1
|
Zhen X, Liu C, Guo Y, Yu Z, Han Y, Zhang B, Liang Y. Leaf Senescence Regulation Mechanism Based on Comparative Transcriptome Analysis in Foxtail Millet. Int J Mol Sci 2024; 25:3905. [PMID: 38612713 PMCID: PMC11011800 DOI: 10.3390/ijms25073905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Leaf senescence, a pivotal process in plants, directly influences both crop yield and nutritional quality. Foxtail millet (Setaria italica) is a C4 model crop renowned for its exceptional nutritional value and stress tolerance characteristics. However, there is a lack of research on the identification of senescence-associated genes (SAGs) and the underlying molecular regulatory mechanisms governing this process. In this study, a dark-induced senescence (DIS) experimental system was applied to investigate the extensive physiological and transcriptomic changes in two foxtail millet varieties with different degrees of leaf senescence. The physiological and biochemical indices revealed that the light senescence (LS) variety exhibited a delayed senescence phenotype, whereas the severe senescence (SS) variety exhibited an accelerated senescence phenotype. The most evident differences in gene expression profiles between these two varieties during DIS included photosynthesis, chlorophyll, and lipid metabolism. Comparative transcriptome analysis further revealed a significant up-regulation of genes related to polysaccharide and calcium ion binding, nitrogen utilization, defense response, and malate metabolism in LS. In contrast, the expression of genes associated with redox homeostasis, carbohydrate metabolism, lipid homeostasis, and hormone signaling was significantly altered in SS. Through WGCNA and RT-qPCR analyses, we identified three SAGs that exhibit potential negative regulation towards dark-induced leaf senescence in foxtail millet. This study establishes the foundation for a further comprehensive examination of the regulatory network governing leaf senescence and provides potential genetic resources for manipulating senescence in foxtail millet.
Collapse
Affiliation(s)
| | | | | | | | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (X.Z.); (C.L.); (Y.G.); (Z.Y.); (B.Z.)
| | | | - Yinpei Liang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (X.Z.); (C.L.); (Y.G.); (Z.Y.); (B.Z.)
| |
Collapse
|
2
|
Li JM, Ye MY, Wang C, Ma XH, Wu NN, Zhong CL, Zhang Y, Cheng N, Nakata PA, Zeng L, Liu JZ. Soybean GmSAUL1, a Bona Fide U-Box E3 Ligase, Negatively Regulates Immunity Likely through Repressing the Activation of GmMPK3. Int J Mol Sci 2023; 24:ijms24076240. [PMID: 37047211 PMCID: PMC10094664 DOI: 10.3390/ijms24076240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
E3 ubiquitin ligases play important roles in plant immunity, but their role in soybean has not been investigated previously. Here, we used Bean pod mottle virus (BPMV)-mediated virus-induced gene silencing (VIGS) to investigate the function of GmSAUL1 (Senescence-Associated E3 Ubiquitin Ligase 1) homologs in soybean. When two closely related SAUL1 homologs were silenced simultaneously, the soybean plants displayed autoimmune phenotypes, which were significantly alleviated by high temperature, suggesting that GmSAUL1a/1b might be guarded by an R protein. Interestingly, silencing GmSAUL1a/1b resulted in the decreased activation of GmMPK6, but increased activation of GmMPK3 in response to flg22, suggesting that the activation of GmMPK3 is most likely responsible for the activated immunity observed in the GmSAUL1a/1b-silenced plants. Furthermore, we provided evidence that GmSAUL1a is a bona fide E3 ligase. Collectively, our results indicated that GmSAUL1 plays a negative role in regulating cell death and immunity in soybean.
Collapse
Affiliation(s)
- Jun-Mei Li
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Mei-Yan Ye
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Chaofeng Wang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA
| | - Xiao-Han Ma
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ni-Ni Wu
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chen-Li Zhong
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yanjun Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ninghui Cheng
- U.S. Department of Agriculture-Agricultural Research Service, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A. Nakata
- U.S. Department of Agriculture-Agricultural Research Service, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lirong Zeng
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA
| | - Jian-Zhong Liu
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
- Correspondence:
| |
Collapse
|
3
|
Zhao W, Zhao H, Wang H, He Y. Research progress on the relationship between leaf senescence and quality, yield and stress resistance in horticultural plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1044500. [PMID: 36352873 PMCID: PMC9638160 DOI: 10.3389/fpls.2022.1044500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Leaf senescence, the final stage of leaf development, is one of the adaptive mechanisms formed by plants over a long period of evolution. Leaf senescence is accompanied by various changes in cell structure, physiological metabolism, and gene expressions. This process is controlled by a variety of internal and external factors. Meanwhile, the genes and plant hormones involved in leaf aging affect the quality, yield and stress resistance in horticultural plants. Leaf senescence mediated by plant hormones affected plant quality at both pre-harvest and post-harvest stages. Exogenous plant growth regulators or plant hormone inhibitors has been applied to delay leaf senescence. Modification of related gene expression by over-expression or antisense inhibition could delay or accelerate leaf senescence, and thus influence quality. Environmental factors such as light, temperature and water status also trigger or delay leaf senescence. Delaying leaf senescence could increase chloroplast lifespan and photosynthesis and thus improve source strength, leading to enhanced yield. Accelerating leaf senescence promotes nutrient redistribution from old leaves into young leaves, and may raise yield under certain circumstances. Many genes and transcriptional factors involved in leaf senescence are associated with responses to abiotic and biotic stresses. WRKY transcriptional factors play a vital role in this process and they could interact with JA signalling. This review summarized how genes, plant hormones and environmental factors affect the quality, yield. Besides, the regulation of leaf senescence holds great promise to improving the resistance to plant biotic and abiotic stresses.
Collapse
Affiliation(s)
- Wenxue Zhao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticultural Science, Zhejiang Agriculture and Forest University, Lin'an, Hangzhou, China
| | - Huayuan Zhao
- Bashan Management Area of the Management Committee for Taishan Historic and Scenic Area in Tai’an City, Tai’an, China
| | - Huasen Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticultural Science, Zhejiang Agriculture and Forest University, Lin'an, Hangzhou, China
| | - Yong He
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticultural Science, Zhejiang Agriculture and Forest University, Lin'an, Hangzhou, China
| |
Collapse
|
4
|
Park SJ, Bae EK, Choi H, Yoon SK, Jang HA, Choi YI, Lee H. Knockdown of PagSAP11 Confers Drought Resistance and Promotes Lateral Shoot Growth in Hybrid Poplar ( Populus alba × Populus tremula var. glandulosa). FRONTIERS IN PLANT SCIENCE 2022; 13:925744. [PMID: 35812954 PMCID: PMC9263715 DOI: 10.3389/fpls.2022.925744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Plants have evolved defense mechanisms to overcome unfavorable climatic conditions. The growth and development of plants are regulated in response to environmental stress. In this study, we investigated the molecular and physiological characteristics of a novel gene PagSAP11 in hybrid poplar (Populus alba × Populus tremula var. glandulosa) under drought stress. PagSAP11, a stress-associated protein (SAP) family gene, encodes a putative protein containing an A20 and AN1 zinc-finger domain at its N- and C-termini, respectively. Knockdown of PagSAP11 transgenic poplars (SAP11-Ri) enhanced their tolerance to drought stress compared with wild type plants. Moreover, the RNAi lines showed increased branching of lateral shoots that led to a gain in fresh weight, even when grown in the living modified organism (LMO) field. In SAP11-Ri transgenic plants, the expression levels of genes involved in axillary bud outgrowth and cell proliferation such as DML10, CYP707A and RAX were increased while the DRM gene which involved in bud dormancy was down-regulated. Taken together, these results indicate that PagSAP11 represents a promising candidate gene for engineering trees with improved stress tolerance and growth during unfavorable conditions.
Collapse
Affiliation(s)
- Su Jin Park
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, South Korea
| | - Eun-Kyung Bae
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, South Korea
| | - Hyunmo Choi
- Forest Biomaterials Research Center, National Institute of Forest Science, Jinju, South Korea
| | - Seo-Kyung Yoon
- Department of Forest Sciences, Seoul National University, Seoul, South Korea
| | - Hyun-A Jang
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, South Korea
| | - Young-Im Choi
- National Forest Seed and Variety Center, Forest Service, Chungju, South Korea
| | - Hyoshin Lee
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, South Korea
| |
Collapse
|
5
|
Hessler G, Portheine SM, Gerlach EM, Lienemann T, Koch G, Voigt CA, Hoth S. PMR4-dependent cell wall depositions are a consequence but not the cause of temperature-induced autoimmunity. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab423. [PMID: 34519761 DOI: 10.1093/jxb/erab423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Plants possess a well-balanced immune system that is required for defense against pathogen infections. In autoimmune mutants or necrotic crosses, an intrinsic temperature-dependent imbalance leads to constitutive immune activation, resulting in severe damage or even death of plants. Recently, cell wall depositions were described as one of the symptoms following induction of the autoimmune phenotype in Arabidopsis saul1-1 mutants. However, the regulation and function of these depositions remained unclear. Here, we show that cell wall depositions, containing lignin and callose, were a common autoimmune feature and were deposited in proportion to the severity of the autoimmune phenotype at reduced ambient temperatures. When plants were exposed to reduced temperature for periods insufficient to induce an autoimmune phenotype, the cell wall depositions were not present. After low temperature intervals, sufficient to induce autoimmune responses, cell wall depositions correlated with a point of no return in saul1-1 autoimmunity. Although cell wall depositions were largely abolished in saul1-1 pmr4-1 double mutants lacking SAUL1 and the callose synthase gene GSL5/PMR4, their phenotype remained unchanged compared to that of the saul1-1 single mutant. Our data showed that cell wall depositions generally occur in autoimmunity, but appear not to be the cause of autoimmune phenotypes.
Collapse
Affiliation(s)
- Giuliana Hessler
- Molecular Plant Physiology, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Stephan Michael Portheine
- Molecular Plant Physiology, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Eva-Maria Gerlach
- Molecular Plant Physiology, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Tim Lienemann
- Molecular Plant Physiology, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Gerald Koch
- Thuenen-Institute of Wood Research, Hamburg, Germany
| | - Christian A Voigt
- Molecular Plant Pathology, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
- School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Stefan Hoth
- Molecular Plant Physiology, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
6
|
SUSA2 is an F-box protein required for autoimmunity mediated by paired NLRs SOC3-CHS1 and SOC3-TN2. Nat Commun 2020; 11:5190. [PMID: 33060601 PMCID: PMC7562919 DOI: 10.1038/s41467-020-19033-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/24/2020] [Indexed: 12/20/2022] Open
Abstract
Both higher plants and mammals rely on nucleotide-binding leucine-rich repeat (NLR) immune receptors to detect pathogens and initiate immunity. Upon effector recognition, plant NLRs oligomerize for defense activation, the mechanism of which is poorly understood. We previously showed that disruption of the E3 ligase, Senescence-Associated E3 Ubiquitin Ligase 1 (SAUL1) leads to the activation of the NLR SOC3. Here, we report the identification of suppressor of saul1 2 (susa2) and susa3 from the saul1-1 suppressor screen. Pairwise interaction analysis suggests that both SUSA proteins interact with components of an SCFSUSA2 E3 ligase complex as well as CHS1 or TN2, truncated NLRs that pair with SOC3. susa2-2 only suppresses the autoimmunity mediated by either CHS1 or TN2, suggesting its specific involvement in SOC3-mediated immunity. In summary, our study indicates links between plant NLRs and an SCF complex that may enable ubiquitination and degradation of unknown downstream components to activate defense.
Collapse
|
7
|
Li Z, Kim JH, Kim J, Lyu JI, Zhang Y, Guo H, Nam HG, Woo HR. ATM suppresses leaf senescence triggered by DNA double-strand break through epigenetic control of senescence-associated genes in Arabidopsis. THE NEW PHYTOLOGIST 2020; 227:473-484. [PMID: 32163596 DOI: 10.1111/nph.16535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
All living organisms are unavoidably exposed to various endogenous and environmental stresses that trigger potentially fatal DNA damage, including double-strand breaks (DSBs). Although a growing body of evidence indicates that DNA damage is one of the prime drivers of aging in animals, little is known regarding the importance of DNA damage and its repair on lifespan control in plants. We found that the level of DSBs increases but DNA repair efficiency decreases as Arabidopsis leaves age. Generation of DSBs by inducible expression of I-PpoI leads to premature senescence phenotypes. We examined the senescence phenotypes in the loss-of-function mutants for 13 key components of the DNA repair pathway and found that deficiency in ATAXIA TELANGIECTASIA MUTATED (ATM), the chief transducer of the DSB signal, results in premature senescence in Arabidopsis. ATM represses DSB-induced expression of senescence-associated genes, including the genes encoding the WRKY and NAC transcription factors, central components of the leaf senescence process, via modulation of histone lysine methylation. Our work highlights the significance of ATM in the control of leaf senescence and has significant implications for the conservation of aging mechanisms in animals and plants.
Collapse
Affiliation(s)
- Zhonghai Li
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Korea
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Jin Hee Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Jeongsik Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Korea
- Faculty of Science Education, Jeju National University, Jeju, 63243, Korea
| | - Jae Il Lyu
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Korea
| | - Yi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Hongwei Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| |
Collapse
|
8
|
Lee S, Kim MH, Lee JH, Jeon J, Kwak JM, Kim YJ. Glycosyltransferase-Like RSE1 Negatively Regulates Leaf Senescence Through Salicylic Acid Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:551. [PMID: 32499801 PMCID: PMC7242760 DOI: 10.3389/fpls.2020.00551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/14/2020] [Indexed: 06/01/2023]
Abstract
Leaf senescence is a developmental process designed for nutrient recycling and relocation to maximize growth competence and reproductive capacity of plants. Thus, plants integrate developmental and environmental signals to precisely control senescence. To genetically dissect the complex regulatory mechanism underlying leaf senescence, we identified an early leaf senescence mutant, rse1. RSE1 encodes a putative glycosyltransferase. Loss-of-function mutations in RSE1 resulted in precocious leaf yellowing and up-regulation of senescence marker genes, indicating enhanced leaf senescence. Transcriptome analysis revealed that salicylic acid (SA) and defense signaling cascades were up-regulated in rse1 prior to the onset of leaf senescence. We found that SA accumulation was significantly increased in rse1. The rse1 phenotypes are dependent on SA-INDUCTION DEFICIENT 2 (SID2), supporting a role of SA in accelerated leaf senescence in rse1. Furthermore, RSE1 protein was localized to the cell wall, implying a possible link between the cell wall and RSE1 function. Together, we show that RSE1 negatively modulates leaf senescence through an SID2-dependent SA signaling pathway.
Collapse
Affiliation(s)
- Seulbee Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu, South Korea
| | - Myung-Hee Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu, South Korea
| | - Jae Ho Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jieun Jeon
- Center for Plant Aging Research, Institute for Basic Science, Daegu, South Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - June M. Kwak
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Yun Ju Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu, South Korea
| |
Collapse
|
9
|
So WM, Kim SY, Hyoung S, Shin JS. The novel protein CSAP accelerates leaf senescence and is negatively regulated by SAUL1 in the dark. PLANT CELL REPORTS 2020; 39:325-334. [PMID: 31773253 DOI: 10.1007/s00299-019-02493-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/18/2019] [Indexed: 05/25/2023]
Abstract
The chloroplast-localized protein CSAP is an ABA-responsive factor and positively regulates dark-induced senescence. This phenomenon is controlled by SAUL1 in Arabidopsis. We report here that CSAP (Chloroplast-localized Senescence-Associated Protein, AT5G39520) functions as a positive regulator of senescence and is controlled by SAUL1 (Senescence Associated E3 Ubiquitin Ligase 1) in Arabidopsis. CSAP transcript level was gradually increased when senescence was progressed. Under dark conditions, the csap mutant showed delayed leaf senescence and reduced chlorophyll breakdown, but overexpression of CSAP accelerated leaf senescence and expressions of chlorophyll catabolic genes were up-regulated compared to the wild-type (WT). NCED3 and AAO3, which are involved in ABA biosynthesis, also showed higher expression in the overexpression lines than the WT. It is known that the CSAP transcript is increased in the saul1 mutant that shows precocious senescence. In our experiments, we confirmed that CSAP interacts with SAUL1 by the yeast two-hybrid and pull-down assays. In addition, we found that SAUL1 decreases the stability of CSAP in the presence of ABA. Taken together, we suggest that CSAP accelerates leaf senescence in the dark and this process is controlled by SAUL1.
Collapse
Affiliation(s)
- Won Mi So
- Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Soo Youn Kim
- Division of Life Sciences, Korea University, Seoul, 02841, Korea
- Cloning Department, Bionics, Seoul, 04778, Korea
| | - Sujin Hyoung
- Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Jeong Sheop Shin
- Division of Life Sciences, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
10
|
Mayol M, Riba M, Cavers S, Grivet D, Vincenot L, Cattonaro F, Vendramin GG, González‐Martínez SC. A multiscale approach to detect selection in nonmodel tree species: Widespread adaptation despite population decline in Taxus baccata L. Evol Appl 2020; 13:143-160. [PMID: 31892949 PMCID: PMC6935595 DOI: 10.1111/eva.12838] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 01/03/2023] Open
Abstract
Detecting the molecular basis of local adaptation and identifying selective drivers is still challenging in nonmodel species. The use of purely population genetic approaches is limited by some characteristics of genetic systems, such as pleiotropy and polygenic control, and parallel evidence from phenotypic-based experimental comparisons is required. In long-lived organisms, the detection of selective pressures might also be precluded by evolutionary lag times in response to the environment. Here, we used the English yew to showcase an example of a multiscale integrative approach in a nonmodel species with limited plant and genomic resources. We combined information from two independent sources, phenotypes in a common environment and genomic data in natural populations, to investigate the signature of selection. Growth differences among populations in a common environment, and phenological patterns of both shoot elongation and male strobili maturation, were associated with climate clines, providing evidence for local adaptation and guiding us in the selection of populations for genomic analyses. We used information on over 25,000 SNPs from c. 1,200 genes to infer the demographic history and to test for molecular signatures of selection at different levels: SNP, gene, and biological pathway. Our results confirmed an overall demographic history of population decline, but we also found evidence for putative local adaptation at the molecular level. We identified or confirmed several candidate genes for positive and negative selection in forest trees, including the pseudo-response regulator 7 (PRR7), an essential component of the circadian clock in plants. In addition, we successfully tested an approach to detect polygenic adaptation in biological pathways, allowing us to identify the flavonoid biosynthesis pathway as a candidate stress-response pathway that deserves further attention in other plants. Finally, our study contributes to the emerging view that explaining contemporary standing genetic variation requires considering adaptation to past climates, especially for long-lived trees.
Collapse
Affiliation(s)
| | - Miquel Riba
- CREAFCerdanyola del VallèsSpain
- Univ. Autònoma BarcelonaCerdanyola del VallèsSpain
| | | | - Delphine Grivet
- Department of Forest Ecology and Genetics, Forest Research CentreINIA‐CIFORMadridSpain
- Sustainable Forest Management Research Institute, INIA‐University of ValladolidMadridSpain
| | | | | | - Giovanni G. Vendramin
- Institute of Biosciences and Bioresources, Division of FlorenceNational Research CouncilSesto FiorentinoItaly
| | | |
Collapse
|
11
|
Abstract
Leaf senescence is an important developmental process involving orderly disassembly of macromolecules for relocating nutrients from leaves to other organs and is critical for plants' fitness. Leaf senescence is the response of an intricate integration of various environmental signals and leaf age information and involves a complex and highly regulated process with the coordinated actions of multiple pathways. Impressive progress has been made in understanding how senescence signals are perceived and processed, how the orderly degeneration process is regulated, how the senescence program interacts with environmental signals, and how senescence regulatory genes contribute to plant productivity and fitness. Employment of systems approaches using omics-based technologies and characterization of key regulators have been fruitful in providing newly emerging regulatory mechanisms. This review mainly discusses recent advances in systems understanding of leaf senescence from a molecular network dynamics perspective. Genetic strategies for improving the productivity and quality of crops are also described.
Collapse
Affiliation(s)
- Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; ,
| | - Hyo Jung Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu 42988, Republic of Korea
| | - Pyung Ok Lim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; ,
| | - Hong Gil Nam
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; ,
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu 42988, Republic of Korea
| |
Collapse
|
12
|
Lyu JI, Kim JH, Chu H, Taylor MA, Jung S, Baek SH, Woo HR, Lim PO, Kim J. Natural allelic variation of GVS1 confers diversity in the regulation of leaf senescence in Arabidopsis. THE NEW PHYTOLOGIST 2019; 221:2320-2334. [PMID: 30266040 DOI: 10.1111/nph.15501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Leaf senescence affects plant fitness. Plants that evolve in different environments are expected to acquire distinct regulations of leaf senescence. However, the adaptive and evolutionary roles of leaf senescence are largely unknown. We investigated leaf senescence in 259 natural accessions of Arabidopsis by quantitatively assaying dark-induced senescence responses using a high-throughput chlorophyll fluorescence imaging system. A meta-analysis of our data with phenotypic and climatic information demonstrated biological and environmental links with leaf senescence. We further performed genome-wide association mapping to identify the genetic loci underlying the diversity of leaf senescence responses. We uncovered a new locus, Genetic Variants in leaf Senescence (GVS1), with high similarity to reductase, where a single nonsynonymous nucleotide substitution at GVS1 mediates the diversity of the senescence trait. Loss-of-function mutations of GVS1 in Columbia-0 delayed leaf senescence and increased sensitivity to oxidative stress, suggesting that this GVS1 variant promotes optimal responses to developmental and environmental signals. Intriguingly, gvs1 loss-of-function mutants display allele- and accession-dependent phenotypes, revealing the functional diversity of GVS1 alleles not only in leaf senescence, but also oxidative stress. Our discovery of GVS1 as the genetic basis of natural variation in senescence programs reinforces its adaptive potential in modulating life histories across diverse environments.
Collapse
Affiliation(s)
- Jae Il Lyu
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Jin Hee Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Hyosub Chu
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Mark A Taylor
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Sukjoon Jung
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Seung Hee Baek
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Pyung Ok Lim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Jeongsik Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| |
Collapse
|
13
|
Liang W, van Wersch S, Tong M, Li X. TIR-NB-LRR immune receptor SOC3 pairs with truncated TIR-NB protein CHS1 or TN2 to monitor the homeostasis of E3 ligase SAUL1. THE NEW PHYTOLOGIST 2019; 221:2054-2066. [PMID: 30317650 DOI: 10.1111/nph.15534] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/28/2018] [Indexed: 05/22/2023]
Abstract
Intracellular nucleotide binding (NB) and leucine-rich repeat (NLR) proteins function as immune receptors to recognize effectors from pathogens. They often guard host proteins that are the direct targets of those effectors. Recent findings have revealed that a typical NLR sometimes cooperates with another atypical NLR for effector recognition. Here, by using the CRISPR/Cas9 gene editing method, knockout analysis and biochemical assays, we uncovered differential pairings of typical Toll Interleukin1 receptor (TIR) type NLR (TNL) receptor SOC3 with atypical truncated TIR-NB (TN) proteins CHS1 or TN2 to guard the homeostasis of the E3 ligase SAUL1. Overaccumulation of SAUL1 is monitored by the SOC3-TN2 pair, while SAUL1's disappearance is guarded by the SOC3-CHS1 pair. SOC3 forms a head-to-head genomic arrangement with CHS1 and TN2, indicative of transcriptional co-regulation. Such intricate cooperative interactions can probably enlarge the recognition spectrum and increase the functional flexibility of NLRs, which can partly explain the overwhelming occurrence of NLR gene clustering in higher plants.
Collapse
Affiliation(s)
- Wanwan Liang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Solveig van Wersch
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Meixuezi Tong
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
14
|
Kim J, Park SJ, Lee IH, Chu H, Penfold CA, Kim JH, Buchanan-Wollaston V, Nam HG, Woo HR, Lim PO. Comparative transcriptome analysis in Arabidopsis ein2/ore3 and ahk3/ore12 mutants during dark-induced leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3023-3036. [PMID: 29648620 PMCID: PMC5972659 DOI: 10.1093/jxb/ery137] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/29/2018] [Indexed: 05/24/2023]
Abstract
Leaf senescence involves degenerative but active biological processes that require balanced regulation of pro- and anti-senescing activities. Ethylene and cytokinin are major antagonistic regulatory hormones that control the timing and progression rate of leaf senescence. To identify the roles of these hormones in the regulation of leaf senescence in Arabidopsis, global gene expression profiles in detached leaves of the wild type, an ethylene-insensitive mutant (ein2/ore3), and a constitutive cytokinin response mutant (ahk3/ore12) were investigated during dark-induced leaf senescence. Comparative transcriptome analyses revealed that genes involved in oxidative or salt stress response were preferentially altered in the ein2/ore3 mutant, whereas genes involved in ribosome biogenesis were affected in the ahk3/ore12 mutant during dark-induced leaf senescence. Similar results were also obtained for developmental senescence. Through extensive molecular and physiological analyses in ein2/ore3 and ahk3/ore12 during dark-induced leaf senescence, together with responses when treated with cytokinin and ethylene inhibitor, we conclude that ethylene acts as a senescence-promoting factor via the transcriptional regulation of stress-related responses, whereas cytokinin acts as an anti-senescing agent by maintaining cellular activities and preserving the translational machinery. These findings provide new insights into how plants utilize two antagonistic hormones, ethylene and cytokinin, to regulate the molecular programming of leaf senescence.
Collapse
Affiliation(s)
- Jeongsik Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Su Jin Park
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Gyeongbuk, Republic of Korea
| | - Il Hwan Lee
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Hyosub Chu
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Christopher A Penfold
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Jin Hee Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | | | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Pyung Ok Lim
- Department of New Biology, DGIST, Daegu, Republic of Korea
| |
Collapse
|
15
|
Kim J, Kim JH, Lyu JI, Woo HR, Lim PO. New insights into the regulation of leaf senescence in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:787-799. [PMID: 28992051 DOI: 10.1093/jxb/erx287] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plants undergo developmental changes throughout their life history. Senescence, the final stage in the life history of a leaf, is an important and unique developmental process whereby plants relocate nutrients from leaves to other developing organs, such as seeds, stems, or roots. Recent attempts to answer fundamental questions about leaf senescence have employed a combination of new ideas and advanced technologies. As senescence is an integral part of a plant's life history that is linked to earlier developmental stages, age-associated leaf senescence may be analysed from a life history perspective. The successful utilization of multi-omics approaches has resolved the complicated process of leaf senescence, replacing a component-based view with a network-based molecular mechanism that acts in a spatial-temporal manner. Senescence and death are critical for fitness and are thus evolved characters. Recent efforts have begun to focus on understanding the evolutionary basis of the developmental process that incorporates age information and environmental signals into a plant's survival strategy. This review describes recent insights into the regulatory mechanisms of leaf senescence in terms of systems-level spatiotemporal changes, presenting them from the perspectives of life history strategy and evolution.
Collapse
Affiliation(s)
- Jeongsik Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Jin Hee Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Jae Il Lyu
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Pyung Ok Lim
- Department of New Biology, DGIST, Daegu, Republic of Korea
| |
Collapse
|
16
|
Lyu JIL, Baek SH, Jung S, Chu H, Nam HG, Kim J, Lim PO. High-Throughput and Computational Study of Leaf Senescence through a Phenomic Approach. FRONTIERS IN PLANT SCIENCE 2017; 8:250. [PMID: 28280501 PMCID: PMC5322180 DOI: 10.3389/fpls.2017.00250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/09/2017] [Indexed: 05/19/2023]
Abstract
Leaf senescence is influenced by its life history, comprising a series of developmental and physiological experiences. Exploration of the biological principles underlying leaf lifespan and senescence requires a schema to trace leaf phenotypes, based on the interaction of genetic and environmental factors. We developed a new approach and concept that will facilitate systemic biological understanding of leaf lifespan and senescence, utilizing the phenome high-throughput investigator (PHI) with a single-leaf-basis phenotyping platform. Our pilot tests showed empirical evidence for the feasibility of PHI for quantitative measurement of leaf senescence responses and improved performance in order to dissect the progression of senescence triggered by different senescence-inducing factors as well as genetic mutations. Such an establishment enables new perspectives to be proposed, which will be challenged for enhancing our fundamental understanding on the complex process of leaf senescence. We further envision that integration of phenomic data with other multi-omics data obtained from transcriptomic, proteomic, and metabolic studies will enable us to address the underlying principles of senescence, passing through different layers of information from molecule to organism.
Collapse
Affiliation(s)
- Jae IL Lyu
- Center for Plant Aging Research, Institute for Basic ScienceDaegu, South Korea
| | - Seung Hee Baek
- Department of New Biology, Daegu Gyeongbuk Institute of Science and TechnologyDaegu, South Korea
| | - Sukjoon Jung
- Department of New Biology, Daegu Gyeongbuk Institute of Science and TechnologyDaegu, South Korea
| | - Hyosub Chu
- Center for Plant Aging Research, Institute for Basic ScienceDaegu, South Korea
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic ScienceDaegu, South Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and TechnologyDaegu, South Korea
| | - Jeongsik Kim
- Center for Plant Aging Research, Institute for Basic ScienceDaegu, South Korea
- *Correspondence: Jeongsik Kim, Pyung Ok Lim,
| | - Pyung Ok Lim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and TechnologyDaegu, South Korea
- *Correspondence: Jeongsik Kim, Pyung Ok Lim,
| |
Collapse
|