1
|
Linkov F, Chang YF, Ramanan H, Morgan RS, McTigue KM, Dimmock AEF, Bascom R, Kass DJ. Epidemiology of idiopathic pulmonary fibrosis in central and Western Pennsylvania. Respir Res 2025; 26:97. [PMID: 40065350 PMCID: PMC11895235 DOI: 10.1186/s12931-025-03164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/RATIONALE Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive disease of unknown origin. Establishing the epidemiology of IPF has been challenging due to diagnostic complexity, poor survival, low prevalence, and heterogeneity of ascertainment methodologies. OBJECTIVES This research aimed to estimate the rates of IPF in central and western Pennsylvania and to pilot the use of capture recapture (CR) methods to estimate the disease incidence. METHODS We identified adults ≥ 30 years old diagnosed with IPF (by ICD-9/10 coding) between 2013 to 2021 from two health systems (UPMC Health System and Penn State Health) participating in the PaTH Clinical Research Network. We extracted information on patients' sex, race, date of birth and 3-digit zip code from electronic health records (EHR). Incidence rate of IPF among Pennsylvania residents was calculated using three case definitions (broad and two restricted) and piloted the use of CR in estimating IPF incidence. RESULTS IPF incidence rates were 8.42, 6.95 and 4.4 per 100,000 person-years for the unrestricted (n = 3148), partially restricted (n = 2598) and fully restricted (n = 1661) samples, respectively. Low case overlap between two sites resulted in a highly inflated estimate of IPF incidence, using the CR methodology. CONCLUSIONS The rate of IPF in central and western Pennsylvania was similar to previously published statistics. The application of CR to IPF epidemiology could be further investigated in health systems with greater overlap of patients utilizing more than one system.
Collapse
Affiliation(s)
- Faina Linkov
- Department of Health, Exercise & Applied Science, John G. Rangos Sr. School of Health Sciences, Duquesne University, Pittsburgh, PA, USA.
| | - Yue-Fang Chang
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Harshitha Ramanan
- Department of Health, Exercise & Applied Science, John G. Rangos Sr. School of Health Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Richard S Morgan
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Anne E F Dimmock
- Penn State College of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Rebecca Bascom
- Penn State College of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Duminy-Luppi D, Alcaide-Aldeano A, Planas-Cerezales L, Bermudo G, Vicens-Zygmunt V, Luburich P, Del Río-Carrero B, Llatjós R, Pijuan L, Escobar I, Rivas F, Montes-Worboys A, Gutiérrez-Rodríguez Y, Rodríguez-Plaza D, Padró-Miquel A, Esteve-Garcia A, Fernández-Varas B, Flores C, Fuentes M, Dorca J, Santos S, Perona R, Günther A, Shull J, Molina-Molina M. Diagnostic and prognostic implications of family history of fibrotic interstitial lung diseases. Respir Res 2024; 25:433. [PMID: 39695595 DOI: 10.1186/s12931-024-03063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Patients with familial fibrotic interstitial lung disease (ILD) experience worse survival than patients with sporadic disease. Current guidelines do not consider family aggregation or genetic information in the diagnostic algorithm for idiopathic pulmonary fibrosis or other fibrotic ILDs. Better characterizing familial cases could help in diagnostic and treatment decision-making. METHODS This retrospective cohort study included 222 patients with fibrotic ILD (104 familial and 118 sporadic) from Bellvitge University Hospital. Clinical, radiological, pulmonary functional tests (PFT), and histological evaluations were performed at diagnosis and follow-up. Telomere shortening and disease-associated variants (DAVs) in telomerase-related genes were analysed in familial patients and sporadic patients with telomeric clinical signs. Primary outcomes were the presence of a UIP histological pattern and disease progression. RESULTS Patients with idiopathic pulmonary fibrosis (IPF) (52%), fibrotic hypersensitivity pneumonitis (23%), and other fibrotic ILDs (25%) were included. 42% of patients underwent lung biopsy. Patients with family aggregation were younger and less frequently associated comorbidities, male sex, and smoking history. However, usual interstitial pneumonia (UIP) was more frequent on pathology (p = 0.005; OR 3.37), especially in patients with indeterminate or non-UIP radiological patterns. Despite similar PFT results at diagnosis, familial patients were more likely to present with progressive disease (p = 0.001; OR 3.75). Carrying a DAV increased the risk of fibrotic progression in familial and sporadic patients (p = 0.029, OR 5.01). DISCUSSION Familial patients diagnosed with different fibrotic ILDs were more likely to exhibit a histological UIP pattern and disease progression than sporadic patients, independent of radiological findings and pulmonary function at diagnosis. CONCLUSION Considering the diagnostic likelihood of the histological UIP pattern and disease outcome, the presence of family aggregation would be useful in the decision making of multidisciplinary committees.
Collapse
Affiliation(s)
- D Duminy-Luppi
- University of Barcelona, School of Medicine. Respiratory Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain.
- Internal Medicine Department, ICMID, Hospital Clínic de Barcelona, Barcelona, Spain.
| | - A Alcaide-Aldeano
- University of Barcelona, School of Medicine. Respiratory Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- Cardiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - L Planas-Cerezales
- Respiratory Department, Hospital of Viladecans, IDIBELL, University of Barcelona, Viladecans, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - G Bermudo
- Interstitial Lung Disease Unit, Respiratory Department, Bellvitge University Hospital, University of Barcelona, L'Hospitalet de Llobregat, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - V Vicens-Zygmunt
- Interstitial Lung Disease Unit, Respiratory Department, Bellvitge University Hospital, University of Barcelona, L'Hospitalet de Llobregat, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - P Luburich
- Radiology Department, Bellvitge University Hospital, IDIBELL, University of Barcelona, L'Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - B Del Río-Carrero
- Radiology Department, Bellvitge University Hospital, IDIBELL, University of Barcelona, L'Hospitalet de Llobregat, Spain
| | - R Llatjós
- Pathology Department, Bellvitge University, L'Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - L Pijuan
- Pathology Department, Bellvitge University, L'Hospitalet de Llobregat, Spain
| | - I Escobar
- Department of Thoracic Surgery, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
| | - F Rivas
- Department of Thoracic Surgery, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
| | - A Montes-Worboys
- Interstitial Lung Disease Unit, Respiratory Department, Bellvitge University Hospital, University of Barcelona, L'Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Y Gutiérrez-Rodríguez
- Interstitial Lung Disease Unit, Respiratory Department, Bellvitge University Hospital, University of Barcelona, L'Hospitalet de Llobregat, Spain
| | - D Rodríguez-Plaza
- Interstitial Lung Disease Unit, Respiratory Department, Bellvitge University Hospital, University of Barcelona, L'Hospitalet de Llobregat, Spain
| | - A Padró-Miquel
- Department of Clinical Genetics, Bellvitge University Hospital, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - A Esteve-Garcia
- Department of Clinical Genetics, Bellvitge University Hospital, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | | | - C Flores
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Unidad de Investigación, del Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Área de Genómica, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - M Fuentes
- Interstitial Lung Disease Unit, Respiratory Department, Bellvitge University Hospital, University of Barcelona, L'Hospitalet de Llobregat, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - J Dorca
- University of Barcelona, School of Medicine. Respiratory Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
| | - S Santos
- University of Barcelona, School of Medicine. Respiratory Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- Interstitial Lung Disease Unit, Respiratory Department, Bellvitge University Hospital, University of Barcelona, L'Hospitalet de Llobregat, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - R Perona
- Telomeropathies Lab, CSIC-IIB Alberto Sols, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A Günther
- Justus Liebig University, Giessen, Germany
| | - J Shull
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - M Molina-Molina
- Interstitial Lung Disease Unit, Respiratory Department, Bellvitge University Hospital, University of Barcelona, L'Hospitalet de Llobregat, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
3
|
Yoon HY, Kim SY, Song JW. Association between high levels of nitrogen dioxide and increased cumulative incidence of lung cancer in patients with idiopathic pulmonary fibrosis. Eur Respir J 2024; 63:2301181. [PMID: 38453259 DOI: 10.1183/13993003.01181-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Lung cancer is a fatal complication of idiopathic pulmonary fibrosis (IPF) with a poor prognosis. However, the association between individual exposure to air pollutants and lung cancer development in patients with IPF is unknown. This study aimed to assess the effect of individual exposure to nitrogen dioxide (NO2) on lung cancer development in patients with IPF. METHODS We enrolled 1085 patients from an IPF cohort in the Republic of Korea (mean age 65.6 years, males 80.6%). We estimated individual-level long-term exposures to NO2 at the patients' residential addresses using a national-scale exposure prediction model based on data from air quality regulatory monitoring stations. To evaluate the association between NO2 levels and lung cancer development in IPF, we used an individual- and area-level covariates adjusted model as our primary model. RESULTS The estimated average annual NO2 concentration was 23.1 ppb. During a median follow-up of 4.3 years, 86 patients (7.9%) developed lung cancer. NO2 concentration was associated with lung cancer development in an unadjusted model (HR 1.219; p=0.042), while a marginal association was found in the primary model (HR 1.280; p=0.084). When NO2 concentration was stratified by the median value (21.0 ppb), exposure to high NO2 levels (≥21.0 ppb) was associated with a 2.0-fold increase in the risk of lung cancer development (HR 2.023; p=0.047) in the primary model. CONCLUSION Individual exposure to high NO2 levels may increase the risk of lung cancer development in patients with IPF.
Collapse
Affiliation(s)
- Hee-Young Yoon
- Division of Allergy and Respiratory Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Sun-Young Kim
- Department of Cancer AI and Digital Health, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi, Republic of Korea
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Yoon HY, Kim SY, Song JW. Effects of indoor air pollution on clinical outcomes in patients with interstitial lung disease: protocol of a multicentre prospective observational study. BMJ Open Respir Res 2024; 11:e002053. [PMID: 38262669 PMCID: PMC10806566 DOI: 10.1136/bmjresp-2023-002053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrosing interstitial lung disease with a poor prognosis. While there is evidence suggesting that outdoor air pollution affects the clinical course of IPF, the impact of indoor air pollution on patients with IPF has not been extensively studied. Therefore, this prospective multicentre observational study aims to investigate the association between indoor air pollution and clinical outcomes in patients with IPF. METHODS AND ANALYSIS This study enrolled 140 patients with IPF from 12 medical institutes in the Seoul and Metropolitan areas of the Republic of Korea. Over the course of 1 year, participants visited the institutes every 3 months, during which their clinical data and blood samples were collected. Additionally, indoor exposure to particulate matter ≤2.5 µm (PM2.5) was measured using MicroPEM (RTI International, Research Triangle Park, North Carolina, USA) in each participant's house for 5 days every 3 months. Lung function was assessed using both site spirometry at each institution and portable spirometry at each participant's house every 3 months. The study will analyse the impact of indoor PM2.5 on clinical outcomes, including mortality, acute exacerbation, changes in lung function and health-related quality of life, in the participants. This study represents the first attempt to evaluate the influence of indoor air pollution on the prognosis of patients with IPF. ETHICS AND DISSEMINATION This study has received approval from the institutional review board of all participating institutions, including Asan Medical Center, Seoul, Republic of Korea (2021-0072). TRIAL REGISTRATION NUMBER KCT0006217.
Collapse
Affiliation(s)
- Hee-Young Yoon
- Division of Allergy and Respiratory Diseases, Soonchunhyang University Seoul Hospital, Seoul, Korea (the Republic of)
| | - Sun-Young Kim
- Department of Cancer AI & Digital Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea (the Republic of)
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Korea (the Republic of)
| |
Collapse
|
5
|
Lan D, Fermoyle CC, Troy LK, Knibbs LD, Corte TJ. The impact of air pollution on interstitial lung disease: a systematic review and meta-analysis. Front Med (Lausanne) 2024; 10:1321038. [PMID: 38298511 PMCID: PMC10827982 DOI: 10.3389/fmed.2023.1321038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Introduction There is a growing body of evidence suggesting a causal relationship between interstitial lung disease (ILD) and air pollution, both for the development of the disease, and driving disease progression. We aim to provide a comprehensive literature review of the association between air pollution, and ILD, including idiopathic pulmonary fibrosis (IPF). Methods We systematically searched from six online database. Two independent authors (DL and CF) selected studies and critically appraised the risk of bias using the Newcastle-Ottawa Scale (NOS). Findings are presented through a narrative synthesis and meta-analysis. Meta-analyses were performed exclusively when there was a minimum of three studies examining identical pollutant-health outcome pairs, all evaluating equivalent increments in pollutant concentration, using a random effects model. Results 24 observational studies conducted in 13 countries or regions were identified. Pollutants under investigation encompassed ozone (O3), nitrogen dioxide (NO2), Particulate matter with diameters of 10 micrometers or less (PM10) and 2.5 micrometers or less (PM2.5), sulfur dioxide (SO2), carbon monoxide (CO), nitric oxide (NO) and nitrogen oxides (NOx). We conducted meta-analyses to assess the estimated Risk Ratios (RRs) for acute exacerbations (AE)-IPF in relation to exposure to every 10 μg/m3 increment in air pollutant concentrations, including O3, NO2, PM10, and PM2.5. The meta-analysis revealed a significant association between the increased risk of AE-IPF in PM2.5, yielding RR 1.94 (95% CI 1.30-2.90; p = 0.001). Findings across all the included studies suggest that increased exposure to air pollutants may be linked to a range of health issues in individuals with ILDs. Conclusion A scarcity of available studies on the air pollutants and ILD relationship underscores the imperative for further comprehensive research in this domain. The available data suggest that reducing levels of PM2.5 in the atmosphere could potentially reduce AE frequency and severity in ILD patients.
Collapse
Affiliation(s)
- Doris Lan
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- National Health and Medical Research Council (NHMRC), Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| | - Caitlin C. Fermoyle
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- National Health and Medical Research Council (NHMRC), Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| | - Lauren K. Troy
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- National Health and Medical Research Council (NHMRC), Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| | - Luke D. Knibbs
- National Health and Medical Research Council (NHMRC), Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Public Health Unit, Public Health Research Analytics and Methods for Evidence (PHRAME), Sydney Local Health District, Camperdown, NSW, Australia
| | - Tamera J. Corte
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- National Health and Medical Research Council (NHMRC), Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| |
Collapse
|
6
|
Min HK, Kim SH, Lee SH, Kim HR. Risk factors for interstitial lung disease in rheumatoid arthritis: a cohort study from the KOBIO registry. Ther Adv Musculoskelet Dis 2023; 16:1759720X231218098. [PMID: 39156663 PMCID: PMC11327977 DOI: 10.1177/1759720x231218098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/11/2023] [Indexed: 08/20/2024] Open
Abstract
Background Interstitial lung disease (ILD) is a critical extra-articular manifestation of rheumatoid arthritis (RA). However, little is known about the risk factors of RA-ILD. Objectives Here, we examined the effect of demographic, clinical, therapeutic, and environmental factors on the incidence of ILD in RA patients using the Korean College of Rheumatology Biologics and Targeted Therapy (KOBIO) registry. Design We used data from the KOBIO registry, a multi-center, prospective, observational cohort that included RA patients in South Korea. Methods RA patients who used biologic or targeted synthetic disease-modifying antirheumatic drugs (b/tsDMARDs) or conventional synthetic (cs)DMARDs, and were enrolled in the KOBIO registry, were examined. Demographic, clinical, and radiographic characteristics, as well as medications, were recorded at baseline and annually thereafter. Kaplan-Meier curves and the log-rank test were used to compare the incidence of ILD between RA patients taking different b/tsDMARDs. Hazard ratios (HRs) were calculated by Cox regression analyses. Results In total, 2492 patients (1967 in the b/tsDMARDs group and 525 in the csDMARDs group) were analyzed. The b/tsDMARDs group showed longer disease duration, higher erythrocyte sedimentation rate/C-reactive protein, and higher disease activity score-28 (DAS28) than the csDMARDs group. The incidence of ILD was significantly higher in those taking tumor necrosis factor inhibitors and abatacept than in those taking csDMARDs (log ranked p < 0.001). Multivariate Cox regression analysis identified older age (HR = 1.057, p = 0.001), male sex (HR = 2.824, p = 0.007), time-averaged DAS28 (HR = 2.241, p < 0.001), and rheumatoid factor titer (HR = 1.009, p = 0.007) as having a significantly increased HR for ILD occurrence. Conclusion ILD is a rare but critical extra-articular symptom of RA patients. Therefore, RA patients with the above risk factors should be monitored carefully for ILD development.
Collapse
Affiliation(s)
- Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Gwangjin-gu, Seoul, Republic of Korea
| | - Se Hee Kim
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Gwangjin-gu, Seoul, Republic of Korea
- Department of Rheumatology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Gwangjin-gu, Seoul, Republic of Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| |
Collapse
|
7
|
Roeser A, Sese L, Chassagnon G, Chaigne B, Dunogue B, Tran Ba S, Jebri S, Brillet PY, Revel MP, Aubourg F, Dhote R, Caux F, Annesi-Maesano I, Mouthon L, Nunes H, Uzunhan Y. The association between air pollution and the severity at diagnosis and progression of systemic sclerosis-associated interstitial lung disease: results from the retrospective ScleroPol study. Respir Res 2023; 24:151. [PMID: 37291562 DOI: 10.1186/s12931-023-02463-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
OBJECTIVE To investigate the association of air pollution exposure with the severity of interstitial lung disease (ILD) at diagnosis and ILD progression among patients with systemic sclerosis (SSc)-associated ILD. METHODS We conducted a retrospective two-center study of patients with SSc-associated ILD diagnosed between 2006 and 2019. Exposure to the air pollutants particulate matter of up to 10 and 2.5 µm in diameter (PM10, PM2.5), nitrogen dioxide (NO2), and ozone (O3) was assessed at the geolocalization coordinates of the patients' residential address. Logistic regression models were used to evaluate the association between air pollution and severity at diagnosis according to the Goh staging algorithm, and progression at 12 and 24 months. RESULTS We included 181 patients, 80% of whom were women; 44% had diffuse cutaneous scleroderma, and 56% had anti-topoisomerase I antibodies. ILD was extensive, according to the Goh staging algorithm, in 29% of patients. O3 exposure was associated with the presence of extensive ILD at diagnosis (adjusted OR: 1.12, 95% CI 1.05-1.21; p value = 0.002). At 12 and 24 months, progression was noted in 27/105 (26%) and 48/113 (43%) patients, respectively. O3 exposure was associated with progression at 24 months (adjusted OR: 1.10, 95% CI 1.02-1.19; p value = 0.02). We found no association between exposure to other air pollutants and severity at diagnosis and progression. CONCLUSION Our findings suggest that high levels of O3 exposure are associated with more severe SSc-associated ILD at diagnosis, and progression at 24 months.
Collapse
Affiliation(s)
- Anaïs Roeser
- Department of Pulmonology, Assistance Publique-Hôpitaux de Paris (APHP), Avicenne Hospital, Bobigny, France
| | - Lucile Sese
- Department of Pulmonology, Assistance Publique-Hôpitaux de Paris (APHP), Avicenne Hospital, Bobigny, France
- INSERM UMR1272 Hypoxie et poumon, Paris 13 - Université Paris Nord, Bobigny, France
| | - Guillaume Chassagnon
- Department of Radiology A, Assistance Publique-Hôpitaux de Paris (APHP), Cochin Hospital, Paris, France
| | - Benjamin Chaigne
- Department of Internal Medicine, Assistance Publique-Hôpitaux de Paris (APHP), Cochin Hospital, Paris, France
| | - Bertrand Dunogue
- Department of Internal Medicine, Assistance Publique-Hôpitaux de Paris (APHP), Cochin Hospital, Paris, France
| | - Stéphane Tran Ba
- Department of Radiology, Assistance Publique-Hôpitaux de Paris (APHP), Avicenne Hospital, Bobigny, France
| | - Salma Jebri
- Department of Radiology, Assistance Publique-Hôpitaux de Paris (APHP), Avicenne Hospital, Bobigny, France
| | - Pierre-Yves Brillet
- Department of Radiology, Assistance Publique-Hôpitaux de Paris (APHP), Avicenne Hospital, Bobigny, France
| | - Marie Pierre Revel
- Department of Radiology A, Assistance Publique-Hôpitaux de Paris (APHP), Cochin Hospital, Paris, France
| | - Frédérique Aubourg
- Department of Physiology, Assistance Publique-Hôpitaux de Paris (APHP), Cochin Hospital, Paris, France
| | - Robin Dhote
- Department of Internal Medicine, Assistance Publique-Hôpitaux de Paris (APHP), Avicenne Hospital, Paris, France
| | - Frédéric Caux
- Department of Dermatology, Assistance Publique-Hôpitaux de Paris (APHP), Avicenne Hospital, Paris, France
| | - Isabella Annesi-Maesano
- INSERM, Department of Allergic and Respiratory Disease, Montpellier University Hospital, Institute Desbrest of Epidemiology and Public Health, University of Montpellier, Montpellier, France
| | - Luc Mouthon
- Department of Internal Medicine, Assistance Publique-Hôpitaux de Paris (APHP), Cochin Hospital, Paris, France
| | - Hilario Nunes
- Department of Pulmonology, Assistance Publique-Hôpitaux de Paris (APHP), Avicenne Hospital, Bobigny, France
- INSERM UMR1272 Hypoxie et poumon, Paris 13 - Université Paris Nord, Bobigny, France
| | - Yurdagül Uzunhan
- Department of Pulmonology, Assistance Publique-Hôpitaux de Paris (APHP), Avicenne Hospital, Bobigny, France.
- INSERM UMR1272 Hypoxie et poumon, Paris 13 - Université Paris Nord, Bobigny, France.
| |
Collapse
|
8
|
Yoon HY, Kim SY, Kim OJ, Song JW. Nitrogen dioxide increases the risk of disease progression in idiopathic pulmonary fibrosis. Respirology 2023; 28:254-261. [PMID: 36123769 DOI: 10.1111/resp.14373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Air pollution affects clinical course and prognosis of idiopathic pulmonary fibrosis (IPF). However, the effect of individual exposure to air pollutants on disease progression is unclear. We aimed to identify the effect of individual exposure to nitrogen dioxide (NO2 ) and particulate matter (aerodynamic diameter ≤ 10 μm [PM10 ]) on disease progression in patients with IPF. METHODS The serial lung function data of 946 IPF patients (mean age: 65.4 years, male: 80.9%) were analysed. Individual-level long-term exposures to NO2 and PM10 at the residential addresses of patients were estimated using a national-scale exposure prediction model, constructed based on air quality regulatory monitoring data. Progression was defined as a relative decline (≥10%) in forced vital capacity. Individual- and area-level covariates were adjusted in the primary analysis model. RESULTS Overall, 547 patients (57.8%) experienced progression during a median follow-up of 1.0 year (interquartile range: 0.4-2.6 years). In the primary model, a 10-ppb increase in NO2 concentration was associated with a 10.5% increase in the risk of progression (hazard ratio [HR] = 1.105; 95% CI = 1.000-1.219) in patients with IPF. There was also an increasing trend of progression in patients with IPF according to the second to fourth quartiles of NO2 (Q2 [HR = 1.299; 95% CI = 0.972-1.735], Q3 [1.409; 1.001-1.984], Q4 [1.598; 1.106-2.310]) compared to the first quartile. We found no association between PM10 and progression in IPF patients. CONCLUSION Our data suggest that increased individual exposure to NO2 can increase the risk of progression in patients with IPF.
Collapse
Affiliation(s)
- Hee-Young Yoon
- Division of Allergy and Respiratory Diseases, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Sun-Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi, Republic of Korea
| | - Ok-Jin Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi, Republic of Korea.,Environmental Health Research Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Chikina S, Cherniak A, Merzhoeva Z, Tyurin I, Trushenko N, Proshkina A, Ataman K, Avdeev S. Russian Registry of Idiopathic Pulmonary Fibrosis: Clinical Features, Treatment Management, and Outcomes. Life (Basel) 2023; 13:life13020435. [PMID: 36836792 PMCID: PMC9964580 DOI: 10.3390/life13020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
A registry of patients with idiopathic pulmonary fibrosis (IPF) was founded in Russia in 2016. The aim of this study was to analyze the demographic, clinical, functional, radiological, and morphological data of the patients included in this registry. METHODS This was a prospective multicenter, observational, non-interventional study. Patients' risk factors, demographics, clinical data, results of high-resolution computed tomography (HRCT) of the chest and pulmonary function testing, and lung tissue biopsy findings were analyzed. We also analyzed the exercise tolerance (6-min walking test) of patients, serological markers of systemic connective tissue diseases, treatment, clinical course, and outcomes of the disease. Multidisciplinary discussion (MDD) was used as needed. RESULTS One thousand three hundred and fifty-three patients were included in the registry from 2016 to 2020. The mean age was 64.4 ± 10.7 years, most patients were active smokers or ex-smokers. Antifibrotic therapy was administered to 90 of 948 patients (9.5%). Since starting the registry in 2016, the incidences of IPF have increased and the time period from manifestation of the disease to making the diagnosis has shortened, the number of patients on antifibrotic therapy has increased and the number of patients taking systemic steroids decreased. CONCLUSION The registry of patients with IPF was helpful to improve IPF diagnosis and to implement antifibrotic agents in clinical practice. Further analysis of the clinical course and prognostic markers of IPF in the Russian population is needed. An analysis of the long-term efficacy of antifibrotic therapy in this population is also important.
Collapse
Affiliation(s)
- Svetlana Chikina
- Department of Pulmonology, Sechenov First Moscow State Medical University (Sechenov University), 8, Build.2, Trubetskaya Str., Moscow 119991, Russia
- Correspondence:
| | - Alexander Cherniak
- Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 28, Orehovyi Bul., Moscow 115682, Russia
| | - Zamira Merzhoeva
- Department of Pulmonology, Sechenov First Moscow State Medical University (Sechenov University), 8, Build.2, Trubetskaya Str., Moscow 119991, Russia
| | - Igor Tyurin
- Russian Medical Academy for Postgraduate Education, 2/1, Build.1, Barrikadnaya Str., Moscow 125993, Russia
| | - Natalia Trushenko
- Department of Pulmonology, Sechenov First Moscow State Medical University (Sechenov University), 8, Build.2, Trubetskaya Str., Moscow 119991, Russia
- Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 28, Orehovyi Bul., Moscow 115682, Russia
| | - Anna Proshkina
- Department of Pulmonology, Sechenov First Moscow State Medical University (Sechenov University), 8, Build.2, Trubetskaya Str., Moscow 119991, Russia
| | - Kirill Ataman
- Department of Pulmonology, Sechenov First Moscow State Medical University (Sechenov University), 8, Build.2, Trubetskaya Str., Moscow 119991, Russia
| | - Sergey Avdeev
- Department of Pulmonology, Sechenov First Moscow State Medical University (Sechenov University), 8, Build.2, Trubetskaya Str., Moscow 119991, Russia
- Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 28, Orehovyi Bul., Moscow 115682, Russia
| |
Collapse
|
10
|
Zhang Y, Liu Q, Ning J, Jiang T, Kang A, Li L, Pang Y, Zhang B, Huang X, Wang Q, Bao L, Niu Y, Zhang R. The proteasome-dependent degradation of ALKBH5 regulates ECM deposition in PM 2.5 exposure-induced pulmonary fibrosis of mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128655. [PMID: 35334267 DOI: 10.1016/j.jhazmat.2022.128655] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Long-term inhalation of fine particulate matter (PM2.5) can cause serious effects on the respiratory system. It might be attributed to the fact that PM2.5 could directly enter and deposit in lung tissues. We established models of PM2.5 exposure in vivo and in vitro to explore the adverse effects of ambient PM2.5 on pulmonary and its potential pathogenic mechanisms. Our results showed that PM2.5 exposure promoted the deposition of ECM and the increased stiffness of the lungs, and then led to pulmonary fibrosis in time- and dose- dependent manners. Pulmonary function test showed restrictive ventilation function in mice after PM2.5 exposure. After PM2.5 exposure, ALKBH5 was recognized by TRIM11 and then degraded through the proteasome pathway. ALKBH5 deficiency (ALKBH5-/-) aggravated restrictive ventilatory disorder and promoted ECM deposition in lungs of mice induced by PM2.5. And the YAP1 signaling pathway was more activated in ALKBH5-/- than WT mice after PM2.5 exposure. In consequence, decreased ALKBH5 protein levels regulated miRNAs and then the miRNAs-targeted YAP1 signaling was activated to promote pulmonary fibrosis induced by PM2.5.
Collapse
Affiliation(s)
- Yaling Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Tao Jiang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Aijuan Kang
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Lipeng Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Boyuan Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Science and Technology Office, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - XiaoYan Huang
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Qian Wang
- Experimental Center, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Lei Bao
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China.
| |
Collapse
|
11
|
Shull JG, Planas-Cerezales L, Lara Compte C, Perona R, Molina-Molina M. Harnessing PM2.5 Exposure Data to Predict Progression of Fibrotic Interstitial Lung Diseases Based on Telomere Length. Front Med (Lausanne) 2022; 9:871898. [PMID: 35646972 PMCID: PMC9133476 DOI: 10.3389/fmed.2022.871898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cross-analysis of clinical and pollution factors could help calculate the risk of fibrotic interstitial lung disease (ILD) development and progression. The intent of this study is to build a body of knowledge around early detection and diagnosis of lung disease, harnessing new data sets generated for other purposes. We cross-referenced exposure levels to particulate matter 2.5 (PM2.5) with telomere length of a cohort of 280 patients with fibrotic ILD to weigh impact and associations. There was no linear correlation between PM2.5 and telomere length in our data sets, as the value of the correlation coefficient was 0.08. This exploratory study offers additional insights into methodologies for investigating the development and prognosis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jessica Germaine Shull
- Interstitial Lung Disease (ILD) Multidisciplinary Unit, Hospital Universitari Bellvitge, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Universitat de Barcelona, Hospitalet de Llobregat, L'Hospitalet de Llobregat, Spain
| | - Lurdes Planas-Cerezales
- Interstitial Lung Disease (ILD) Multidisciplinary Unit, Hospital Universitari Bellvitge, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Universitat de Barcelona, Hospitalet de Llobregat, L'Hospitalet de Llobregat, Spain
| | - Carla Lara Compte
- Interstitial Lung Disease (ILD) Multidisciplinary Unit, Hospital Universitari Bellvitge, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Universitat de Barcelona, Hospitalet de Llobregat, L'Hospitalet de Llobregat, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomedicas Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain.,Centro Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Molina-Molina
- Interstitial Lung Disease (ILD) Multidisciplinary Unit, Hospital Universitari Bellvitge, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Universitat de Barcelona, Hospitalet de Llobregat, L'Hospitalet de Llobregat, Spain.,Centro Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
McCarthy C, Keane MP. Contemporary Concise Review 2021: Interstitial lung disease. Respirology 2022; 27:539-548. [PMID: 35513341 PMCID: PMC9320947 DOI: 10.1111/resp.14278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
The last 2 years have presented previously unforeseen challenges in pulmonary medicine. Despite the significant impact of the SARS‐CoV‐2 pandemic on patients, clinicians and communities, advances in the care and understanding of interstitial lung disease (ILD) continued unabated. Recent studies have led to improved guidelines, better understanding of the role for antifibrotics in fibrosing ILDs, prognostic indicators and novel biomarkers. In this concise contemporary review, we summarize many of the important studies published in 2021, highlighting their relevance and impact to the management and knowledge of ILD.
Collapse
Affiliation(s)
- Cormac McCarthy
- Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| | - Michael P Keane
- Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Uncovering the Epidemiology of Idiopathic Pulmonary Fibrosis in the Veterans Affairs Health System. Ann Am Thorac Soc 2022; 19:161-162. [PMID: 35103565 PMCID: PMC8867354 DOI: 10.1513/annalsats.202108-972ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Guo C, Lv S, Liu Y, Li Y. Biomarkers for the adverse effects on respiratory system health associated with atmospheric particulate matter exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126760. [PMID: 34396970 DOI: 10.1016/j.jhazmat.2021.126760] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/17/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of epidemiological evidence have confirmed the atmospheric particulate matter (PM2.5) exposure was positively correlated with the morbidity and mortality of respiratory diseases. Nevertheless, its pathogenesis remains incompletely understood, probably resulting from the activation of oxidative stress, inflammation, altered genetic and epigenetic modifications in the lung upon PM2.5 exposure. Currently, biomarker investigations have been widely used in epidemiological and toxicological studies, which may help in understanding the biologic mechanisms underlying PM2.5-elicited adverse health outcomes. Here, the emerging biomarkers to indicate PM2.5-respiratory system interactions were summarized, primarily related to oxidative stress (ROS, MDA, GSH, etc.), inflammation (Interleukins, FENO, CC16, etc.), DNA damage (8-OHdG, γH2AX, OGG1) and also epigenetic modulation (DNA methylation, histone modification, microRNAs). The identified biomarkers shed light on PM2.5-elicited inflammation, fibrogenesis and carcinogenesis, thus may favor more precise interventions in public health. It is worth noting that some inconsistent findings may possibly relate to the inter-study differentials in the airborne PM2.5 sample, exposure mode and targeted subjects, as well as methodological issues. Further research, particularly by -omics technique to identify novel, specific biomarkers, is warranted to illuminate the causal relationship between PM2.5 pollution and deleterious lung outcomes.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
15
|
Samarelli AV, Masciale V, Aramini B, Coló GP, Tonelli R, Marchioni A, Bruzzi G, Gozzi F, Andrisani D, Castaniere I, Manicardi L, Moretti A, Tabbì L, Guaitoli G, Cerri S, Dominici M, Clini E. Molecular Mechanisms and Cellular Contribution from Lung Fibrosis to Lung Cancer Development. Int J Mol Sci 2021; 22:12179. [PMID: 34830058 PMCID: PMC8624248 DOI: 10.3390/ijms222212179] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrosing interstitial lung disease (ILD) of unknown aetiology, with a median survival of 2-4 years from the time of diagnosis. Although IPF has unknown aetiology by definition, there have been identified several risks factors increasing the probability of the onset and progression of the disease in IPF patients such as cigarette smoking and environmental risk factors associated with domestic and occupational exposure. Among them, cigarette smoking together with concomitant emphysema might predispose IPF patients to lung cancer (LC), mostly to non-small cell lung cancer (NSCLC), increasing the risk of lung cancer development. To this purpose, IPF and LC share several cellular and molecular processes driving the progression of both pathologies such as fibroblast transition proliferation and activation, endoplasmic reticulum stress, oxidative stress, and many genetic and epigenetic markers that predispose IPF patients to LC development. Nintedanib, a tyrosine-kinase inhibitor, was firstly developed as an anticancer drug and then recognized as an anti-fibrotic agent based on the common target molecular pathway. In this review our aim is to describe the updated studies on common cellular and molecular mechanisms between IPF and lung cancer, knowledge of which might help to find novel therapeutic targets for this disease combination.
Collapse
Affiliation(s)
- Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Valentina Masciale
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, 41100 Modena, Italy;
| | - Beatrice Aramini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Thoracic Surgery Unit, Department of Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, 34 Carlo Forlanini Street, 47121 Forlì, Italy
| | - Georgina Pamela Coló
- Laboratorio de Biología del Cáncer INIBIBB-UNS-CONICET-CCT, Bahía Blanca 8000, Argentina;
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Alessandro Marchioni
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Giulia Bruzzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Filippo Gozzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Dario Andrisani
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Ivana Castaniere
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Linda Manicardi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Antonio Moretti
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Luca Tabbì
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Giorgia Guaitoli
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Massimo Dominici
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, 41100 Modena, Italy;
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| |
Collapse
|
16
|
Pei C, Wang F, Huang D, Shi S, Wang X, Wang Y, Li S, Wu Y, Wang Z. Astragaloside IV Protects from PM2.5-Induced Lung Injury by Regulating Autophagy via Inhibition of PI3K/Akt/mTOR Signaling in vivo and in vitro. J Inflamm Res 2021; 14:4707-4721. [PMID: 34557015 PMCID: PMC8453246 DOI: 10.2147/jir.s312167] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction Prolonged exposure to air polluted with airborne fine particulate matter (PM2.5) can increase respiratory disease risk. Astragaloside IV (AS-IV) is one of the main bioactive substances in the traditional Chinese medicinal herb, Astragalus membranaceus Bunge. AS-IV has numerous pharmacological properties; whereas there are few reports on the prevention of PM2.5-induced lung injury by AS-IV through modulation of the autophagic pathway. This study aimed to investigate the protective effects and the underlying mechanisms of AS-IV in PM2.5-induced lung injury rats and rat alveolar macrophages (NR8383 cells). Methods The pneumotoxicity model was established by intratracheal injection of PM2.5 in rats, and PM2.5 challenge in NR8383 cells. The severity of lung injury was evaluated by wet weight to dry weight ratio and McGuigan pathology scoring. Inflammatory factors and oxidative stress were detected through ELISA. The expressions of p-PI3K, p-Akt, and p-mTOR proteins were analyzed by immunohistochemistry. Immunofluorescence and transmission electron microscopy were used to detect autophagosomes. The expressions of autophagy marker protein (LC3B and p62), PI3K/Akt/mTOR signaling and NF-κB translocation were detected by Western blot in lung tissue and NR8383 cells. Results After PM2.5 stimulation, rats showed severe inflammation and oxidative stress, along with inhibition of autophagy in lung tissue. AS-IV not only decreased pulmonary inflammation and oxidative stress by inhibiting nuclear factor kappa B translocation, but also regulated autophagy by inhibiting PI3K/Akt/mTOR signaling. After treatment with 3-methyladenine (a classic PI3K inhibitor, blocking the formation of autophagosomes), the protective effect of AS-IV on PM2.5-induced lung injury was further strengthened. In parallel, using Western blot, immunohistochemistry, and transmission electron microscopy, we demonstrated that AS-IV restore autophagic flux mainly through regulating the degradation of autophagosomes rather than suppressing the formation in vivo and in vitro. Conclusion Our data indicated that AS-IV protects from PM2.5-induced lung injury in vivo and in vitro by inhibiting the PI3K/Akt/mTOR pathway to regulate autophagy and inflammation.
Collapse
Affiliation(s)
- Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Shuiqin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
17
|
Samarelli AV, Tonelli R, Heijink I, Martin Medina A, Marchioni A, Bruzzi G, Castaniere I, Andrisani D, Gozzi F, Manicardi L, Moretti A, Cerri S, Fantini R, Tabbì L, Nani C, Mastrolia I, Weiss DJ, Dominici M, Clini E. Dissecting the Role of Mesenchymal Stem Cells in Idiopathic Pulmonary Fibrosis: Cause or Solution. Front Pharmacol 2021; 12:692551. [PMID: 34290610 PMCID: PMC8287856 DOI: 10.3389/fphar.2021.692551] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is one of the most aggressive forms of idiopathic interstitial pneumonias, characterized by chronic and progressive fibrosis subverting the lung's architecture, pulmonary functional decline, progressive respiratory failure, and high mortality (median survival 3 years after diagnosis). Among the mechanisms associated with disease onset and progression, it has been hypothesized that IPF lungs might be affected either by a regenerative deficit of the alveolar epithelium or by a dysregulation of repair mechanisms in response to alveolar and vascular damage. This latter might be related to the progressive dysfunction and exhaustion of the resident stem cells together with a process of cellular and tissue senescence. The role of endogenous mesenchymal stromal/stem cells (MSCs) resident in the lung in the homeostasis of these mechanisms is still a matter of debate. Although endogenous MSCs may play a critical role in lung repair, they are also involved in cellular senescence and tissue ageing processes with loss of lung regenerative potential. In addition, MSCs have immunomodulatory properties and can secrete anti-fibrotic factors. Thus, MSCs obtained from other sources administered systemically or directly into the lung have been investigated for lung epithelial repair and have been explored as a potential therapy for the treatment of lung diseases including IPF. Given these multiple potential roles of MSCs, this review aims both at elucidating the role of resident lung MSCs in IPF pathogenesis and the role of administered MSCs from other sources for potential IPF therapies.
Collapse
Affiliation(s)
- Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Irene Heijink
- University of Groningen, Departments of Pathology & Medical Biology and Pulmonology, GRIAC Research Institute, University Medical Center Groningen, Groningen, Netherlands
| | - Aina Martin Medina
- IdISBa (Institut d’Investigacio Sanitaria Illes Balears), Palma de Mallorca, Spain
| | - Alessandro Marchioni
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Giulia Bruzzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Ivana Castaniere
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Dario Andrisani
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Filippo Gozzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Linda Manicardi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Antonio Moretti
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Riccardo Fantini
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Luca Tabbì
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Chiara Nani
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Ilenia Mastrolia
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Daniel J. Weiss
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Massimo Dominici
- Oncology Unit, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| |
Collapse
|
18
|
Abramson MJ, Walters EH. Mapping air pollution and idiopathic pulmonary fibrosis. Respirology 2021; 26:292-293. [PMID: 33398912 DOI: 10.1111/resp.14004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - E Haydn Walters
- Allergy and Lung Health Unit, School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia.,School of Medicine and Menzies Institute, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
19
|
Air Pollution-An Overlooked Risk Factor for Idiopathic Pulmonary Fibrosis. J Clin Med 2020; 10:jcm10010077. [PMID: 33379260 PMCID: PMC7794751 DOI: 10.3390/jcm10010077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Air pollution is a major environmental risk to health and a global public health concern. In 2016, according to the World Health Organization (WHO), ambient air pollution in cities and rural areas was estimated to cause 4.2 million premature deaths. It is estimated that around 91% of the world’s population lives in places where air pollution exceeds the limits recommended by the WHO. Sources of air pollution are multiple and context-specific. Air pollution exposures are established risk factors for development and adverse health outcomes in many respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), or lung cancer. However, possible associations between air pollution and idiopathic pulmonary fibrosis (IPF) have not been adequately studied and air pollution seems to be an underrecognized risk factor for IPF. This narrative review describes potential mechanisms triggered by ambient air pollution and their possible roles in the initiation of the pathogenic process and adverse health effects in IPF. Additionally, we summarize the most current research evidence from the clinical studies supporting links between air pollution and IPF.
Collapse
|