1
|
Ric-Varas P, Paniagua C, López-Casado G, Molina-Hidalgo FJ, Schückel J, Knox JP, Blanco-Portales R, Moyano E, Muñoz-Blanco J, Posé S, Matas AJ, Mercado JA. Suppressing the rhamnogalacturonan lyase gene FaRGLyase1 preserves RGI pectin degradation and enhances strawberry fruit firmness. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108294. [PMID: 38159547 DOI: 10.1016/j.plaphy.2023.108294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Plant rhamnogalacturonan lyases (RGLyases) cleave the backbone of rhamnogalacturonan I (RGI), the "hairy" pectin and polymer of the disaccharide rhamnose (Rha)-galacturonic acid (GalA) with arabinan, galactan or arabinogalactan side chains. It has been suggested that RGLyases could participate in remodeling cell walls during fruit softening, but clear evidence has not been reported. To investigate the role of RGLyases in strawberry softening, a genome-wide analysis of RGLyase genes in the genus Fragaria was performed. Seventeen genes encoding RGLyases with functional domains were identified in Fragaria × ananassa. FaRGLyase1 was the most expressed in the ripe receptacle of cv. Chandler. Transgenic strawberry plants expressing an RNAi sequence of FaRGLyase1 were obtained. Three transgenic lines yielded ripe fruits firmer than controls without other fruit quality parameters being significantly affected. The highest increase in firmness achieved was close to 32%. Cell walls were isolated from ripe fruits of two selected lines. The amount of water-soluble and chelated pectins was higher in transgenic lines than in the control. A carbohydrate microarray study showed a higher abundance of RGI epitopes in pectin fractions and in the cellulose-enriched fraction obtained from transgenic lines. Sixty-seven genes were differentially expressed in transgenic ripe fruits when compared with controls. These genes were involved in various physiological processes, including cell wall remodeling, ion homeostasis, lipid metabolism, protein degradation, stress response, and defense. The transcriptomic changes observed in FaRGLyase1 plants suggest that senescence was delayed in transgenic fruits.
Collapse
Affiliation(s)
- Pablo Ric-Varas
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, 29071, Málaga, Spain
| | - Candelas Paniagua
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, 29071, Málaga, Spain
| | - Gloria López-Casado
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, 29071, Málaga, Spain
| | | | - Julia Schückel
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Enriqueta Moyano
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Sara Posé
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, 29071, Málaga, Spain
| | - Antonio J Matas
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, 29071, Málaga, Spain
| | - José A Mercado
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, 29071, Málaga, Spain.
| |
Collapse
|
2
|
Review: Tertiary cell wall of plant fibers as a source of inspiration in material design. Carbohydr Polym 2022; 295:119849. [DOI: 10.1016/j.carbpol.2022.119849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
|
3
|
Rhamnogalacturonan Endolyase Family 4 Enzymes: An Update on Their Importance in the Fruit Ripening Process. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fruit ripening is a process that produces fruit with top sensory qualities that are ideal for consumption. For the plant, the final objective is seed dispersal. One of the fruit characteristics observed by consumers is texture, which is related to the ripening and softening of the fruit. Controlled and orchestrated events occur to regulate the expression of genes involved in disassembling and solubilizing the cell wall. Studies have shown that changes in pectins are closely related to the loss of firmness and fruit softening. For this reason, studying the mechanisms and enzymes that act on pectins could help to elucidate the molecular events that occur in the fruit. This paper provides a review of the enzyme rhamnogalacturonan endolyase (RGL; EC 4.2.2.23), which is responsible for cleavage of the pectin rhamnogalacturonan I (RGL-I) between rhamnose (Rha) and galacturonic acid (GalA) through the mechanism of β-elimination during fruit ripening. RGL promotes the loosening and weakening of the cell wall and exposes the backbone of the polysaccharide to the action of other enzymes. Investigations into RGL and its relationship with fruit ripening have reliably demonstrated that this enzyme has an important role in this process.
Collapse
|
4
|
Povkhova LV, Melnikova NV, Rozhmina TA, Novakovskiy RO, Pushkova EN, Dvorianinova EM, Zhuchenko AA, Kamionskaya AM, Krasnov GS, Dmitriev AA. Genes Associated with the Flax Plant Type (Oil or Fiber) Identified Based on Genome and Transcriptome Sequencing Data. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122616. [PMID: 34961087 PMCID: PMC8707629 DOI: 10.3390/plants10122616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
As a result of the breeding process, there are two main types of flax (Linum usitatissimum L.) plants. Linseed is used for obtaining seeds, while fiber flax is used for fiber production. We aimed to identify the genes associated with the flax plant type, which could be important for the formation of agronomically valuable traits. A search for polymorphisms was performed in genes involved in the biosynthesis of cell wall components, lignans, fatty acids, and ion transport based on genome sequencing data for 191 flax varieties. For 143 of the 424 studied genes (4CL, C3'H, C4H, CAD, CCR, CCoAOMT, COMT, F5H, HCT, PAL, CTL, BGAL, ABC, HMA, DIR, PLR, UGT, TUB, CESA, RGL, FAD, SAD, and ACT families), one or more polymorphisms had a strong correlation with the flax type. Based on the transcriptome sequencing data, we evaluated the expression levels for each flax type-associated gene in a wide range of tissues and suggested genes that are important for the formation of linseed or fiber flax traits. Such genes were probably subjected to the selection press and can determine not only the traits of seeds and stems but also the characteristics of the root system or resistance to stresses at a particular stage of development, which indirectly affects the ability of flax plants to produce seeds or fiber.
Collapse
Affiliation(s)
- Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Tatiana A. Rozhmina
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia; (T.A.R.); (A.A.Z.)
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - Alexander A. Zhuchenko
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia; (T.A.R.); (A.A.Z.)
- All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, 115598 Moscow, Russia
| | - Anastasia M. Kamionskaya
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| |
Collapse
|
5
|
Galinousky D, Mokshina N, Padvitski T, Ageeva M, Bogdan V, Kilchevsky A, Gorshkova T. The Toolbox for Fiber Flax Breeding: A Pipeline From Gene Expression to Fiber Quality. Front Genet 2020; 11:589881. [PMID: 33281880 PMCID: PMC7690631 DOI: 10.3389/fgene.2020.589881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/22/2020] [Indexed: 01/22/2023] Open
Abstract
The goal of any plant breeding program is to improve quality of a target crop. Crop quality is a comprehensive feature largely determined by biological background. To improve the quality parameters of crops grown for the production of fiber, a functional approach was used to search for genes suitable for the effective manipulation of technical fiber quality. A key step was to identify genes with tissue and stage-specific pattern of expression in the developing fibers. In the current study, we investigated the relationship between gene expression evaluated in bast fibers of developing flax plants and the quality parameters of technical fibers measured after plant harvesting. Based on previously published transcriptomic data, two sets of genes that are upregulated in fibers during intrusive growth and tertiary cell wall deposition were selected. The expression level of the selected genes and fiber quality parameters were measured in fiber flax, linseed (oil flax) cultivars, and wild species that differ in type of yield and fiber quality parameters. Based on gene expression data, linear regression models for technical stem length, fiber tensile strength, and fiber flexibility were constructed, resulting in the identification of genes that have high potential for manipulating fiber quality. Chromosomal localization and single nucleotide polymorphism distribution in the selected genes were characterized for the efficacy of their use in conventional breeding and genome editing programs. Transcriptome-based selection is a highly targeted functional approach that could be used during the development of new cultivars of various crops.
Collapse
Affiliation(s)
- Dmitry Galinousky
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
- Laboratory of Ecological Genetics and Biotechnology, Institute of Genetics and Cytology, The National Academy of Sciences of Belarus, Minsk, Belarus
| | - Natalia Mokshina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Tsimafei Padvitski
- Cellular Network and Systems Biology Group, University of Cologne, CECAD, Cologne, Germany
| | - Marina Ageeva
- Laboratory of Microscopy, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Victor Bogdan
- Laboratory of Fiber Flax Breeding, Institute of Flax, Ustie, Belarus
| | - Alexander Kilchevsky
- Laboratory of Ecological Genetics and Biotechnology, Institute of Genetics and Cytology, The National Academy of Sciences of Belarus, Minsk, Belarus
| | - Tatyana Gorshkova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| |
Collapse
|
6
|
Méndez-Yañez A, González M, Carrasco-Orellana C, Herrera R, Moya-León MA. Isolation of a rhamnogalacturonan lyase expressed during ripening of the Chilean strawberry fruit and its biochemical characterization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:411-419. [PMID: 31805495 DOI: 10.1016/j.plaphy.2019.11.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 05/24/2023]
Abstract
Fragaria chiloensis (L.) Mill. fruit has exotic organoleptic properties however commercialization is a challenge due to its fast and intensive softening. Texture modifications associated to ripening are related to cell wall metabolism. Main cell wall polysaccharides metabolized in F. chiloensis fruit are pectins, being rhamnogalacturonan I (RG-I) an abundant pectin domain in strawberry. Several enzymes belonging to the fruit molecular machinery have been described to act on different cell wall polysaccharides in F. chiloensis, but none acting on the main chain of RG-I until now. A gene sequence coding for a rhamnogalacturonan endolyase (RG-lyase) (EC 4.2.2.23) was isolated from F. chiloensis. The FchRGL1 sequence belongs to Polysaccharide Lyase family 4 and contains the three functional domains of RG-lyases: RGL4 domain, fibronectin type III and the carbohydrate binding module. In addition, it contains key amino acid residues for activity and Ca2+ coordination. qRT-PCR analyses indicate that FchRGL1 transcripts increase in fruit throughout ripening. RG-lyase activity evidences a remarkable increase as the fruit ripens. The heterologous expression of FchRGL1 in Pichia pastoris provided an active protein that allows its biochemical characterization. RG-lyase activity is optimum at pH 5.0, 25-30 °C and 2 mM Ca2+. A KM of 0.086 mg mL-1 was determined for potato RG-I, and the enzyme undergoes inhibition at high substrate concentration. The enzyme is also able to degrade the mucilage of germinating A. thaliana's seeds. Finally, the properties of FchRGL1 and its expression pattern are congruent with a crucial role in cell wall re-organization during softening of F. chiloensis fruit.
Collapse
Affiliation(s)
- Angela Méndez-Yañez
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile.
| | - Makarena González
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile.
| | - Cristian Carrasco-Orellana
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile.
| | - Raúl Herrera
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile.
| | - María A Moya-León
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile.
| |
Collapse
|