1
|
Hossein MS, Son YB, Jeong YW, Jeong YI, Kang MN, Choi EJ, Park KB, Bae YR, Kim DY, Hwang WS. Production of transgenic first filial puppies expressing mutated human amyloid precursor protein gene. Front Vet Sci 2023; 10:1227202. [PMID: 37964915 PMCID: PMC10642565 DOI: 10.3389/fvets.2023.1227202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023] Open
Abstract
Propagation of transgenic animals by germline transmission using assisted reproductive technologies such as in vitro fertilization (IVF) is the most efficient way to produce transgenic colonies for biomedical research. The objective of this study was to generate transgenic puppies from a founder dog expressing the mutated human amyloid precursor protein (mhAPP) gene. Experiment I assessed the characteristics of the semen prepared by freshly diluted, swim-up, and Percoll gradient methods using a computer-assisted semen analyzer (CASA). Motile and progressively motile sperm counts were higher in the Percoll gradient samples (p < 0.05) than in the swim-up and freshly diluted samples. In Experiment II, a total of 59, 70, and 65 presumptive zygotes produced by fresh, Percoll gradient, and swim-up methods, respectively, were transferred to surrogates (5 for each group); the Percoll gradient (27.27%) and swim-up samples (14.29%) showed the highest blastocyst formation rates, while fresh diluted semen did not produce any blastocyst. Experiment III examined the full-term developmental ability of embryos. Among the 5 surrogates in the Percoll gradient group, one (20.0%) became pregnant; it had 4 (6.15%) sacs and delivered 4 (6.15%; 2 males and 2 females) live puppies. Among the 4 puppies, 2 (50.0%) were found to transmit the transgene on their nail and toe under GFP fluorescence. Furthermore, the integration and expression of the mhAPP transgene were examined in the umbilical cords of all the IVF-derived puppies, and the presence of the transgene was only observed in the GFP-positive puppies. Thus, semen prepared by the Percoll method could generate transgenic puppies by male germline transmission using the IVF technique. Our result will help propagate transgenic dogs efficiently, which will foster human biomedical research.
Collapse
Affiliation(s)
| | - Young-Bum Son
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
- Department of Obstetrics, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Yeon Woo Jeong
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
- Department of Companion Animal and Animal Resources Science, Joongbu University, Geumsan-gun, Republic of Korea
| | - Yeon Ik Jeong
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
| | - Mi Na Kang
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
| | - Eun Ji Choi
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
| | - Kang Bae Park
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
| | - Yu Ra Bae
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
| | - Dae Young Kim
- Department of Life Science, College of Bio-nano Technology, Gachon University, Seongnam, Republic of Korea
| | - Woo Suk Hwang
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
- Department of Biology, North-Eastern Federal University, Yakutsk, Russia
| |
Collapse
|
2
|
Luciano AM, Franciosi F, Dey P, Ladron De Guevara M, Monferini N, Bonumallu SKN, Musmeci G, Fagali Franchi F, Garcia Barros R, Colombo M, Lodde V. Progress toward species-tailored prematuration approaches in carnivores. Theriogenology 2023; 196:202-213. [PMID: 36423514 DOI: 10.1016/j.theriogenology.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
In the past four decades, the bovine model has been highly informative and inspiring to assisted reproductive technologies (ART) in other species. Most of the recent advances in ART have come from studies in cattle, particularly those unveiling the importance of several processes that must be recapitulated in vitro to ensure the proper development of the oocyte. The maintenance of structural and functional communications between the cumulus cells and the oocyte and a well-orchestrated chromatin remodeling with the gradual silencing of transcriptional activity represent essential processes for the progressive acquisition of oocyte developmental competence. These markers are now considered the milestones of physiological approaches to increase the efficiency of reproductive technologies. Different in vitro approaches have been proposed. In particular, the so-called "pre-IVM" or "prematuration" is a culture step performed before in vitro maturation (IVM) to support the completion of the oocyte differentiation process. Although these attempts only partially improved the embryo quality and yield, they currently represent a proof of principle that oocytes retrieved from an ovary or an ovarian batch shouldn't be treated as a whole and that tailored approaches can be developed for culturing competent oocytes in several species, including humans. An advancement in ART's efficiency would be desirable in carnivores, where the success is still limited. Since the progress in reproductive medicine has often come from comparative studies, this review highlights aspects that have been critical in other species and how they may be extended to carnivores.
Collapse
Affiliation(s)
- Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy.
| | - Federica Franciosi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Pritha Dey
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Magdalena Ladron De Guevara
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Noemi Monferini
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Sai Kamal Nag Bonumallu
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Giulia Musmeci
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Fernanda Fagali Franchi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Rodrigo Garcia Barros
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Martina Colombo
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| |
Collapse
|
3
|
Trends in Small Animal Reproduction: A Bibliometric Analysis of the Literature. Animals (Basel) 2022; 12:ani12030336. [PMID: 35158661 PMCID: PMC8833461 DOI: 10.3390/ani12030336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Reproduction in small animals is an expanding research area, with focus on breeding improvement and clinical management of domestic carnivores. The aim of the present study was to conduct a bibliometric analysis of the literature of the last decade on small animal reproduction, to point out main sources, most prolific countries, and emerging and neglected topics. Results show that research in biotechnologies for assisted reproduction has a central and increasing role in this field. Diversity in author keywords was also pointed out and a consensus to better categorize research in this field is proposed to reduce this problem in the future. Abstract Small animal reproduction (SAR) is a main research field in veterinary medicine and bibliometric analyses are useful to investigate trends in specific research areas. The objective of the present study was to conduct a bibliometric analysis of the literature of the last decade on SAR. A search equation was created, and documents were retrieved from the Web of Science database. Documents were manually revised, categorized and R software version 4.1.2 with Bibliometrix R package version 3.1 and MS Excel were used to perform the analyses. The included documents (n = 1470) were mainly research articles (78%). The top countries for the number of documents and citations were Brazil, United States, Italy, Poland, and Korea. These also account for the most prolific authors and institutions. Analyses by author keywords, categories, and recent reviews of the literature suggest that research on the canine species is more abundant than research on the feline one and that reproductive biotechnologies are a main research focus. Some clinical topics are still considered niche or neglected themes (e.g., semen collection in tomcats, neonatology). However, heterogeneity and ambiguity in keywords and categories are undeniable. This study offers interesting insights, providing definitions for main keywords in the field of SAR.
Collapse
|
4
|
Canine and Feline Epididymal Semen-A Plentiful Source of Gametes. Animals (Basel) 2021; 11:ani11102961. [PMID: 34679980 PMCID: PMC8532807 DOI: 10.3390/ani11102961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The epididymis is a source of fertile spermatozoa. For some males, preserving spermatozoa that are stored in the epididymis might be an ultimate attempt for gamete preservation. The quality of epididymal semen is different from ejaculated semen in various animal species. Although assisted reproductive technologies (ART) have been introduced in cats as a tool to preserve valuable genetics of endangered wild felids, epididymal semen cryopreservation is still suboptimal in dogs. Therefore, in this paper, we carried out a review to list the morphological changes of spermatozoa during epididymal transit alongside with the potential that holds in the epididymal semen in dogs and cats. We believe that better comprehension of epididymal semen collection method, quality and freezability may aid in optimizing cryopreservation and enhance different applications of ART. Abstract Canine and feline epididymal semen provide an additional source of gametes to preserve the genetics of valuable breeding dogs and tomcats, especially for those that fail to ejaculate, need castration as a therapy or die unexpectedly. Moreover, since it is quite common to perform castration of non-breeding dogs and cats, the development of a gene bank of epididymal semen collected after castration would greatly contribute to increase the genetic diversity in dogs and cats. Collection and cryopreservation of epididymal semen necessitates a full understanding of the function of the epididymis and of the characteristics of epididymal spermatozoa as opposed to ejaculated semen. During collection of epididymal semen, specific factors may have a negative effect on epididymal semen quality and freezability. Accordingly, the elimination of these triggers could enhance epididymal semen freezability and consequently positively influence post-thaw semen quality and outcome for different ARTs.
Collapse
|
5
|
Duque Rodriguez M, Cittadini CO, Teplitz GM, De Stefano A, Lombardo DM, Salamone DF. Canine IVM With SOF Medium, Insulin-Transferrin-Selenium, and Low O 2 Tension Improves Oocyte Meiotic Competence and Decreases Reactive Oxygen Species Levels. Front Cell Dev Biol 2021; 9:694889. [PMID: 34557482 PMCID: PMC8453069 DOI: 10.3389/fcell.2021.694889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022] Open
Abstract
Assisted reproductive technologies in canine species are limited due to the low efficiency of in vitro maturation (IVM). Unlike other mammals, bitches ovulate oocytes in the germinal vesicle stage and complete metaphase II (MII) after 48–72 h in the oviductal environment and become fertilizable. For this reason, we compared two different IVM media, synthetic oviductal fluid (SOF) supplemented with 8% bovine serum albumin (BSA) or a mixture of 8% BSA–2.5% fetal bovine serum (FBS) and TCM-199 with 10% FBS. Additionally, we evaluated the effect of supplementation with insulin-transferrin-selenium (ITS) and low O2 tension in oocyte maturation, reactive oxygen species (ROS) levels, membrane integrity, and embryo development following parthenogenetic activation (PA). After 72 h of culture, SOF + BSA, SOF + BSA + FBS, and TCM-199 + FBS show 5, 7, and 4% of MII, respectively, without a statistical difference. However, SOF + BSA produced significantly higher degeneration rates compared to SOF + BSA + FBS (44 and 23%, respectively). Remarkably, supplementation with 1 μl/ml of ITS under high O2 tension demonstrated a beneficial effect by improving maturation rates up to 20% compared to the other groups. Low O2 tension increased maturation rates to 36.5%, although there were no statistical differences compared to high O2 tension in the presence of ITS. Lower ROS levels and higher integrity of the cytoplasmic membrane were found in the presence of ITS despite no differences in maturation rates under low O2 tension groups. Additionally, after PA, 1% development until the eight-cell stage was obtained after activation of in vitro-matured oocytes in the presence of ITS. Taken together, these results indicate that SOF supplemented with 8% BSA and 2.5% FBS is suitable for IVM of canine oocytes and ITS supplementation was beneficial for both high and low O2 tension. Furthermore, the addition of ITS in the cultured system lowers ROS levels and increases membrane integrity in domestic dog oocytes after IVM.
Collapse
Affiliation(s)
- Matteo Duque Rodriguez
- Facultad de Ciencias Agrarias, Politécnico Colombiano Jaime Isaza Cadavid, Medellin, Colombia.,Laboratorio Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Camila O Cittadini
- Laboratorio Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela M Teplitz
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Catedra de Histología y Embriología, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adrian De Stefano
- Laboratorio Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel M Lombardo
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Catedra de Histología y Embriología, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel F Salamone
- Laboratorio Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Colombo M, Alkali IM, Prochowska S, Luvoni GC. Fighting Like Cats and Dogs: Challenges in Domestic Carnivore Oocyte Development and Promises of Innovative Culture Systems. Animals (Basel) 2021; 11:2135. [PMID: 34359262 PMCID: PMC8300176 DOI: 10.3390/ani11072135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
In vitro embryo production in cats and dogs still presents some challenges, and it needs to be optimized to transfer efficient protocols to related wild, endangered species. While the chemical composition of culture media has been the focus of several studies, the importance of culture substrates for oocyte and embryo culture has often been neglected. Traditional in vitro systems, i.e., two-dimensional cultures, do not resemble the physiological environments where cells develop, and they may cause morphological and functional alterations to oocytes and embryos. More modern three-dimensional and microfluidic culture system better mimic the structure and the stimuli found in in vivo conditions, and they could better support the development of oocytes and embryos in vitro, as well as the maintenance of more physiological behaviors. This review describes the different culture systems tested for domestic carnivore reproductive cells along the years, and it summarizes their effects on cultured cells with the purpose of analyzing innovative options to improve in vitro embryo production outcomes.
Collapse
Affiliation(s)
- Martina Colombo
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare “Carlo Cantoni”, Università degli Studi di Milano, 26900 Lodi, Italy; (I.M.A.); (G.C.L.)
| | - Isa Mohammed Alkali
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare “Carlo Cantoni”, Università degli Studi di Milano, 26900 Lodi, Italy; (I.M.A.); (G.C.L.)
| | - Sylwia Prochowska
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, Grunwaldzki Square 49, 50-366 Wrocław, Poland;
| | - Gaia Cecilia Luvoni
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare “Carlo Cantoni”, Università degli Studi di Milano, 26900 Lodi, Italy; (I.M.A.); (G.C.L.)
| |
Collapse
|
7
|
Ciani F, Maruccio L, Cocchia N, d’Angelo D, Carotenuto D, Avallone L, Namagerdi AA, Tafuri S. Antioxidants in assisted reproductive technologies: An overview on dog, cat, and horse. J Adv Vet Anim Res 2021; 8:173-184. [PMID: 33860028 PMCID: PMC8043350 DOI: 10.5455/javar.2021.h500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/02/2020] [Accepted: 11/14/2020] [Indexed: 01/24/2023] Open
Abstract
Assisted reproductive technologies (ARTs) are widely used as a tool to improve reproductive performance in both humans and animals. In particular, in the veterinary field, ARTs are used to improve animal genetics, recover endangered animals, and produce offspring in the event of subfertility or infertility in males or females. However, the use of ARTs did not improve the fertilization rate in some animals due to various factors such as the difficulty in reproducing an anatomical and humoral substrate typical of the natural condition or due to the increase in catabolites and their difficult elimination. The in vitro environment allows the production and increase in the concentration of substances, including reactive oxygen species (ROS), which could be harmful to gametes. If produced in high concentration, the ROS becomes deleterious, both in vitro and in vivo systems. It has been seen that the use of antioxidants can help neutralize or counteract the production of ROS. The present study aims to report the latest findings regarding the use of antioxidants in ARTs of some domestic species, such as dogs, cats, and horses, compared to other animal species, such as cattle, in which ARTs have instead developed more widely.
Collapse
Affiliation(s)
- Francesca Ciani
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
- These authors contributed equally
| | - Lucianna Maruccio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
- These authors contributed equally
| | - Natascia Cocchia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Danila d’Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | | | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | | | - Simona Tafuri
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Pyometra does not affect some molecular quality-related parameters of canine oocytes. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Cystic endometrial hyperplasia-pyometra complex (CEH/P) significantly perturbs the reproductive performance of affected bitches and ovariohysterectomy (OHE) is a commonly applied treatment. Thus the only way to take advantage of the genetic potential of valuable females is application of assisted reproductive techniques (ART) mainly in vitro embryo production (IVP) or in some exceptional cases animal cloning by somatic cell nuclear transfer (SCNT). The aim of our study was to examine a potential effect of the CEH/P status on the quality of oocytes from females subjected to OHE. In total, 828 immature oocytes collected from ovaries of 33 bitches (21 control, 12 CEH/P) were subjected to genetic analyses (mRNA expression of two maternal-effect genes: GDF-9, OCT4 and mitochondrial DNA (mtDNA) content). Oocytes of CEH/P females were characterized by a higher mtDNA content (471 696) than gametes of their healthy counterparts (368 175; P<0.005). Transcripts for the two genes were detected in all samples and the mRNA level was not affected by the CEH/P status. In conclusion, the CEH/P complex does not exert a negative effect on oocyte quality reflected by the two parameters examined in this study.
Collapse
|
9
|
Abstract
Many factors influence the final oocyte maturation, fertilisation, and early embryo development, and there are both similarities and differences between species. When comparing the advancement of assisted reproductive technologies (ARTs), the development in the bovine species is not far behind the medical front, with around one million in vitro-produced bovine embryos each year. This rate of progress is not seen in the other domestic species. This review aims to give an overview of the development and specific difficulties of in vitro embryo production in various domestic animal species, with the main focus on cows, pigs, and cats. In production animals, the aim of ARTs is commonly to increase the genetic progress, not to treat reproductive failure. The ARTs are also used for preservation of genetic diversity for the future. However, specifically for oocyte maturation, fertilisation, and early embryonic development, domestic mammals such as the cow and pig can be used as models for humans. This is particularly attractive from an animal welfare point of view since bovine and porcine oocytes are available in large numbers from discarded slaughterhouse material, thereby decreasing the need for research animals. Both for researchers on the animal and human medical fronts, we aim for the development of in vitro production systems that will produce embryos and offspring that are no different from those conceived and developed in vivo. Species-comparative research and development can provide us with crucial knowledge to achieve this aim and hopefully help us avoid unnecessary problems in the future.
Collapse
Affiliation(s)
- Ylva Sjunnesson
- Department of Clinical Sciences, Reproduction, The Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
- CONTACT Ylva Sjunnesson Department of Clinical Sciences, Reproduction, The Centre for Reproductive Biology in Uppsala (CRU), Swedish University of Agricultural Sciences (SLU), PO Box 7054, SE-750 07Uppsala, Sweden
| |
Collapse
|
10
|
Luvoni GC, Colombo M, Morselli MG. The never-ending search of an ideal culture system for domestic cat oocytes and embryos. Reprod Domest Anim 2019; 53 Suppl 3:110-116. [PMID: 30474340 DOI: 10.1111/rda.13331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 01/20/2023]
Abstract
In the domestic cat, in vitro fertilization started 40 years ago, but an ideal culture system has yet to be achieved. The physiological microenvironments, which interact with oocytes and embryos promoting their competence, have been investigated. However, recreating in vitro follicle- and oviduct-like conditions is challenging and a matter of both chemistry and physics. This review presents an excursus of the experimental investigations focused on the improvement of feline oocytes and embryos culture through the modulation of chemical and physical factors. Medium supplementation with components of follicular and oviductal fluids, or the use of different co-cultures, supports or substrata have been considered. Innovative and sophisticated systems as "organ-on-a-chip" might lead to the creation of artificial follicles and oviducts and they may represent the ideal combination of chemical and physical factors. Will the search ever end?
Collapse
Affiliation(s)
- Gaia Cecilia Luvoni
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Milan, Italy
| | - Martina Colombo
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Milan, Italy
| | - Maria Giorgia Morselli
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
11
|
Sirard MA. 40 years of bovine IVF in the new genomic selection context. Reproduction 2018; 156:R1-R7. [PMID: 29636405 DOI: 10.1530/rep-18-0008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/10/2018] [Indexed: 01/22/2023]
Abstract
The development of a complex technology such as in vitro fertilization (IVF) requires years of experimentation, sometimes comparing several species to learn how to create the right in vitro environment for oocytes, spermatozoa and early embryos. At the same time, individual species characteristics such as gamete physiology and gamete interaction are recently evolved traits and must be analysed within the context of each species. In the last 40 years since the birth of Louise Brown, IVF techniques progressed and are now used in multiple domestic and non-domestic animal species around the world. This does not mean that the technology is completely matured or satisfactory; a number of problems remain to be solved and several procedures still need to be optimized. The development of IVF in cattle is particularly interesting since agriculture practices permitted the commercial development of the procedure and it is now used at a scale comparable to human IVF (millions of newborns). The genomic selection of young animals or even embryos combined with sexing and freezing technologies is driving a new era of IVF in the dairy sector. The time has come for a retrospective analysis of the success and pitfalls of the last 40 years of bovine IVF and for the description of the challenges to overcome in the years to come.
Collapse
Affiliation(s)
- Marc-André Sirard
- Centre de Recherche en ReproductionDéveloppement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Canada
| |
Collapse
|
12
|
Nishimura T, Unezaki N, Kanegi R, Wijesekera DPH, Hatoya S, Sugiura K, Kawate N, Tamada H, Imai H, Inaba T. Generation of Canine Induced Extraembryonic Endoderm-Like Cell Line That Forms Both Extraembryonic and Embryonic Endoderm Derivatives. Stem Cells Dev 2017; 26:1111-1120. [PMID: 28474540 DOI: 10.1089/scd.2017.0026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extraembryonic endoderm (XEN) cells are stem cell lines derived from primitive endoderm cells of inner cell mass in blastocysts. These cells have self-renewal properties and differentiate into visceral endoderm (VE) and parietal endoderm (PE) of the yolk sac. Recently, it has been reported that XEN cells can contribute to fetal embryonic endoderm, and their unique potency has been evaluated. In this study, we have described the induction and characterization of new canine stem cell lines that closely resemble to XEN cells. These cells, which we designated canine induced XEN (ciXEN)-like cells, were induced from canine embryonic fibroblasts by introducing four transgenes. ciXEN-like cells expressed XEN markers, which could be maintained over 50 passages in N2B27 medium supplemented with inhibitors of mitogen-activated protein kinase p38 and transforming growth factor-beta 1. Our ciXEN-like cells were maintained without transgene expression and exhibited upregulated expression of VE and PE markers in feeder-free conditions. The cells differentiated from ciXEN-like cells using a coculture system showed multiple nuclei and expressed albumin protein, similar to characteristics of hepatocytes. Furthermore, these cells expressed the adult hepatocyte marker, CYP3A4. Interestingly, these cells also formed a net structure expressing the bile epithelium capillary marker, multidrug resistance-associated protein 2. Thus, we have demonstrated the induction of a new canine stem cell line, ciXEN-like cells, which could form an embryonic endodermal cell layer. Our ciXEN-like cells may be a helpful tool to study the canine embryo development and represent a promising cell source for proceeding human and canine regenerative medicine.
Collapse
Affiliation(s)
- Toshiya Nishimura
- 1 Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Osaka, Japan
| | - Naoya Unezaki
- 1 Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Osaka, Japan
| | - Ryoji Kanegi
- 1 Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Osaka, Japan
| | | | - Shingo Hatoya
- 1 Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Osaka, Japan
| | - Kikuya Sugiura
- 1 Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Osaka, Japan
| | - Noritoshi Kawate
- 1 Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Osaka, Japan
| | - Hiromichi Tamada
- 1 Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Osaka, Japan
| | - Hiroshi Imai
- 2 Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University , Kyoto, Japan
| | - Toshio Inaba
- 1 Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Osaka, Japan
| |
Collapse
|
13
|
Cheuquemán C, Loren P, Arias M, Risopatrón J, Felmer R, Álvarez J, Mogas T, Sánchez R. Decrease in bovine in vitro embryo production efficiency during winter season in a warm-summer Mediterranean climate. Andrologia 2016; 49. [PMID: 28000967 DOI: 10.1111/and.12758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 11/30/2022] Open
Abstract
Retrospective analysis of monthly embryo production from December 2011 to May 2015 and its correlation with meteorological data in our geographic zone was made. We had observed that in certain time of the year, in vitro blastocyst production decreases. Accordingly, was examined the association between blastocyst production and climatological parameters. Cleavage rates correlate positively with blastocyst rates (p < .05). Significant differences in cleavage rates between autumn and summer (79.8%; 71.5%), and between winter and autumn (71.8%; 79.8%), were found. Blastocyst production had lower efficiency in June (9 ± 12%) and July (4.9 ± 5.7%), which coincides with winter season. In contrast, higher embryo production was obtained in February (22.2 ± 9.7%), March (22.9 ± 14%) and September (25.2 ± 6.6%), which coincides with autumn and spring season. Similarly, embryo production correlates with meteorological parameters: blastocyst production positively correlates with sunshine hours, maximum temperature and average temperature. Similarly, blastocyst production inversely correlates with total precipitation and days >1 mm precipitation (p < .05). There is a significant decrease in bovine in vitro embryo production efficiency during winter season in our warm-summer Mediterranean climate zone. It remains to be investigated the direct effect of environmental factors on oocyte quality and its impact on in vitro production efficiency.
Collapse
Affiliation(s)
- C Cheuquemán
- Facultad de Medicina, Centro de Biotecnología de la Reproducción (BIOREN-CEBIOR), Universidad de La Frontera, Temuco, Chile
| | - P Loren
- Facultad de Medicina, Centro de Biotecnología de la Reproducción (BIOREN-CEBIOR), Universidad de La Frontera, Temuco, Chile
| | - M Arias
- Facultad de Medicina, Centro de Biotecnología de la Reproducción (BIOREN-CEBIOR), Universidad de La Frontera, Temuco, Chile
| | - J Risopatrón
- Facultad de Medicina, Centro de Biotecnología de la Reproducción (BIOREN-CEBIOR), Universidad de La Frontera, Temuco, Chile.,Departamento de Ciencias Básicas, Universidad de La Frontera, Temuco, Chile
| | - R Felmer
- Facultad de Medicina, Centro de Biotecnología de la Reproducción (BIOREN-CEBIOR), Universidad de La Frontera, Temuco, Chile.,Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Chile
| | | | - T Mogas
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - R Sánchez
- Facultad de Medicina, Centro de Biotecnología de la Reproducción (BIOREN-CEBIOR), Universidad de La Frontera, Temuco, Chile.,Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
14
|
Tobias IC, Brooks CR, Teichroeb JH, Villagómez DA, Hess DA, Séguin CA, Betts DH. Small-Molecule Induction of Canine Embryonic Stem Cells Toward Naïve Pluripotency. Stem Cells Dev 2016; 25:1208-22. [DOI: 10.1089/scd.2016.0103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ian C. Tobias
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, the University of Western Ontario, London, Ontario, Canada
| | - Courtney R. Brooks
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, the University of Western Ontario, London, Ontario, Canada
| | - Jonathan H. Teichroeb
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, the University of Western Ontario, London, Ontario, Canada
| | - Daniel A. Villagómez
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Departamento de Producción Animal, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - David A. Hess
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, the University of Western Ontario, London, Ontario, Canada
- Children's Health Research Institute, the University of Western Ontario, London, Ontario, Canada
- Molecular Medicine Research Group, Krembil Centre for Stem Cell Biology, Robarts Research Institute, the University of Western Ontario, London, Ontario Canada
| | - Cheryle A. Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, the University of Western Ontario, London, Ontario, Canada
- Children's Health Research Institute, the University of Western Ontario, London, Ontario, Canada
| | - Dean H. Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, the University of Western Ontario, London, Ontario, Canada
- Children's Health Research Institute, the University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
15
|
Avilés M, Coy P, Rizos D. The oviduct: A key organ for the success of early reproductive events. Anim Front 2015. [DOI: 10.2527/af.2015-0005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, IMIB-Arrixaca, Murcia, Murcia, Spain
| | - Pilar Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, IMIB-Arrixaca, Murcia, Murcia, Spain
| | - Dimitrios Rizos
- Departamento de Reproducción Animal, INIA, Ctra. de la Coruña Km. 5,9 - 28040 Madrid, Spain
| |
Collapse
|