1
|
Rahman MM, Keya SS, Bulle M, Ahsan SM, Rahman MA, Roni MS, Al Noor MM, Hasan M. Past trauma, better future: how stress memory shapes plant adaptation to drought. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24355. [PMID: 40373187 DOI: 10.1071/fp24355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/23/2025] [Indexed: 05/17/2025]
Abstract
Can plants remember drought? Emerging evidence suggests that prior stress exposure leaves an epigenetic imprint, reprogramming plants for enhanced resilience. However, the stability and functional relevance of drought memory remain unresolved. This review synthesizes recent advances in epigenetic modifications, transcriptional reprogramming, and metabolic priming, critically assessing their roles in plant stress adaptation. DNA methylation dynamically reshapes chromatin landscapes, yet its transient nature questions its long-term inheritance. Histone modifications, particularly H3K9ac and H2Bub1, may encode stress signatures, enabling rapid transcriptional responses, whereas small RNAs fine-tune chromatin states to reinforce memory. Beyond epigenetics, physiological priming, including osmotic adjustments, antioxidant defenses, and hormonal crosstalk, introduces further complexity, yet its evolutionary advantage remains unclear. Root system plasticity may enhance drought resilience, but its metabolic trade-offs and epigenetic underpinnings are largely unexplored. A critical challenge is disentangling stable adaptive mechanisms from transient acclimatory shifts. We propose a framework for evaluating drought memory across temporal and generational scales and highlight the potential of precision genome editing to establish causality. By integrating multi-omics, gene editing, and field-based validation, this review aims to unlock the molecular blueprint of drought memory. Understanding these mechanisms is key to engineering climate-resilient crops, ensuring global food security in an era of increasing environmental uncertainty.
Collapse
Affiliation(s)
- Md Mezanur Rahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; and Department of Agroforestry and Environment, Gazipur Agricultural University, Gazipur 1706, Bangladesh
| | - Sanjida Sultana Keya
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Mallesham Bulle
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - S M Ahsan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; and Department of Agriculture, Gopalganj Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Abiar Rahman
- Department of Agroforestry and Environment, Gazipur Agricultural University, Gazipur 1706, Bangladesh; and CIFOR-ICRAF Bangladesh, GAU Campus, Gazipur 1706, Bangladesh
| | - Md Shyduzzaman Roni
- Department of Horticulture, Gazipur Agricultural University, Gazipur 1706, Bangladesh
| | - Md Mahmud Al Noor
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh, 2202, Bangladesh
| | - Mehedi Hasan
- Department of Agriculture, Gopalganj Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
2
|
Peer LA, Wani AA, Lone AA, Dar ZA, Mir BA. Drought stress memory in maize: understanding and harnessing the past for future resilience. PLANT CELL REPORTS 2025; 44:101. [PMID: 40278890 DOI: 10.1007/s00299-025-03494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
Maize (Zea mays L.), a cornerstone of global food security, faces significant challenges due to drought stress, which disrupts its growth, development, and productivity. This review synthesizes advances in our understanding of drought stress memory, a mechanism that enables maize to "remember" prior drought exposure through transcriptional, epigenetic, and physiological pathways. Key regulators, including transcription factors (ZmEREB24 and ZmNF-YC12) and epigenetic modifications (DNA methylation and histone acetylation), orchestrate stress-responsive pathways that ensure rapid adaptation to recurrent drought events. Complementing these molecular mechanisms, physiological adaptations, such as optimized root and leaf architecture, enhanced water-use efficiency, and antioxidant defenses, further strengthen drought tolerance. Practical applications, including molecular priming techniques (e.g., osmopriming, hydropriming, nanoparticles) and advanced genetic tools (CRISPR/Cas9, GWAS), promise scalable solutions for breeding drought-resilient maize varieties. Despite this progress, challenges remain, including genotype-specific variability, scalability, and trade-offs between resilience and yield. This review provides a roadmap for integrating laboratory discoveries with field-level practices, bridging molecular and agronomic innovations to address climate variability and ensure sustainable maize production and global food security.
Collapse
Affiliation(s)
- Latif A Peer
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Aijaz A Wani
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Ajaz A Lone
- Dryland Agriculture Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 191121, India
| | - Zahoor A Dar
- Dryland Agriculture Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 191121, India
| | - Bilal A Mir
- Department of Botany, North Campus, University of Kashmir, Delina, Jammu and Kashmir, 193201, India
| |
Collapse
|
3
|
MacDonald MT, Mohan VR. Chemical Seed Priming: Molecules and Mechanisms for Enhancing Plant Germination, Growth, and Stress Tolerance. Curr Issues Mol Biol 2025; 47:177. [PMID: 40136431 PMCID: PMC11941364 DOI: 10.3390/cimb47030177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Food security is one of the world's top challenges, specifically considering global issues like climate change. Seed priming is one strategy to improve crop production, typically via increased germination, yields, and/or stress tolerance. Hydropriming, or soaking seeds in water only, is the simplest form of seed priming. However, the addition of certain seed priming agents has resulted in a variety of modified strategies, including osmopriming, halopriming, hormonal priming, PGR priming, nutripriming, and others. Most current research has focused on hormonal and nutripriming. This review will focus on the specific compounds that have been used most often over the past 3 years and the physiological effects that they have had on crops. Over half of recent research has focused on four compounds: (1) salicylic acid, (2) zinc, (3) gibberellic acid, and (4) potassium nitrate. One of the most interesting characteristics of all chemical seed priming agents is that they are exposed only to seeds yet confer benefits throughout plant development. In some cases, such benefits have been passed to subsequent generations, suggesting an epigenetic effect, which is supported by observed changes in DNA methylation and histone modification. This review will summarize the current state of knowledge on molecular changes and physiological mechanisms associated with chemical seed priming agents and discuss avenues for future research.
Collapse
Affiliation(s)
- Mason T. MacDonald
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS B2N 5E3, Canada;
| | | |
Collapse
|
4
|
Sincinelli F, Gaonkar SS, Tondepu SAG, Dueñas CJ, Pagano A. Hallmarks of DNA Damage Response in Germination Across Model and Crop Species. Genes (Basel) 2025; 16:95. [PMID: 39858642 PMCID: PMC11764568 DOI: 10.3390/genes16010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
DNA damage response (DDR) contributes to seed quality by guarding genome integrity in the delicate phases of pre- and post-germination. As a key determinant of stress tolerance and resilience, DDR has notable implications on the wider scale of the agroecosystems challenged by harsh climatic events. The present review focuses on the existing and documented links that interconnect DDR efficiency with an array of molecular hallmarks with biochemical, molecular, and physiological valence within the seed metabolic networks. The expression of genes encoding DDR sensors, transducers, mediators, and effectors is interpreted as a source of conserved hallmarks, along with markers of oxidative damage reflecting the seed's ability to germinate. Similarly, the accumulation patterns of proteins and metabolites that contribute to DNA stability are predictive of seed quality traits. While a list of candidates is presented from multiple models and crop species, their interaction with chromatin dynamics, cell cycle progression, and hormonal regulation provides further levels of analysis to investigate the seed stress response holistically. The identification of novel hallmarks of DDR in seeds constitutes a framework to prompt validation with different experimental systems, to refine the current models of pre-germinative metabolism, and to promote targeted approaches for seed quality evaluation.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
5
|
Cao S, Chen ZJ. Transgenerational epigenetic inheritance during plant evolution and breeding. TRENDS IN PLANT SCIENCE 2024; 29:1203-1223. [PMID: 38806375 PMCID: PMC11560745 DOI: 10.1016/j.tplants.2024.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024]
Abstract
Plants can program and reprogram their genomes to create genetic variation and epigenetic modifications, leading to phenotypic plasticity. Although consequences of genetic changes are comprehensible, the basis for transgenerational inheritance of epigenetic variation is elusive. This review addresses contributions of external (environmental) and internal (genomic) factors to the establishment and maintenance of epigenetic memory during plant evolution, crop domestication, and modern breeding. Dynamic and pervasive changes in DNA methylation and chromatin modifications provide a diverse repertoire of epigenetic variation potentially for transgenerational inheritance. Elucidating and harnessing epigenetic inheritance will help us develop innovative breeding strategies and biotechnological tools to improve crop yield and resilience in the face of environmental challenges. Beyond plants, epigenetic principles are shared across sexually reproducing organisms including humans with relevance to medicine and public health.
Collapse
Affiliation(s)
- Shuai Cao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
6
|
Li R, Luo D, Rehman M, Li X, Wang C, Cao S, Xu G, Wang M, Chen C, Nie J, Li R, Chen T, Chen P. Seed priming using different agents can alleviate salt stress in kenaf ( Hibiscus cannabinus L.) by activating antioxidant system and related genes expression. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1741-1757. [PMID: 39506993 PMCID: PMC11534967 DOI: 10.1007/s12298-024-01521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/18/2024] [Accepted: 10/12/2024] [Indexed: 11/08/2024]
Abstract
High salinity is an abiotic stress that limits crop production. Kenaf (Hibiscus cannabinus L.) is an annual fiber crop of the genus Hibiscus in the family Malvaceae with a certain tolerance to salt stress. Seed priming has been shown to ameliorate the adverse effects of salt stress on plants. However, the salt resistance mechanism in kenaf seeds treated with priming agents is not fully understood. In this study, we used four priming agents (H2O, PEG, ABA, KNO3) in different concentrations to treat kenaf seeds, and subjected the induced kenaf seedlings to salt stress (150 mM NaCl) to measure their agronomic traits and physiological and biochemical indicators. Our results indicate that the optimal priming concentration for PEG was 10%, 0.5 μM for ABA, and 0.5% for KNO3. Under these treatment concentrations, the germination rate of kenaf was significantly increased, and the fresh weight was also increased by 35.1%, 33.39%, 20.78% and 15.3%, respectively. Furthermore, the use of priming agents can alleviate the adverse effects of salt stress to a certain extent, significantly increase the agronomic indicators such as plant height, stem thickness, and leaf area of kenaf, enhance the ability of plants to perform photosynthesis, further improve the activity of antioxidant enzymes and increase the content of osmotic material, and reduce the accumulation of cell H2O2, O2 - and MDA. Meanwhile, seed priming can also enhance the expression of HcSOS1, HcNHX, HcHKT, HcCBL, HcCIPK, HcPD and HcNCED involved in the salt stress pathway. These results warrant that seed priming can reduce the adverse effects of salt stress on kenaf. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01521-x.
Collapse
Affiliation(s)
- Renxue Li
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Dengjie Luo
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Muzammal Rehman
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Xin Li
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Caijin Wang
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Shan Cao
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Guofeng Xu
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Meng Wang
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Canni Chen
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Jingzhi Nie
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Ru Li
- College of Life Science and Technology, Guangxi University, Nanning, 530004 China
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning, 530004 China
| | - Peng Chen
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| |
Collapse
|
7
|
Yang L, Zhang L, Zhang Q, Wei J, Zhao X, Zheng Z, Chen B, Xu Z. Nanopriming boost seed vigor: Deeper insights into the effect mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108895. [PMID: 38976940 DOI: 10.1016/j.plaphy.2024.108895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Nanopriming, an advanced seed priming technology, is highly praised for its environmental friendliness, safety, and effectiveness in promoting sustainable agriculture. Studies have shown that nanopriming can enhance seed germination by stimulating the expression of aquaporins and increasing amylase production. By applying an appropriate concentration of nanoparticles, seeds can generate reactive oxygen species (ROS), enhance their antioxidant capacity, improve their response to oxidative stress, and enhance their tolerance to both biotic and abiotic stresses. This positive impact extends beyond the seed germination and seedling growth stages, persisting throughout the entire life cycle. This review offers a comprehensive overview of recent research progress in seed priming using various nanoparticles, while also addressing current challenges and future opportunities for sustainable agriculture.
Collapse
Affiliation(s)
- Le Yang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Laitong Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jinpeng Wei
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xueming Zhao
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zian Zheng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Bingxian Chen
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Zhenjiang Xu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
8
|
Balestrazzi A, Calvio C, Macovei A, Pagano A, Laux P, Moutahir H, Rajjou L, Tani E, Chachalis D, Katsis C, Ghaouti L, Gmouh S, Majid S, Elleuch A, Hanin M, Khemakhem B, El Abed H, Nunes J, Araújo S, Benhamrouche A, Bersi M. Seed quality as a proxy of climate-ready orphan legumes: the need for a multidisciplinary and multi-actor vision. FRONTIERS IN PLANT SCIENCE 2024; 15:1388866. [PMID: 39148611 PMCID: PMC11325182 DOI: 10.3389/fpls.2024.1388866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024]
Abstract
In developing countries, orphan legumes stand at the forefront in the struggle against climate change. Their high nutrient value is crucial in malnutrition and chronic diseases prevention. However, as the 'orphan' definition suggests, their seed systems are still underestimated and seed production is scanty. Seed priming is an effective, sustainable strategy to boost seed quality in orphan legumes for which up-to-date guidelines are required to guarantee reliable and reproducible results. How far are we along this path? What do we expect from seed priming? This brings to other relevant questions. What is the socio-economic relevance of orphan legumes in the Mediterranean Basin? How to potentiate a broader cultivation in specific regions? The case study of the BENEFIT-Med (Boosting technologies of orphan legumes towards resilient farming systems) project, developed by multidisciplinary research networks, envisions a roadmap for producing new knowledge and innovative technologies to improve seed productivity through priming, with the long-term objective of promoting sustainability and food security for/in the climate-sensitive regions. This review highlights the existing drawbacks that must be overcome before orphan legumes could reach the state of 'climate-ready crops'. Only by the integration of knowledge in seed biology, technology and agronomy, the barrier existing between research bench and local agricultural fields may be overcome, generating high-impact technical innovations for orphan legumes. We intend to provide a powerful message to encourage future research in line with the United Nations Agenda 2030 for Sustainable Development.
Collapse
Affiliation(s)
- Alma Balestrazzi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Cinzia Calvio
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Andrea Pagano
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Patrick Laux
- Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| | - Hassane Moutahir
- Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| | - Loїc Rajjou
- Université Paris-Saclay, National Research Institute for Agriculture, Food and the Environment (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Dimosthenis Chachalis
- Department of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | | | - Lamiae Ghaouti
- Department of Plant Production, Protection and Biotechnology, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | - Said Gmouh
- Laboratory Laboratory of Engineering and Materials (LIMAT), Faculty of Sciences Ben M'sick, University Hassan II of Casablanca, Casablanca, Morocco
| | - Sanaa Majid
- Laboratory GeMEV, Faculty of Sciences Aïn Chock, University Hassan II of Casablanca, Casablanca, Morocco
| | - Amine Elleuch
- Higher Institute of Biotechnology, University of Sfax, Sfax, Tunisia
| | - Moez Hanin
- Higher Institute of Biotechnology, University of Sfax, Sfax, Tunisia
| | - Bassem Khemakhem
- Higher Institute of Biotechnology, University of Sfax, Sfax, Tunisia
| | - Hanen El Abed
- Higher Institute of Biotechnology, University of Sfax, Sfax, Tunisia
| | - Joao Nunes
- Center Bio R&D Unit, Association BLC3-Technology and Innovation Campus, Oliveira do Hospital, Portugal
| | - Susana Araújo
- Center Bio R&D Unit, Association BLC3-Technology and Innovation Campus, Oliveira do Hospital, Portugal
| | - Aziz Benhamrouche
- Institute of Architecture and Earth Science, University Ferhat Abbas-Setif 1, Setif, Algeria
| | - Mohand Bersi
- Institute of Architecture and Earth Science, University Ferhat Abbas-Setif 1, Setif, Algeria
| |
Collapse
|
9
|
Tripathi DK, Bhat JA, Antoniou C, Kandhol N, Singh VP, Fernie AR, Fotopoulos V. Redox Regulation by Priming Agents Toward a Sustainable Agriculture. PLANT & CELL PHYSIOLOGY 2024; 65:1087-1102. [PMID: 38591871 PMCID: PMC11287215 DOI: 10.1093/pcp/pcae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
Plants are sessile organisms that are often subjected to a multitude of environmental stresses, with the occurrence of these events being further intensified by global climate change. Crop species therefore require specific adaptations to tolerate climatic variability for sustainable food production. Plant stress results in excess accumulation of reactive oxygen species leading to oxidative stress and loss of cellular redox balance in the plant cells. Moreover, enhancement of cellular oxidation as well as oxidative signals has been recently recognized as crucial players in plant growth regulation under stress conditions. Multiple roles of redox regulation in crop production have been well documented, and major emphasis has focused on key redox-regulated proteins and non-protein molecules, such as NAD(P)H, glutathione, peroxiredoxins, glutaredoxins, ascorbate, thioredoxins and reduced ferredoxin. These have been widely implicated in the regulation of (epi)genetic factors modulating growth and health of crop plants, with an agricultural context. In this regard, priming with the employment of chemical and biological agents has emerged as a fascinating approach to improve plant tolerance against various abiotic and biotic stressors. Priming in plants is a physiological process, where prior exposure to specific stressors induces a state of heightened alertness, enabling a more rapid and effective defense response upon subsequent encounters with similar challenges. Priming is reported to play a crucial role in the modulation of cellular redox homeostasis, maximizing crop productivity under stress conditions and thus achieving yield security. By taking this into consideration, the present review is an up-to-date critical evaluation of promising plant priming technologies and their role in the regulation of redox components toward enhanced plant adaptations to extreme unfavorable environmental conditions. The challenges and opportunities of plant priming are discussed, with an aim of encouraging future research in this field toward effective application of priming in stress management in crops including horticultural species.
Collapse
Affiliation(s)
- Durgesh Kumar Tripathi
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, AUUP Campus Sector-125, Noida 201313, India
| | | | - Chrystalla Antoniou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Nidhi Kandhol
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, AUUP Campus Sector-125, Noida 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
10
|
Ellouzi H, Ben Slimene Debez I, Amraoui S, Rabhi M, Hanana M, Alyami NM, Debez A, Abdelly C, Zorrig W. Effect of seed priming with auxin on ROS detoxification and carbohydrate metabolism and their relationship with germination and early seedling establishment in salt stressed maize. BMC PLANT BIOLOGY 2024; 24:704. [PMID: 39054427 PMCID: PMC11270924 DOI: 10.1186/s12870-024-05413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
As crucial stages in the plant ontogeny, germination and seedling establishment under adverse conditions greatly determine staple crop growth and productivity. In the context of green technologies aiming to improve crop yield, seed priming is emerging as an effective approach to enhance seed vigor and germination performance under salt stress. In this study, we assess the efficiency of seed priming with indole-3-acetic acid (IAA) in mitigating the adverse effects of salt stress on maize (Zea mays L.) seedlings during germination and early seedling stages. In unprimed seeds, salt stress reduced germination indices, and seedling (both radicle and coleoptile) growth, together with decreased tissue hydration. However, seed priming using IAA significantly improved maize salt response, as reflected by the increased seed germination dynamics, early seedling establishment, and water status. Besides, seedlings from IAA-primed seeds showed a higher activity of α-amylase, resulting in increased sugar contents in roots and coleoptiles of salt-stressed plants. Further, IAA-seed priming stimulated the accumulation of endogenous IAA in salt-stressed seedlings, in concomitance with a significant effect on reactive oxygen species detoxification and lipid peroxidation prevention. Indeed, our data revealed increased antioxidant enzyme activities, differentially regulated in roots and coleoptiles, leading to increased activities of the antioxidant enzymes (SOD, CAT and GPX). In summary, data gained from this study further highlight the potential of IAA in modulating early interactions between multiple signaling pathways in the seed, endowing maize seedlings with enhanced potential and sustained tolerance to subsequent salt stress.
Collapse
Affiliation(s)
- Hasna Ellouzi
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj-Cedria (CBBC), P.O. Box 901, Hammam‑Lif, 2050, Tunisia
| | - Imen Ben Slimene Debez
- Laboratory of Bioactive Substances (LSBA), Centre of Biotechnology of Borj-Cedria (CBBC), P. O. Box 901, Hammam‑Lif, 2050, Tunisia
| | - Souhir Amraoui
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj-Cedria (CBBC), P.O. Box 901, Hammam‑Lif, 2050, Tunisia
| | - Mokded Rabhi
- Department of Plant Production, College of Agriculture and Food, Qassim University, Buraydah, Saudi Arabia
| | - Mohsen Hanana
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj-Cedria (CBBC), P.O. Box 901, Hammam‑Lif, 2050, Tunisia
| | - Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed Debez
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj-Cedria (CBBC), P.O. Box 901, Hammam‑Lif, 2050, Tunisia
| | - Chedly Abdelly
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj-Cedria (CBBC), P.O. Box 901, Hammam‑Lif, 2050, Tunisia
| | - Walid Zorrig
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj-Cedria (CBBC), P.O. Box 901, Hammam‑Lif, 2050, Tunisia.
| |
Collapse
|
11
|
Iqbal H, Yaning C. Redox priming could be an appropriate technique to minimize drought-induced adversities in quinoa. FRONTIERS IN PLANT SCIENCE 2024; 15:1253677. [PMID: 38638353 PMCID: PMC11025396 DOI: 10.3389/fpls.2024.1253677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024]
Abstract
The exogenous use of the redox compound (H2O2) plays a significant role in abiotic stress tolerance. The present study investigated various H2O2 application methods (seed priming, foliar spray, and surface irrigation) with varying concentration levels (0 mM, 5 mM, 10 mM, 15 mM, 40 mM, 80 mM, and 160 mM) to evaluate the efficiency of supplying exogenous H2O2 to quinoa under water-deficit conditions. Drought stress reduced quinoa growth and yield by perturbing morphological traits, leading to the overproduction of reactive oxygen species and increased electrolyte leakage. Although all studied modes of H2O2 application improved quinoa performance, surface irrigation was found to be sensitive, causing oxidative damage in the present study. Seed priming showed a prominent increase in plant height due to profound emergence indexes compared to other modes under drought conditions. Strikingly, seed priming followed by foliar spray improved drought tolerance in quinoa and showed higher grain yield compared to surface irrigations. This increase in the yield performance of quinoa was attributed to improvements in total chlorophyll (37%), leaf relative water content (RWC; 20%), superoxide dismutase (SOD; 35%), peroxidase (97%), polyphenol oxidase (60%), and phenylalanine ammonia-lyase (58%) activities, and the accumulation of glycine betaine (96%), total soluble protein (TSP; 17%), proline contents (35%), and the highest reduction in leaf malondialdehyde contents (MDA; 36%) under drought stress. PCA analysis indicated that physio-biochemical traits (proline, SOD, TSP, total chlorophyll, MSI, and RWC) were strongly positively correlated with grain yield, and their contribution was much higher in redox priming than other application methods. In conclusion, exogenous H2O2 application, preferably redox priming, could be chosen to decrease drought-induced performance and yield losses in quinoa.
Collapse
Affiliation(s)
- Hassan Iqbal
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Chen Yaning
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
12
|
Paul A, Mondal S, Chakraborty K, Biswas AK. Moving forward to understand the alteration of physiological mechanism by seed priming with different halo-agents under salt stress. PLANT MOLECULAR BIOLOGY 2024; 114:24. [PMID: 38457044 DOI: 10.1007/s11103-024-01425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
Soil salinity hampers the survival and productivity of crops. To minimize salt-associated damages in plant, better salt management practices in agriculture have become a prerequisite. Seed priming with different halo-agents is a technique, which improves the primed plant's endurance to tackle sodium. Salt tolerance is achieved in tolerant plants through fundamental physiological mechanisms- ion-exclusion and tissue tolerance, and salt-tolerant plants may (Na+ accumulators) or may not (Na+ excluders) allow sodium movement to leaves. While Na+ excluders depend on ion exclusion in roots, Na+ accumulators are proficient Na+ managers that can compartmentalize Na+ in leaves and use them beneficially as inexpensive osmoticum. Salt-sensitive plants are Na+ accumulators, but their inherent tissue tolerance ability and ion-exclusion process are insufficient for tolerance. Seed priming with different halo-agents aids in 'rewiring' of the salt tolerance mechanisms of plants. The resetting of the salt tolerance mechanism is not universal for every halo-agent and might vary with halo-agents. Here, we review the physiological mechanisms that different halo-agents target to confer enhanced salt tolerance in primed plants. Calcium and potassium-specific halo-agents trigger Na+ exclusion in roots, thus ensuring a low amount of Na+ in leaves. In contrast, Na+-specific priming agents favour processes for Na+ inclusion in leaves, improve plant tissue tolerance or vacuolar sequestration, and provide the greatest benefit to salt-sensitive and sodium accumulating plants. Overall, this review will help to understand the underlying mechanism behind plant's inherent nature towards salt management and its amelioration with different halo-agents, which helps to optimize crop stress performance.
Collapse
Affiliation(s)
- Alivia Paul
- Plant Physiology and Biochemistry Laboratory, Department of Botany, CAS, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
- Cell Biology Laboratory, Department of Botany, CAS, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Subhankar Mondal
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
- Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| | - Koushik Chakraborty
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Asok K Biswas
- Plant Physiology and Biochemistry Laboratory, Department of Botany, CAS, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
13
|
Zhao L, Zhou X, Kang Z, Peralta-Videa JR, Zhu YG. Nano-enabled seed treatment: A new and sustainable approach to engineering climate-resilient crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168640. [PMID: 37989394 DOI: 10.1016/j.scitotenv.2023.168640] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Under a changing climate, keeping the food supply steady for an ever-increasing population will require crop plants adapted to environmental fluctuations. Genetic engineering and genome-editing approaches have been used for developing climate-resilient crops. However, genetically modified crops have yet to be widely accepted, especially for small-scale farmers in low-income countries and some societies. Nano-priming (seed exposure to nanoparticles, NPs) has appeared as an alternative to the abovementioned techniques. This technique improves seed germination speed, promotes seedlings' vigor, and enhances plant tolerance to adverse conditions such as drought, salinity, temperature, and flooding, which may occur under extreme weather conditions. Moreover, nano-enabled seed treatment can increase the disease resistance of crops by boosting immunity, which will reduce the use of pesticides. This unsophisticated, farmer-available, cost-effective, and environment-friendly seed treatment approach may help crop plants fight climate change challenges. This review discusses the previous information about nano-enabled seed treatment for enhancing plant tolerance to abiotic stresses and increasing disease resistance. Current knowledge about the mechanisms underlying nanomaterial-seed interactions is discussed. To conclude, the review includes research questions to address before this technique reaches its full potential.
Collapse
Affiliation(s)
- Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Xiaoding Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhao Kang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jose R Peralta-Videa
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
14
|
Burggren WW, Mendez-Sanchez JF. "Bet hedging" against climate change in developing and adult animals: roles for stochastic gene expression, phenotypic plasticity, epigenetic inheritance and adaptation. Front Physiol 2023; 14:1245875. [PMID: 37869716 PMCID: PMC10588650 DOI: 10.3389/fphys.2023.1245875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Animals from embryos to adults experiencing stress from climate change have numerous mechanisms available for enhancing their long-term survival. In this review we consider these options, and how viable they are in a world increasingly experiencing extreme weather associated with climate change. A deeply understood mechanism involves natural selection, leading to evolution of new adaptations that help cope with extreme and stochastic weather events associated with climate change. While potentially effective at staving off environmental challenges, such adaptations typically occur very slowly and incrementally over evolutionary time. Consequently, adaptation through natural selection is in most instances regarded as too slow to aid survival in rapidly changing environments, especially when considering the stochastic nature of extreme weather events associated with climate change. Alternative mechanisms operating in a much shorter time frame than adaptation involve the rapid creation of alternate phenotypes within a life cycle or a few generations. Stochastic gene expression creates multiple phenotypes from the same genotype even in the absence of environmental cues. In contrast, other mechanisms for phenotype change that are externally driven by environmental clues include well-understood developmental phenotypic plasticity (variation, flexibility), which can enable rapid, within-generation changes. Increasingly appreciated are epigenetic influences during development leading to rapid phenotypic changes that can also immediately be very widespread throughout a population, rather than confined to a few individuals as in the case of favorable gene mutations. Such epigenetically-induced phenotypic plasticity can arise rapidly in response to stressors within a generation or across a few generations and just as rapidly be "sunsetted" when the stressor dissipates, providing some capability to withstand environmental stressors emerging from climate change. Importantly, survival mechanisms resulting from adaptations and developmental phenotypic plasticity are not necessarily mutually exclusive, allowing for classic "bet hedging". Thus, the appearance of multiple phenotypes within a single population provides for a phenotype potentially optimal for some future environment. This enhances survival during stochastic extreme weather events associated with climate change. Finally, we end with recommendations for future physiological experiments, recommending in particular that experiments investigating phenotypic flexibility adopt more realistic protocols that reflect the stochastic nature of weather.
Collapse
Affiliation(s)
- Warren W. Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Jose Fernando Mendez-Sanchez
- Laboratorio de Ecofisiología Animal, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
15
|
Tian Y, Gama-Arachchige NS, Zhao M. Trends in Seed Priming Research in the Past 30 Years Based on Bibliometric Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3483. [PMID: 37836223 PMCID: PMC10575273 DOI: 10.3390/plants12193483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Seed priming (SP) treatments are widely used in agriculture and restoration to improve seed germination and seedling vigor. Although there exists a considerable amount of scientific literature on SP, it has seldom undergone visual and quantitative analyses. To gain insights into the patterns observed in SP research over the last three decades, we conducted a bibliometric analysis using the Science Citation Index-Expanded (SCI-E) database, aiming to minimize the similarity score in plagiarism detection. This analysis offers a thorough examination of yearly publications, temporal patterns in keyword usage, the top-performing journals, authors, institutions, and countries within the field of SP. Our research findings suggest a steady annual increase of 10.59% in the volume of SP publications, accompanied by a significant upward trajectory in the average citations received per paper annually. According to the analysis of keywords, it was found that "priming" and "germination" emerged as the most frequently used terms in the field of SP research. Seed Science and Technology ranked first among the top journals, and Plant Physiology had greater influence in the field of SP in terms of number of citations. The majority of the top 10 productive institutions were situated in developing countries. In addition, these nations exhibited the highest volume of published works and citations. Our analysis revealed a shift in research focus within the field of SP over the past three decades, transitioning from agricultural science to encompass plant science and environmental science. With the growing recognition of SP's research across different disciplines, there exist abundant prospects for international and interdisciplinary partnerships, collaborative organizations, and progress in this field.
Collapse
Affiliation(s)
- Yu Tian
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China;
| | | | - Ming Zhao
- State Key Laboratory of Vegetation & Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
16
|
Carvalho A, Lino A, Alves C, Lino C, Vareiro D, Lucas D, Afonso G, Costa J, Esteves M, Gaspar M, Bezerra M, Mendes V, Lima-Brito J. Combination of Iron and Zinc Enhanced the Root Cell Division, Mitotic Regularity and Nucleolar Activity of Hexaploid Triticale. PLANTS (BASEL, SWITZERLAND) 2023; 12:2517. [PMID: 37447076 DOI: 10.3390/plants12132517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Hexaploid triticale results from crosses between durum wheat and rye. Despite its high agronomic potential, triticale is mainly used for livestock feed. Triticale surpasses their parental species in adaptability and tolerance to abiotic and biotic stresses, being able to grow in acidic soils where a high amount of iron (Fe) and zinc (Zn) is typical. On the other hand, high amounts of these essential trace elements can be cytotoxic to bread wheat. The cytotoxicity induced by seed priming with a high concentration of Fe and Zn impaired root cell division and induced nucleolar changes in bread wheat. Such cytogenetic approaches were expedited and successfully determined cytotoxic and suited micronutrient dosages for wheat nutripriming. With this study, we intended to analyse the hexaploid triticale cv 'Douro' root mitotic cell cycle and nucleolar activity after seed priming performed with aqueous solutions of iron (Fe) and/or zinc (Zn), containing a concentration that was previously considered cytotoxic, to bread wheat and to infer the higher tolerance of triticale to these treatments. The overall cytogenetic data allowed us to conclude that the Fe + Zn treatment enhanced the root mitotic index (MI), mitosis regularity and nucleolar activity of 'Douro' relative to the control and the individual treatments performed with Fe or Zn alone. The Fe + Zn treatment might suit triticale biofortification through seed priming.
Collapse
Affiliation(s)
- Ana Carvalho
- Plant Cytogenomics Laboratory, Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801 Vila Real, Portugal
| | - Alexandra Lino
- University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Carolina Alves
- University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Catarina Lino
- University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Débora Vareiro
- University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Diogo Lucas
- University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Gabriela Afonso
- University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - José Costa
- University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Margarida Esteves
- University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Maria Gaspar
- University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Mário Bezerra
- University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Vladimir Mendes
- University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - José Lima-Brito
- Plant Cytogenomics Laboratory, Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801 Vila Real, Portugal
| |
Collapse
|