1
|
Zhang D, Ding X, Wang Z, Li W, Li L, Liu L, Zhou H, Yu J, Zheng C, Wu H, Yuan D, Duan M, Liu C. A C2H2 zinc finger protein, OsZOS2-19, modulates ABA sensitivity and cold response in rice. PLANT & CELL PHYSIOLOGY 2025; 66:753-765. [PMID: 39916472 DOI: 10.1093/pcp/pcaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/20/2025] [Accepted: 02/06/2025] [Indexed: 06/01/2025]
Abstract
Cold stress is a major factor limiting rice (Oryza sativa L.) productivity, making it crucial to understand the molecular mechanisms underlying stress responses to develop resilient crops. In this study, we characterized OsZOS2-19, a cold- and abscisic acid (ABA)-responsive C2H2 zinc finger protein, which functions as a transcriptional repressor. Overexpression of OsZOS2-19 in rice lines increases sensitivity to both cold and ABA, reducing cold tolerance, disrupting osmotic balance, and impairing reactive oxygen species (ROS) scavenging. RNA sequencing revealed that OsZOS2-19 overexpression interfered with key stress-response pathways, including those associated with sugar metabolism and glutathione biosynthesis. These findings suggest that OsZOS2-19 negatively regulates cold tolerance and ABA sensitivity by modulating ROS accumulation and osmotic balance, offering new insights into cold adaptation in rice.
Collapse
Affiliation(s)
- Di Zhang
- College of Agriculture, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Xiaoping Ding
- College of Agriculture, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Zhijun Wang
- College of Agriculture, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Wenyu Li
- College of Agriculture, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Lingling Li
- College of Agriculture, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Ling Liu
- College of Agriculture, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Huang Zhou
- College of Agriculture, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Jianghui Yu
- College of Agriculture, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Cheng Zheng
- College of Agriculture, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - HouXiong Wu
- College of Agriculture, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Dingyang Yuan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, No. 736 Yuanda Road No. 2, Mapoling, Furong District, Changsha, Hunan 410125, China
| | - Meijuan Duan
- College of Agriculture, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
- Hunan Women's University, No. 160 Zhongyi Road, Yuhua District, Changsha, Hunan 410004, China
| | - Citao Liu
- College of Agriculture, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| |
Collapse
|
2
|
Ji XL, Zhao LL, Liu B, Yuan YB, Han Y, You CX, An JP. MdZFP7 integrates JA and GA signals via interaction with MdJAZ2 and MdRGL3a in regulating anthocyanin biosynthesis and undergoes degradation by the E3 ubiquitin ligase MdBRG3. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1339-1363. [PMID: 39936840 DOI: 10.1111/jipb.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
Jasmonic acid (JA) and gibberellin (GA) coordinate many aspects of plant growth and development, including anthocyanin biosynthesis. However, the crossover points of JA and GA signals and the pathways through which they interact to regulate anthocyanin biosynthesis are poorly understood. Here, we investigated the molecular mechanism by which the zinc finger protein (ZFP) transcription factor Malus domestica ZFP7 (MdZFP7) regulates anthocyanin biosynthesis by integrating JA and GA signals at the transcriptional and post-translational levels. MdZFP7 is a positive regulator of anthocyanin biosynthesis, which fulfills its role by directly activating the expression of MdMYB1 and enhancing the transcriptional activation of MdWRKY6 on the target genes MdDFR and MdUF3GT. MdZFP7 integrates JA and GA signals by interacting with the JA repressor apple JASMONATE ZIM-DOMAIN2 (MdJAZ2) and the GA repressor apple REPRESSOR-of-ga1-3-like 3a (MdRGL3a). MdJAZ2 weakens the transcriptional activation of MdMYB1 by MdZFP7 and disrupts the MdZFP7-MdWRKY6 interaction, thereby reducing the anthocyanin biosynthesis promoted by MdZFP7. MdRGL3a contributes to the stimulation of anthocyanin biosynthesis by MdZFP7 by sequestering MdJAZ2 from the MdJAZ2-MdZFP7 complex. The E3 ubiquitin ligase apple BOI-related E3 ubiquitin-protein ligase 3 (MdBRG3), which is antagonistically regulated by JA and GA, targets the ubiquitination degradation of MdZFP7. The MdBRG3-MdZFP7 module moves the crosstalk of JA and GA signals from the realm of transcriptional regulation and into the protein post-translational modification. In conclusion, this study not only elucidates the node-role of MdZFP7 in the integration of JA and GA signals, but also describes the transcriptional and post-translational regulatory network of anthocyanin biosynthesis with MdZFP7 as the hub.
Collapse
Affiliation(s)
- Xing-Long Ji
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ling-Ling Zhao
- Yantai Academy of Agricultural Sciences, Yantai, 265599, China
| | - Baoyou Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265599, China
| | - Yong-Bing Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
3
|
Li T, Liu L, Yang G, Cai Y, Wang Y, Sun B, Sun L, Liu W, Wang A. Ethylene-Activated E3 Ubiquitin Ligase MdEAEL1 Promotes Apple Fruit Softening by Facilitating the Dissociation of Transcriptional Repressor Complexes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417393. [PMID: 40202115 DOI: 10.1002/advs.202417393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/11/2025] [Indexed: 04/10/2025]
Abstract
Fruit of most apple varieties soften after harvest, and although the hormone ethylene is known to induce softening, the associated pathway is not well resolved. In this study, it is determined that MdEAEL1 (Ethylene-activated E3 ubiquitin Like 1) is specifically expressed during apple fruit postharvest storage, activated by ethylene, and interacts with the transcription factor MdZFP3 (zinc finger protein3). MdZFP3 is found to rely on an EAR (ethylene-responsive element binding factor-associated amphiphilic repression) motif to form a transcriptional repression complex with MdTPL4 (TOPLESS4)-MdHDA19 (histone deacetylase19), thereby downregulating the histone acetylation levels of the promoters of a range of cell wall degradation-related genes and inhibiting their transcription. MdEAEL1 ubiquitinates and degrades MdZFP3, leading to the disassembly of the MdZFP3-MdTPL4-MdHDA19 transcriptional repression complex. This process promotes the transcription of cell wall degradation-related genes, resulting in fruit softening during storage. Furthermore, the disassembly of the MdZFP3-MdTPL4-MdHDA19 transcriptional repression complex, mediated by MdEAEL1, upregulates the transcription of MdEAEL1 itself, creating a feedback loop that further promotes softening. This study elucidates the interplay between post-translational modifications of a transcription factor and its epigenetic modification to regulate fruit softening, and highlights the complexity of ethylene-induced softening.
Collapse
Affiliation(s)
- Tong Li
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Li Liu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Guangxin Yang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingcong Cai
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingda Wang
- Liaoning Institute of Pomology, Xiongyue, 115009, China
| | - Bowen Sun
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Le Sun
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Weiting Liu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
4
|
Alvarez-Vasquez A, Lima-Huanca L, Bardales-Álvarez R, Valderrama-Valencia M, Condori-Pacsi S. In Silico Characterization and Determination of Gene Expression Levels Under Saline Stress Conditions in the Zinc Finger Family of the C1-2i Subclass in Chenopodium quinoa Willd. Int J Mol Sci 2025; 26:2570. [PMID: 40141212 PMCID: PMC11942331 DOI: 10.3390/ijms26062570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Quinoa (Chenopodium quinoa) is recognized for its tolerance to abiotic stress, including salinity, and its recent genome sequencing has facilitated the study of the mechanisms underlying this adaptation. This study focused on characterizing the ZAT genes of the C2H2 subfamily in quinoa, evaluating their expression under saline stress. Eight ZAT genes were identified and analyzed in silico using genomic databases and bioinformatics tools, assessing their conserved domains, cis-regulatory motifs, and physicochemical characteristics. Additionally, germination assays, hydroponic cultivation, and gene expression analyses via qPCR were performed on halotolerant (UNSA_VP033) and halosensitive (UNSA_VP021) accessions exposed to different NaCl concentrations. The genes CqZAT4 and CqZAT6 showed high expression in the halotolerant accession under saline stress, correlating with increased dry matter, root length, and water retention. In contrast, the halosensitive accession exhibited lower tolerance, with significant reductions in these metrics. Promoter analysis revealed cis-elements associated with hormonal and stress responses. ZAT genes play a key role in quinoa's response to saline stress, with CqZAT4 and CqZAT6 standing out in the halotolerant accession. These findings could drive the development of more resilient varieties, contributing to agricultural sustainability in saline soils.
Collapse
Affiliation(s)
- Andrea Alvarez-Vasquez
- Escuela de Biología, Facultad de Ciencias Biológicas, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru; (L.L.-H.); (R.B.-Á.); (M.V.-V.); (S.C.-P.)
| | | | | | | | | |
Collapse
|
5
|
Sertse D, Haile JK, Sari E, Klymiuk V, N'Diaye A, Pozniak CJ, Cloutier S, Kagale S. Genome scans capture key adaptation and historical hybridization signatures in tetraploid wheat. THE PLANT GENOME 2025; 18:e20410. [PMID: 37974527 PMCID: PMC11726425 DOI: 10.1002/tpg2.20410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/16/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Tetraploid wheats (Triticum turgidum L.), including durum wheat (T. turgidum ssp. durum (Desf.) Husn.), are important crops with high nutritional and cultural values. However, their production is constrained by sensitivity to environmental conditions. In search of adaptive genetic signatures tracing historical selection and hybridization events, we performed genome scans on two datasets: (1) Durum Global Diversity Panel comprising a total of 442 tetraploid wheat and wild progenitor accessions including durum landraces (n = 286), domesticated emmer (T. turgidum ssp. dicoccum (Schrank) Thell.; n = 103) and wild emmer (T. turgidum ssp. dicoccoides (Korn. ex Asch. & Graebn.) Thell.; n = 53) wheats genotyped using the 90K single nucleotide polymorphism (SNP) array, and (2) a second dataset comprising a total 121 accessions of nine T. turgidum subspecies including wild emmer genotyped with >100 M SNPs from whole-genome resequencing. The genome scan on the first dataset detected six outlier loci on chromosomes 1A, 1B, 3A (n = 2), 6A, and 7A. These loci harbored important genes for adaptation to abiotic stresses, phenological responses, such as seed dormancy, circadian clock, flowering time, and key yield-related traits, including pleiotropic genes, such as HAT1, KUODA1, CBL1, and ZFN1. The scan on the second dataset captured a highly differentiated region on chromosome 2B that shows significant differentiation between two groups: one group consists of Georgian (T. turgidum ssp. paleocolchicum A. Love & D. Love) and Persian (T. turgidum ssp. carthlicum (Nevski) A. Love & D. Love) wheat accessions, while the other group comprises all the remaining tetraploids including wild emmer. This is consistent with a previously reported introgression in this genomic region from T. timopheevii Zhuk. which naturally cohabit in the Georgian and neighboring areas. This region harbored several adaptive genes, including the thermomorphogenesis gene PIF4, which confers temperature-resilient disease resistance and regulates other biological processes. Genome scans can be used to fast-track germplasm housed in gene banks and in situ; which helps to identify environmentally resilient accessions for breeding and/or to prioritize them for conservation.
Collapse
Affiliation(s)
- Demissew Sertse
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSaskatchewanCanada
- Department of Plant ScienceFaculty of Agricultural and Food SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Jemanesh K. Haile
- Crop Development CentreUniversity of SaskatchewanSaskatoonSaskatchewanCanada
- Canola Council of CanadaCrop Production and InnovationSaskatoon, SKCanada
| | - Ehsan Sari
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Valentyna Klymiuk
- Crop Development CentreUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Amidou N'Diaye
- Crop Development CentreUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Curtis J. Pozniak
- Crop Development CentreUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Sylvie Cloutier
- Ottawa Research and Development CentreAgriculture and Agri‐Food CanadaOttawaOntarioCanada
| | - Sateesh Kagale
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSaskatchewanCanada
| |
Collapse
|
6
|
Ye S, Tang Y. TaZFP 23, a new Cys2/His2-type zinc-finger protein, is a regulator of wheat ( Triticum aestivum L.) growth and abiotic stresses. PeerJ 2025; 13:e18956. [PMID: 39981045 PMCID: PMC11841591 DOI: 10.7717/peerj.18956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
Wheat (Triticum aestivum L.) is an important food crop and one of the most important grains in the world. With the global climate change, wheat production is increasingly affected by abiotic stress, among which drought, salinity, and other factors have become the main abiotic stress factors restricting the efficient production of wheat. The C2H2-type zinc finger proteins are a common class of transcription factors in plants that play crucial roles in regulating plant growth and development as well as responses to stresses. In this study, the wheat C2H2-type zinc finger protein transcription factor TaZFP23 was cloned. Its full-length coding sequence was 720 bp encoding 239 amino acids. TaZFP23 is a typical C2H2-type zinc finger protein. It contains two C2H2 zinc finger domains and an EAR motif, without a transmembrane domain. Promoter cis-acting element analysis suggested that TaZFP23 might function in abiotic stress responses and plant hormone signal transduction. Subcellular localization and transcriptional activity assays indicated that TaZFP23 encoded a nuclear protein without self-activation activity. Overexpressing TaZFP23 in Arabidopsis thaliana showed that it negatively regulate d seed germination and plant growth under NaCl, mannitol, and ABA treatments. Additionally, TaZFP23 overexpression under NaCl and drought stress in Arabidopsis resulted in lower expression levels of several stress-related marker genes compared to those in wild-type plants. This research provides a foundation for further elucidating the functions of C2H2-type zinc finger protein genes and offers promising candidate genes for the development of stress-tolerant wheat cultivars.
Collapse
Affiliation(s)
- Shunxing Ye
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yuzhou Tang
- College of Landscape Architecture and Art Design, Hunan Agricultural University, Changsha, China
| |
Collapse
|
7
|
Zhang Q, Hong T, Su T, Li Q, Xiang A, Chen X, He G, Zhao F, Wu R. Genome-wide identification and functional characterization of CLG family genes reveal likely roles in epidermal development in Arabidopsis. PLANT CELL REPORTS 2025; 44:32. [PMID: 39838097 DOI: 10.1007/s00299-024-03421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/24/2024] [Indexed: 01/23/2025]
Abstract
KEY MESSAGE We identified a CX2CX12CPXC motif and 11 CLG genes that regulate epidermal development by interacting with homeodomain leucine-zipper IV family proteins in Arabidopsis. Zinc finger proteins (ZFPs), the key regulators of plant growth and development, can be categorized based on the sequence patterns of zinc finger motifs. Here, by aligning the amino acid sequences of CFL1, AtCFL1, AtCFL2, GIRl, and GIR2, we identified the CX2CX12CPXC motif in their C-terminus, which differs from all the previously characterized canonical zinc finger motifs. A total of 11 non-canonical ZFPs were identified in Arabidopsis based on the pattern and we named these genes as the CLG family genes (CFL1-like genes). We further established that the family genes are randomly distributed on five chromosomes, containing two conserved motifs and possess various cis-acting elements associated with plant hormones, stress responses and tissue regulation. Moreover, the family genes exhibit a wide range of expression profiles, and all of these proteins have nuclear localization signals. They may affect epidermal development through interactions with homeodomain leucine-zipper IV (HD-ZIP IV) family proteins. Overall, these findings comprehensively characterize CLG family genes and lay a foundation for further elaborating their biological functions in plant growth and development.
Collapse
Affiliation(s)
- Qiuli Zhang
- Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Tao Hong
- Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Tian Su
- Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Qiaolong Li
- Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Aoni Xiang
- Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Xinlong Chen
- Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Guanghua He
- Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Fangming Zhao
- Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China.
| | - Renhong Wu
- Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Xu Y, Shi Y, Zhang W, Zhu K, Feng L, Wang J. C2H2 Zinc Finger Protein Family Analysis of Rosa rugosa Identified a Salt-Tolerance Regulator, RrC2H2-8. PLANTS (BASEL, SWITZERLAND) 2024; 13:3580. [PMID: 39771278 PMCID: PMC11678247 DOI: 10.3390/plants13243580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Rosa rugosa is a representative aromatic species. Wild roses are known for their strong tolerance to highly salty environments, whereas cultivated varieties of roses exhibit lower salt stress tolerance, limiting their development and industrial expansion. Previous studies have shown that C2H2-type zinc finger proteins play a crucial role in plants' resistance to abiotic stresses. In this study, 102 C2H2-type zinc finger genes (RrC2H2s) were identified in R. rugosa via a comprehensive approach. These genes were categorized into three lineages, and their motif constitutions were grouped into four classes. RrC2H2s were distributed across all seven rose chromosomes, with 15 paralogous gene pairs identified within synteny regions. Additionally, 43 RrC2H2s showed differential expression across various tissues under salt stress, with RrC2H2-8 being the only gene consistently repressed in all tissues. Subcellular localization analysis revealed that the RrC2H2-8 protein was localized in the nucleus. The heterologous expression of RrC2H2-8 in Arabidopsis significantly improved its growth under salt stress compared to the wild-type (WT) plants. Furthermore, the malondialdehyde content in the roots of transgenic Arabidopsis was significantly lower than that in the WT, suggesting that RrC2H2-8 enhanced salt tolerance by reducing cellular damage. This study provides a systematic understanding of the RrC2H2 family and identifies RrC2H2-8 as a regulator of salt tolerance, laying a foundation for future research on the mechanisms of salt stress regulation by RrC2H2.
Collapse
Affiliation(s)
- Yong Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.X.); (Y.S.); (W.Z.)
| | - Yuqing Shi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.X.); (Y.S.); (W.Z.)
| | - Weijie Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.X.); (Y.S.); (W.Z.)
| | - Kaikai Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
| | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.X.); (Y.S.); (W.Z.)
| | - Jianwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.X.); (Y.S.); (W.Z.)
| |
Collapse
|
9
|
Li C, Dong S, Beckles DM, Liu X, Guan J, Wang Z, Gu X, Miao H, Zhang S. Candidate genes associated with low temperature tolerance in cucumber adult plants identified by combining GWAS & QTL mapping. STRESS BIOLOGY 2024; 4:53. [PMID: 39658697 PMCID: PMC11631831 DOI: 10.1007/s44154-024-00191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 12/12/2024]
Abstract
Fruit quality and yield are reduced when cucumber (Cucumis sativus L.) plants are exposed to low temperature (LT) stress, yet, the inheritance and genes linked to cold tolerance in adult plants have not been reported yet. Here, the LT-tolerance of 120 cucumber accessions representing four ecotypes were evaluated by GWAS, and also, in 140 recombinant inbred lines (RILs) derived from a biparental cross. Plants were exposed to naturally occurring LT environments in a plastic greenhouse, in winter 2022, and 2023, and a low temperature injury index (LTII) was employed to evaluate plant performance. Genetic analysis revealed that the LT-tolerance evaluated in the adult cucumber plants was a multigenic quantitative trait, and that 18 of the 120 accessions were highly LT tolerant by our LTII assessment. Two loci (gLTT1.1 and gLTT3.1) exhibited strong signals that were consistent and stable in two environments. In addition, two QTLs-qLTT1.2 on chromosome (Chr.) 1, and qLTT3.1 on Chr. 3, were discovered in all tests using RIL population derived from a cross between LT-sensitive 'CsIVF0106', and LT-tolerant 'CsIVF0168'. qLTT1.2 was delimited to a 1.24-Mb region and qLTT3.1 was narrowed to a 1.43-Mb region. Interestingly, a peak single nucleotide polymorphism (SNP) at gLTT1.1 and gLTT3.1 was also found in qLTT1.2 and qLTT3.1, respectively. These loci were thus renamed as gLTT1.1 and gLTT3.1. In these regions, 25 genes were associated with the LT response. By identifying differences in haplotypes and transcript profiles among these genes, we identified four candidates: CsaV3_1G012520 (an ethylene-responsive transcription factor) and CsaV3_1G013060 (a RING/U-box superfamily protein) in gLTT1.1, and two RING-type E3 ubiquitin transferases at CsaV3_3G018440 and CsaV3_3G017700 in gLTT3.1 that may regulate LT-tolerance in adult cucumber. Interestingly, the accessions in which the LT-tolerant haplotypes for two loci were pyramided, displayed maximally high tolerance for LT. These findings therefore provide a solid foundation for the identification of LT-tolerant genes and the molecular breeding of cucumber with LT-tolerance.
Collapse
Affiliation(s)
- Caixia Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoyun Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Diane M Beckles
- Department of Plant Sciences, University of California, One Shield Avenue, Davis, CA, 95616, USA
| | - Xiaoping Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiantao Guan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zaizhan Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingfang Gu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Han Miao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shengping Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
10
|
Xu Y, Liu F, Wu F, Zou R, Zhao M, Wu J, Cheng B, Li X. Zinc finger protein LjRSDL regulates arbuscule degeneration of arbuscular mycorrhizal fungi in Lotus japonicus. PLANT PHYSIOLOGY 2024; 196:2905-2917. [PMID: 39268874 DOI: 10.1093/plphys/kiae487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
In arbuscular mycorrhizal (AM) symbiosis, appropriate regulation of the formation, maintenance, and degeneration of the arbuscule is essential for plants and fungi. In this study, we identified a Cysteine-2/Histidine-2 zinc finger protein (C2H2-ZFP)-encoding gene in Lotus japonicus named Regulator of Symbiosome Differentiation-Like (LjRSDL) that is required for arbuscule degeneration. Evolutionary analysis showed that homologs of LjRSDL exist in mycorrhizal flowering plants. We obtained ProLjRSDL::GUS transgenic hairy roots and showed that LjRSDL was strongly upregulated upon AM colonization, particularly at 18 days post-AM fungi inoculation and specifically expressed in arbuscule-containing cells. The mycorrhization rate increased in the ljrsdl mutant but decreased in LjRSDL-overexpressed L. japonicus. Interestingly, we observed higher proportions of large arbuscule in the ljrsdl mutant but lower proportions of larger arbuscule in LjRSDL-overexpressing plants. Transcriptome analyses indicated that genes involved in arbuscule degeneration were significantly changed upon the dysregulation of LjRSDL and that LjRSDL-dependent regulation in AM symbiosis is mainly via the hormone signal transduction pathway. LjRSDL, therefore, represents a C2H2-ZFP that negatively regulates AM symbiosis. Our study provides insight into understanding plant-AM fungal communication and AM symbiosis development.
Collapse
Affiliation(s)
- Yunjian Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Fang Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Fulang Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Ruifan Zou
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Manli Zhao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Jianping Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Key Laboratory of Soil Ecology and Health, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
11
|
Zhao JJ, Xiang X, Yang P, Li J, Li H, Wei SY, Wang RQ, Wang T, Huang J, Chen LH, Wan XQ, He F. Genome-wide analysis of C2H2.2 gene family in Populus Trichocarpa and the function exploration of PtrC2H2.2-6 in osmotic stress. Int J Biol Macromol 2024; 283:137937. [PMID: 39579826 DOI: 10.1016/j.ijbiomac.2024.137937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
C2H2 transcription factors are essential for increasing a plant's ability to withstand extreme conditions. However, research on the functions of C2H2 transcription factors in woody plants, particularly their responses to osmotic stress, is limited. This research identified 109 C2H2 genes, and the PtrC2H2.2 subfamily, which contains 28 genes, captured our keen interest, prompting an extensive molecular characterization. Evolutionarily, PtrC2H2.2 s have undergone 30 fragment duplications and 2 tandem duplications. PtrC2H2.2-6 acts as a core transcription factor, whose expression was decreased after both ABA and drought treatments, implying it may play a negative regulatory role in the osmotic stress response by regulating the expression of targets. Specifically, the PtrC2H2.2-6-RNAi poplar showed improved osmotic stress tolerance compared to the overexpressing line, which was more sensitive, and transcriptome data analyses flanked the molecular mechanisms of their possible regulation. In this research, we dissected the molecular features of the PtrC2H2.2 subfamily genes and elucidated the role of a specific member, the PtrC2H2.2-6 gene, in the ability of poplar to respond to osmotic stress. This discovery not only establishes a foundation for further exploration of its biological functions but also presents precious genetic assets for the development of drought-tolerant forest tree varieties through genetic engineering.
Collapse
Affiliation(s)
- Jiu-Jiu Zhao
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiang Xiang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu-Ying Wei
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui-Quan Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinliang Huang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang-Hua Chen
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue-Qin Wan
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Fang He
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
12
|
Zhengwan X, Qing J, Wang L, Zhang A, Li S, Li S, Chen M, Jiayue Y, Wang R. Genome-wide identification and expression analysis of C2H2 zinc finger proteins in Chinese jujube ( Ziziphus jujuba Mill.) in different fruit development stages and under different levels of water stress. PeerJ 2024; 12:e18455. [PMID: 39624126 PMCID: PMC11610476 DOI: 10.7717/peerj.18455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/14/2024] [Indexed: 12/29/2024] Open
Abstract
The C2H2 type zinc finger proteins (C2H2-ZFPs) are prevalent motifs found widely across the eukaryotic kingdom, playing crucial roles in various biological processes, including stress responses and plant growth and development. To date, C2H2-ZFPs have been identified in many plant systems, but there have been no reports in Chinese jujube (Ziziphus jujuba Mill.). In this study, a total of 77 ZjC2H2-ZFPs were identified in Chinese jujube and classified into three groups, with set A containing 29 genes, set B containing two genes, and set C containing 46 genes. The set A group genes were further divided into three groups: A1, A2, and A4 (with no member of the A3 subgroup found in jujube). The set C C2H2-ZFPs genes were also further divided into three groups: C1 containing 24 genes, C2 with two genes, and C3 with three genes. These ZjC2H2-ZFPs were distributed on 12 chromosomes and one tandem duplicated pair of ZjC2H2-ZFPs was found on chromosome 4 (ZjC2H2-21 with ZjC2H2-22). Notably, the 77 ZjC2H2-ZFPs identified in this study lacked finger clusters comprising 10 or more repeats. The structure and protein motif analysis of ZjC2H2-ZFPs showed that most C1 subgroup members were enriched with 'QALGGH' motif zinc finger helices and the A1a ZjC2H2-ZFPs contained highly conserved 'SATALLQKAAQMGS' residues in jujube. A unique finding was the discovery of a conserved non-finger domain (PCYCC motif) in A1 group members, absent in other ZjC2H2-ZFPs and unreported in other species. The enzyme activity of jujube leaves under different water stress treatments were measured, and the results showed that as the degree of water stress increased, the activity of SOD enzymes and H2O2 content also increased. The POD enzyme activity levels of different treatment groups were CK>MS>SS>LS. The levels of malondialdehyde (MDA) content observed under various treatments were notably higher and the proline content was lower in comparison to the control group (CK). Differential expression of ZjC2H2-ZFPs and specific responses were analyzed under water stress and different fruit development stages of jujube using RNA-Seq data. The correlation between expression patterns and protective enzyme activities under water stress was also examined. The results indicated that the expression levels of different ZjC2H2-ZFPs varied. A further protein interaction analysis indicated that ZjC2H2-ZFPs serve as pivotal transcriptional regulators with diverse functions, encompassing DNA or RNA binding and participation in protein interactions, with ZjC2H2-20, ZjC2H2-36, and ZjC2H2-57 being potential key players in these regulatory processes. Their roles appear particularly crucial in responding to abiotic stresses like water stress and regulating plant hormones. This study provides valuable insights into understanding stress responses and enhancing the quality of Chinese jujube during breeding.
Collapse
Affiliation(s)
| | - Ji Qing
- Puer University, Puer, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | | | - Shengxing Li
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | | | | | | | | |
Collapse
|
13
|
Huang L, Xie R, Hu Y, Du L, Wang F, Zhao X, Huang Y, Chen X, Hao M, Xu Q, Feng L, Wu B, Wei Z, Zhang L, Liu D. A C2H2-type zinc finger protein TaZFP8-5B negatively regulates disease resistance. BMC PLANT BIOLOGY 2024; 24:1116. [PMID: 39578730 PMCID: PMC11585113 DOI: 10.1186/s12870-024-05843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Zinc finger proteins (ZFPs) are important regulators in abiotic and biotic stress tolerance in plants. However, the role of the ZFPs in wheat responding to pathogen infection is poorly understood. RESULTS In this study, we found TaZFP8-5B was down-regulated by Puccinia striiformis f. sp. tritici (Pst) infection. TaZFP8-5B possesses a single C2H2-type zinc finger domain with a plant-specific QALGGH motif, and an EAR motif (LxLxL) at the C-terminus. The EAR motif represses the trans-activation ability of TaZFP8-5B. Knocking down the expression of TaZFP8 by virus-induced gene silencing increased wheat resistance to Pst, whereas TaZFP8-5B-overexpressing reduced wheat resistance to stripe rust and rice resistance to Magnaporthe oryzae, suggesting that TaZFP8-5B plays a negative role in the modulation of plant immunity. Using bimolecular fluorescence complementation, split-luciferase, and yeast two-hybrid assays, we showed that TaZFP8-5B interacted with a wheat calmodulin-like protein TaCML21. Knock-down of TaCML21 reduced wheat resistance to Pst. CONCLUSIONS This study characterized the function of TaZFP8-5B and its interacting protein TaCML21. Our findings provide a new perspective on a regulatory module made up of TaCML21-TaZFP8-5B in plant immunity.
Collapse
Affiliation(s)
- Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Ruijie Xie
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yanling Hu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lilin Du
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Fang Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xueer Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yanyan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lihua Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Bihua Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhenzhen Wei
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
14
|
Ben Saad R, Ben Romdhane W, Čmiková N, Baazaoui N, Bouteraa MT, Ben Akacha B, Chouaibi Y, Maisto M, Ben Hsouna A, Garzoli S, Wiszniewska A, Kačániová M. Research progress on plant stress-associated protein (SAP) family: Master regulators to deal with environmental stresses. Bioessays 2024; 46:e2400097. [PMID: 39248672 DOI: 10.1002/bies.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress-associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N-terminus and either AN1 or C2H2 at the C-terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress-inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress-tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing.
Collapse
Affiliation(s)
- Rania Ben Saad
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Walid Ben Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Narjes Baazaoui
- Biology department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Taieb Bouteraa
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Bouthaina Ben Akacha
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Yosra Chouaibi
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anis Ben Hsouna
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia, Tunisia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, Rome, Italy
| | - Alina Wiszniewska
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Kraków, Kraków, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Warszawa, Poland
| |
Collapse
|
15
|
Chen L, Wang R, Hu X, Wang D, Wang Y, Xue R, Wu M, Li H. Overexpression of wheat C2H2 zinc finger protein transcription factor TaZAT8-5B enhances drought tolerance and root growth in Arabidopsis thaliana. PLANTA 2024; 260:126. [PMID: 39466433 DOI: 10.1007/s00425-024-04559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
MAIN CONCLUSION TaZAT8-5B, a C2H2 zinc finger protein transcription factor, positively regulates drought tolerance in transgenic Arabidopsis. It promotes root growth under drought stress via the Aux/IAA-ARF module in the auxin signaling pathway. C2H2 zinc finger proteins (C2H2-ZFPs) represent the largest but relatively unexplored family of transcription factors in plants. This is particularly evident in wheat, where the functions of only a few C2H2-ZFP genes have been confirmed. In this study, we identified a novel C2H2-ZFP gene, TaZAT8-5B. This gene shows high expression in roots and flowers and is significantly induced by heat, drought, and salt stress. Under drought stress, overexpressing TaZAT8-5B in Arabidopsis resulted in increased proline content and superoxide dismutase (SOD) activity in leaves. It also led to reduced stomatal aperture and water loss, while inducing the expression of P5CS1, RD29A, and DREB1A. Consequently, it alleviated drought stress-induced malondialdehyde (MDA) accumulation and improved drought tolerance. Additionally, TaZAT8-5B promoted lateral root initiation under mannitol stress and enhanced both lateral and primary root growth under long-term drought stress. Moreover, TaZAT8-5B was induced by indole-3-acetic acid (IAA). Overexpressing TaZAT8-5B under drought stress significantly inhibited the expression of auxin signaling negative regulatory genes IAA12 and IAA14. Conversely, downstream genes (ARF7, LBD16, LBD18, and CDKA1) of IAA14 and IAA12 were upregulated in TaZAT8-5B overexpressing plants compared to wild-type (WT) plants. These findings suggest that TaZAT8-5B regulates root growth and development under drought stress via the Aux/IAA-ARF module in the auxin signaling pathway. In summary, this study elucidates the role of TaZAT8-5B in enhancing drought tolerance and its involvement in root growth and development through the auxin signaling pathway. These findings offer new insights into the functional analysis of homologous genes of TaZAT8-5B, particularly in Gramineae species.
Collapse
Affiliation(s)
- Lulu Chen
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Run Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaoqing Hu
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Dan Wang
- Puyang Academy of Agricultural and Forestry Sciences, Puyang, 457000, China
| | - Yuexia Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ruili Xue
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Mingzhu Wu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| | - Hua Li
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
16
|
Feng X, Zhu G, Meng Q, Zeng J, He X, Liu W. Comprehensive analysis of PLATZ family genes and their responses to abiotic stresses in Barley. BMC PLANT BIOLOGY 2024; 24:982. [PMID: 39420254 PMCID: PMC11488246 DOI: 10.1186/s12870-024-05690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Plant A/T-rich protein and zinc-binding protein (PLATZ) transcription factors are pivotal regulators in various aspects of plant biology, including growth, development, and responses to environmental stresses. While PLATZ genes have been extensively studied and functionally characterized in various plants, limited information is available for these genes in barley. RESULTS Here, we discovered a total of 11 PLATZ genes distributed across seven chromosomes in barley. Based on phylogenetic and conserved motif analysis, we classified PLATZ into five subfamilies, comprising 3, 1, 2, 1 and 4 genes, respectively. Analysis of gene structure demonstrated that these 11 HvPLATZ genes typically possessed two to four exons. Most HvPLATZ genes were found to possess at least one ABRE cis-element in their promoter regions, and a few of them also contained LTR, CAT-box, MRE, and DRE cis-elements. Then, we conducted an exploration of the expression patterns of HvPLATZs, which displayed notable differences across various tissues and in response to abiotic stresses. Functional analysis of HvPLATZ6 and HvPLATZ8 in yeast cells showed that they may be involved in drought tolerance. Additionally, we constructed a regulatory network including miRNA-targeted gene predictions and identified two miRNAs targeting two HvPLATZs, such as hvu-miR5053 and hvu-miR6184 targeting HvPLATZ2, hvu-miR6184 targeting HvPLATZ10. CONCLUSION In summary, these findings provide valuable insights for future functional verification of HvPLATZs and contribute to a deeper understanding of the role of HvPLATZs in response to stress conditions in barley.
Collapse
Affiliation(s)
- Xue Feng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Gehao Zhu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Quan Meng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianbin Zeng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyan He
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenxing Liu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, School of Life Sciences, Ministry of Education, Shandong University, Qingdao, Shandong Province, 266237, China.
| |
Collapse
|
17
|
Lu Y, Wang K, Ngea GLN, Godana EA, Ackah M, Dhanasekaran S, Zhang Y, Su Y, Yang Q, Zhang H. Recent advances in the multifaceted functions of Cys2/His2-type zinc finger proteins in plant growth, development, and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5501-5520. [PMID: 38912636 DOI: 10.1093/jxb/erae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Recent research has highlighted the importance of Cys2/His2-type zinc finger proteins (C2H2-ZFPs) in plant growth and in responses to various stressors, and the complex structures of C2H2-ZFP networks and the molecular mechanisms underlying their responses to stress have received considerable attention. Here, we review the structural characteristics and classification of C2H2-ZFPs, and consider recent research advances in their functions. We systematically introduce the roles of these proteins across diverse aspects of plant biology, encompassing growth and development, and responses to biotic and abiotic stresses, and in doing so hope to lay the foundations for further functional studies of C2H2-ZFPs in the future.
Collapse
Affiliation(s)
- Yuchun Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | | | - Esa Abiso Godana
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Michael Ackah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yingying Su
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| |
Collapse
|
18
|
Tong Z, Han X, Duan X, Lin J, Chen J, Xiao J, Gan Y, Gan B, Yan J. Genome-Wide Identification and Expression Analysis of the Cys2His2 Zinc Finger Protein Gene Family in Flammulina filiformis. J Fungi (Basel) 2024; 10:644. [PMID: 39330404 PMCID: PMC11433517 DOI: 10.3390/jof10090644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Zinc finger proteins (ZFPs) are essential transcription factors in eukaryotes, particularly the extensively studied C2H2 family, which is known for its involvement in various biological processes. This research provides a thorough examination and analysis of the C2H2-ZFP gene family in Flammulina filiformis. Using bioinformatics tools, 58 FfC2H2-ZFP genes spread across 11 chromosomes were identified and scrutinized in detail for their gene structures, protein characteristics, and phylogenetic relationships. The study of phylogenetics and synteny sheds light on the evolutionary relationships among C2H2-ZFPs in F. filiformis and other fungi, revealing a complex evolutionary past. The identification of conserved cis-regulatory elements in the gene promoter regions suggests intricate functionalities, particularly in the developmental and stress response pathways. By utilizing RNA-seq and qRT-PCR techniques, the expression patterns of these genes were explored across different developmental stages and tissues of F. filiformis, unveiling distinct expression profiles. Notably, significant expression variations were observed in the stipe elongation region and pilei of various sizes, indicating potential roles in fruiting body morphogenesis. This study enhances our knowledge of the C2H2-ZFP gene family in F. filiformis and lays the groundwork for future investigations into their regulatory mechanisms and applications in fungal biology and biotechnology.
Collapse
Affiliation(s)
- Zongjun Tong
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Xing Han
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- Chengdu Agricultural Science and Technology Center, Chengdu 610095, China
| | - Xinlian Duan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Junbin Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- Chengdu Agricultural Science and Technology Center, Chengdu 610095, China
| | - Jie Chen
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- Chengdu Agricultural Science and Technology Center, Chengdu 610095, China
| | - Jihong Xiao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Ying Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- Chengdu Agricultural Science and Technology Center, Chengdu 610095, China
| | - Bingcheng Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Junjie Yan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| |
Collapse
|
19
|
Zhang Y, He J, Qin G, Yang K, Chen P, Niu C, Li X, Mei C, Wang J, Guan Q, Bao C. Apple MdZAT5 mediates root development under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108833. [PMID: 38879984 DOI: 10.1016/j.plaphy.2024.108833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Root plays an important role in plant drought tolerance, especially in horticultural crops like apples. However, the crucial regulator and molecular mechanism in root development of apple trees under drought are not well unknown. Cys2/His2-type Zinc-finger proteins are essential for plant response to drought, while the members of C2H2 Zinc-finger proteins in apple are largely unknown. In this study, we identified the members of the C1-2i subclass family of C2H2 Zinc-finger proteins in apple (Malus × domestica). Among them, MdZAT5 is significantly induced in apple roots under drought conditions and positively regulates apple root development under drought. Further investigation revealed that MdZAT5 positively regulates root development and root hydraulic conductivity by mediating the transcription level of MdMYB88 under drought stress. Taken together, our results demonstrate the importance of MdZAT5 in root development under drought in apple trees. This finding provides a new candidate direction for apple breeding for drought resistance.
Collapse
Affiliation(s)
- Yutian Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jieqiang He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gege Qin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kecheng Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengxiang Chen
- College of Life Science, Shanxi Normal University, Linfen, China
| | - Chundong Niu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuewei Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuang Mei
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Xinjiang Fruit Science Experiment Station, Ministry of Agriculture, Urumqi, China
| | - Jiangbo Wang
- College of Plant Science, Tarim University, Aral, 843300, China.
| | - Qingmei Guan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Chana Bao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Science, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
20
|
Ji E, Hu S, Lu Q, Zhang M, Jiang M. Hydrogen peroxide positively regulates ABA signaling via oxidative modification of the C2H2-type zinc finger protein ZFP36 in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108844. [PMID: 38885566 DOI: 10.1016/j.plaphy.2024.108844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The rice zinc finger protein ZFP36 serves as a pivotal regulator of the hydrogen peroxide (H2O2) signaling pathway in response to abscisic acid (ABA). Its role is crucial for integrating H2O2 signals with the plant defense mechanisms against water deficit and oxidative stress. However, it remains unclear whether ZFP36 directly modulates ABA-induced H2O2 signaling. This study explored the effects of oxidative post-translational modifications (OxiPTMs) on ZFP36 in rice, with an emphasis on the H2O2-induced oxidation through its cysteine (Cys) residues. We found that ZFP36 undergoes oxidative modification as a target of H2O2 in the presence of ABA, specifically at Cys32. Employing quantitative detection and fluorescence assays, we observed that ZFP36 oxidation enhances the expression and activity of genes encoding protective antioxidant enzymes. Moreover, our investigation into the thioredoxin (Trx) and glutaredoxin (Grx) families revealed that OsTrxh1 facilitates the reduction of oxidized ZFP36. Genetic evidence indicates that ZFP36 positively influences rice resilience to oxidative and water stress, while OsTrxh1 exerts an opposing effect. These insights reveal a distinctive pathway for plant cells to perceive ABA-induced H2O2 signaling, advance our comprehension of H2O2 signaling dynamics, and ABA-related plant responses, and lay a vital groundwork for enhancing crop stress tolerance.
Collapse
Affiliation(s)
- E Ji
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shubao Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Qiuping Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mengyao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
21
|
Wu H, Shen Y, Zou F, Yao S, Chen Y, Yang H, Luo X. Combined transcriptome and widely targeted metabolome analysis reveals the potential mechanism of HupA biosynthesis and antioxidant activity in Huperzia serrata. FRONTIERS IN PLANT SCIENCE 2024; 15:1411471. [PMID: 38952843 PMCID: PMC11215074 DOI: 10.3389/fpls.2024.1411471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024]
Abstract
Introduction Huperzia serrata is a traditional Chinese herb that has gained much attention for its production of Huperzine A (HupA). HupA has shown promise on treating Alzheimer's disease (AD). However, the biosynthetic pathway and molecular mechanism of HupA in H. serrata are still not well understood. Methods Integrated transcriptome and metabolome analysis was performed to reveal the molecular mechanisms related to HupA biosynthesis and antioxidant activity in Huperzia serrata. Results HT (in vitro H. serrata thallus) exhibits higher antioxidant activity and lower cytotoxicity than WH (wild H. serrata). Through hierarchical clustering analysis and qRT-PCR verification, 7 important enzyme genes and 13 transcription factors (TFs) related to HupA biosynthesis were detected. Among them, the average |log2FC| value of CYP (Cytochrome P450) and CAO (Copper amine oxidase) was the largest. Metabolomic analysis identified 12 metabolites involved in the HupA biosynthesis and 29 metabolites related to antioxidant activity. KEGG co-enrichment analysis revealed that tropane, piperidine and pyridine alkaloid biosynthesis were involved in the HupA biosynthesis pathway. Furthermore, the phenylpropanoid, phenylalanine, and flavonoid biosynthesis pathway were found to regulate the antioxidant activity of H. serrata. The study also identified seven important genes related to the regulation of antioxidant activity, including PrAO (primary-amine oxidase). Based on the above joint analysis, the biosynthetic pathway of HupA and potential mechanisms of antioxidant in H. serrata was constructed. Discussion Through differential transcriptome and metabolome analysis, DEGs and DAMs involved in HupA biosynthesis and antioxidant-related were identified, and the potential metabolic pathway related to HupA biosynthesis and antioxidant in Huperzia serrata were constructed. This study would provide valuable insights into the HupA biosynthesis mechanism and the H. serrata thallus medicinal value.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangdong Luo
- College of Life Science, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
22
|
Govindan G, Harini P, Alphonse V, Parani M. From swamp to field: how genes from mangroves and its associates can enhance crop salinity tolerance. Mol Biol Rep 2024; 51:598. [PMID: 38683409 DOI: 10.1007/s11033-024-09539-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
Salinity stress is a critical challenge in crop production and requires innovative strategies to enhance the salt tolerance of plants. Insights from mangrove species, which are renowned for their adaptability to high-salinity environments, provides valuable genetic targets and resources for improving crops. A significant hurdle in salinity stress is the excessive uptake of sodium ions (Na+) by plant roots, causing disruptions in cellular balance, nutrient deficiencies, and hampered growth. Specific ion transporters and channels play crucial roles in maintaining a low Na+/K+ ratio in root cells which is pivotal for salt tolerance. The family of high-affinity potassium transporters, recently characterized in Avicennia officinalis, contributes to K+ homeostasis in transgenic Arabidopsis plants even under high-salt conditions. The salt overly sensitive pathway and genes related to vacuolar-type H+-ATPases hold promise for expelling cytosolic Na+ and sequestering Na+ in transgenic plants, respectively. Aquaporins contribute to mangroves' adaptation to saline environments by regulating water uptake, transpiration, and osmotic balance. Antioxidant enzymes mitigate oxidative damage, whereas genes regulating osmolytes, such as glycine betaine and proline, provide osmoprotection. Mangroves exhibit increased expression of stress-responsive transcription factors such as MYB, NAC, and CBFs under high salinity. Moreover, genes involved in various metabolic pathways, including jasmonate synthesis, triterpenoid production, and protein stability under salt stress, have been identified. This review highlights the potential of mangrove genes to enhance salt tolerance of crops. Further research is imperative to fully comprehend and apply these genes to crop breeding to improve salinity resilience.
Collapse
Affiliation(s)
- Ganesan Govindan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, TN, 603203, India
| | - Prakash Harini
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, TN, 603203, India
| | - Vinoth Alphonse
- Department of Botany, St. Xavier's College (Autonomous), Palayamkottai, TN, 627 002, India
| | - Madasamy Parani
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, TN, 603203, India.
| |
Collapse
|
23
|
Tang F, Jiao B, Zhang M, He M, Su R, Luo K, Lan T. PtoMYB031, the R2R3 MYB transcription factor involved in secondary cell wall biosynthesis in poplar. FRONTIERS IN PLANT SCIENCE 2024; 14:1341245. [PMID: 38298604 PMCID: PMC10828011 DOI: 10.3389/fpls.2023.1341245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024]
Abstract
Introduction The biosynthesis of the secondary cell wall (SCW) is orchestrated by an intricate hierarchical transcriptional regulatory network. This network is initiated by first-layer master switches, SCW-NAC transcription factors, which in turn activate the second-layer master switches MYBs. These switches play a crucial role in regulating xylem specification and differentiation during SCW formation. However, the roles of most MYBs in woody plants are yet to be fully understood. Methods In this study, we identified and isolated the R2R3-MYB transcription factor, PtoMYB031, from Populus tomentosa. We explored its expression, mainly in xylem tissues, and its role as a transcriptional repressor in the nucleus. We used overexpression and RNA interference techniques in poplar, along with Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays, to analyze the regulatory effects of PtoMYB031. Results Overexpression of PtoMYB031 in poplar significantly reduced lignin, cellulose, and hemicellulose content, and inhibited vascular development in stems, resulting in decreased SCW thickness in xylem tissues. Gene expression analysis showed that structural genes involved in SCW biosynthesis were downregulated in PtoMYB031-OE lines. Conversely, RNA interference of PtoMYB031 increased these compounds. Additionally, PtoMYB031 was found to recruit the repressor PtoZAT11, forming a transcriptional inhibition complex. Discussion Our findings provide new insights into how PtoMYB031, through its interaction with PtoZAT11, forms a complex that can suppress the expression of key regulatory genes, PtoWND1A and PtoWND2B, in SCW biosynthesis. This study enhances our understanding of the transcriptional regulation involved in SCW formation in poplar, highlighting the significant role of PtoMYB031.
Collapse
Affiliation(s)
- Feng Tang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Bo Jiao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Meng Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Minghui He
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Ruiying Su
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Ting Lan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
24
|
Du T, Zhou Y, Qin Z, Li A, Wang Q, Li Z, Hou F, Zhang L. Genome-wide identification of the C2H2 zinc finger gene family and expression analysis under salt stress in sweetpotato. FRONTIERS IN PLANT SCIENCE 2023; 14:1301848. [PMID: 38152142 PMCID: PMC10752007 DOI: 10.3389/fpls.2023.1301848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Introduction The higher plant transcription factor C2H2 zinc finger protein (C2H2-ZFP) is essential for plant growth, development, and stress response. There are limited studies on C2H2-ZFP genes in sweetpotato, despite a substantial number of C2H2-ZFP genes having been systematically found in plants. Methods In this work, 178 C2H2-ZFP genes were found in sweetpotato, distributed randomly on 15 chromosomes, and given new names according to where they were located. These members of the zinc finger gene family are separated into six branches, as shown by the phylogenetic tree. 24 tandem repeats of IbZFP genes and 46 fragment repeats were identified, and a homology study revealed that IbZFP genes linked more regions with wild relative species of sweetpotato as well as rhizome plants like potato and cassava. And we analyzed the expression patterns of IbZFP genes during the early development of sweetpotato storage roots (SRs) and salt stress using transcriptome data, and identified 44 IbZFP genes that exhibited differences in expression levels during the early expansion of sweetpotato SRs in different varieties, and 92 IbZFP genes that exhibited differences in expression levels under salt stress in salt tolerant and salt sensitive sweetpotato varieties. Additionally, we cloned six IbZFP genes in sweetpotato and analyzed their expression patterns in different tissues, their expression patterns under abiotic stress and hormone treatment, and subcellular localization. Results and discussion The results showed that the IbZFP genes had tissue specificity in sweetpotato and were induced to varying degrees by drought and salt stress. ABA and GA3 treatments also affected the expression of the IbZFP genes. We selected IbZFP105, which showed significant differences in expression levels under salt stress and ABA treatment, to be heterologously expressed in Arabidopsis thaliana. We found that IbZFP105 OE lines exhibited higher tolerance to salt stress and ABA stress. This indicates that IbZFP105 can enhance the salt tolerance of plants. These results systematically identified the evolution and expression patterns of members of the C2H2-ZFP gene family in sweetpotato, providing a theoretical basis for studying the role of IbZFP genes in the development of sweetpotato SRs and in resistance to stress.
Collapse
Affiliation(s)
- Taifeng Du
- Key Laboratory of Phylogeny and Comparative Genomics of the Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yuanyuan Zhou
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Zhen Qin
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Aixian Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Qingmei Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Zongyun Li
- Key Laboratory of Phylogeny and Comparative Genomics of the Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Fuyun Hou
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Liming Zhang
- Key Laboratory of Phylogeny and Comparative Genomics of the Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| |
Collapse
|
25
|
Wu L, Xu Y, Qi K, Jiang X, He M, Cui Y, Bao J, Gu C, Zhang S. Self S-RNase reduces the expression of two pollen-specific COBRA genes to inhibit pollen tube growth in pear. MOLECULAR HORTICULTURE 2023; 3:26. [PMID: 38037174 PMCID: PMC10691131 DOI: 10.1186/s43897-023-00074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Due to self-incompatibility (SI) prevents self-fertilization, natural or artificial cross-pollination has been conducted in many orchards to stabilize fruit yield. However, it is still puzzled which routes of self S-RNase arresting pollen tube growth. Herein, 17 COBRA genes were isolated from pear genome. Of these genes, the pollen-specifically expressed PbCOB.A.1 and PbCOB.A.2 positively mediates pollen tube growth. The promoters of PbCOB.A.1 and/or PbCOB.A.2 were bound and activated by PbABF.E.2 (an ABRE-binding factor) and PbC2H2.K16.2 (a C2H2-type zinc finger protein). Notably, the expressions of PbCOB.A.1, PbCOB.A.2, and PbC2H2.K16.2 were repressed by self S-RNase, suggesting that self S-RNase reduces the expression of PbCOB.A.1 and PbCOB.A.2 by decreasing the expression of their upstream factors, such as PbC2H2.K16.2, to arrest pollen tube growth. PbCOB.A.1 or PbCOB.A.2 accelerates the growth of pollen tubes treated by self S-RNase, but can hardly affect level of reactive oxygen species and deploymerization of actin cytoskeleton in pollen tubes and cannot physically interact with any reported proteins involved in SI. These results indicate that PbCOB.A.1 and PbCOB.A.2 may not relieve S-RNase toxicity in incompatible pollen tube. The information provides a new route to elucidate the arresting pollen tube growth during SI reaction.
Collapse
Affiliation(s)
- Lei Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ying Xu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kaijie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xueting Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Min He
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yanbo Cui
- Nanjing Ningcui Biological Seed Company Limited, Nanjing, Jiangsu, China
| | - Jianping Bao
- College of Plant Science, Tarim University, Alaer, Xinjiang, 843300, China
| | - Chao Gu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
26
|
Quan W, Chan Z, Wei P, Mao Y, Bartels D, Liu X. PHD finger proteins function in plant development and abiotic stress responses: an overview. FRONTIERS IN PLANT SCIENCE 2023; 14:1297607. [PMID: 38046601 PMCID: PMC10693458 DOI: 10.3389/fpls.2023.1297607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
The plant homeodomain (PHD) finger with a conserved Cys4-His-Cys3 motif is a common zinc-binding domain, which is widely present in all eukaryotic genomes. The PHD finger is the "reader" domain of methylation marks in histone H3 and plays a role in the regulation of gene expression patterns. Numerous proteins containing the PHD finger have been found in plants. In this review, we summarize the functional studies on PHD finger proteins in plant growth and development and responses to abiotic stresses in recent years. Some PHD finger proteins, such as VIN3, VILs, and Ehd3, are involved in the regulation of flowering time, while some PHD finger proteins participate in the pollen development, for example, MS, TIP3, and MMD1. Furthermore, other PHD finger proteins regulate the plant tolerance to abiotic stresses, including Alfin1, ALs, and AtSIZ1. Research suggests that PHD finger proteins, as an essential transcription regulator family, play critical roles in various plant biological processes, which is helpful in understanding the molecular mechanisms of novel PHD finger proteins to perform specific function.
Collapse
Affiliation(s)
- Wenli Quan
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Piwei Wei
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Yahui Mao
- College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Xun Liu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| |
Collapse
|
27
|
Li M, Dong X, Long G, Zhang Z, Han C, Wang Y. Genome-Wide Analysis of Q-Type C2H2 ZFP Genes in Response to Biotic and Abiotic Stresses in Sugar Beet. BIOLOGY 2023; 12:1309. [PMID: 37887019 PMCID: PMC10604892 DOI: 10.3390/biology12101309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
A plant's Q-type C2H2-type ZFP plays key roles in plant growth and development and responses to biotic and abiotic stresses. Sugar beet (Beta vulgaris L.) is an important crop for sugar production. Salt stress and viral infection significantly reduce the root yield and sugar content of sugar beet. However, there is a lack of comprehensive genome-wide analyses of Q-type C2H2 ZFPs and their expression patterns in sugar beet under stress. In this study, 35 sugar beet Q-type C2H2 ZFPs (BvZFPs) containing at least one conserved "QALGGH" motif were identified via bioinformatics techniques using TBtools software. According to their evolutionary relationship, the BvZFPs were classified into five subclasses. Within each subclass, the physicochemical properties and motif compositions showed strong similarities. A Ka/Ks analysis indicated that the BvZFPs were conserved during evolution. Promoter cis-element analysis revealed that most BvZFPs are associated with elements related to phytohormone, biotic or abiotic stress, and plant development. The expression data showed that the BvZFPs in sugar beet are predominantly expressed in the root. In addition, BvZFPs are involved in the response to abiotic and biotic stresses, including salt stress and viral infection. Overall, these results will extend our understanding of the Q-type C2H2 gene family and provide valuable information for the biological breeding of sugar beet against abiotic and biotic stresses in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.L.); (X.D.); (G.L.); (Z.Z.); (C.H.)
| |
Collapse
|
28
|
Fang H, Shi Y, Liu S, Jin R, Sun J, Grierson D, Li S, Chen K. The transcription factor CitZAT5 modifies sugar accumulation and hexose proportion in citrus fruit. PLANT PHYSIOLOGY 2023; 192:1858-1876. [PMID: 36911987 PMCID: PMC10315291 DOI: 10.1093/plphys/kiad156] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Sugars are fundamental to plant developmental processes. For fruits, the accumulation and proportion of sugars play crucial roles in the development of quality and attractiveness. In citrus (Citrus reticulata Blanco.), we found that the difference in sweetness between mature fruits of "Gongchuan" and its bud sport "Youliang" is related to hexose contents. Expression of a SuS (sucrose synthase) gene CitSUS5 and a SWEET (sugars will eventually be exported transporter) gene CitSWEET6, characterized by transcriptome analysis at different developmental stages of these 2 varieties, revealed higher expression levels in "Youliang" fruit. The roles of CitSUS5 and CitSWEET6 were investigated by enzyme activity and transient assays. CitSUS5 promoted the cleavage of sucrose to hexoses, and CitSWEET6 was identified as a fructose transporter. Further investigation identified the transcription factor CitZAT5 (ZINC FINGER OF ARABIDOPSIS THALIANA) that contributes to sucrose metabolism and fructose transportation by positively regulating CitSUS5 and CitSWEET6. The role of CitZAT5 in fruit sugar accumulation and hexose proportion was investigated by homologous transient CitZAT5 overexpression, -VIGS, and -RNAi. CitZAT5 modulates the hexose proportion in citrus by mediating CitSUS5 and CitSWEET6 expression, and the molecular mechanism explained the differences in sugar composition of "Youliang" and "Gongchuan" fruit.
Collapse
Affiliation(s)
- Heting Fang
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Yanna Shi
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Shengchao Liu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Rong Jin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Department of Horticulture and Agricultural Experiment Station, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Jun Sun
- Zhejiang Agricultural Technology Extension Center, Hangzhou 310029, China
| | - Donald Grierson
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Shaojia Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| |
Collapse
|
29
|
Shao L, Li L, Huang X, Fu Y, Yang D, Li C, Yang J. Identification of C2H2 zinc finger genes through genome-wide association study and functional analyses of LkZFPs in response to stresses in Larix kaempferi. BMC PLANT BIOLOGY 2023; 23:298. [PMID: 37268918 DOI: 10.1186/s12870-023-04298-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/19/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND C2H2 zinc finger proteins (C2H2-ZFPs), one of the largest transcription factors, play a variety of roles in plant development and growth as well as stress response. While, the evolutionary history and expression profile of the C2H2-ZFP genes in Larix kaempferi (LkZFPs) have not been reported so far. RESULTS In this study, the whole genome of the LkZFPs was identified and characterized, including physicochemical properties, phylogenetic relationships, conservative motifs, the promoter cis-elements and Gene Ontology (GO) annotation. We identified 47 LkZFPs and divided them into four subfamilies based on phylogenetic analysis and conserved motifs. Subcellular localization prediction showed that most of the LkZFPs were located in the nucleus. Promoter cis-element analysis suggested that the LkZFPs may be involved in the regulation of stress responses. Moreover, Real-time quantitative PCR (RT-qPCR) results showed that Q-type LkZFP genes were involved in the response to abiotic stress, such as salt, drought and hormone stresses. Subcellular localization results showed that LkZFP7 and LkZFP37 were located in the nucleus, LkZFP32 was located in both cytoplasm and nucleus. CONCLUSION The identification and functional analysis of LkZFPs suggested that some LkZFP genes might play important roles in coping with both biological and abiotic stresses. These results could further increase understanding of the function of the LkZFPs, and provide some research direction and theoretical support.
Collapse
Affiliation(s)
- Liying Shao
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Lu Li
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Xun Huang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Yanrui Fu
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Da Yang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Chenghao Li
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Jingli Yang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
30
|
Yao T, Ding C, Che Y, Zhang Z, Cui C, Ji G, Song J, Zhang H, Ao H, Zhang H. Heterologous expression of Zygophyllum xanthoxylon zinc finger protein gene (ZxZF) enhances the tolerance of poplar photosynthetic function to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107748. [PMID: 37178571 DOI: 10.1016/j.plaphy.2023.107748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
The ZxZF transcription factor (TF) of Zygophyllum xanthoxylon (Bunge) Maxim, an extremely drought-resistant woody plant, is a C2H2 zinc finger protein. Studies have shown that C2H2 zinc finger proteins play important roles in activating stress-related genes and enhancing plant resistance. However, their function in regulating plant photosynthesis under drought stress is not well understood. Since poplar is an important greening and afforestation tree species, it is particularly important to cultivate excellent drought-tolerant varieties. The ZxZF transcription factor (TF) was heterogeneously expressed in Euroamerican poplar (Populus × euroameracana cl.'Bofengl') by genetic transformation. Based on the mechanism and potential function of poplar photosynthesis regulated by ZxZF under drought stress, transcriptomic and physiological determinations were used to reveal the important role of this gene in improving the drought resistance of poplar. The results showed that the overexpression of ZxZF TF in transgenic poplars could improve the inhibition of Calvin cycle by regulating stomatal opening and increasing the concentration of intercellular CO2. The chlorophyll content, photosynthetic performance index, and photochemical efficiency of transgenic lines under drought stress were significantly higher than those of the wild type (WT). The overexpression of ZxZF TFs could alleviate the degree of photoinhibition of photosystems II and I under drought stress and maintain the efficiency of light energy capture and the photosynthetic electron transport chain. The transcriptomic data also showed that differentially expressed genes between the transgenic poplar and WT under drought stress were primarily enriched in metabolic pathways related to photosynthesis, such as photosynthesis, photosynthesis-antenna protein, porphyrin and chlorophyll metabolism, and photosynthetic carbon fixation, and the downregulation of genes related to chlorophyll synthesis, photosynthetic electron transport and Calvin cycle were alleviated. In addition, the overexpression of ZxZF TF can alleviate the inhibition of NADH dehydrogenase-like (NDH) cyclic electron flow of the poplar NDH pathway under drought stress, which plays an important role in reducing the excess pressure of electrons on the photosynthetic electron transport chain and maintaining the normal photosynthetic electron transport. In summary, the overexpression of ZxZF TFs can effectively alleviate the inhibition of drought on the assimilation of carbon in poplar and have a positive impact on light energy capture, the orderly transport of photosynthetic electron transport chain and the integrity of the photosystem, which is highly significant to acheivean in-depth understanding of the function of ZxZF TFs. This also provides an important basis for the breeding of new transgenic poplar varieties.
Collapse
Affiliation(s)
- Tongtong Yao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Yanhui Che
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Zhe Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Congcong Cui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Guangxin Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Jiaqi Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Hongbo Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Hong Ao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, 150040, China.
| | - Huihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
31
|
Luo J, Tang Y, Chu Z, Peng Y, Chen J, Yu H, Shi C, Jafar J, Chen R, Tang Y, Lu Y, Ye Z, Li Y, Ouyang B. SlZF3 regulates tomato plant height by directly repressing SlGA20ox4 in the gibberellic acid biosynthesis pathway. HORTICULTURE RESEARCH 2023; 10:uhad025. [PMID: 37090098 PMCID: PMC10116951 DOI: 10.1093/hr/uhad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/15/2023] [Indexed: 05/03/2023]
Abstract
Plant height is an important target trait for crop genetic improvement. Our previous work has identified a salt-tolerant C2H2 zinc finger, SlZF3, and its overexpression lines also showed a semi-dwarf phenotype, but the molecular mechanism remains to be elucidated. Here, we characterized the dwarf phenotype in detail. The dwarfism is caused by a decrease in stem internode cell elongation and deficiency of bioactive gibberellic acids (GAs), and can be rescued by exogenous GA3 treatment. Gene expression assays detected reduced expression of genes in the GA biosynthesis pathway of the overexpression lines, including SlGA20ox4. Several protein-DNA interaction methods confirmed that SlZF3 can directly bind to the SlGA20ox4 promoter and inhibit its expression, and the interaction can also occur for SlKS and SlKO. Overexpression of SlGA20ox4 in the SlZF3-overexpressing line can recover the dwarf phenotype. Therefore, SlZF3 regulates plant height by directly repressing genes in the tomato GA biosynthesis pathway.
Collapse
Affiliation(s)
- Jinying Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunfei Tang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuannan Chu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxin Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawei Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiyang Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunmei Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jahanzeb Jafar
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaping Tang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongen Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Li
- Corresponding authors. E-mail: ;
| | | |
Collapse
|
32
|
Feng Y, Zhang S, Li J, Pei R, Tian L, Qi J, Azam M, Agyenim-Boateng KG, Shaibu AS, Liu Y, Zhu Z, Li B, Sun J. Dual-function C2H2-type zinc-finger transcription factor GmZFP7 contributes to isoflavone accumulation in soybean. THE NEW PHYTOLOGIST 2023; 237:1794-1809. [PMID: 36352516 DOI: 10.1111/nph.18610] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Isoflavones are a class of secondary metabolites produced by legumes and play important roles in human health and plant stress tolerance. The C2H2 zinc-finger transcription factor (TF) functions in plant stress tolerance, but little is known about its function in isoflavone regulation in soybean (Glycine max). Here, we report a C2H2 zinc-finger TF gene, GmZFP7, which regulates isoflavone accumulation in soybean. Overexpressing GmZFP7 increased the isoflavone concentration in both transgenic hairy roots and plants. By contrast, silencing GmZFP7 expression significantly reduced isoflavone levels. Metabolomic and qRT-PCR analysis revealed that GmZFP7 can increase the flux of the phenylpropanoid pathway. Furthermore, dual-luciferase and electrophoretic mobility shift assays showed that GmZFP7 regulates isoflavone accumulation by influencing the expression of Isoflavone synthase 2 (GmIFS2) and Flavanone 3 β-hydroxylase 1 (GmF3H1). In this study, we demonstrate that GmZFP7 contributes to isoflavone accumulation by regulating the expression of the gateway enzymes (GmIFS2 and GmF3H1) of competing phenylpropanoid pathway branches to direct the metabolic flux into isoflavone. A haplotype analysis indicated that important natural variations were present in GmZFP7 promoters, with P-Hap1 and P-Hap3 being the elite haplotypes. Our findings provide insight into how GmZFP7 regulates the phenylpropanoid pathway and enhances soybean isoflavone content.
Collapse
Affiliation(s)
- Yue Feng
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Shengrui Zhang
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jing Li
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Ruili Pei
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Ling Tian
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jie Qi
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Muhammad Azam
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Kwadwo Gyapong Agyenim-Boateng
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Abdulwahab S Shaibu
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yitian Liu
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zuofeng Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Bin Li
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Junming Sun
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
33
|
Jiang H, Zhou C, Ma J, Qu S, Liu F, Sun H, Zhao X, Han Y. Weighted gene co-expression network analysis identifies genes related to HG Type 0 resistance and verification of hub gene GmHg1. FRONTIERS IN PLANT SCIENCE 2023; 13:1118503. [PMID: 36777536 PMCID: PMC9911859 DOI: 10.3389/fpls.2022.1118503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The soybean cyst nematode (SCN) is a major disease in soybean production thatseriously affects soybean yield. At present, there are no studies on weighted geneco-expression network analysis (WGCNA) related to SCN resistance. METHODS Here, transcriptome data from 36 soybean roots under SCN HG Type 0 (race 3) stresswere used in WGCNA to identify significant modules. RESULTS AND DISCUSSION A total of 10,000 differentially expressed genes and 21 modules were identified, of which the module most related to SCN was turquoise. In addition, the hub gene GmHg1 with high connectivity was selected, and its function was verified. GmHg1 encodes serine/threonine protein kinase (PK), and the expression of GmHg1 in SCN-resistant cultivars ('Dongnong L-204') and SCN-susceptible cultivars ('Heinong 37') increased significantly after HG Type 0 stress. Soybean plants transformed with GmHg1-OX had significantly increased SCN resistance. In contrast, the GmHg1-RNAi transgenic soybean plants significantly reduced SCN resistance. In transgenic materials, the expression patterns of 11 genes with the same expression trend as the GmHg1 gene in the 'turquoise module' were analyzed. Analysis showed that 11genes were co-expressed with GmHg1, which may be involved in the process of soybean resistance to SCN. Our work provides a new direction for studying the Molecular mechanism of soybean resistance to SCN.
Collapse
Affiliation(s)
- Haipeng Jiang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Changjun Zhou
- Soybean Molecular Breeding Faculty Daqing Branch, Heilongjiang Academy of Agricultrual Science, Daqing, China
| | - Jinglin Ma
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Shuo Qu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Fang Liu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Haowen Sun
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| |
Collapse
|
34
|
Moulick D, Bhutia KL, Sarkar S, Roy A, Mishra UN, Pramanick B, Maitra S, Shankar T, Hazra S, Skalicky M, Brestic M, Barek V, Hossain A. The intertwining of Zn-finger motifs and abiotic stress tolerance in plants: Current status and future prospects. FRONTIERS IN PLANT SCIENCE 2023; 13:1083960. [PMID: 36684752 PMCID: PMC9846276 DOI: 10.3389/fpls.2022.1083960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Environmental stresses such as drought, high salinity, and low temperature can adversely modulate the field crop's ability by altering the morphological, physiological, and biochemical processes of the plants. It is estimated that about 50% + of the productivity of several crops is limited due to various types of abiotic stresses either presence alone or in combination (s). However, there are two ways plants can survive against these abiotic stresses; a) through management practices and b) through adaptive mechanisms to tolerate plants. These adaptive mechanisms of tolerant plants are mostly linked to their signalling transduction pathway, triggering the action of plant transcription factors and controlling the expression of various stress-regulated genes. In recent times, several studies found that Zn-finger motifs have a significant function during abiotic stress response in plants. In the first report, a wide range of Zn-binding motifs has been recognized and termed Zn-fingers. Since the zinc finger motifs regulate the function of stress-responsive genes. The Zn-finger was first reported as a repeated Zn-binding motif, comprising conserved cysteine (Cys) and histidine (His) ligands, in Xenopus laevis oocytes as a transcription factor (TF) IIIA (or TFIIIA). In the proteins where Zn2+ is mainly attached to amino acid residues and thus espousing a tetrahedral coordination geometry. The physical nature of Zn-proteins, defining the attraction of Zn-proteins for Zn2+, is crucial for having an in-depth knowledge of how a Zn2+ facilitates their characteristic function and how proteins control its mobility (intra and intercellular) as well as cellular availability. The current review summarized the concept, importance and mechanisms of Zn-finger motifs during abiotic stress response in plants.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India
| | - Karma Landup Bhutia
- Department of Agricultural Biotechnology & Molecular Breeding, College of Basic Science and Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
| | - Sukamal Sarkar
- School of Agriculture and Rural Development, Faculty Centre for Integrated Rural Development and Management (IRDM), Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Anirban Roy
- School of Agriculture and Rural Development, Faculty Centre for Integrated Rural Development and Management (IRDM), Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Udit Nandan Mishra
- Department of Crop Physiology and Biochemistry, Sri University, Cuttack, Odisha, India
| | - Biswajit Pramanick
- Department of Agronomy, Dr. Rajendra Prasad Central Agricultural University, PUSA, Samastipur, Bihar, India
- Department of Agronomy and Horticulture, University of Nebraska Lincoln, Scottsbluff, NE, United States
| | - Sagar Maitra
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
| | - Tanmoy Shankar
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
| | - Swati Hazra
- School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Slovakia
| | - Viliam Barek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Akbar Hossain
- Division of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
35
|
Analysis of the C2H2 Gene Family in Maize ( Zea mays L.) under Cold Stress: Identification and Expression. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010122. [PMID: 36676071 PMCID: PMC9863836 DOI: 10.3390/life13010122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
The C2H2 zinc finger protein is one of the most common zinc finger proteins, widely exists in eukaryotes, and plays an important role in plant growth and development, as well as in salt, low-temperature, and drought stress and other abiotic stress responses. In this study, C2H2 members were identified and analyzed from the low-temperature tolerant transcriptome sequencing data of maize seedlings. The chromosome position, physical and chemical properties, evolution analysis, gene structure, conservative motifs, promoter cis elements and collinearity relationships of gene the family members were analyzed using bioinformatics, and the expression of the ZmC2H2 gene family under cold stress was analyzed by fluorescent quantitative PCR. The results showed that 150 members of the C2H2 zinc finger protein family were identified, and their protein lengths ranged from 102 to 1223 bp. The maximum molecular weight of the ZmC2H2s was 135,196.34, and the minimum was 10,823.86. The isoelectric point of the ZmC2H2s was between 33.21 and 94.1, and the aliphatic index was 42.07-87.62. The promoter cis element analysis showed that the ZmC2H2 family contains many light-response elements, plant hormone-response elements, and stress-response elements. The analysis of the transcriptome data showed that most of the ZmC2H2 genes responded to cold stress, and most of the ZmC2H2 genes were highly expressed in cold-tolerant materials and lowly expressed in cold-sensitive materials. The real-time quantitative PCR (qRT-PCR) analysis showed that ZmC2H2-69, ZmC2H2-130, and ZmC2H2-76 were significantly upregulated, and that ZmC2H2-149, ZmC2H2-33, and ZmC2H2-38 were significantly downregulated. It is hypothesized that these genes, which function in different metabolic pathways, may play a key role in the maize cold response. These genes could be further studied as candidate genes. This study provides a theoretical reference for further study on the function analysis of the maize C2H2 gene family.
Collapse
|
36
|
Dong R, Luo B, Tang L, Wang QX, Lu ZJ, Chen C, Yang F, Wang S, He J. A comparative transcriptomic analysis reveals a coordinated mechanism activated in response to cold acclimation in common vetch (Vicia sativa L.). BMC Genomics 2022; 23:814. [PMID: 36482290 PMCID: PMC9733113 DOI: 10.1186/s12864-022-09039-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Due to its strong abiotic stress tolerance, common vetch is widely cultivated as a green manure and forage crop in grass and crop rotation systems. The comprehensive molecular mechanisms activated in common vetch during cold adaptation remain unknown. RESULTS We investigated physiological responses and transcriptome profiles of cold-sensitive (Lanjian No. 1) and cold-tolerant (Lanjian No. 3) cultivars during cold acclimation to explore the molecular mechanisms of cold acclimation. In total, 2681 and 2352 differentially expressed genes (DEGs) were identified in Lanjian No. 1 and Lanjian No. 3, respectively; 7532 DEGs were identified in both lines. DEGs involved in "plant hormone signal transduction" were significantly enriched during cold treatment, and 115 DEGs involved in cold-processed hormone signal transduction were identified. Common vetch increased the level of indoleacetic acid (IAA) by upregulating the transcriptional regulator Aux/IAA and downregulating GH3, endowing it with stronger cold tolerance. An auxin-related DEG was overexpressed in yeast and shown to possess a biological function conferring cold tolerance. CONCLUSION This study identifies specific genes involved in Ca2+ signaling, redox regulation, circadian clock, plant hormones, and transcription factors whose transcriptional differentiation during cold acclimation may improve cold tolerance and contributes to the understanding of common and unique molecular mechanisms of cold acclimation in common vetch. The candidate genes identified here also provide valuable resources for further functional genomic and breeding studies.
Collapse
Affiliation(s)
- Rui Dong
- grid.443382.a0000 0004 1804 268XDepartment of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China ,grid.443382.a0000 0004 1804 268XKey Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Ben Luo
- grid.443382.a0000 0004 1804 268XDepartment of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China ,grid.443382.a0000 0004 1804 268XKey Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Li Tang
- grid.428986.90000 0001 0373 6302School of Tropical Crops, Hainan University, Haikou, China
| | - Qiu-xia Wang
- grid.32566.340000 0000 8571 0482State Key Laboratory of Grassland Agro-ecosystems, China, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhong-Jie Lu
- grid.443382.a0000 0004 1804 268XDepartment of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China ,grid.443382.a0000 0004 1804 268XKey Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Chao Chen
- grid.443382.a0000 0004 1804 268XDepartment of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China ,grid.443382.a0000 0004 1804 268XKey Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Feng Yang
- Grassland Technology Experiment and Extension Station, Guiyang, China
| | - Song Wang
- Grassland Technology Experiment and Extension Station, Guiyang, China
| | - Jin He
- grid.443382.a0000 0004 1804 268XCollege of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
37
|
Bao C, Qin G, Cao F, He J, Shen X, Chen P, Niu C, Zhang D, Ren T, Zhi F, Ma L, Ma F, Guan Q. MdZAT5 regulates drought tolerance via mediating accumulation of drought-responsive miRNAs and mRNAs in apple. THE NEW PHYTOLOGIST 2022; 236:2131-2150. [PMID: 36161284 DOI: 10.1111/nph.18512] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Drought limits apple yield and fruit quality. However, the molecular mechanism of apple in response to drought is not well known. Here, we report a Cys2/His2 (C2H2)-type zinc-finger protein, MdZAT5, that positively regulates apple drought tolerance by regulating drought-responsive RNAs and microRNAs (miRNAs). DNA affinity purification and sequencing and yeast-one hybrid analysis identified the binding motifs of MdZAT5, T/ACACT/AC/A/G. Chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) and electrophoretic mobility shift assays (EMSAs) showed that MdZAT5 directly binds to the promoters of the drought-responsive genes including MdRHA2a, MdLEA14, MdTPX1, and MdCAT3, and activates their expression under drought stress. MdZAT5 interacts with and directly targets HYPONASTIC LEAVES1 (MdHYL1). MdZAT5 may facilitate the interaction of MdHYL1 with pri-miRNAs or MdDCL1 by activating MdHYL1 expression, thereby regulating the biogenesis of drought-responsive miRNAs. Genetic dissection showed that MdHYL1 is essential for MdZAT5-mediated drought tolerance and miRNA biogenesis. In addition, ChIP-qPCR and EMSA revealed that MdZAT5 binds directly to the promoters of some MIR genes including Mdm-miR171i and Mdm-miR172c, and modulates their transcription. Taken together, our findings improve our understanding of the molecular mechanisms of drought response in apple and provide a candidate gene for the breeding of drought-tolerant cultivars.
Collapse
Affiliation(s)
- Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gege Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fuguo Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianyu Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lei Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
38
|
Identification and Analysis of Stress-Associated Proteins (SAPs) Protein Family and Drought Tolerance of ZmSAP8 in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms232214109. [PMID: 36430587 PMCID: PMC9696418 DOI: 10.3390/ijms232214109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Stress-associated proteins (SAPs), a class of A20/AN1 zinc finger proteins, play vital roles in plant stress response. However, investigation of SAPs in maize has been very limited. Herein, to better trace the evolutionary history of SAPs in maize and plants, 415 SAPs were identified in 33 plant species and four species of other kingdoms. Moreover, gene duplication mode exploration showed whole genome duplication contributed largely to SAP gene expansion in angiosperms. Phylogeny reconstruction was performed with all identified SAPs by the maximum likelihood (ML) method and the SAPs were divided into five clades. SAPs within the same clades showed conserved domain composition. Focusing on maize, nine ZmSAPs were identified. Further promoter cis-elements and stress-induced expression pattern analysis of ZmSAPs indicated that ZmSAP8 was a promising candidate in response to drought stress, which was the only AN1-AN1-C2H2-C2H2 type SAP in maize and belonged to clade I. Additionally, ZmSAP8 was located in the nucleus and had no transactivation activity in yeast. Overexpressing ZmSAP8 enhanced the tolerance to drought stress in Arabidopsis thaliana, with higher seed germination and longer root length. Our results should benefit the further functional characterization of ZmSAPs.
Collapse
|
39
|
Genome-Wide Identification of Strawberry C2H2-ZFP C1-2i Subclass and the Potential Function of FaZAT10 in Abiotic Stress. Int J Mol Sci 2022; 23:ijms232113079. [PMID: 36361867 PMCID: PMC9654774 DOI: 10.3390/ijms232113079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
C2H2-type zinc finger proteins (C2H2-ZFPs) play a key role in various plant biological processes and responses to environmental stresses. In Arabidopsisthaliana, C2H2-ZFP members with two zinc finger domains have been well-characterized in response to abiotic stresses. To date, the functions of these genes in strawberries are still uncharacterized. Here, 126 C2H2-ZFPs in cultivated strawberry were firstly identified using the recently sequenced Fragaria × ananassa genome. Among these C2H2-ZFPs, 46 members containing two zinc finger domains in cultivated strawberry were further identified as the C1-2i subclass. These genes were unevenly distributed on 21 chromosomes and classified into five groups according to the phylogenetic relationship, with similar physicochemical properties and motif compositions in the same group. Analyses of conserved domains and gene structures indicated the evolutionary conservation of the C1-2i subclass. A Ka/Ks analysis indicated that the C1-2i members were subjected to purifying selection during evolution. Furthermore, FaZAT10, a typical C2H2-ZFP, was isolated. FaZAT10 was expressed the highest in roots, and it was induced by drought, salt, low-temperature, ABA, and MeJA treatments. It was localized in the nucleus and showed no transactivation activity in yeast cells. Overall, these results provide useful information for enriching the analysis of the ZFPs gene family in strawberry, and they provide support for revealing the mechanism of FaZAT10 in the regulatory network of abiotic stress.
Collapse
|
40
|
Biotechnological Interventions in Tomato ( Solanum lycopersicum) for Drought Stress Tolerance: Achievements and Future Prospects. BIOTECH (BASEL (SWITZERLAND)) 2022; 11:biotech11040048. [PMID: 36278560 PMCID: PMC9624322 DOI: 10.3390/biotech11040048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Tomato production is severely affected by abiotic stresses (drought, flood, heat, and salt) and causes approximately 70% loss in yield depending on severity and duration of the stress. Drought is the most destructive abiotic stress and tomato is very sensitive to the drought stress, as cultivated tomato lack novel gene(s) for drought stress tolerance. Only 20% of agricultural land worldwide is irrigated, and only 14.51% of that is well-irrigated, while the rest is rain fed. This scenario makes drought very frequent, which restricts the genetically predetermined yield. Primarily, drought disturbs tomato plant physiology by altering plant–water relation and reactive oxygen species (ROS) generation. Many wild tomato species have drought tolerance gene(s); however, their exploitation is very difficult because of high genetic distance and pre- and post-transcriptional barriers for embryo development. To overcome these issues, biotechnological methods, including transgenic technology and CRISPR-Cas, are used to enhance drought tolerance in tomato. Transgenic technology permitted the exploitation of non-host gene/s. On the other hand, CRISPR-Cas9 technology facilitated the editing of host tomato gene(s) for drought stress tolerance. The present review provides updated information on biotechnological intervention in tomato for drought stress management and sustainable agriculture.
Collapse
|
41
|
Genome-Wide Identification of C2H2 ZFPs and Functional Analysis of BRZAT12 under Low-Temperature Stress in Winter Rapeseed (Brassica rapa). Int J Mol Sci 2022; 23:ijms232012218. [PMID: 36293086 PMCID: PMC9603636 DOI: 10.3390/ijms232012218] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Zinc-finger protein (ZFP) transcription factors are among the largest families of transcription factors in plants. They participate in various biological processes such as apoptosis, autophagy, and stemness maintenance and play important roles in regulating plant growth and development and the response to stress. To elucidate the functions of ZFP genes in the low-temperature response of winter (Brassica rapa L.) B. rapa, this study identified 141 members of the C2H2 ZFP gene family from B. rapa, which are heterogeneously distributed on 10 chromosomes and have multiple cis-acting elements related to hormone regulation and abiotic stress of adversity. Most of the genes in this family contain only one CDS, and genes distributed in the same evolutionary branch share mostly the same motifs and are highly conserved in the evolution of cruciferous species. The genes were significantly upregulated in the roots and growth cones of ‘Longyou-7’, indicating that they play a role in the stress-response process of winter B. rapa. The expression level of the Bra002528 gene was higher in the strongly cold-resistant varieties than in the weakly cold-resistant varieties after low-temperature stress. The survival rate and BrZAT12 gene expression of trans-BrZAT12 Arabidopsis thaliana (Arabidopsis) were significantly higher than those of the wild-type plants at low temperature, and the enzyme activities in vivo were higher than those of the wild-type plants, indicating that the BrZAT12 gene could improve the cold resistance of winter B. rapa. BrZAT12 expression and superoxide dismutase and ascorbate peroxidase enzyme activities were upregulated in winter B. rapa after exogenous ABA treatment. BrZAT12 expression and enzyme activities decreased after the PD98059 treatment, and BrZAT12 expression and enzyme activities were higher than in the PD98059 treatment but lower than in the control after both treatments together. It is speculated that BrZAT12 plays a role in the ABA signaling process in which MAPKK is involved. This study provides a theoretical basis for the resolution of cold-resistance mechanisms in strong winter B. rapa.
Collapse
|
42
|
Li X, Cao X, Li J, Niu Q, Mo Y, Xiao L. Genome-wide characterization of C2H2 zinc-finger gene family provides insight into the mechanisms and evolution of the dehydration-rehydration responses in Physcomitrium and Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:953459. [PMID: 36262662 PMCID: PMC9574186 DOI: 10.3389/fpls.2022.953459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Dehydration tolerance is a vital factor for land plant evolution and world agricultural production. Numerous studies enlightened that the plant-specific C2H2-type zinc-finger proteins (C2H2-ZFPs) as master regulators played pivotal roles in the abiotic stress responses of plants. However, a comprehensive understanding of the evolution of C2H2-ZFPs in terrestrial plants and its regulatory mechanism in dehydration and rehydration response remains a mystery. In this study, the genome-wide identification of C2H2-ZFP genes revealed 549 homologs in the representatives of terrestrial plant lineages from liverwort to angiosperms. Based on the characteristics of the conserved C2H2-ZF domains, four major C2H2-ZF types (M-, Z-, Q-, and D-type) were identified in the C2H2-ZFPs, with the dominants of M-type in all selected species and followed by Z-type in non-seed plants and Q-type in seed plants, respectively. Phylogenetic analyses of the identified C2H2-ZFPs supported four major groups in the land plant representatives, among which the members from the desiccation-tolerant Physcomitrium patens and the dehydration-sensitive Arabidopsis thaliana displayed different topological relationships in the phylogenies reconstructed for a single species. C2H2-ZFPs clustered in the same subclades shared similar features in their conserved domains and gene structures. Approximately, 81% of the C2H2-ZFP promoters of all 549 identified C2H2-ZFPs harbored the conserved ABA-responsive elements (ABREs) and/or dehydration-responsive elements (DREs). Comparative transcriptomic analyses showed that 50 PpZFPs and 56 AtZFPs significantly changed their transcripts abundance. Interestingly, most of the dehydration- and rehydration-responsive PpZPFs and AtZFPs had been predicted to contain the ABRE and DRE elements in their promoter regions and with over half of which phylogenetically belonging to group III. The differences in the expression patterns of C2H2-ZFPs in responses to dehydration and rehydration between P. patens and A. thaliana reflected their different strategies to adapt to dehydration. The identified candidate PpZFPs were specifically induced by moderate dehydration and reached the peak transcript abundance in severe dehydration. Our study lays the foundations for further functional investigation of C2H2-ZFPs in dehydration responses from an evolutionary perspective in land plants. The findings will provide us with genetic resources and potential targets for drought tolerance breeding in crops and beyond.
Collapse
|
43
|
Godbole RC, Pable AA, Singh S, Barvkar VT. Interplay of transcription factors orchestrating the biosynthesis of plant alkaloids. 3 Biotech 2022; 12:250. [PMID: 36051988 PMCID: PMC9424429 DOI: 10.1007/s13205-022-03316-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Plants produce a range of secondary metabolites primarily as defence molecules. A plant has to invest considerable energy to synthesise alkaloids, and sometimes they are even toxic to themselves. Hence, the biosynthesis of alkaloids is a spatiotemporally regulated process under quantitative feedback regulation which is accomplished by the signal reception, transcriptional/translational regulation, transport, storage and accumulation. The transcription factors (TFs) initiate the biosynthesis of alkaloids after appropriate cues. The present study recapitulates last decade understanding of the role of TFs in alkaloid biosynthesis. The present review discusses TF families, viz. AP2/ERF, bHLH, WRKY, MYB involved in the biosynthesis of various types of alkaloids. It also highlights the role of the jasmonic acid cascade and post-translational modifications of TF proteins. A thorough understanding of TFs will help us to decide a strategy to facilitate successful pathway manipulation and in vitro production.
Collapse
Affiliation(s)
- Rucha C. Godbole
- Department of Botany, Savitribai Phule Pune University, Pune, 411007 India
| | - Anupama A. Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007 India
| | - Sudhir Singh
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre (BARC), Mumbai, 400085 India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
| | - Vitthal T. Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, 411007 India
| |
Collapse
|
44
|
Genome-Wide Identification and Expression Analysis of the Zinc Finger Protein Gene Subfamilies under Drought Stress in Triticum aestivum. PLANTS 2022; 11:plants11192511. [PMID: 36235376 PMCID: PMC9572532 DOI: 10.3390/plants11192511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 12/05/2022]
Abstract
The zinc finger protein (ZFP) family is one of plants’ most diverse family of transcription factors. These proteins with finger-like structural domains have been shown to play a critical role in plant responses to abiotic stresses such as drought. This study aimed to systematically characterize Triticum aestivum ZFPs (TaZFPs) and understand their roles under drought stress. A total of 9 TaC2H2, 38 TaC3HC4, 79 TaCCCH, and 143 TaPHD were identified, which were divided into 4, 7, 12, and 14 distinct subgroups based on their phylogenetic relationships, respectively. Segmental duplication dominated the evolution of four subfamilies and made important contributions to the large-scale amplification of gene families. Syntenic relationships, gene duplications, and Ka/Ks result consistently indicate a potential strong purifying selection on TaZFPs. Additionally, TaZFPs have various abiotic stress-associated cis-acting regulatory elements and have tissue-specific expression patterns showing different responses to drought and heat stress. Therefore, these genes may play multiple functions in plant growth and stress resistance responses. This is the first comprehensive genome-wide analysis of ZFP gene families in T. aestivum to elucidate the basis of their function and resistance mechanisms, providing a reference for precise manipulation of genetic engineering for drought resistance in T. aestivum.
Collapse
|
45
|
Transcriptome Analysis Reveals the Stress Tolerance to and Accumulation Mechanisms of Cadmium in Paspalum vaginatum Swartz. PLANTS 2022; 11:plants11162078. [PMID: 36015382 PMCID: PMC9414793 DOI: 10.3390/plants11162078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 01/08/2023]
Abstract
Cadmium (Cd) is a non-essential heavy metal and high concentrations in plants causes toxicity of their edible parts and acts as a carcinogen to humans and animals. Paspalum vaginatum is widely cultivating as turfgrass due to its higher abiotic stress tolerance ability. However, there is no clear evidence to elucidate the mechanism for heavy metal tolerance, including Cd. In this study, an RNA sequencing technique was employed to investigate the key genes associated with Cd stress tolerance and accumulation in P. vaginatum. The results revealed that antioxidant enzyme activities catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and glutathione S-transferase GST) were significantly higher at 24 h than in other treatments. A total of 6820 (4457/2363, up-/down-regulated), 14,038 (9894/4144, up-/down-regulated) and 17,327 (7956/9371, up-/down-regulated) differentially expressed genes (DEGs) between the Cd1 vs. Cd0, Cd4 vs. Cd0, and Cd24 vs. Cd0, respectively, were identified. The GO analysis and the KEGG pathway enrichment analysis showed that DEGs participated in many significant pathways in response to Cd stress. The response to abiotic stimulus, the metal transport mechanism, glutathione metabolism, and the consistency of transcription factor activity were among the most enriched pathways. The validation of gene expression by qRT-PCR results showed that heavy metal transporters and signaling response genes were significantly enriched with increasing sampling intervals, presenting consistency to the transcriptome data. Furthermore, over-expression of PvSnRK2.7 can positively regulate Cd-tolerance in Arabidopsis. In conclusion, our results provided a novel molecular mechanism of the Cd stress tolerance of P. vaginatum and will lay the foundation for target breeding of Cd tolerance in turfgrass.
Collapse
|
46
|
Puentes-Romero AC, González SA, González-Villanueva E, Figueroa CR, Ruiz-Lara S. AtZAT4, a C 2H 2-Type Zinc Finger Transcription Factor from Arabidopsis thaliana, Is Involved in Pollen and Seed Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11151974. [PMID: 35956451 PMCID: PMC9370812 DOI: 10.3390/plants11151974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 06/01/2023]
Abstract
Pollen plays an essential role in plant fertility by delivering the male gametes to the embryo sac before double fertilization. In several plant species, including Arabidopsis, C2H2-type zinc-finger transcription factors (TFs) have been involved in different stages of pollen development and maturation. ZINC FINGER of Arabidopsis thaliana 4 (AtZAT4) is homologous to such TFs and subcellular localization analysis has revealed that AtZAT4 is located in the nucleus. Moreover, analysis of AtZAT4 expression revealed strong levels of it in flowers and siliques, suggesting a role of the encoded protein in the regulation of genes that are associated with reproductive development. We characterized a T-DNA insertional heterozygous mutant Atzat4 (+/−). The relative gene expression analysis of Atzat4 (+/−) showed significant transcript reductions in flowers and siliques. Furthermore, the Atzat4 (+/−) phenotypic characterization revealed defects in the male germline, showing a reduction in pollen tube germination and elongation. Atzat4 (+/−) presented reduced fertility, characterized by a smaller silique size compared to the wild type (WT), and a lower number of seeds per silique. Additionally, seeds displayed lower viability and germination. Altogether, our data suggest a role for AtZAT4 in fertilization and seed viability, through the regulation of gene expression associated with reproductive development.
Collapse
Affiliation(s)
- A. Carolina Puentes-Romero
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8340755, Chile;
| | - Sebastián A. González
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
| | - Enrique González-Villanueva
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
| | - Carlos R. Figueroa
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8340755, Chile;
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile
| | - Simón Ruiz-Lara
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8340755, Chile;
| |
Collapse
|
47
|
Liu L, Lyu X, Pan Z, Wang Q, Mu W, Benny U, Rollins JA, Pan H. The C2H2 Transcription Factor SsZFH1 Regulates the Size, Number, and Development of Apothecia in Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2022; 112:1476-1485. [PMID: 35021860 DOI: 10.1094/phyto-09-21-0378-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sclerotinia sclerotiorum is a notorious phytopathogenic Ascomycota fungus with a host range of >600 plant species worldwide. This homothallic Leotiomycetes species reproduces sexually through a multicellular apothecium that produces and releases ascospores. These ascospores serve as the primary inoculum source for disease initiation in the majority of S. sclerotiorum disease cycles. The regulation of apothecium development for this pathogen and other apothecium-producing fungi remains largely unknown. Here, we report that a C2H2 transcription factor, SsZFH1 (zinc finger homologous protein), is necessary for the proper development and maturation of sclerotia and apothecia in S. sclerotiorum and is required for the normal growth rate of hyphae. Furthermore, ΔSszfh1 strains exhibit decreased H2O2 accumulation in hyphae, increased melanin deposition, and enhanced tolerance to H2O2 in the process of vegetative growth and sclerotia formation. Infection assays on common bean leaves, with thin cuticles, and soybean and tomato leaves, with thick cuticles, suggest that the deletion of Sszfh1 slows the mycelial growth rate, which in turn affects the expansion of leaf lesions. Collectively, our results provide novel insights into a major fungal factor mediating maturation of apothecia with additional effects on hyphae and sclerotia development.
Collapse
Affiliation(s)
- Ling Liu
- College of Plant Sciences, Jilin University, Changchun 130062, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xingming Lyu
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Zequn Pan
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Qiaochu Wang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Wenhui Mu
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Ulla Benny
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
48
|
Yang L, Bu S, Zhao S, Wang N, Xiao J, He F, Gao X. Transcriptome and physiological analysis of increase in drought stress tolerance by melatonin in tomato. PLoS One 2022; 17:e0267594. [PMID: 35580092 PMCID: PMC9113596 DOI: 10.1371/journal.pone.0267594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/12/2022] [Indexed: 01/09/2023] Open
Abstract
Drought stress seriously affects tomato growth, yield and quality. Previous reports have pointed out that melatonin (MT) can alleviate drought stress damage to tomato. To better understand the possible physiological and molecular mechanisms, chlorophyll fluorescence parameters and leaf transcriptome profiles were analyzed in the "Micro Tom" tomato cultivar with or without melatonin irrigation under normal and drought conditions. Polyethylene glycol 6000 (PEG6000) simulated continuous drought treatment reduced plant height, but melatonin treatment improved plant growth rate. Physiological parameter measurements revealed that the drought-induced decreases in maximum efficiency of photosystem II (PSII) photochemistry, the effective quantum yield of PSII, electron transfer rate, and photochemical quenching value caused by PEG6000 treatment were alleviated by melatonin treatment, which suggests a protective effect of melatonin on PSII. Comparative transcriptome analysis identified 447, 3982, 4526 and 3258 differentially expressed genes (DEGs) in the comparative groups plus-melatonin vs. minus-melatonin (no drought), drought vs. no drought (minus-melatonin), drought vs. no drought (melatonin) and plus-melatonin vs. minus-melatonin (drought), respectively. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed that DEGs in the four comparative groups were involved in multiple metabolic processes and closely related to hormone signal transduction and transcription factors. Transcriptome data revealed that melatonin changed the expression pattern of most hormone signal transduction related DEGs induced by drought, and improved plant drought resistance by down-regulating the expression of linoleic acid catabolic enzyme genes. These results provide new insights into a probable mechanism of the melatonin-induced protection of photosynthesis and enhancement of drought tolerance in tomato plants.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, People’s Republic of China,* E-mail: (LY); (XU)
| | - Sijia Bu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, People’s Republic of China
| | - Shengxue Zhao
- Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, People’s Republic of China
| | - Ning Wang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, People’s Republic of China
| | - Jiaxin Xiao
- Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, People’s Republic of China
| | - Feng He
- Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, People’s Republic of China
| | - Xuan Gao
- Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, People’s Republic of China,* E-mail: (LY); (XU)
| |
Collapse
|
49
|
Deng YA, Li L, Peng Q, Feng LF, Yang JF, Zhan RT, Ma DM. Isolation and characterization of AaZFP1, a C2H2 zinc finger protein that regulates the AaIPPI1 gene involved in artemisinin biosynthesis in Artemisia annua. PLANTA 2022; 255:122. [PMID: 35554686 DOI: 10.1007/s00425-022-03892-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
AaZFP1, a C2H2-type transcription factor, was found to bind the AGT-N1-10-AGT box of AaIPPI1pro and activate the expression of AaIPPI1 involved in artemisinin biosynthesis. Artemisinin, an endoperoxide sesquiterpene lactone, is a widely used antimalarial drug isolated from Artemisia annua L. Isopentenyl pyrophosphate isomerase (AaIPPI1) catalyzes the interconversion of isopentenyl diphosphate and dimethylallyl diphosphate and is the key gene involved in the biosynthesis of artemisinin. However, the AaIPPI1 gene regulation network remains largely unknown. Here, we isolated the AaIPPI1 promoter (AaIPPI1pro) and predicted that it contains cis-elements involved in stress responses, including the TGACG motif (a methyl jasmonate-responsive element), GARE motif (a gibberellin-responsive element), ABRE (an abscisic acid-responsive element), TC-rich repeats (a stress-responsive element), and the AGT-N1-10-AGT box, which is the binding site of Cys/His2 zinc finger protein (C2H2 ZFP). The C2H2 ZFP gene AaZFP1 was discovered by screening a cDNA library using AaIPPI1pro as bait in yeast. AaZFP1 contains two conserved C2H2 regions, a nuclear localization domain (B box), a Leu-rich domain (L box), and a conserved DLN sequence (DLN box) close to its C terminus. A subcellular localization assay indicated that AaZFP1 protein is localized in the nucleus and cytoplasm. An electrophoretic mobility shift assay demonstrated that AaZFP1 binds to the AGT-N1-10-AGT box of AaIPPI1pro. A dual-luciferase assay indicated that AaZFP1 enhanced the promoter activity of AaIPPI1 in vivo. Transient overexpression of AaZFP1 in A. annua increased the expression of AaIPPI1 and the content of artemisinin. Our data demonstrated that AaZFP1 functions as a transcriptional activator that regulates the expression of AaIPPI1 by directly binding to its promoter. The present study provides insights into the transcriptional regulation of genes involved in artemisinin biosynthesis in A. annua.
Collapse
Affiliation(s)
- Yin-Ai Deng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Li Li
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Qian Peng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Ling-Fang Feng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Jin-Fen Yang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Ruo-Ting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China.
| | - Dong-Ming Ma
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
50
|
Elucidation of drought tolerance potential of horsegram (Macrotyloma uniflorum Var.) germplasm using genome wide association studies. Gene 2022; 819:146241. [PMID: 35114281 DOI: 10.1016/j.gene.2022.146241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 11/22/2022]
Abstract
Horsegram [Macrotyloma uniflorum Lam (Verdc.)] is an undervalued and under studied legume though is a good source of proteins, carbohydrates and energy. Drought is an abiotic stress that effects plant development and ecosystem sustainability. Drought is expected to become more common in the future as a result of climate change. Horsegram is known to withstand drought, salt and heavy metal stress. In the past few decades application of genome-wide association studies (GWAS) to explore complex traits has risen in popularity. Considering the above mentioned factors drought tolerance ability of horsegram germplasm was investigated in 96 diverse horsegram lines with GWAS by exploring 20241 SNPs. Highest number of SNPs were found to be located in intergenic regions (43.8%) followed by intronic SNPs (21.6%). In this investigation three drought tolerant representing parameters were selected for QTL identification. In the present study, we identified different SNPs associated with QTLs governing these traits, which involved in drought stress response of horsegram plant. Seven QTLs were found to be associated with relative water content in horsegram whereas for root volume and root length 4 and 8 QTLs were found respectively. By using horsegram database of Kazusa DNA research institute Japan, we identify the genes present on these marker sites which were found to be involved in many biochemical pathways related to plant abiotic stresses. Many of these genes were previously characterized and few uncharacterized genes were also found controlling these traits. These findings will help in identifying new mechanisms responsible for plant drought stress tolerance in future.
Collapse
|