1
|
Kornfeld-Sylla SS, Gelegen C, Norris JE, Chaloner FA, Lee M, Khela M, Heinrich MJ, Finnie PSB, Ethridge LE, Erickson CA, Schmitt LM, Cooke SF, Wilkinson CL, Bear MF. A human electrophysiological biomarker of Fragile X Syndrome is shared in V1 of Fmr1 KO mice and caused by loss of FMRP in cortical excitatory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644144. [PMID: 40166357 PMCID: PMC11957138 DOI: 10.1101/2025.03.19.644144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Predicting clinical therapeutic outcomes from preclinical animal studies remains an obstacle to developing treatments for neuropsychiatric disorders. Electrophysiological biomarkers analyzed consistently across species could bridge this divide. In humans, alpha oscillations in the resting state electroencephalogram (rsEEG) are altered in many disorders, but these disruptions have not yet been characterized in animal models. Here, we employ a uniform analytical method to show in males with fragile X syndrome (FXS) that the slowed alpha oscillations observed in adults are also present in children and in visual cortex of adult and juvenile Fmr1 -/y mice. We find that alpha-like oscillations in mice reflect the differential activity of two classes of inhibitory interneurons, but the phenotype is caused by deletion of Fmr1 specifically in cortical excitatory neurons. These results provide a framework for studying alpha oscillation disruptions across species, advance understanding of a critical rsEEG signature in the human brain and inform the cellular basis for a putative biomarker of FXS.
Collapse
|
2
|
Shen G, Green HL, McNamee M, Franzen RE, DiPiero M, Berman JI, Ku M, Bloy L, Liu S, Airey M, Goldin S, Blaskey L, Kuschner ES, Kim M, Konka K, Miller GA, Edgar JC. White matter microstructure as a potential contributor to differences in resting state alpha activity between neurotypical and autistic children: a longitudinal multimodal imaging study. Mol Autism 2025; 16:19. [PMID: 40069738 PMCID: PMC11895156 DOI: 10.1186/s13229-025-00646-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/02/2025] [Indexed: 03/15/2025] Open
Abstract
We and others have demonstrated the resting-state (RS) peak alpha frequency (PAF) as a potential clinical marker for young children with autism spectrum disorder (ASD), with previous studies observing a higher PAF in school-age children with ASD versus typically developing (TD) children, as well as an association between the RS PAF and measures of processing speed in TD but not ASD. The brain mechanisms associated with these findings are unknown. A few studies have found that in children more mature optic radiation white matter is associated with a higher PAF. Other studies have reported white matter and neural activity associations in TD but not ASD. The present study hypothesized that group differences in the RS PAF are due, in part, to group differences in optic radiation white matter and PAF associations. The maturation of the RS PAF (measured using magnetoencephalography(MEG)), optic radiation white matter (measured using diffusion tensor imaging(DTI)), and associations with processing speed were assessed in a longitudinal cohort of TD and ASD children. Time 1 MEG and DTI measures were obtained at 6-8 years old (59TD and 56ASD) with follow-up brain measures collected ~ 1.5 and ~ 3 years later. The parietal-occipital PAF increased with age in both groups by 0.13 Hz/year, with a main effect of group showing the expected higher PAF in ASD than TD (an average of 0.26 Hz across the 3 time points). Across age, the RS PAF predicted processing speed in TD but not ASD. Finally, more mature optic radiation white matter measures (FA, RD, MD, AD) were associated with a higher PAF in both groups. Present findings provide additional evidence supporting the use of the RS PAF as a brain marker in children with ASD 6-10 years old, and replicate findings of an association between the RS PAF and processing speed in TD but not ASD. The hypothesis that the RS PAF group differences (with ASD leading TD by about 2 years) would be explained by group differences in optic radiation white matter was not supported, with brain structure-function associations indicating that more mature optic radiation white matter is associated with a higher RS PAF in both groups.
Collapse
Affiliation(s)
- Guannan Shen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Heather L Green
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marybeth McNamee
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rose E Franzen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marissa DiPiero
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey I Berman
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Ku
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Megan Airey
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sophia Goldin
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa Blaskey
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Autism Research, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Autism Research, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kimberly Konka
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gregory A Miller
- Department of Psychology, University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Halliday AR, Vucic SN, Georges B, LaRoche M, Mendoza Pardo MA, Swiggard LO, McDonald K, Olofsson M, Menon SN, Francis SM, Oberman LM, White T, van der Velpen IF. Heterogeneity and convergence across seven neuroimaging modalities: a review of the autism spectrum disorder literature. Front Psychiatry 2024; 15:1474003. [PMID: 39479591 PMCID: PMC11521827 DOI: 10.3389/fpsyt.2024.1474003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Background A growing body of literature classifies autism spectrum disorder (ASD) as a heterogeneous, complex neurodevelopmental disorder that often is identified prior to three years of age. We aim to provide a narrative review of key structural and functional properties that differentiate the neuroimaging profile of autistic youth from their typically developing (TD) peers across different neuroimaging modalities. Methods Relevant studies were identified by searching for key terms in PubMed, with the most recent search conducted on September 1, 2023. Original research papers were included if they applied at least one of seven neuroimaging modalities (structural MRI, functional MRI, DTI, MRS, fNIRS, MEG, EEG) to compare autistic children or those with a family history of ASD to TD youth or those without ASD family history; included only participants <18 years; and were published from 2013 to 2023. Results In total, 172 papers were considered for qualitative synthesis. When comparing ASD to TD groups, structural MRI-based papers (n = 26) indicated larger subcortical gray matter volume in ASD groups. DTI-based papers (n = 14) reported higher mean and radial diffusivity in ASD participants. Functional MRI-based papers (n = 41) reported a substantial number of between-network functional connectivity findings in both directions. MRS-based papers (n = 19) demonstrated higher metabolite markers of excitatory neurotransmission and lower inhibitory markers in ASD groups. fNIRS-based papers (n = 20) reported lower oxygenated hemoglobin signals in ASD. Converging findings in MEG- (n = 20) and EEG-based (n = 32) papers indicated lower event-related potential and field amplitudes in ASD groups. Findings in the anterior cingulate cortex, insula, prefrontal cortex, amygdala, thalamus, cerebellum, corpus callosum, and default mode network appeared numerous times across modalities and provided opportunities for multimodal qualitative analysis. Conclusions Comparing across neuroimaging modalities, we found significant differences between the ASD and TD neuroimaging profile in addition to substantial heterogeneity. Inconsistent results are frequently seen within imaging modalities, comparable study populations and research designs. Still, converging patterns across imaging modalities support various existing theories on ASD.
Collapse
Affiliation(s)
- Amanda R. Halliday
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Samuel N. Vucic
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Brianna Georges
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Madison LaRoche
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - María Alejandra Mendoza Pardo
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Liam O. Swiggard
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Kaylee McDonald
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Michelle Olofsson
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sahit N. Menon
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Sunday M. Francis
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Lindsay M. Oberman
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Isabelle F. van der Velpen
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Hill AT, Enticott PG, Fitzgerald PB, Bailey NW. RELAX-Jr: An Automated Pre-Processing Pipeline for Developmental EEG Recordings. Hum Brain Mapp 2024; 45:e70034. [PMID: 39370644 PMCID: PMC11456615 DOI: 10.1002/hbm.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024] Open
Abstract
Automated EEG pre-processing pipelines provide several key advantages over traditional manual data cleaning approaches; primarily, they are less time-intensive and remove potential experimenter error/bias. Automated pipelines also require fewer technical expertise as they remove the need for manual artefact identification. We recently developed the fully automated Reduction of Electroencephalographic Artefacts (RELAX) pipeline and demonstrated its performance in cleaning EEG data recorded from adult populations. Here, we introduce the RELAX-Jr pipeline, which was adapted from RELAX and designed specifically for pre-processing of data collected from children. RELAX-Jr implements multi-channel Wiener filtering (MWF) and/or wavelet-enhanced independent component analysis (wICA) combined with the adjusted-ADJUST automated independent component classification algorithm to identify and reduce all artefacts using algorithms adapted to optimally identify artefacts in EEG recordings taken from children. Using a dataset of resting-state EEG recordings (N = 136) from children spanning early-to-middle childhood (4-12 years), we assessed the cleaning performance of RELAX-Jr using a range of metrics including signal-to-error ratio, artefact-to-residue ratio, ability to reduce blink and muscle contamination, and differences in estimates of alpha power between eyes-open and eyes-closed recordings. We also compared the performance of RELAX-Jr against four publicly available automated cleaning pipelines. We demonstrate that RELAX-Jr provides strong cleaning performance across a range of metrics, supporting its use as an effective and fully automated cleaning pipeline for neurodevelopmental EEG data.
Collapse
Affiliation(s)
- Aron T. Hill
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityMelbourneVictoriaAustralia
| | - Peter G. Enticott
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityMelbourneVictoriaAustralia
| | - Paul B. Fitzgerald
- Monarch Research Institute, Monarch Mental Health GroupSydneyNew South WalesAustralia
- School of Medicine and PsychologyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Neil W. Bailey
- Monarch Research Institute, Monarch Mental Health GroupSydneyNew South WalesAustralia
- School of Medicine and PsychologyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
5
|
Kameya M, Hirosawa T, Soma D, Yoshimura Y, An KM, Iwasaki S, Tanaka S, Yaoi K, Sano M, Miyagishi Y, Kikuchi M. Relationships between peak alpha frequency, age, and autistic traits in young children with and without autism spectrum disorder. Front Psychiatry 2024; 15:1419815. [PMID: 39279807 PMCID: PMC11392836 DOI: 10.3389/fpsyt.2024.1419815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Background Atypical peak alpha frequency (PAF) has been reported in children with autism spectrum disorder (ASD); however, the relationships between PAF, age, and autistic traits remain unclear. This study was conducted to investigate and compare the resting-state PAF of young children with ASD and their typically developing (TD) peers using magnetoencephalography (MEG). Methods Nineteen children with ASD and 24 TD children, aged 5-7 years, underwent MEG under resting-state conditions. The PAFs in ten brain regions were calculated, and the associations between these findings, age, and autistic traits, measured using the Social Responsiveness Scale (SRS), were examined. Results There were no significant differences in PAF between the children with ASD and the TD children. However, a unique positive association between age and PAF in the cingulate region was observed in the ASD group, suggesting the potential importance of the cingulate regions as a neurophysiological mechanism underlying distinct developmental trajectory of ASD. Furthermore, a higher PAF in the right temporal region was associated with higher SRS scores in TD children, highlighting the potential role of alpha oscillations in social information processing. Conclusions This study emphasizes the importance of regional specificity and developmental factors when investigating neurophysiological markers of ASD. The distinct age-related PAF patterns in the cingulate regions of children with ASD and the association between right temporal PAF and autistic traits in TD children provide novel insights into the neurobiological underpinnings of ASD. These findings pave the way for future research on the functional implications of these neurophysiological patterns and their potential as biomarkers of ASD across the lifespan.
Collapse
Affiliation(s)
- Masafumi Kameya
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tetsu Hirosawa
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Daiki Soma
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Faculty of Education, Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Kyung-Min An
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Sumie Iwasaki
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Sanae Tanaka
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Ken Yaoi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Psychology, Faculty of Liberal Arts, Teikyo University, Tokyo, Japan
| | - Masuhiko Sano
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yoshiaki Miyagishi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
6
|
Oberman LM, Francis SM, Beynel L, Hynd M, Jaime M, Robins PL, Deng ZD, Stout J, van der Veen JW, Lisanby SH. Design and methodology for a proof of mechanism study of individualized neuronavigated continuous Theta burst stimulation for auditory processing in adolescents with autism spectrum disorder. Front Psychiatry 2024; 15:1304528. [PMID: 38389984 PMCID: PMC10881663 DOI: 10.3389/fpsyt.2024.1304528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
It has been suggested that aberrant excitation/inhibition (E/I) balance and dysfunctional structure and function of relevant brain networks may underlie the symptoms of autism spectrum disorder (ASD). However, the nomological network linking these constructs to quantifiable measures and mechanistically relating these constructs to behavioral symptoms of ASD is lacking. Herein we describe a within-subject, controlled, proof-of-mechanism study investigating the pathophysiology of auditory/language processing in adolescents with ASD. We utilize neurophysiological and neuroimaging techniques including magnetic resonance spectroscopy (MRS), diffusion-weighted imaging (DWI), functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG) metrics of language network structure and function. Additionally, we apply a single, individually targeted session of continuous theta burst stimulation (cTBS) as an experimental probe of the impact of perturbation of the system on these neurophysiological and neuroimaging outcomes. MRS, fMRI, and MEG measures are evaluated at baseline and immediately prior to and following cTBS over the posterior superior temporal cortex (pSTC), a region involved in auditory and language processing deficits in ASD. Also, behavioral measures of ASD and language processing and DWI measures of auditory/language network structures are obtained at baseline to characterize the relationship between the neuroimaging and neurophysiological measures and baseline symptom presentation. We hypothesize that local gamma-aminobutyric acid (GABA) and glutamate concentrations (measured with MRS), and structural and functional activity and network connectivity (measured with DWI and fMRI), will significantly predict MEG indices of auditory/language processing and behavioral deficits in ASD. Furthermore, a single session of cTBS over left pSTC is hypothesized to lead to significant, acute changes in local glutamate and GABA concentration, functional activity and network connectivity, and MEG indices of auditory/language processing. We have completed the pilot phase of the study (n=20 Healthy Volunteer adults) and have begun enrollment for the main phase with adolescents with ASD (n=86; age 14-17). If successful, this study will establish a nomological network linking local E/I balance measures to functional and structural connectivity within relevant brain networks, ultimately connecting them to ASD symptoms. Furthermore, this study will inform future therapeutic trials using cTBS to treat the symptoms of ASD.
Collapse
Affiliation(s)
- Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Sunday M Francis
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Lysianne Beynel
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Megan Hynd
- Clinical Affective Neuroscience Laboratory, Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, United States
| | - Miguel Jaime
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Pei L Robins
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Jeff Stout
- Magnetoencephalography Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Jan Willem van der Veen
- Magnetic Resonance Spectroscopy Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|