNA sequencing was used to screen for differentially expressed genes in the dorsal root ganglion after CCI and EA treatment. We identified gene markers of ferroptosis spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15) to be dysregulated in the CCI-induced neuropathic pain model. Furthermore, EA relieved CCI-induced pain as well as ferroptosis-related symptoms in the dorsal root ganglion, including lipid peroxidation and iron overload. Finally, SAT1 knockdown also alleviated mechanical and thermal pain hypersensitivity and reversed ferroptosis damage. In conclusion, we showed that EA inhibited ferroptosis by regulating the SAT1/ALOX15 pathway to treat neuropathic pain. Our findings provide insight into the mechanisms of EA and suggest a novel therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Kexing Wan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Min Jia
- Clinical Laboratories, Wuhan First Hospital, Wuhan, 430030, China
| | - Hong Zhang
- School of Clinical Medicine, Hubei University of Science and Technology, Xianning, 437000, China
| | - Yuye Lan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Suixi Wang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Kailing Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Zixiao Wang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - He Zhu
- Department of Clinical Research Institute, Central People's Hospital of Zhanjiang, Zhanjiang, 524000, China
| | - Xunan Zheng
- Department of Clinical Research Institute, Central People's Hospital of Zhanjiang, Zhanjiang, 524000, China
| | - Yi Luo
- Department of Clinical Research Institute, Central People's Hospital of Zhanjiang, Zhanjiang, 524000, China
| | - Lei Pei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Caihua Wu
- Department of Acupuncture, Wuhan First Hospital, Wuhan, 430030, China.
| | - Yongmin Liu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
- Department of Physiology, Medical College of Shihezi University, Shihezi, 832002, China.
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
33
|
Nakarai H, Kato S, Yamato Y, Kodama H, Ohba Y, Sasaki K, Iizuka T, Tozawa K, Urayama D, Komatsu N, Okazaki R, Oshina M, Ogiso S, Masuda K, Maayan O, Tanaka S, Oshima Y. Quality of Life and Postoperative Satisfaction in Patients with Benign Extramedullary Spinal Tumors: A Multicenter Study. Spine (Phila Pa 1976) 2023; 48:E308-E316. [PMID: 37417695 DOI: 10.1097/brs.0000000000004771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
STUDY DESIGN Retrospective cohort study using prospectively collected registry data. OBJECTIVE The purpose of this study is to evaluate health-related quality of life (HRQOL) and postoperative satisfaction in patients with different histotypes of benign extramedullary spinal tumors (ESTs). BACKGROUND Little is known about how different histotypes influence HRQOL and postoperative satisfaction in EST patients. MATERIALS AND METHODS Patients undergoing primary benign EST surgery at 11 tertiary referral hospitals between 2017 and 2021 who completed preoperative and 1-year postoperative questionnaires were included. HRQOL assessment included the Physical Component Summary and Mental Component Summary (MCS) of Short Form-12, EuroQol 5-dimension, Oswestry/Neck Disability Index (ODI/NDI), and Numeric Rating Scales (NRS) for upper/lower extremities (UEP/LEP) and back pain (BP). Patients who answered "very satisfied," "satisfied," or "somewhat satisfied" on a seven-point Likert scale were considered to be satisfied with treatment. Student t -tests or Welch's t -test were used to compare continuous variables between two groups, and one-way analysis of variance was used to compare outcomes between the three groups of EST histotypes (schwannoma, meningioma, atypical). Categorical variables were compared using the χ 2 test or Fisher exact test. RESULTS A total of 140 consecutive EST patients were evaluated; 100 (72%) had schwannomas, 30 (21%) had meningiomas, and 10 (7%) had other ESTs. Baseline Physical Component Summary was significantly worse in patients with meningiomas ( P =0.04), and baseline NRS-LEP was significantly worse in patients with schwannomas ( P =0.03). However, there were no significant differences in overall postoperative HRQOL or patient satisfaction between histology types. Overall, 121 (86%) patients were satisfied with surgery. In a subgroup analysis comparing intradural schwannomas and meningiomas adjusted for patient demographics and tumor location with inverse probability weighting, schwannoma patients had worse baseline MCS ( P =0.03), ODI ( P =0.03), NRS-BP ( P <.001), and NRS-LEP ( P =0.001). Schwannoma patients also had worse postoperative MCS ( P =0.03) and NRS-BP ( P =0.001), with no significant difference in the percentage of satisfied patients ( P =0.30). CONCLUSIONS Patients who underwent primary benign EST resection had a significant improvement in HRQOL postoperatively, and ~90% of these patients reported being satisfied with their treatment outcomes one year after surgery. EST patients may exhibit a relatively lower threshold for postoperative satisfaction compared with patients undergoing surgery for degenerative spine conditions.
Collapse
Affiliation(s)
- Hiroyuki Nakarai
- Department of Spine Surgery, Hospital for Special Surgery, New York, NY
- University of Tokyo Spine Group (UTSG), Tokyo, Japan
| | - So Kato
- University of Tokyo Spine Group (UTSG), Tokyo, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukimasa Yamato
- University of Tokyo Spine Group (UTSG), Tokyo, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyasu Kodama
- University of Tokyo Spine Group (UTSG), Tokyo, Japan
- Department of Spine and Orthopedic Surgery, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Yutaro Ohba
- Department of Orthopedic Surgery, Kanto Rosai Hospital, Kanagawa, Japan
| | - Katsuyuki Sasaki
- University of Tokyo Spine Group (UTSG), Tokyo, Japan
- Department of Orthopedic Surgery, Yokohama Rosai Hospital, Kanagawa, Japan
| | - Tetsusai Iizuka
- Department of Orthopedic Surgery, Yokohama Rosai Hospital, Kanagawa, Japan
| | - Keiichiro Tozawa
- University of Tokyo Spine Group (UTSG), Tokyo, Japan
- Spine center, Toranomon Hospital, Tokyo, Japan
| | - Daiki Urayama
- University of Tokyo Spine Group (UTSG), Tokyo, Japan
- Department of Spinal Surgery, Japan Community Health-care Organization Tokyo Shinjuku Medical Center, Tokyo, Japan
| | - Naoto Komatsu
- University of Tokyo Spine Group (UTSG), Tokyo, Japan
- Department of Orthopedic Surgery, Japanese Red Cross Musashino Hospital, Tokyo, Japan
| | - Rentaro Okazaki
- University of Tokyo Spine Group (UTSG), Tokyo, Japan
- Department of Orthopedic Surgery, Saitama Red Cross Hospital, Saitama, Japan
| | - Masahito Oshina
- University of Tokyo Spine Group (UTSG), Tokyo, Japan
- Department of Orthopedic Surgery, NTT Medical Center Tokyo, Tokyo, Japan
| | - Sawako Ogiso
- Department of Orthopedic Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kazuhiro Masuda
- University of Tokyo Spine Group (UTSG), Tokyo, Japan
- Department of Orthopedic Surgery, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Omri Maayan
- Department of Spine Surgery, Hospital for Special Surgery, New York, NY
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Oshima
- University of Tokyo Spine Group (UTSG), Tokyo, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Fisher LE, Lempka SF. Neurotechnology for Pain. Annu Rev Biomed Eng 2023; 25:387-412. [PMID: 37068766 DOI: 10.1146/annurev-bioeng-111022-121637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Neurotechnologies for treating pain rely on electrical stimulation of the central or peripheral nervous system to disrupt or block pain signaling and have been commercialized to treat a variety of pain conditions. While their adoption is accelerating, neurotechnologies are still frequently viewed as a last resort, after many other treatment options have been explored. We review the pain conditions commonly treated with electrical stimulation, as well as the specific neurotechnologies used for treating those conditions. We identify barriers to adoption, including a limited understanding of mechanisms of action, inconsistent efficacy across patients, and challenges related to selectivity of stimulation and off-target side effects. We describe design improvements that have recently been implemented, as well as some cutting-edge technologies that may address the limitations of existing neurotechnologies. Addressing these challenges will accelerate adoption and change neurotechnologies from last-line to first-line treatments for people living with chronic pain.
Collapse
Affiliation(s)
- Lee E Fisher
- Rehab Neural Engineering Labs, Department of Physical Medicine and Rehabilitation, and Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Scott F Lempka
- Department of Biomedical Engineering, Biointerfaces Institute, and Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA;
| |
Collapse
|
35
|
Hu Y, Chen Y, Liu T, Zhu C, Wan L, Yao W. The bidirectional roles of the cGAS-STING pathway in pain processing: Cellular and molecular mechanisms. Biomed Pharmacother 2023; 163:114869. [PMID: 37182515 DOI: 10.1016/j.biopha.2023.114869] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/30/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023] Open
Abstract
Pain is a common clinical condition. However, the mechanisms underlying pain are not yet fully understood. It is known that the neuroimmune system plays a critical role in the pathogenesis of pain. Recent studies indicated that the cyclic-GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway can activate the innate immune system by sensing both extrinsic and intrinsic double-stranded DNA in the cytoplasm, which is involved in pain processing. In this review, we summarise (1) the roles of the cGAS-STING pathway in different pain models, (2) the effect of the cGAS-STING pathway in different cells during pain regulation, and (3) the downstream molecular mechanisms of the cGAS-STING pathway in pain regulation. This review provides evidence that the cGAS-STING pathway has pro- and anti-nociceptive effects in pain models. It has different functions in neuron, microglia, macrophage, and T cells. Its downstream molecules include IFN-I, NF-κB, NLRP3, and eIF2α. The bidirectional roles of the cGAS-STING pathway in pain processing are mediated by regulating nociceptive neuronal sensitivity and neuroinflammatory responses. However, their effects in special brain regions, activation of astrocytes, and the different phases of pain require further exploration.
Collapse
Affiliation(s)
- Yingjie Hu
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuye Chen
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongtong Liu
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chang Zhu
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Wan
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenlong Yao
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
36
|
Li L, Chen J, Li YQ. The Downregulation of Opioid Receptors and Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24065981. [PMID: 36983055 PMCID: PMC10053236 DOI: 10.3390/ijms24065981] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Neuropathic pain (NP) refers to pain caused by primary or secondary damage or dysfunction of the peripheral or central nervous system, which seriously affects the physical and mental health of 7-10% of the general population. The etiology and pathogenesis of NP are complex; as such, NP has been a hot topic in clinical medicine and basic research for a long time, with researchers aiming to find a cure by studying it. Opioids are the most commonly used painkillers in clinical practice but are regarded as third-line drugs for NP in various guidelines due to the low efficacy caused by the imbalance of opioid receptor internalization and their possible side effects. Therefore, this literature review aims to evaluate the role of the downregulation of opioid receptors in the development of NP from the perspective of dorsal root ganglion, spinal cord, and supraspinal regions. We also discuss the reasons for the poor efficacy of opioids, given the commonness of opioid tolerance caused by NP and/or repeated opioid treatments, an angle that has received little attention to date; in-depth understanding might provide a new method for the treatment of NP.
Collapse
Affiliation(s)
- Lin Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| | - Jing Chen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| | - Yun-Qing Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| |
Collapse
|
37
|
Shiah HS, Lee CJ, Lee FY, Tseng SH, Chen SH, Wang CC. Chemopreventive effects of Xiang Sha Liu Jun Zi Tang on paclitaxel-induced leucopenia and neuropathy in animals. Front Pharmacol 2023; 14:1106030. [PMID: 36969850 PMCID: PMC10032344 DOI: 10.3389/fphar.2023.1106030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Paclitaxel frequently induces peripheral neuropathy and myelosuppression during cancer treatment. According to the National Health Insurance Research Database of Taiwan, traditional Chinese medicine doctors widely use Xiang Sha Liu Jun Zi Tang (XSLJZT) to treat breast cancer patients who have received paclitaxel. We explored the combined therapeutic effects of XSLZJT with paclitaxel. XSLJZT did not exhibit significant cytotoxic effects on P388-D1 cells; however, the combination of XSLJZT (100 and 500 mg/kg) with paclitaxel prolonged the survival rate in P388–D1 tumor-bearing mice compared to paclitaxel-only. In addition, XSLJZT was found to enhance white blood cells (WBC) counts and promote leukocyte rebound in paclitaxel-induced leukopenia in mice. XSLJZT also reduced paclitaxel-induced mechanical pain and inhibited c-Fos protein expression in the L4-6 spinal cords of Wistar rats. Moreover, paclitaxel-induced shortening of the nerve fibers of dorsal root ganglion cells was ameliorated by pre-treatment with XSLJZT. Therefore, we suggest that XSLJZT could be used as an adjunct for cancer patients, as the formula could decrease paclitaxel-induced neuropathy and myelosuppression.
Collapse
Affiliation(s)
- Her-Shyong Shiah
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Chia-Jung Lee
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Fang-Yu Lee
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Sung-Hui Tseng
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shih-Han Chen
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ching-Chiung Wang
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Ching-Chiung Wang,
| |
Collapse
|
38
|
Rosado Caracena R, Mendiola de la Osa A, Rincón Higuera A, Abad Fau de Casajuana E, Ruiz Córdoba G, García de Lucas F. Cervical dorsal root ganglion stimulation for complex regional pain syndrome: Technical description and results of seven cases. Pain Pract 2023; 23:242-251. [PMID: 36380700 DOI: 10.1111/papr.13183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Complex regional pain syndrome (CRPS) is characterized by nociplastic pain with alterations in sympathetic function. Neuromodulation could be a useful alternative therapy option. Dorsal root ganglion (DRG) stimulation has demonstrated better results than conventional spinal cord stimulation (SCS) for patients with CRPS in lower limbs. METHODS We report a case series of seven patients treated with cervical DRG stimulation for CRPS of the hand that required neuromodulation for pain relief, after no response with other analgesic techniques (medication and interventional). We report retrospective data collection of seven consecutive patients with a 1-year follow-up. RESULTS Seven patients were trialed, and six were implanted with a permanent pulse generator after achieving more than 50% pain relief during 2-7 days of trial phase. The average pain relief (rated on a standard 100 mm visual analog scale) after 1 year of treatment was 64.3% ± 16.6. No major complications were observed during a 1-year follow-up. DISCUSSION The results for cervical DRG stimulation are similar to other DRG stimulation studies for the treatment of refractory CRPS at lower levels. The cervical DRG implant technique guided with C-arm fluoroscopy and under conscious sedation could be a safe and effective option for relieving pain of the upper limbs CRPS. Monitoring neural status is required for cervical DRG stimulation either with a responder awake patient or with intraoperative neural monitoring in non-responder patients.
Collapse
Affiliation(s)
| | - Agustín Mendiola de la Osa
- Hospital FREMAP Majadahonda, Majadahonda, Madrid, Spain.,Puerta de Hierro Hospital, Majadahonda, Madrid, Spain
| | | | | | | | | |
Collapse
|
39
|
Macionis V. Chronic pain and local pain in usually painless conditions including neuroma may be due to compressive proximal neural lesion. FRONTIERS IN PAIN RESEARCH 2023; 4:1037376. [PMID: 36890855 PMCID: PMC9986610 DOI: 10.3389/fpain.2023.1037376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/12/2023] [Indexed: 02/22/2023] Open
Abstract
It has been unexplained why chronic pain does not invariably accompany chronic pain-prone disorders. This question-driven, hypothesis-based article suggests that the reason may be varying occurrence of concomitant peripheral compressive proximal neural lesion (cPNL), e.g., radiculopathy and entrapment plexopathies. Transition of acute to chronic pain may involve development or aggravation of cPNL. Nociceptive hypersensitivity induced and/or maintained by cPNL may be responsible for all types of general chronic pain as well as for pain in isolated tissue conditions that are usually painless, e.g., neuroma, scar, and Dupuytren's fibromatosis. Compressive PNL induces focal neuroinflammation, which can maintain dorsal root ganglion neuron (DRGn) hyperexcitability (i.e., peripheral sensitization) and thus fuel central sensitization (i.e., hyperexcitability of central nociceptive pathways) and a vicious cycle of chronic pain. DRGn hyperexcitability and cPNL may reciprocally maintain each other, because cPNL can result from reflexive myospasm-induced myofascial tension, muscle weakness, and consequent muscle imbalance- and/or pain-provoked compensatory overuse. Because of pain and motor fiber damage, cPNL can worsen the causative musculoskeletal dysfunction, which further accounts for the reciprocity between the latter two factors. Sensitization increases nerve vulnerability and thus catalyzes this cycle. Because of these mechanisms and relatively greater number of neurons involved, cPNL is more likely to maintain DRGn hyperexcitability in comparison to distal neural and non-neural lesions. Compressive PNL is associated with restricted neural mobility. Intermittent (dynamic) nature of cPNL may be essential in chronic pain, because healed (i.e., fibrotic) lesions are physiologically silent and, consequently, cannot provide nociceptive input. Not all patients may be equally susceptible to develop cPNL, because occurrence of cPNL may vary as vary patients' predisposition to musculoskeletal impairment. Sensitization is accompanied by pressure pain threshold decrease and consequent mechanical allodynia and hyperalgesia, which can cause unusual local pain via natural pressure exerted by space occupying lesions or by their examination. Worsening of local pain is similarly explainable. Neuroma pain may be due to cPNL-induced axonal mechanical sensitivity and hypersensitivity of the nociceptive nervi nervorum of the nerve trunk and its stump. Intermittence and symptomatic complexity of cPNL may be the cause of frequent misdiagnosis of chronic pain.
Collapse
|
40
|
Deng M, Zou W. Noncoding RNAs: Novel Targets for Opioid Tolerance. Curr Neuropharmacol 2023; 21:1202-1213. [PMID: 36453497 PMCID: PMC10286586 DOI: 10.2174/1570159x21666221129122932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/12/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
As a global health problem, chronic pain is one of the leading causes of disability, and it imposes a huge economic and public health burden on families and society. Opioids represent the cornerstone of analgesic drugs. However, opioid tolerance caused by long-term application of opioids is a major factor leading to drug withdrawal, serious side effects caused by dose increases, and even the death of patients, placing an increasing burden on individuals, medicine, and society. Despite efforts to develop methods to prevent and treat opioid tolerance, no effective treatment has yet been found. Therefore, understanding the mechanism underlying opioid tolerance is crucial for finding new prevention and treatment strategies. Noncoding RNAs (ncRNAs) are important parts of mammalian gene transcriptomes, and there are thousands of unique noncoding RNA sequences in cells. With the rapid development of high-throughput genome technology, research on ncRNAs has become a hot topic in biomedical research. In recent years, studies have shown that ncRNAs mediate physiological and pathological processes, including chromatin remodeling, transcription, posttranscriptional modification and signal transduction, which are key regulators of physiological processes in developmental and disease environments and have become biomarkers and potential therapeutic targets for various diseases. An increasing number of studies have found that ncRNAs are closely related to the development of opioid tolerance. In this review, we have summarized the evidence that ncRNAs play an important role in opioid tolerance and that ncRNAs may be novel targets for opioid tolerance.
Collapse
Affiliation(s)
- Meiling Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| |
Collapse
|
41
|
Sunil M, Karimi P, Leong R, Zuniga-Villanueva G, Ratcliffe EM. Therapeutic Effects of Medicinal Cannabinoids on the Gastrointestinal System in Pediatric Patients: A Systematic Review. Cannabis Cannabinoid Res 2022; 7:769-776. [PMID: 36219741 DOI: 10.1089/can.2022.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Changes in cannabis legalization have generated interest in medicinal cannabinoids for therapeutic uses, including those that target the gastrointestinal (GI) tract. These effects are mediated through interactions with the endocannabinoid system. Given the increasing societal awareness of the therapeutic potential of cannabinoids, it is important to ensure pediatric representation in clinical studies investigating cannabinoid use. This systematic review aims to assess the efficacy of medicinal cannabinoids in treating GI symptoms in pediatric patients. A literature search of Medline, Embase, CINAHL, Web of Science, and the Cochrane Library was performed from inception until June 23, 2020. Study design, patient characteristics, type, dose and duration of medicinal cannabinoid therapy, and GI outcomes were extracted. From 7303 records identified, 5 studies met all inclusion criteria. Included studies focused on chemotherapy-induced nausea, inflammatory bowel disease, and GI symptoms associated with severe complex motor disorders. Results varied based on the symptom being treated, the type of cannabinoid, and the patient population. Medicinal cannabinoids may have a potential role in treating specific GI symptoms in specific patient populations. The limited number and heterogenicity of included studies highlight the demand for future research to distinguish effects among different cannabinoid types and patient populations and to examine drug interactions. As interest increases, higher quality studies are needed to understand the efficacy of cannabinoids as a pediatric GI treatment and whether these benefits outweigh the associated risks (Registration Number: PROSPERO CRD42020202486).
Collapse
Affiliation(s)
- Maria Sunil
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Parsa Karimi
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Russell Leong
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Gregorio Zuniga-Villanueva
- Division of Palliative Medicine, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Department of Pediatrics, Tecnológico de Monterrey, Monterrey, Mexico
| | - Elyanne M Ratcliffe
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Division of Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Michael G. DeGroote Centre for Medicinal Cannabis Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
42
|
Calderon-Rivera A, Loya-Lopez S, Gomez K, Khanna R. Plant and fungi derived analgesic natural products targeting voltage-gated sodium and calcium channels. Channels (Austin) 2022; 16:198-215. [PMID: 36017978 PMCID: PMC9423853 DOI: 10.1080/19336950.2022.2103234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Voltage-gated sodium and calcium channels (VGSCs and VGCCs) play an important role in the modulation of physiologically relevant processes in excitable cells that range from action potential generation to neurotransmission. Once their expression and/or function is altered in disease, specific pharmacological approaches become necessary to mitigate the negative consequences of such dysregulation. Several classes of small molecules have been developed with demonstrated effectiveness on VGSCs and VGCCs; however, off-target effects have also been described, limiting their use and spurring efforts to find more specific and safer molecules to target these channels. There are a great number of plants and herbal preparations that have been empirically used for the treatment of diseases in which VGSCs and VGCCs are involved. Some of these natural products have progressed to clinical trials, while others are under investigation for their action mechanisms on signaling pathways, including channels. In this review, we synthesize information from ~30 compounds derived from natural sources like plants and fungi and delineate their effects on VGSCs and VGCCs in human disease, particularly pain. [Figure: see text].
Collapse
Affiliation(s)
- Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Santiago Loya-Lopez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA,CONTACT Rajesh Khanna
| |
Collapse
|
43
|
Xiong W, Wei M, Zhang L, Wang J, Liu F, Wang Z. Chronic constriction injury-induced changes in circular RNA expression profiling of the dorsal root ganglion in a rat model of neuropathic pain. BMC Neurosci 2022; 23:64. [PMID: 36376788 PMCID: PMC9664791 DOI: 10.1186/s12868-022-00745-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background The pathogenesis of neuropathic pain (NP) has not been fully elucidated. Gene changes in dorsal root ganglia (DRG) may contribute to the development of NP. Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs that form covalently closed loop structures and are crucial for genetic and epigenetic regulation. However, little is known about circRNA changes in DRG neurons after peripheral nerve injury. Methods A sciatic nerve chronic constriction injury (CCI) model was established to induce neuropathic pain. We performed genome-wide circRNA analysis of four paired dorsal root ganglion (DRG) samples (L4–L5) from CCI and negative control (NC) rats using next-generation sequencing technology. The differentially expressed circRNAs (DEcircRNAs) were identified by differential expression analysis, and the expression profile of circRNAs was validated by quantitative PCR. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to predict the function of DEcircRNAs. Results A total of 374 DEcircRNAs were identified between CCI and NC rats using circRNA high-throughput sequencing. Among them, 290 were upregulated and 84 were downregulated in the CCI group. The expression levels of nine DEcircRNAs were validated by qPCR. Functional annotation analysis showed that the DEcircRNAs were mainly enriched in pathways and functions, including ‘dopaminergic synapse,’ ‘renin secretion,’ ‘mitogen-activated protein kinase signaling pathway,’ and ‘neurogenesis.’ Competing endogenous RNA analysis showed that the top 50 circRNAs exhibited interactions with four pain-related microRNAs (miRNAs). Circ:chr2:33950934–33955969 was the largest node in the circRNA–miRNA interaction network. Conclusions Peripheral nerve injury-induced neuropathic pain led to changes in the comprehensive expression profile of circRNAs in the DRG of rats. DEcircRNAs may advance our understanding of the molecular mechanisms underlying neuropathic pain. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00745-5.
Collapse
|
44
|
Park SC, Kang MS, Yang JH, Ju W. How I do it: biportal endoscopic paraspinal approach for recurrent lumbar disc herniation following percutaneous endoscopic lumbar discectomy. Acta Neurochir (Wien) 2022; 164:3057-3060. [PMID: 36151330 DOI: 10.1007/s00701-022-05368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Although percutaneous endoscopic lumbar discectomy (PELD) has been popularized as an alternative to microscopic lumbar discectomy, it has been reported to be associated with a re-herniation rate of 5-11%. Recurrent lumbar disc herniation (RLDH) might occur not only at the same level previously operated upon but also at the annular penetration site created during PELD procedures. METHOD Biportal endoscopic paraspinal approach (BE-Para) was used for revisional foraminal lumbar discectomy. Procedures and some discussions regarding indications, advantages, potential complications, and ways to avoid complications were described. CONCLUSION BE-Para may be an effective modality for RLDH after PELD.
Collapse
Affiliation(s)
- Sung Cheol Park
- Department of Orthopedic Surgery, Korea University Anam Hospital, College of Medicine, Korea University, Inchonro 73, Seongbukgu, Seoul, 02841, Republic of Korea
| | - Min-Seok Kang
- Department of Orthopedic Surgery, Korea University Anam Hospital, College of Medicine, Korea University, Inchonro 73, Seongbukgu, Seoul, 02841, Republic of Korea.
| | - Jae Hyuk Yang
- Department of Orthopedic Surgery, Korea University Anam Hospital, College of Medicine, Korea University, Inchonro 73, Seongbukgu, Seoul, 02841, Republic of Korea
| | - Wonjik Ju
- Department of Orthopedic Surgery, Korea University Anam Hospital, College of Medicine, Korea University, Inchonro 73, Seongbukgu, Seoul, 02841, Republic of Korea
| |
Collapse
|
45
|
Article Type: Original Article Title: Linalyl Acetate Ameliorates Mechanical Hyperalgesia Through Suppressing Inflammation by TSLP/IL-33 Signaling. Neurochem Res 2022; 47:3805-3816. [DOI: 10.1007/s11064-022-03763-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 10/31/2022]
Abstract
AbstractNeuropathic pain is a debilitating chronic disorder, significantly causing personal and social burdens, in which activated neuroinflammation is one major contributor. Thymic stromal lymphopoietin (TSLP) and interleukin (IL)-33 is important for chronic inflammation. Linalyl acetate (LA) is main component of lavender oil with an anti-inflammatory property through TSLP signaling. The aim of the study is to investigate how LA regulates mechanical hyperalgesia after sciatic nerve injury (SNI). Adult Sprague-Dawley male rats were separated into 3 groups: control group, SNI group and SNI with LA group. LA was administrated intraperitoneally one day before SNI. Pain behavior test was evaluated through calibration forceps testing. Ipsilateral sciatic nerves (SNs), dorsal root ganglions (DRGs) and spinal cord were collected for immunofluorescence staining and Western blotting analyses. SNI rats were more sensitive to hyperalgesia response to mechanical stimulus since operation, which was accompanied by spinal cord glial cells reactions and DRG neuro-glial interaction. LA could relieve the pain sensation, proinflammatory cytokines and decrease the expression of TSLP/TSLPR complex. Also, LA could reduce inflammation through reducing IL-33 signaling. This study is the first to indicate that LA can modulate pain through TSLP/TSLPR and IL-33 signaling after nerve injury.
Collapse
|
46
|
Pathophysiological and Neuroplastic Changes in Postamputation and Neuropathic Pain: Review of the Literature. Plast Reconstr Surg Glob Open 2022; 10:e4549. [PMID: 36187278 PMCID: PMC9521753 DOI: 10.1097/gox.0000000000004549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/05/2022] [Indexed: 10/24/2022]
Abstract
Despite advancements in surgical and rehabilitation strategies, extremity amputations are frequently associated with disability, phantom limb sensations, and chronic pain. Investigation into potential treatment modalities has focused on the pathophysiological changes in both the peripheral and central nervous systems to better understand the underlying mechanism in the development of chronic pain in persons with amputations. Methods Presented in this article is a discussion outlining the physiological changes that occur in the peripheral and central nervous systems following amputation. In this review, the authors examine the molecular and neuroplastic changes occurring in the nervous system, as well as the state-of-the-art treatment to help reduce the development of postamputation pain. Results This review summarizes the current literature regarding neurological changes following amputation. Development of both central sensitization and neuronal remodeling in the spinal cord and cerebral cortex allows for the development of neuropathic and phantom limb pain postamputation. Recently developed treatments targeting these pathophysiological changes have enabled a reduction in the severity of pain; however, complete resolution remains elusive. Conclusions Changes in the peripheral and central nervous systems following amputation should not be viewed as separate pathologies, but rather two interdependent mechanisms that underlie the development of pathological pain. A better understanding of the physiological changes following amputation will allow for improvements in therapeutic treatments to minimize pathological pain caused by amputation.
Collapse
|
47
|
Brenneman DE, Kinney WA, McDonnell ME, Zhao P, Abood ME, Ward SJ. Anti-Inflammatory Properties of KLS-13019: a Novel GPR55 Antagonist for Dorsal Root Ganglion and Hippocampal Cultures. J Mol Neurosci 2022; 72:1859-1874. [PMID: 35779192 PMCID: PMC9398971 DOI: 10.1007/s12031-022-02038-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/04/2022] [Indexed: 11/28/2022]
Abstract
KLS-13019, a novel devised cannabinoid-like compound, was explored for anti-inflammatory actions in dorsal root ganglion cultures relevant to chemotherapy-induced peripheral neuropathy (CIPN). Time course studies with 3 µM paclitaxel indicated > 1.9-fold increases in immunoreactive (IR) area for cell body GPR55 after 30 min as determined by high content imaging. To test for reversibility of paclitaxel-induced increases in GPR55, cultures were treated for 8 h with paclitaxel alone and then a dose response to KLS-13019 added for another 16 h. This "reversal" paradigm indicated established increases in cell body GPR55 IR areas were decreased back to control levels. Because GPR55 had previously reported inflammatory actions, IL-1β and NLRP3 (inflammasome-3 marker) were also measured in the "reversal" paradigm. Significant increases in all inflammatory markers were produced after 8 h of paclitaxel treatment alone that were reversed to control levels with KLS-13019 treatment. Accompanying studies using alamar blue indicated that decreased cellular viability produced by paclitaxel treatment was reverted back to control levels by KLS-13019. Similar studies conducted with lysophosphatidylinositol (GPR55 agonist) in DRG or hippocampal cultures demonstrated significant increases in neuritic GPR55, NLRP3 and IL-1β areas that were reversed to control levels with KLS-13019 treatment. Studies with a human GPR55-β-arrestin assay in Discover X cells indicated that KLS-13019 was an antagonist without agonist activity. These studies indicated that KLS-13019 has anti-inflammatory properties mediated through GPR55 antagonist actions. Together with previous studies, KLS-13019 is a potent neuroprotective, anti-inflammatory cannabinoid with therapeutic potential for high efficacy treatment of neuropathic pain.
Collapse
Affiliation(s)
- Douglas E Brenneman
- Pennsylvania Biotechnology Center, Kannalife Sciences, Inc, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
| | - William A Kinney
- Pennsylvania Biotechnology Center, Kannalife Sciences, Inc, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Mark E McDonnell
- Pennsylvania Biotechnology Center, Kannalife Sciences, Inc, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Pingei Zhao
- Center for Substance Abuse Research, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Mary E Abood
- Center for Substance Abuse Research, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sara Jane Ward
- Center for Substance Abuse Research, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
48
|
Probing the Skin–Brain Axis: New Vistas Using Mouse Models. Int J Mol Sci 2022; 23:ijms23137484. [PMID: 35806489 PMCID: PMC9267936 DOI: 10.3390/ijms23137484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Inflammatory diseases of the skin, including atopic dermatitis and psoriasis, have gained increasing attention with rising incidences in developed countries over the past decades. While bodily properties, such as immunological responses of the skin, have been described in some detail, interactions with the brain via different routes are less well studied. The suggested routes of the skin–brain axis comprise the immune system, HPA axis, and the peripheral and central nervous system, including microglia responses and structural changes. They provide starting points to investigate the molecular mechanisms of neuropsychiatric comorbidities in AD and psoriasis. To this end, mouse models exist for AD and psoriasis that could be tested for relevant behavioral entities. In this review, we provide an overview of the current mouse models and assays. By combining an extensive behavioral characterization and state-of-the-art genetic interventions with the investigation of underlying molecular pathways, insights into the mechanisms of the skin–brain axis in inflammatory cutaneous diseases are examined, which will spark further research in humans and drive the development of novel therapeutic strategies.
Collapse
|
49
|
Bai X, Batallé G, Balboni G, Pol O. Hydrogen Sulfide Increases the Analgesic Effects of µ- and δ-Opioid Receptors during Neuropathic Pain: Pathways Implicated. Antioxidants (Basel) 2022; 11:antiox11071321. [PMID: 35883812 PMCID: PMC9311550 DOI: 10.3390/antiox11071321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Recent studies have revealed that hydrogen sulfide (H2S) increases the analgesic actions of the δ-opioid receptor (DOR) in inflammatory pain. However, the possible improvement of the analgesia of μ-opioid receptor (MOR) and DOR agonists during neuropathic pain, through pretreatment with two slow-releasing H2S donors—DADS (diallyl disulfide) and GYY4137 (morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate dichloromethane complex)—is still unknown. In male C57BL/6J mice with neuropathic pain incited by chronic constriction of the sciatic nerve (CCI), we evaluated: (1) the influence of DADS (3.5 mg/kg) and GYY4137 (0.7 mg/kg) on the inhibition of the allodynia and hyperalgesia produced by the systemic or local administration of morphine (3 mg/kg or 65 µg) and UFP-512 (1 mg/kg or 12.5 µg); (2) the reversion of the antinociceptive actions of high doses of DADS (30 mg/kg) and GYY4137 (24 mg/kg) with MOR and DOR antagonists; and (3) the effects of H2S donors on oxidative stress, apoptotic responses, and MOR and DOR expression in the medial septum (MS) and dorsal root ganglia (DRG). The results revealed that both DADS and GYY4137 improved the antiallodynic effects of morphine and UFP-512, possibly by up-regulating MOR and DOR expression in DRG. The administration of MOR and DOR antagonists blocked the analgesic properties of DADS and GYY4137, revealing the feasible participation of the endogenous opioid system in H2S analgesic effects. Moreover, both H2S donors inhibited oxidative stress and apoptosis generated by CCI in the MS and/or DRG. This study suggests the co-treatment of H2S donors with MOR or DOR agonists as a potential therapy for neuropathic pain.
Collapse
Affiliation(s)
- Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (X.B.); (G.B.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (X.B.); (G.B.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gianfranco Balboni
- Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (X.B.); (G.B.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-619-757-054
| |
Collapse
|
50
|
Li Y, Wang MY. Safe Electromyography Stimulation Thresholds Within Kambin's Triangle During Endoscopic Transforaminal Lumbar Interbody Fusion. Neurosurgery 2022; 91:150-158. [PMID: 35383716 DOI: 10.1227/neu.0000000000001959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/26/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Transforaminal endoscopic approaches through Kambin's triangle traditionally require surgery to be performed without general anesthesia to allow live patient feedback. No reliable intraoperative neuromonitoring method specific to the dorsal root ganglion (DRG), the structure most at risk during this approach, currently exists. OBJECTIVE To correlate evoked electromyography (EMG) thresholds within Kambin's triangle with new postoperative pain or sensorimotor symptoms potentially resulting from DRG irritation. METHODS Data were prospectively collected for all patients undergoing endoscopic transforaminal lumbar interbody fusion (TLIF) under general anesthesia at a single institution. A stimulation probe was inserted into Kambin's triangle under fluoroscopic and robotic guidance, before passage of endoscopic instruments. EMG thresholds required to elicit corresponding myotomal responses were measured. Postoperatively, any potential manifestations of DRG irritation were recorded. RESULTS Twenty-four patients underwent a total of 34 transforaminal lumbar interbody fusion levels during the study period, with symptoms of potential DRG irritation occurring in 5. The incidence of new onset symptoms increased with lower stimulation thresholds. Sensitivities for EMG thresholds of ≤4, ≤8, and ≤11 mA were 0.6, 0.8, and 1, respectively. Corresponding specificities were 0.90, 0.69, and 0.55, respectively. CONCLUSION We demonstrated for the first time the feasibility of direct intraoperative neuromonitoring within Kambin's triangle in transforaminal endoscopic surgery. Eight milliampere seems to be a reasonable compromise between sensitivity and specificity for this monitoring technique. In the future, larger-scale studies are required to refine safe stimulation thresholds.
Collapse
Affiliation(s)
- Yingda Li
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Lois Pope LIFE Centre, Miami, Florida, USA
- Department of Neurosurgery, Westmead Hospital, Westmead, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, Australia
| | - Michael Y Wang
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Lois Pope LIFE Centre, Miami, Florida, USA
| |
Collapse
|