1
|
Aflouk Y, Kenz A, Saoud H, Yacoub S, Zaafrane F, Gaha L, Bel Hadj Jrad B. Genetic Predisposition of TLR 1 and TLR 6 Polymorphisms to Schizophrenia Onset and Prediction of Treatment Response. Biochem Genet 2025:10.1007/s10528-025-11127-x. [PMID: 40360845 DOI: 10.1007/s10528-025-11127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
Immunological dysregulation was described as one of the underlying mechanisms of schizophrenia (SCZ). Indeed, altered inflammation triggered by toll-like receptors (TLR) complexes TLR2-1 and TLR2-6 has gained attention in SCZ pathophysiology and treatment response. However, the genetic contribution of TLR1 and TLR6 remains unclear. Therefore, the present study aims to explore the possible association of TLR1 and TLR6 polymorphisms with the genetic predisposition to SCZ and treatment response. The current study included 240 controls and 226 patients genotyped for TLR1 and TLR6 polymorphisms by PCR-RFLP. Genotypic, allelic, and haplotype associations with SCZ and between patient groups based on their response to treatment were analyzed. In the dominant model, TLR1-S602I GG+TG and minor allele were significantly higher in responders compared to controls (p = 0.004; OR = 3.0, p = 0.002; OR = 3.0, respectively). Before treatment, male patients with TLR1-S602I GG+TG and TLR6-S249P TT+CT showed significantly higher SAPS scores (p = 0.01) compared to TT carriers. In response to treatment, TLR1-S602I TT carriers demonstrated a significant decrease in SANS scores (p < 10-4). Moreover, SANS scores were significantly lower in GG+TG carriers compared to TT carriers (p = 0.01), after treatment. Furthermore, TLR6-S249P CC carriers showed a significant decrease in SANS scores (p < 10-4) in opposite to TT+CT carriers (p = 0.6) in response to treatment. Moreover, TLR1-S602I GG+TG revealed a significantly elevated onset age compared to TT in schizophrenic males (p = 0.01). To conclude, our findings suggest that TLR1-S602I and TLR6-S249P could be potential genetic factors for schizophrenia susceptibility and the prediction of treatment response, particularly in males.
Collapse
Affiliation(s)
- Youssef Aflouk
- Laboratory of Genetics, Biodiversity, and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Monastir, Tunisia.
| | - Amira Kenz
- Laboratory of Genetics, Biodiversity, and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Monastir, Tunisia
| | - Hana Saoud
- Laboratory of Genetics, Biodiversity, and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Monastir, Tunisia
| | - Saloua Yacoub
- Regional Center of Blood Transfusion, University Hospital Farhat Hached, Sousse, Tunisia
| | - Ferid Zaafrane
- Department of Psychiatry and Vulnerability to Psychoses Laboratory-CHU Fattouma Bourguiba Monastir, University of Monastir, Monastir, Tunisia
| | - Lotfi Gaha
- Department of Psychiatry and Vulnerability to Psychoses Laboratory-CHU Fattouma Bourguiba Monastir, University of Monastir, Monastir, Tunisia
| | - Besma Bel Hadj Jrad
- Laboratory of Genetics, Biodiversity, and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Monastir, Tunisia
| |
Collapse
|
2
|
Afrooghe A, Ahmadi E, Lesani A, Mehranjani MS, Elahi M, Babaei M, Shayan M, Shafaroodi H, Jafari RM, Foroumadi A, Manavi MA, Dehpour AR. Psilocin alleviates acute itch in mice: possible involvement of 5-HT2A receptors and kynurenine pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04152-5. [PMID: 40232378 DOI: 10.1007/s00210-025-04152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/06/2025] [Indexed: 04/16/2025]
Abstract
We aimed to investigate whether psilocin, the bioactive metabolite of the well-known psychedelic, psilocybin, may have antipruritic effects in mice by interfering with the kynurenine pathway and interacting with 5-HT2A receptors. Eight mice were randomly assigned to each of the study groups receiving either normal saline, compound 48/80, psilocin (0.3, 1, and 3 mg/kg), or psilocin (1 mg/kg) + 1-MT (0.3 mg/kg). The scratching bouts were documented in each group. The hallucinogenic properties of psilocin were documented using the head-twitch response (HTR) test. To confirm their involvement, we also quantified the expression levels of TNF-α, TLR-4, indoleamine-2,3-dioxygenase (IDO), and 5-HT2A receptors across various study groups. We found that psilocin (1 mg/kg) exerted the most significant antipruritic and hallucinogenic effects (P < 0.0001). The activity of 5-HT2A receptors in the skin tissue of mice was confirmed by western blot. When psilocin (1 mg/kg) was given together with 1-MT (0.3 mg/kg), the antipruritic effects became more pronounced as compared to when psilocin was given alone (P < 0.05). TLR-4 and TNF-α expression levels considerably reduced after psilocin was applied, both alone and together with 1-MT (P < 0.05, P < 0.01, respectively). We also observed significantly decreased activity of IDO in the treatment groups (P < 0.05, P < 0.01 after giving psilocin alone, and together with 1-MT, respectively). To our knowledge, this is the first study to confirm the effectiveness of psychedelics in battling pruritus. Our findings offer a novel repositioning for psilocin. This may be particularly beneficial for psychological conditions accompanied by pruritus.
Collapse
Affiliation(s)
- Arya Afrooghe
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Ahmadi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Lesani
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Poorsina St., Enghelab Ave, PO Box, Tehran, 13145 - 784, Iran
| | | | - Mohammad Elahi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Babaei
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 20 Staniford St, Boston, MA, 02114, USA
| | - Hamed Shafaroodi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Poorsina St., Enghelab Ave, PO Box, Tehran, 13145 - 784, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Poorsina St., Enghelab Ave, PO Box, Tehran, 13145 - 784, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad-Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Poorsina St., Enghelab Ave, PO Box, Tehran, 13145 - 784, Iran.
| |
Collapse
|
3
|
Luo XY, Yu M, Li HJ, Kong XY, Zou ZM, Ye XC. Structural characteristics and potential antidepressant mechanism of a water-insoluble β-1,3-glucan from an edible fungus Wolfiporia cocos. Carbohydr Polym 2025; 348:122779. [PMID: 39562060 DOI: 10.1016/j.carbpol.2024.122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/30/2024] [Accepted: 09/18/2024] [Indexed: 11/21/2024]
Abstract
A water-insoluble β-1,3-glucan (Wβ) with a molecular weight of 8.12 × 104 Da was extracted from an edible fungus Wolfiporia cocos. Its backbone was composed of 1,3-β-linked Glcp branched at the C-2, C-4, and C-6 positions, connecting more 1,3-β-linked Glcp with a triple helical structure. Wβ effectively ameliorated depressive symptoms, abnormality of neurotransmitters and inflammatory factors in chronic unpredictable mild stress (CUMS)-induced rats. Wβ also altered the composition of gut microbiota, especially Romboutsia, norank_f_Muribaculaceae and Ruminococcus. Integration of untargeted and targeted metabolomics and Western blotting analysis suggested that the short-chain fatty acids (SCFAs) and tryptophan metabolites were the most important metabolites involved in Wβ mediation. Wβ significantly modulated the levels of 7 SCFAs and 7 tryptophan metabolites, as well as the protein expression of two related enzymes (indoleamine-2,3-dioxygenase: IDO; kynurenine-3-monooxygenase: KMO). Our results suggest that Wβ exerts its antidepressant effect by influencing neurotransmitters and inflammatory factors through interactions between the gut microbiota, SCFA and tryptophan metabolites. The findings offer new insights into water-insoluble polysaccharides, especially β-glucan in structure analysis and utilization, and provide evidence that Wβ, a novel glucan from the often-discarded water-insoluble part of Wolfiporia cocos, has potential application in antidepressant health products.
Collapse
Affiliation(s)
- Xin-Yao Luo
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meng Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui-Jun Li
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xin-Yu Kong
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhong-Mei Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xiao-Chuan Ye
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
4
|
Cortés Malagón EM, López Ornelas A, Olvera Gómez I, Bonilla Delgado J. The Kynurenine Pathway, Aryl Hydrocarbon Receptor, and Alzheimer's Disease. Brain Sci 2024; 14:950. [PMID: 39335444 PMCID: PMC11429728 DOI: 10.3390/brainsci14090950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, mainly affecting elderly individuals. AD is characterized by β-amyloid plaques, abnormal tau tangles, neuronal loss, and metabolic disruptions. Recent studies have revealed the involvement of the kynurenine (KP) pathway and the aryl hydrocarbon receptor (AhR) in AD development. The KP pathway metabolizes tryptophan to produce neuroactive substances like kynurenine, kynurenic acid, and quinolinic acid. In AD, high levels of kynurenine and the neurotoxic quinolinic acid are associated with increased neuroinflammation and excitotoxicity; conversely, reduced levels of kynurenic acid, which acts as a glutamate receptor antagonist, compromise neuroprotection. Research has indicated elevated KP metabolites and enzymes in the hippocampus of AD patients and other tissues such as blood, cerebrospinal fluid, and urine. However, the finding that KP metabolites are AD biomarkers in blood, cerebrospinal fluid, and urine has been controversial. This controversy, stemming from the lack of consideration of the specific stage of AD, details of the patient's treatment, cognitive deficits, and psychiatric comorbidities, underscores the need for more comprehensive research. AhR, a ligand-activated transcription factor, regulates immune response, oxidative stress, and xenobiotic metabolism. Various ligands, including tryptophan metabolites, can activate it. Some studies suggest that AhR activation contributes to AD, while others propose that it provides neuroprotection. This discrepancy may be explained by the specific ligands that activate AhR, highlighting the complex relationship between the KP pathway, AhR activation, and AD, where the same pathway can produce both neuroprotective and harmful effects.
Collapse
Affiliation(s)
- Enoc Mariano Cortés Malagón
- Research Division, Hospital Juárez de México, Mexico City 07760, Mexico; (E.M.C.M.); (A.L.O.); (I.O.G.)
- Genetics Laboratory, Hospital Nacional Homeopático, Mexico City 06800, Mexico
| | - Adolfo López Ornelas
- Research Division, Hospital Juárez de México, Mexico City 07760, Mexico; (E.M.C.M.); (A.L.O.); (I.O.G.)
- Genetics Laboratory, Hospital Nacional Homeopático, Mexico City 06800, Mexico
| | - Irlanda Olvera Gómez
- Research Division, Hospital Juárez de México, Mexico City 07760, Mexico; (E.M.C.M.); (A.L.O.); (I.O.G.)
- Facultad Ciencias de la Salud, Universidad Anáhuac Norte, Estado de México 52786, Mexico
| | - José Bonilla Delgado
- Research Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, IMSS-BINESTAR, Ixtapaluca 56530, Mexico
| |
Collapse
|
5
|
Castro Dopico X, Guryleva M, Mandolesi M, Corcoran M, Coquet JM, Murrell B, Karlsson Hedestam GB. Maintenance of caecal homeostasis by diverse adaptive immune cells in the rhesus macaque. Clin Transl Immunology 2024; 13:e1508. [PMID: 38707998 PMCID: PMC11063928 DOI: 10.1002/cti2.1508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/04/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
Objectives The caecum bridges the small and large intestine and plays a front-line role in discriminating gastrointestinal antigens. Although dysregulated in acute and chronic conditions, the tissue is often overlooked immunologically. Methods To address this issue, we applied single-cell transcriptomic-V(D)J sequencing to FACS-isolated CD45+ caecal patch/lamina propria leukocytes from a healthy (5-year-old) female rhesus macaque ex vivo and coupled these data to VDJ deep sequencing reads from haematopoietic tissues. Results We found caecal NK cells and ILC3s to co-exist with a spectrum of effector T cells partially derived from SOX4 + recent thymic emigrants. Tolerogenic Vγ8Vδ1-T cells, plastic CD4+ T helper cells and GZMK + EOMES + and TMIGD2 + tissue-resident memory CD8+ T cells were present and differed metabolically. An IL13 + GATA3 + Th2 subset expressing eicosanoid pathway enzymes was accompanied by IL1RL1 + GATA3 + regulatory T cells and a minor proportion of IgE+ plasma cells (PCs), illustrating tightly regulated type 2 immunity devoid of ILC2s. In terms of B lymphocyte lineages, caecal patch antigen-presenting memory B cells sat alongside germinal centre cells undergoing somatic hypermutation and differentiation into IGF1 + PCs. Prototypic gene expression signatures decreased across PC clusters, and notably, expanded IgA clonotypes could be traced in VDJ deep sequencing reads from additional compartments, including the bone marrow, supporting that these cells contribute a steady stream of systemic antibodies. Conclusions The data advance our understanding of caecal immunological function, revealing processes involved in barrier maintenance and molecular networks relevant to disease.
Collapse
Affiliation(s)
- Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Mariia Guryleva
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Marco Mandolesi
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Jonathan M Coquet
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
- Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDKDenmark
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | | |
Collapse
|
6
|
Liikonen V, Gomez-Gallego C, Kolehmainen M. The effects of whole grain cereals on tryptophan metabolism and intestinal barrier function: underlying factors of health impact. Proc Nutr Soc 2024; 83:42-54. [PMID: 37843435 DOI: 10.1017/s0029665123003671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
This review aims to investigate the relationship between the health impact of whole grains mediated via the interaction with intestinal microbiota and intestinal barrier function with special interest on tryptophan metabolism, focusing on the role of the intestinal microbiota and their impact on barrier function. Consuming various types of whole grains can lead to the growth of different microbiota species, which in turn leads to the production of diverse metabolites, including those derived from tryptophan metabolism, although the impact of whole grains on intestinal microbiota composition results remains inconclusive and vary among different studies. Whole grains can exert an influence on tryptophan metabolism through interactions with the intestinal microbiota, and the presence of fibre in whole grains plays a notable role in establishing this connection. The impact of whole grains on intestinal barrier function is closely related to their effects on the composition and activity of intestinal microbiota, and SCFA and tryptophan metabolites serve as potential links connecting whole grains, intestinal microbiota and the intestinal barrier function. Tryptophan metabolites affect various aspects of the intestinal barrier, such as immune balance, mucus and microbial barrier, tight junction complexes and the differentiation and proliferation of epithelial cells. Despite the encouraging discoveries in this area of research, the evidence regarding the effects of whole grain consumption on intestine-related activity remains limited. Hence, we can conclude that we are just starting to understand the actual complexity of the intestinal factors mediating in part the health impacts of whole grain cereals.
Collapse
Affiliation(s)
- Vilma Liikonen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O.Box 1627, 70211 Kuopio, Finland
| | - Carlos Gomez-Gallego
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O.Box 1627, 70211 Kuopio, Finland
| | - Marjukka Kolehmainen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O.Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
7
|
Lehmann CJ, Dylla NP, Odenwald M, Nayak R, Khalid M, Boissiere J, Cantoral J, Adler E, Stutz MR, Dela Cruz M, Moran A, Lin H, Ramaswamy R, Sundararajan A, Sidebottom AM, Little J, Pamer EG, Aronsohn A, Fung J, Baker TB, Kacha A. Fecal metabolite profiling identifies liver transplant recipients at risk for postoperative infection. Cell Host Microbe 2024; 32:117-130.e4. [PMID: 38103544 DOI: 10.1016/j.chom.2023.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/06/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Metabolites produced by the intestinal microbiome modulate mucosal immune defenses and optimize epithelial barrier function. Intestinal dysbiosis, including loss of intestinal microbiome diversity and expansion of antibiotic-resistant pathobionts, is accompanied by changes in fecal metabolite concentrations and increased incidence of systemic infection. Laboratory tests that quantify intestinal dysbiosis, however, have yet to be incorporated into clinical practice. We quantified fecal metabolites in 107 patients undergoing liver transplantation (LT) and correlated these with fecal microbiome compositions, pathobiont expansion, and postoperative infections. Consistent with experimental studies implicating microbiome-derived metabolites with host-mediated antimicrobial defenses, reduced fecal concentrations of short- and branched-chain fatty acids, secondary bile acids, and tryptophan metabolites correlate with compositional microbiome dysbiosis in LT patients and the relative risk of postoperative infection. Our findings demonstrate that fecal metabolite profiling can identify LT patients at increased risk of postoperative infection and may provide guideposts for microbiome-targeted therapies.
Collapse
Affiliation(s)
- Christopher J Lehmann
- Department of Medicine, Section of Infectious Disease and Global Health, University of Chicago Medicine, 5841 S. Maryland Ave., Chicago, IL 60637, USA; Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Chicago Medicine, 5841 S. Maryland Ave., Chicago, IL 60637, USA.
| | - Nicholas P Dylla
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Matthew Odenwald
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA; Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA
| | - Ravi Nayak
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Maryam Khalid
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Jaye Boissiere
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Jackelyn Cantoral
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Emerald Adler
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Matthew R Stutz
- Department of Pulmonary and Critical Care Medicine, Cook County Health, 1950 W. Polk St, Chicago, IL 60612, USA
| | - Mark Dela Cruz
- Department of Cardiology, Advocate Health Care Systems, 4400 W. 95(th) St, Oak Lawn, IL 60453, USA
| | - Angelica Moran
- Department of Pathology, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA
| | - Huaiying Lin
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Ramanujam Ramaswamy
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Anitha Sundararajan
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Ashley M Sidebottom
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Jessica Little
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Eric G Pamer
- Department of Medicine, Section of Infectious Disease and Global Health, University of Chicago Medicine, 5841 S. Maryland Ave., Chicago, IL 60637, USA; Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA.
| | - Andrew Aronsohn
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA
| | - John Fung
- Department of Surgery, Section of Transplant Surgery, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA
| | - Talia B Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah Health, 30 N. 1900 East, Salt Lake City, UT 84132, USA
| | - Aalok Kacha
- Department of Anesthesia and Critical Care, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA.
| |
Collapse
|
8
|
de Souza PB, de Araujo Borba L, Castro de Jesus L, Valverde AP, Gil-Mohapel J, Rodrigues ALS. Major Depressive Disorder and Gut Microbiota: Role of Physical Exercise. Int J Mol Sci 2023; 24:16870. [PMID: 38069198 PMCID: PMC10706777 DOI: 10.3390/ijms242316870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Major depressive disorder (MDD) has a high prevalence and is a major contributor to the global burden of disease. This psychiatric disorder results from a complex interaction between environmental and genetic factors. In recent years, the role of the gut microbiota in brain health has received particular attention, and compelling evidence has shown that patients suffering from depression have gut dysbiosis. Several studies have reported that gut dysbiosis-induced inflammation may cause and/or contribute to the development of depression through dysregulation of the gut-brain axis. Indeed, as a consequence of gut dysbiosis, neuroinflammatory alterations caused by microglial activation together with impairments in neuroplasticity may contribute to the development of depressive symptoms. The modulation of the gut microbiota has been recognized as a potential therapeutic strategy for the management of MMD. In this regard, physical exercise has been shown to positively change microbiota composition and diversity, and this can underlie, at least in part, its antidepressant effects. Given this, the present review will explore the relationship between physical exercise, gut microbiota and depression, with an emphasis on the potential of physical exercise as a non-invasive strategy for modulating the gut microbiota and, through this, regulating the gut-brain axis and alleviating MDD-related symptoms.
Collapse
Affiliation(s)
- Pedro Borges de Souza
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Laura de Araujo Borba
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Louise Castro de Jesus
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Ana Paula Valverde
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S. Rodrigues
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| |
Collapse
|
9
|
Aflouk Y, Inoubli O, Kenz A, Yacoub S, Zaafrane F, Gaha L, Bel Hadj Jrad B. Association between polymorphisms of TLR2-1-6 and bipolar disorder in a tunisian population. Mol Biol Rep 2023; 50:8877-8888. [PMID: 37688680 DOI: 10.1007/s11033-023-08758-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a complex neuropsychiatric disease that has been strongly linked to immune dysregulation. In particular, an abnormal inflammatory response mediated by toll-like receptor 2 - 1/6 (TLR2-1/6) was described in BD. Nevertheless, genetic factors' contribution is still unknown. Thus, we suggested that functional polymorphisms of TLR2, 1 and 6 could be involved in BD predisposition. METHODS AND RESULTS TLR2, 1 and 6 polymorphisms were genotyped by PCR-RFLP in 292 controls and 131 patients from a Tunisian population. Polymorphisms and haplotype associations were explored in BD and binary logistic regression analysis was performed for more powerful associations. In dominant model, we found a significantly higher genotype and minor allele frequencies in healthy females compared to patients for TLR2-196-174Ins/Del (p = 0.04; OR = 0.3, p = 0.04; OR = 0.3, respectively) and for TLR6-S249P only with minor allele (p = 0.03; OR = 0.2). In contrast, TLR2-R677W CT + TT and T allele frequencies were significantly higher in BD (padjusted<10- 4; ORadjusted =46.6, p < 10- 4; OR = 6.3, respectively), specifically in females (CT + TT: 100%). Similarly, TLR1-R80T showed significantly increased GC + CC and C allele frequencies in patients compared to controls (padjusted=0.04; ORadjusted=4, p = 0.009; OR = 4.3, respectively). Moreover, haplotype investigation demonstrated that InsGTCGT (p < 10- 4, OR = 275) and delGCCGT (p = 0.03, OR = 18.5) were significantly overrepresented in BD patients compared to controls. CONCLUSIONS We suggest that TLR2-196-174Ins/Del and TLR6-S249P could be protective factors of females against BD. However, TLR2-R677W and TLR1-R80T could be strongly associated with higher risk of BD. Interestingly, TLR2-R677W could be a genetic marker for BD in females. However, further studies with larger groups are needed to confirm these findings.
Collapse
Affiliation(s)
- Youssef Aflouk
- Laboratory of Genetics, Biodiversity, and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Monastir, 5000, Tunisia.
| | - Oumaima Inoubli
- Laboratory of Genetics, Biodiversity, and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Monastir, 5000, Tunisia
| | - Amira Kenz
- Laboratory of Genetics, Biodiversity, and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Monastir, 5000, Tunisia
| | - Saloua Yacoub
- Regional Center of Blood Transfusion, University Hospital Farhat Hached, Sousse, Tunisia
| | - Ferid Zaafrane
- Department of Psychiatry and Vulnerability to Psychoses Laboratory-CHU Fattouma Bourguiba Monastir, University of Monastir, Monastir, Tunisia
| | - Lotfi Gaha
- Department of Psychiatry and Vulnerability to Psychoses Laboratory-CHU Fattouma Bourguiba Monastir, University of Monastir, Monastir, Tunisia
| | - Besma Bel Hadj Jrad
- Laboratory of Genetics, Biodiversity, and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Monastir, 5000, Tunisia
| |
Collapse
|
10
|
Bove M, Schiavone S, Tucci P, Agosti LP, Dimonte S, Palmieri MA, Sikora V, Matteo M, Trabace L, Morgese MG. Lifelong exposure to n-3 PUFA deficiency leads to anxiety-like profile in male and female adolescent rats: Impact on spleen-brain axis. Biomed Pharmacother 2023; 168:115780. [PMID: 39491859 DOI: 10.1016/j.biopha.2023.115780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024] Open
Abstract
Low consumption of n-3 polyunsaturated fatty acids (PUFA) during the developmental period has been increasingly associated with an increased risk of depressive-like symptoms in both male and female sexes. Therefore, here we performed behavioral and biochemical quantifications in adolescent rats to evaluate possible sex-driven differences in the development of anxiety-like disorders related to life-long n-3 PUFA low intake. Male and female adolescent rats fed for their entire life with n-3 PUFA poor diet showed an anxiety-like profile compared to n6/n-3 PUFA balanced diet. However, such deficiency led to reduced cortical serotonin (5-HT) in females, while increased GABA levels were retrieved in males. Conversely, in amygdala, 5-HT and noradrenaline (NA) were increased in n-3 PUFA poor treated rats. In male rats, n-3 PUFA poor diet induced significant increase in systemic kynurenine levels, while the pro-oxidant metabolite 3-Hydroxy kynurenine was higher in both sexes. In addition, considering the recent involvement of spleen-brain axis on mood disorders and neuroimmune communication, we evaluated biomarkers in the spleen. N-3 PUFA deprivation reduced NA content and increased the indoleamine 2,3-dioxygenase-1 expression in females, while acetylcholine and tumor necrosis factor alpha were higher in males. Taken together, our data indicated that deficiency of n-3 PUFA in diet induced mood disorders in adolescent animals, however this behavioral phenotype is accompanied by a different immune activation in male and female rats.
Collapse
Affiliation(s)
- Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy
| | - Lisa Pia Agosti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy
| | - Stefania Dimonte
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy
| | - Maria Adelaide Palmieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy
| | - Vladyslav Sikora
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy
| | - Maria Matteo
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy.
| |
Collapse
|
11
|
Feng W, Zhao Z, Wang J, Han T. Nutrient Composition of Ovary, Hepatopancreas and Muscle Tissues in Relation to Ovarian Development Stage of Female Swimming Crab, Portunus trituberculatus. Animals (Basel) 2023; 13:3220. [PMID: 37893944 PMCID: PMC10603639 DOI: 10.3390/ani13203220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The swimming crab Portunus trituberculatus is one of the most important economic species in China and its mature ovary often determines its commercial value and production. Although the ovary maturation of crustaceans is generally affected by exogenous nutrition, the specific nutritional needs of ovary maturation of P. trituberculatus are poorly understood. To this end, we collected the P. trituberculatus samples with five ovarian maturation stages and measured their biochemical composition of the ovary, hepatopancreas, and muscle at each ovarian developmental stage. We further analyzed their relation to the ovarian developmental stage of P. trituberculatus by principal components analysis (PCA). We found the levels of branched-chain amino acids, long-chain polyunsaturated fatty acids (LC-PUFA), and monounsaturated fatty acids (MUFAs) in the ovary and hepatopancreas increased during the ovary maturation process, and also passively correlated with ovarian developmental stage, which highlights the necessity of these specific nutrients for oogenesis and for improving the nutrient quality of crabs. In addition, we found an increasing tendency of carotenoid content and phosphatidylcholine in phospholipid in the ovary from the pre-developmental stage to the proliferative stage, but not in the hepatopancreas and muscle, which highlights the possible involvement of carotenoids during the rapid oocyte development process. Our study may provide valuable information for developing a suitable broodstock diet that promotes the ovarian maturation of adult P. trituberculatus and ensures high-quality larval production.
Collapse
Affiliation(s)
| | | | | | - Tao Han
- Fishery College, Zhejiang Ocean University, 1 Haida South Road Changzhi Island Lincheng New Area, Zhoushan 316022, China; (W.F.); (Z.Z.); (J.W.)
| |
Collapse
|
12
|
Fröbel D, Stanke D, Langner M, Žygienė G, Bechmann N, Peitzsch M. Liquid chromatography-tandem mass spectrometry based simultaneous quantification of tryptophan, serotonin and kynurenine pathway metabolites in tissues and cell culture systems. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123870. [PMID: 37683448 DOI: 10.1016/j.jchromb.2023.123870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Kynurenine and respective metabolites exhibit bioactivity as well as tryptophan, an essential amino acid, and the neurotransmitter serotonin. Dysregulations in the kynurenine pathway are involved in neurodegenerative/neuropsychiatric disorders and diabetes mellitus type 2 but also in cancer. Therefore, measurements of kynurenine-related metabolites will improve the general understanding for kynurenine pathway relevance in disease pathogenesis. METHODS Tryptophan, serotonin, picolinic acid, quinolinic acid, 3-OH-kynurenine, kynurenine, 3-OH-anthranilic acid, kynurenic acid, anthranilic acid as well as nicotinic acid and the redox cofactor NAD+ were analyzed in heterogeneous matrices by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). After validation, the described method was applied for measurements of native metabolite concentrations in murine tissues and cellular systems including pathway-shift monitoring after treatment with the tryptophan-2,3-dioxygenase-inhibitor 680C91. In addition, the method was evaluated for its ability for integration into multi-omics approaches using a single sample metabolite extraction procedure. RESULTS A simple and sensitive UPLC-MS/MS method for simultaneous quantification of up to 10 kynurenine-related metabolites in four biological matrices was developed. Within a run time of 6.5 min, chromatographic separation of kynurenine-related metabolites, including the isomers nicotinic acid and picolinic acid, was achieved without derivatization. Validation parameters, including interday precision (<14.8%), mean accuracy (102.4% ± 12.9%) and linear detection ranges of more than three orders of magnitude, indicate method reliability. Depending the investigated sample matrix, the majority of metabolites were successfully detected and quantified in native murine and cell culture derived sample materials. Furthermore, the method allowed to monitor the impact of a tryptophan-2,3-dioxygenase-inhibitor on kynurenine pathway in a cellular system and is suitable for multi-assay analyses using aliquots from the same cell extract. CONCLUSION The described UPLC-MS/MS method provides a simple tool for the simultaneous quantification of kynurenine pathway metabolites. Due to its suitability for many physiological matrices, the method provides wide application for disease-related experimental settings.
Collapse
Affiliation(s)
- Dennis Fröbel
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Daniela Stanke
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Mathias Langner
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Gintare Žygienė
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| |
Collapse
|
13
|
Li X, Li D, Li J, Chen Y, Cai Z, Tan F. A Prognostic Model of Head and Neck Cancer Based on Amino Acid Metabolism-Related Signature and Its Implication for Immunosuppressive Microenvironment. Int J Mol Sci 2023; 24:11753. [PMID: 37511510 PMCID: PMC10380987 DOI: 10.3390/ijms241411753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Amino acid metabolism has been implicated in tumorigenesis and tumor progression. Alterations in intracellular and extracellular metabolites associated with metabolic reprogramming in cancer have profound effects on gene expression, cell differentiation, and tumor immune microenvironment. However, the prognostic significance of amino acid metabolism in head and neck cancer remains to be further investigated. In this study, we identified 98 differentially expressed genes related to amino acid metabolism in head and neck cancer in The Cancer Genome Atlas. Using batch univariate Cox regression and Lasso regression, we extracted nine amino acid metabolism-related genes. Based on that, we developed the amino acid metabolism index. The prognostic value of this index was validated in two Gene Expression Omnibus cohorts. The results show that this model can help predict tumor recurrence and prognosis. The infiltration of immune cells in the tumor microenvironment was analyzed, and it was discovered that the high index is associated with an immunosuppressive microenvironment. In addition, this study demonstrated the impact of the amino acid metabolism index on clinical indicators, survival of patients with head and neck cancer, and the prediction of treatment response to immune checkpoint inhibitors. We conducted several cell experiments and demonstrated that epigenetic drugs could affect the index and enhance tumor immunity. In conclusion, our study demonstrates that the index not only has important prognostic value in head and neck cancer patients but also facilitates patient stratification for immunotherapy.
Collapse
Affiliation(s)
- Xuran Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 201804, China
| | - Danni Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 201804, China
| | - Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 201804, China
| | - Yiliang Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 201804, China
| | - Zhenyu Cai
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 201804, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 201804, China
- The Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- The Royal College of Surgeons of England, London WC2A 3PE, UK
| |
Collapse
|
14
|
Therapeutic potential of bromhexine for acute itch in mice: Involvement of TMPRSS2 and kynurenine pathway. Int Immunopharmacol 2023; 117:109919. [PMID: 36842232 DOI: 10.1016/j.intimp.2023.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/28/2023]
Abstract
Itching is an unpleasant sensation on the skin that could negatively impact the quality of life. Over the years, many non-pharmacological and pharmacological approaches have been introduced to mitigate this burdensome condition; However, the effectiveness of these methods remains questioned. Bromhexine, derived from the Adhatoda vasica plant, is a safe drug with minimal side effects. It has been widely used in managing respiratory symptoms over the years. The results of our study revealed that bromhexine has the potential to alleviate acute itch induced by Compound 48/80, a known mast cell destabilizer. According to our findings, bromhexine exerts its antipruritic effects primarily by inhibiting the Transmembrane Protein Serine Protease 2 (TMPRSS2) and, to a lesser extent, by decreasing the activation of the Kynurenine Pathway (KP). We further investigated the KP involvement by administrating 1-Methyl Tryptophan (1-MT), a known indoleamine-2,3-dioxygenase (IDO) inhibitor. 1-MT was found to be effective in reducing the itch itself. Moreover, co-administration of bromhexine and 1-MT resulted in synergistic antipruritic effects, suggesting that KP plays a role in acute itch. To conclude, we have presented for the first time a repositioning of bromhexine as a treatment for acute itch. In addition, we addressed the involvement of TMPRSS2 and KP in this process.
Collapse
|
15
|
PPARs and the Kynurenine Pathway in Melanoma-Potential Biological Interactions. Int J Mol Sci 2023; 24:ijms24043114. [PMID: 36834531 PMCID: PMC9960262 DOI: 10.3390/ijms24043114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors involved in various physiological and pathological processes within the skin. PPARs regulate several processes in one of the most aggressive skin cancers, melanoma, including proliferation, cell cycle, metabolic homeostasis, cell death, and metastasis. In this review, we focused not only on the biological activity of PPAR isoforms in melanoma initiation, progression, and metastasis but also on potential biological interactions between the PPAR signaling and the kynurenine pathways. The kynurenine pathway is a major pathway of tryptophan metabolism leading to nicotinamide adenine dinucleotide (NAD+) production. Importantly, various tryptophan metabolites exert biological activity toward cancer cells, including melanoma. Previous studies confirmed the functional relationship between PPAR and the kynurenine pathway in skeletal muscles. Despite the fact this interaction has not been reported in melanoma to date, some bioinformatics data and biological activity of PPAR ligands and tryptophan metabolites may suggest a potential involvement of these metabolic and signaling pathways in melanoma initiation, progression, and metastasis. Importantly, the possible relationship between the PPAR signaling pathway and the kynurenine pathway may relate not only to the direct biological effect on melanoma cells but also to the tumor microenvironment and the immune system.
Collapse
|
16
|
Anderson EW, Jin Y, Shih A, Arazi A, Goodwin S, Roeser J, Furie RA, Aranow C, Volpe B, Diamond B, Mackay M. Associations between circulating interferon and kynurenine/tryptophan pathway metabolites: support for a novel potential mechanism for cognitive dysfunction in SLE. Lupus Sci Med 2022; 9:e000808. [PMID: 36384965 PMCID: PMC9670923 DOI: 10.1136/lupus-2022-000808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Quinolinic acid (QA), a kynurenine (KYN)/tryptophan (TRP) pathway metabolite, is an N-methyl-D-aspartate receptor agonist that can produce excitotoxic neuron damage. Type I and II interferons (IFNs) stimulate the KYN/TRP pathway, producing elevated QA/kynurenic acid (KA), a potential neurotoxic imbalance that may contribute to SLE-mediated cognitive dysfunction. We determined whether peripheral blood interferon-stimulated gene (ISG) expression associates with elevated serum KYN:TRP and QA:KA ratios in SLE. METHODS ISG expression (whole-blood RNA sequencing) and serum metabolite ratios (high-performance liquid chromatography) were measured in 72 subjects with SLE and 73 healthy controls (HCs). ISG were identified from published gene sets and individual IFN scores were derived to analyse associations with metabolite ratios, clinical parameters and neuropsychological assessments. SLE analyses were grouped by level of ISG expression ('IFN high', 'IFN low' and 'IFN similar to HC') and level of monocyte-associated gene expression (using CIBERSORTx). RESULTS Serum KYN:TRP and QA:KA ratios were higher in SLE than in HC (p<0.01). 933 genes were differentially expressed ≥2-fold in SLE versus HC (p<0.05). 70 of the top 100 most highly variant genes were ISG. Approximately half of overexpressed genes that correlated with KYN:TRP and QA:KA ratios (p<0.05) were ISG. In 36 IFN-high subjects with SLE, IFN scores correlated with KYN:TRP ratios (p<0.01), but not with QA:KA ratios. Of these 36 subjects, 23 had high monocyte-associated gene expression, and in this subgroup, the IFN scores correlated with both KY:NTRP and QA:KA ratios (p<0.05). CONCLUSIONS High ISG expression correlated with elevated KYN:TRP ratios in subjects with SLE, suggesting IFN-mediated KYN/TRP pathway activation, and with QA:KA ratios in a subset with high monocyte-associated gene expression, suggesting that KYN/TRP pathway activation may be particularly important in monocytes. These results need validation, which may aid in determining which patient subset may benefit from therapeutics directed at the IFN or KYN/TRP pathways to ameliorate a potentially neurotoxic QA/KA imbalance.
Collapse
Affiliation(s)
- Erik W Anderson
- Institute of Molecule Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Ying Jin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Andrew Shih
- Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Arnon Arazi
- Institute of Molecule Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Julien Roeser
- Charles River Laboratories, South San Francisco, California, USA
| | - Richard A Furie
- Institute of Molecule Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Rheumatology, Northwell Health, Great Neck, New York, USA
| | - Cynthia Aranow
- Institute of Molecule Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Bruce Volpe
- Institute of Molecule Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Betty Diamond
- Institute of Molecule Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Meggan Mackay
- Institute of Molecule Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| |
Collapse
|
17
|
Riazati N, Kable ME, Newman JW, Adkins Y, Freytag T, Jiang X, Stephensen CB. Associations of microbial and indoleamine-2,3-dioxygenase-derived tryptophan metabolites with immune activation in healthy adults. Front Immunol 2022; 13:917966. [PMID: 36248784 PMCID: PMC9558171 DOI: 10.3389/fimmu.2022.917966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background Tryptophan (Trp) metabolites from intestinal bacteria (indole, indole acetic acid [IAA] and indole propionic acid [IPA]), and the Trp metabolite kynurenine (Kyn) from the indoleamine 2,3-dioxygenase (IDO) pathway, are aryl hydrocarbon receptor (AhR) agonists and thus, can regulate immune activity via the AhR pathway. We hypothesized that plasma concentrations of these metabolites would be associated with markers of immune activation in a cohort of healthy adults in a manner consistent with AhR-mediated immune-regulation. We also hypothesized that the plasma Kyn/Trp ratio, a marker of IDO activity, would be associated with immune markers reflecting IDO activation in innate immune cells. Finally, we hypothesized that some intestinal bacteria would be associated with plasma indole, IPA and IAA, and that these bacteria themselves would be associated with immune markers. Methods A novel set of 88 immune markers, and plasma Trp metabolites, were measured in 362 healthy adults. Bacterial taxa from stool were identified by 16S rRNA gene analysis. Multiple linear regression analysis was used to identify significant associations with immune markers. Results The sum of indole and IAA was positively associated with natural killer T-cells levels. Kyn and Kyn/Trp were positively associated with neopterin and IP-10, markers of type 1 immunity, and TNF-α and C-reactive protein (CRP), markers of the acute phase response, and the regulatory cytokine IL-10. Three bacteria negatively associated with Trp metabolites were associated with markers of immune activation: the family Lachnospiraceae with higher lymphocyte counts but lower level of activated CD4 T-cells, the genus Dorea with higher production of IFN-γ by T-cells in PBMC cultures, and the genus Ruminococcus with higher production IL-6 in PBMC cultures stimulated with bacterial lipopolysaccharide (LPS). Conclusions In this cohort of healthy adults bacterial Trp metabolites were not strongly associated with immune markers. Conversely, the Kyn/Trp ratio was strongly associated with markers of systemic inflammation and the acute phase response, consistent with IDO activation in innate immune cells. Finally, commensal bacteria associated with lower plasma (and perhaps intestinal) levels of bacterial Trp metabolites were associated with greater immune activation, possibly reflecting decreased regulatory immune activity related to lower intestinal levels of bacterial indole metabolites.
Collapse
Affiliation(s)
- Niknaz Riazati
- Graduate group of Molecular, Cellular, and Integrative Physiology, University of California, Davis, Davis, CA, United States
| | - Mary E. Kable
- USDA Western Human Nutrition Research Center, University of California, Davis, Davis, CA, United States,Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - John W. Newman
- USDA Western Human Nutrition Research Center, University of California, Davis, Davis, CA, United States,Department of Nutrition, University of California, Davis, Davis, CA, United States,West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
| | - Yuriko Adkins
- USDA Western Human Nutrition Research Center, University of California, Davis, Davis, CA, United States
| | - Tammy Freytag
- USDA Western Human Nutrition Research Center, University of California, Davis, Davis, CA, United States
| | - Xiaowen Jiang
- USDA Western Human Nutrition Research Center, University of California, Davis, Davis, CA, United States
| | - Charles B. Stephensen
- USDA Western Human Nutrition Research Center, University of California, Davis, Davis, CA, United States,Department of Nutrition, University of California, Davis, Davis, CA, United States,*Correspondence: Charles B. Stephensen,
| |
Collapse
|
18
|
Eryavuz Onmaz D, Tezcan D, Abusoglu S, Sivrikaya A, Kuzu M, Yerlikaya FH, Yilmaz S, Unlu A. Elevated serum levels of kynurenine pathway metabolites in patients with Behçet disease. Amino Acids 2022; 54:877-887. [PMID: 35604497 DOI: 10.1007/s00726-022-03170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/06/2022] [Indexed: 11/01/2022]
Abstract
Behçet disease (BD) is an inflammatory, multisystemic vasculitis of unknown etiopathogenesis. However, innate and adaptive immune system involvement and immune-mediated networks play a vital role in the inflammatory cascade. Indoleamine 2,3-dioxygenase 1 (IDO1) is activated in chronic inflammatory states and catalyzes the first and rate-limiting step of tryptophan (TRP) metabolism along the kynurenine pathway (KP). The study aimed to measure KP metabolites levels in patients with BD and investigate the relationship between disease activity and clinical findings with these metabolites. The study included 120 patients with BD and 120 healthy volunteers. Serum TRP, kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxyanthranilic acid (3HAA), 3-hydroxykynurenine (3HK), and quinolinic acid (QUIN) levels were measured with the tandem mass spectrometric method. Demographic data, clinical manifestations, and disease activity score (BDCAF) were recorded. Serum KYN, KYNA, 3HK, 3HAA, QUIN levels, and KYN/TRP ratio were higher (p < 0.05) in patients with BD compared to the control group, while TRP levels were lower (p < 0.05). KYN/TRP ratio and QUIN levels were significantly higher in the presence of neuro-Behçet, while serum KYN levels were significantly higher in the presence of arthritis (p < 0.05). In addition, serum QUIN levels were significantly higher in the presence of thrombosis (p < 0.05). BDCAF score positively correlated with KYN/TRP ratio. Our findings showed that serum KP metabolite levels were elevated in patients with BD, and there is a relationship between these metabolites with disease activity, clinical findings, and inflammatory burden.
Collapse
Affiliation(s)
- Duygu Eryavuz Onmaz
- Department of Biochemistry, Faculty of Medicine, Selcuk University, 42130, Konya, Turkey.
| | - Dilek Tezcan
- Division of Rheumatology, Faculty of Medicine, Selcuk University, 42130, Konya, Turkey
| | - Sedat Abusoglu
- Department of Biochemistry, Faculty of Medicine, Selcuk University, 42130, Konya, Turkey
| | - Abdullah Sivrikaya
- Department of Biochemistry, Faculty of Medicine, Selcuk University, 42130, Konya, Turkey
| | - Menekse Kuzu
- Department of Biochemistry, Faculty of Pharmacy, Biruni University, 34020, Istanbul, Turkey
| | | | - Sema Yilmaz
- Division of Rheumatology, Faculty of Medicine, Selcuk University, 42130, Konya, Turkey
| | - Ali Unlu
- Department of Biochemistry, Faculty of Medicine, Selcuk University, 42130, Konya, Turkey
| |
Collapse
|
19
|
Li J, DeNicola GM, Ruffell B. Metabolism in tumor-associated macrophages. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 367:65-100. [PMID: 35461660 PMCID: PMC9094395 DOI: 10.1016/bs.ircmb.2022.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Macrophages functionally adapt to a diverse set of signals, a process that is critical for their role in maintaining or restoring tissue homeostasis. This process extends to cancer, where macrophages respond to a series of inflammatory and metabolic cues that direct a maladaptive healing response. Tumor-associated macrophages (TAMs) have altered glucose, amino acid, and lipid metabolic profiles, and interfering with this metabolic shift can blunt the ability of macrophages to promote tumor growth, metastasis, and the creation of an immunosuppressive microenvironment. Here we will review changes in metabolites and metabolic pathways in TAMs and link these with the phenotypic and functional properties of the cells. We will also discuss current strategies targeting TAM metabolism as a therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Jie Li
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States; Cancer Biology PhD Program, University of South Florida, Tampa, FL, United States
| | - Gina M DeNicola
- Department of Cancer Physiology, Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States; Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States.
| |
Collapse
|
20
|
Li X, Chen LM, Kumar G, Zhang SJ, Zhong QH, Zhang HY, Gui G, Wu LL, Fan HZ, Sheng JW. Therapeutic Interventions of Gut-Brain Axis as Novel Strategies for Treatment of Alcohol Use Disorder Associated Cognitive and Mood Dysfunction. Front Neurosci 2022; 16:820106. [PMID: 35185459 PMCID: PMC8847450 DOI: 10.3389/fnins.2022.820106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
Alcohol use disorders (AUD) is characterized by persistent or intermittent alcohol cravings and compulsive drinking. The functional changes in the central nervous system (CNS) after alcohol consumption are alcohol-associated cognitive impairment and mood disorders, which are major health issues reported in AUDs. Studies have shown that transferring the intestinal microbiota from AUDs patients to germ-free animals causes learning and memory dysfunction, depression and anxiety-like behavior, indicating the vital role of intestinal microbiota in development of neuropsychiatric disorders in AUD. Intestinal flora composition of AUD patients are significantly different from normal people, suggesting that intestinal flora imbalance orchestrate the development of neuropsychiatric disorders in AUD. Studies suggests that gut microbiome links bidirectional signaling network of the enteric nervous system (ENS) to central nervous system (CNS), forming gut-microbe-brain axis (brain-gut axis). In this review, we discussed pathogenesis and possible treatment of AUD-induced cognitive deficits, anxiety, and depression disorders. Further, we described the mechanism of intestinal flora imbalance and dysfunction of hippocampus-amygdala-frontal cortex (gut-limbic circuit system dysfunction). Therefore, we postulate therapeutic interventions of gut-brain axis as novel strategies for treatment of AUD-induced neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastroenterology, The People’s Hospital of Zhangshu City, Jiangxi, China
| | - Le-Mei Chen
- Department of Pharmacy, Guangdong Provincial People’s Hospital Ganzhou Hospital, Ganzhou Municipal Hospital, Jiangxi, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Shan-Jin Zhang
- Department of Gastroenterology, The People’s Hospital of Yichun City, Jiangxi, China
| | - Quan-hai Zhong
- School of Chemistry and Bioengineering, Yichun University, Jiangxi, China
| | - Hong-Yan Zhang
- School of Chemistry and Bioengineering, Yichun University, Jiangxi, China
| | - Guan Gui
- Department of Gastroenterology, The People’s Hospital of Yichun City, Jiangxi, China
| | - Lv-Le Wu
- Department of Gastroenterology, The People’s Hospital of Yichun City, Jiangxi, China
| | - Hui-Zhen Fan
- Department of Gastroenterology, The People’s Hospital of Yichun City, Jiangxi, China
- School of Chemistry and Bioengineering, Yichun University, Jiangxi, China
- *Correspondence: Hui-Zhen Fan,
| | - Jian-Wen Sheng
- Department of Gastroenterology, The People’s Hospital of Yichun City, Jiangxi, China
- Jian-Wen Sheng,
| |
Collapse
|
21
|
Leclercq S, Schwarz M, Delzenne NM, Stärkel P, de Timary P. Alterations of kynurenine pathway in alcohol use disorder and abstinence: a link with gut microbiota, peripheral inflammation and psychological symptoms. Transl Psychiatry 2021; 11:503. [PMID: 34599147 PMCID: PMC8486842 DOI: 10.1038/s41398-021-01610-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
The gut-brain communication is mostly driven by the immune, metabolic and neural pathways which remained poorly explored in patients with alcohol use disorder (AUD). The metabolites arising from the tryptophan-kynurenine pathway have gained considerable attention since they are at the interface between intestinal bacteria, host immune response and brain functions. This study described the circulating levels of kynurenine metabolites in AUD patients, at the onset (T1) and end (T2) of a 3-week detoxification program, and tested correlations between those metabolites and inflammatory markers, the gut microbiota and the psychological symptoms. Increased concentration of the neurotoxic metabolite quinolinic acid (QUIN) and decreased levels of the neuroprotector metabolite kynurenic acid (KYNA) which both modulate glutamatergic neurotransmission were observed in AUD patients, particularly at T2. The inflammatory marker hsCRP was associated with several metabolic ratios of the kynurenine pathway. Tryptophan, KYNA and QUIN were correlated with depression, alcohol craving and reaction time, respectively. Analysis of gut microbiota revealed that bacteria known as short-chain fatty acid producers, as well as bacterial metabolites including butyrate and medium-chain fatty acids were associated with some metabolites of the tryptophan-kynurenine pathway. Targeting the glutamatergic neurotransmission through the modulation of the kynurenine pathway, by manipulating the gut microbiota, might represent an interesting alternative for modulating alcohol-related behavior.
Collapse
Affiliation(s)
- Sophie Leclercq
- grid.7942.80000 0001 2294 713XInstitute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium ,grid.7942.80000 0001 2294 713XMetabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Markus Schwarz
- grid.411095.80000 0004 0477 2585Institute of Laboratory Medicine, LMU Klinikum Munich, Munich, Germany
| | - Nathalie M. Delzenne
- grid.7942.80000 0001 2294 713XMetabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Peter Stärkel
- grid.7942.80000 0001 2294 713XLaboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium ,grid.48769.340000 0004 0461 6320Department of Hepatogastroenterology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Philippe de Timary
- Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium. .,Department of Adult Psychiatry, Cliniques universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
22
|
Aflouk Y, Inoubli O, Saoud H, Zaafrane F, Gaha L, Bel Hadj Jrad B. Association between TLR2 polymorphisms (- 196-174 Ins/Del, R677W, R753Q, and P631H) and schizophrenia in a Tunisian population. Immunol Res 2021; 69:541-552. [PMID: 34546527 DOI: 10.1007/s12026-021-09238-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022]
Abstract
Since immune dysregulation has been well studied in schizophrenia pathophysiology, recent studies showed a potent role of TLR2 in neuroinflammation process underlying schizophrenia pathogenesis. However, the genetic predisposition is still unclear. Thus, we hypothesized that TLR2 polymorphisms - 196-174 Ins/Del (rs111200466), R753Q (rs5743708), R677W (rs121917864), and P631H (rs5743704) could be involved in schizophrenia predisposition. A case-control study was performed on a Tunisian population composed of 250 healthy controls and 250 patients genotyped by PCR-RFLP. Genotype and allele distribution were evaluated with sex, schizophrenia subtypes, and other clinical features. We also assessed a haplotype analysis for TLR2 polymorphisms with schizophrenia. Our results showed higher ins/del genotype frequency in healthy women compared to patients (p = 0.006; OR = 0.2). In the other hand, logistic regression showed higher ins/del genotype frequency in controls compared to paranoid patients (p = 0.05; OR = 0.48, adjusted). Frequencies of CT and T allele of R677W were significantly higher in patients compared to controls (p < 10-4, OR = 10.39; p < 10-4, OR = 4, adjusted, respectively). R753Q polymorphism was exclusively detected in patients (GA + AA = 2.5%) particularly in men with disorganized subtype. P631H did not show any association with schizophrenia. Finally, haplotype analysis showed that InsGTC and delGTC were associated with higher risk of schizophrenia (p = 0.0001, OR = 8.58; p = 0.04, OR = 5.01, respectively). In the Tunisian population, our results suggested that TLR2 R677W could be associated with susceptibility for schizophrenia, while - 196-174 Ins/Del suggested a trend of protection in women. Otherwise, R753Q could have an effect on schizophrenia especially for disorganized subgroup.
Collapse
Affiliation(s)
- Youssef Aflouk
- Laboratory of Genetics, Biodiversity and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Monastir, Tunisia.
| | - Oumaima Inoubli
- Laboratory of Genetics, Biodiversity and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Monastir, Tunisia
| | - Hana Saoud
- Laboratory of Genetics, Biodiversity and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Monastir, Tunisia
| | - Ferid Zaafrane
- Department of Psychiatry and Vulnerability to Psychoses Laboratory-CHU Monastir, University of Monastir, Monastir, Tunisia
| | - Lotfi Gaha
- Department of Psychiatry and Vulnerability to Psychoses Laboratory-CHU Monastir, University of Monastir, Monastir, Tunisia
| | - Besma Bel Hadj Jrad
- Laboratory of Genetics, Biodiversity and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Monastir, Tunisia
| |
Collapse
|
23
|
Molecular Basis for the Activation of Human Innate Immune Response by the Flagellin Derived from Plant-Pathogenic Bacterium, Acidovorax avenae. Int J Mol Sci 2021; 22:ijms22136920. [PMID: 34203170 PMCID: PMC8268093 DOI: 10.3390/ijms22136920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
Acidovorax avenae is a flagellated, pathogenic bacterium to various plant crops that has also been found in human patients with haematological malignancy, fever, and sepsis; however, the exact mechanism for infection in humans is not known. We hypothesized that the human innate immune system could be responsive to the purified flagellin isolated from A. avenae, named FLA-AA. We observed the secretion of inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and IL-8 by treating FLA-AA to human dermal fibroblasts, as well as macrophages. This response was exclusively through TLR5, which was confirmed by using TLR5-overexpression cell line, 293/hTLR5, as well as TLR5-specific inhibitor, TH1020. We also observed the secretion of inflammatory cytokine, IL-1β, by the activation of NLRC4 with FLA-AA. Overall, our results provide a molecular basis for the inflammatory response caused by FLA-AA in cell-based assays.
Collapse
|
24
|
Zhu X, Hu J, Deng S, Tan Y, Qiu C, Zhang M, Ni X, Lu H, Wang Z, Li L, Luo Y, Huang S, Xiao T, Liu S, Li X, Shang D, Wen Y. Comprehensive Bibliometric Analysis of the Kynurenine Pathway in Mood Disorders: Focus on Gut Microbiota Research. Front Pharmacol 2021; 12:687757. [PMID: 34239441 PMCID: PMC8258344 DOI: 10.3389/fphar.2021.687757] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Emerging evidence implicates the dysregulated kynurenine pathway (KP), an immune-inflammatory pathway, in the pathophysiology of mood disorders (MD), including depression and bipolar disorder characterized by a low-grade chronic pro-inflammatory state. The metabolites of the KP, an important part of the microbiota-gut-brain axis, serve as immune system modulators linking the gut microbiota (GM) with the host central nervous system. Aim: This bibliometric analysis aimed to provide a first glimpse into the KP in MD, with a focus on GM research in this field, to guide future research and promote the development of this field. Methods: Publications relating to the KP in MD between the years 2000 and 2020 were retrieved from the Scopus and Web of Science Core Collection (WoSCC), and analyzed in CiteSpace (5.7 R5W), biblioshiny (using R-Studio), and VOSviewer (1.6.16). Results: In total, 1,064 and 948 documents were extracted from the Scopus and WoSCC databases, respectively. The publications have shown rapid growth since 2006, partly owing to the largest research hotspot appearing since then, “quinolinic acid.” All the top five most relevant journals were in the neuropsychiatry field, such as Brain Behavior and Immunity. The United States and Innsbruck Medical University were the most influential country and institute, respectively. Journal co-citation analysis showed a strong tendency toward co-citation of research in the psychiatry field. Reference co-citation analysis revealed that the top four most important research focuses were “kynurenine pathway,” “psychoneuroimmunology,” “indoleamine 2,3-dioxygenase,” and “proinflammatory cytokines,” and the most recent focus was “gut-brain axis,” thus indicating the role of the KP in bridging the GM and the host immune system, and together reflecting the field’s research foundations. Overlap analysis between the thematic map of keywords and the keyword burst analysis revealed that the topics “Alzheimer’s disease,” “prefrontal cortex,” and “acid,” were research frontiers. Conclusion: This comprehensive bibliometric study provides an updated perspective on research associated with the KP in MD, with a focus on the current status of GM research in this field. This perspective may benefit researchers in choosing suitable journals and collaborators, and aid in the further understanding of the field’s hotspots and frontiers, thus facilitating future research.
Collapse
Affiliation(s)
- Xiuqing Zhu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Jinqing Hu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Shuhua Deng
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Chang Qiu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Ming Zhang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaojia Ni
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Haoyang Lu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Zhanzhang Wang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Lu Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yayan Luo
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Shanqing Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Tao Xiao
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Shujing Liu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xiaolin Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
25
|
Banfi D, Moro E, Bosi A, Bistoletti M, Cerantola S, Crema F, Maggi F, Giron MC, Giaroni C, Baj A. Impact of Microbial Metabolites on Microbiota-Gut-Brain Axis in Inflammatory Bowel Disease. Int J Mol Sci 2021; 22:1623. [PMID: 33562721 PMCID: PMC7915037 DOI: 10.3390/ijms22041623] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The complex bidirectional communication system existing between the gastrointestinal tract and the brain initially termed the "gut-brain axis" and renamed the "microbiota-gut-brain axis", considering the pivotal role of gut microbiota in sustaining local and systemic homeostasis, has a fundamental role in the pathogenesis of Inflammatory Bowel Disease (IBD). The integration of signals deriving from the host neuronal, immune, and endocrine systems with signals deriving from the microbiota may influence the development of the local inflammatory injury and impacts also more distal brain regions, underlying the psychophysiological vulnerability of IBD patients. Mood disorders and increased response to stress are frequently associated with IBD and may affect the disease recurrence and severity, thus requiring an appropriate therapeutic approach in addition to conventional anti-inflammatory treatments. This review highlights the more recent evidence suggesting that alterations of the microbiota-gut-brain bidirectional communication axis may concur to IBD pathogenesis and sustain the development of both local and CNS symptoms. The participation of the main microbial-derived metabolites, also defined as "postbiotics", such as bile acids, short-chain fatty acids, and tryptophan metabolites in the development of IBD-associated gut and brain dysfunction will be discussed. The last section covers a critical evaluation of the main clinical evidence pointing to the microbiome-based therapeutic approaches for the treatment of IBD-related gastrointestinal and neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Davide Banfi
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (E.M.); (F.C.)
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| | - Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| | - Silvia Cerantola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Meneghetti 2, 35131 Padova, Italy; (S.C.); (M.C.G.)
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (E.M.); (F.C.)
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Meneghetti 2, 35131 Padova, Italy; (S.C.); (M.C.G.)
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
- Centre of Neuroscience, University of Insubria, 21100 Varese, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| |
Collapse
|
26
|
Bosi A, Banfi D, Bistoletti M, Giaroni C, Baj A. Tryptophan Metabolites Along the Microbiota-Gut-Brain Axis: An Interkingdom Communication System Influencing the Gut in Health and Disease. Int J Tryptophan Res 2020; 13:1178646920928984. [PMID: 32577079 PMCID: PMC7290275 DOI: 10.1177/1178646920928984] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
The ‘microbiota-gut-brain axis’ plays a fundamental role in maintaining host homeostasis, and different immune, hormonal, and neuronal signals participate to this interkingdom communication system between eukaryota and prokaryota. The essential aminoacid tryptophan, as a precursor of several molecules acting at the interface between the host and the microbiota, is fundamental in the modulation of this bidirectional communication axis. In the gut, tryptophan undergoes 3 major metabolic pathways, the 5-HT, kynurenine, and AhR ligand pathways, which may be directly or indirectly controlled by the saprophytic flora. The importance of tryptophan metabolites in the modulation of the gastrointestinal tract is suggested by several preclinical and clinical studies; however, a thorough revision of the available literature has not been accomplished yet. Thus, this review attempts to cover the major aspects on the role of tryptophan metabolites in host-microbiota cross-talk underlaying regulation of gut functions in health conditions and during disease states, with particular attention to 2 major gastrointestinal diseases, such as irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), both characterized by psychiatric disorders. Research in this area opens the possibility to target tryptophan metabolism to ameliorate the knowledge on the pathogenesis of both diseases, as well as to discover new therapeutic strategies based either on conventional pharmacological approaches or on the use of pre- and probiotics to manipulate the microbial flora.
Collapse
Affiliation(s)
- Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
27
|
Gao K, Mu CL, Farzi A, Zhu WY. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Adv Nutr 2020; 11:709-723. [PMID: 31825083 PMCID: PMC7231603 DOI: 10.1093/advances/nmz127] [Citation(s) in RCA: 473] [Impact Index Per Article: 94.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/10/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022] Open
Abstract
The gut-brain axis (GBA) is a bilateral communication network between the gastrointestinal (GI) tract and the central nervous system. The essential amino acid tryptophan contributes to the normal growth and health of both animals and humans and, importantly, exerts modulatory functions at multiple levels of the GBA. Tryptophan is the sole precursor of serotonin, which is a key monoamine neurotransmitter participating in the modulation of central neurotransmission and enteric physiological function. In addition, tryptophan can be metabolized into kynurenine, tryptamine, and indole, thereby modulating neuroendocrine and intestinal immune responses. The gut microbial influence on tryptophan metabolism emerges as an important driving force in modulating tryptophan metabolism. Here, we focus on the potential role of tryptophan metabolism in the modulation of brain function by the gut microbiota. We start by outlining existing knowledge on tryptophan metabolism, including serotonin synthesis and degradation pathways of the host, and summarize recent advances in demonstrating the influence of the gut microbiota on tryptophan metabolism. The latest evidence revealing those mechanisms by which the gut microbiota modulates tryptophan metabolism, with subsequent effects on brain function, is reviewed. Finally, the potential modulation of intestinal tryptophan metabolism as a therapeutic option for brain and GI functional disorders is also discussed.
Collapse
Affiliation(s)
- Kan Gao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Chun-long Mu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, Graz, Austria
| | - Wei-yun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China,Address correspondence to WZ (e-mail: )
| |
Collapse
|
28
|
Peyton L, Oliveros A, Tufvesson-Alm M, Schwieler L, Starski P, Engberg G, Erhardt S, Choi DS. Lipopolysaccharide Increases Cortical Kynurenic Acid and Deficits in Reference Memory in Mice. Int J Tryptophan Res 2019; 12:1178646919891169. [PMID: 31896932 PMCID: PMC6920585 DOI: 10.1177/1178646919891169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 01/24/2023] Open
Abstract
Kynurenic acid (KYNA), a glial-derived metabolite of tryptophan metabolism, is an
antagonist of the alpha 7 nicotinic acetylcholine receptor and the
glycine-binding site of N-methyl-d-aspartate (NMDA)
receptors. Kynurenic acid levels are increased in both the brain and
cerebrospinal fluid of several psychiatric disorders including bipolar disorder,
schizophrenia, and Alzheimer disease. In addition, pro-inflammatory cytokines
have been found to be elevated in the blood of schizophrenic patients suggesting
inflammation may play a role in psychiatric illness. As both pro-inflammatory
cytokines and KYNA can be elevated in the brain by peripheral lipopolysaccharide
(LPS) injection, we therefore sought to characterize the role of
neuroinflammation on learning and memory using a well-described dual-LPS
injection model. Mice were injected with an initial injection (0.25 mg/kg LPS,
0.50 mg/kg, or saline) of LPS and then administrated a second injection 16 hours
later. Our results indicate both 0.25 and 0.50 mg/kg dual-LPS treatment
increased l-kynurenine and KYNA levels in the medial pre-frontal cortex
(mPFC). Mice exhibited impaired acquisition of CS+ (conditioned stimulus)
Pavlovian conditioning. Notably, mice showed impairment in reference memory
while working memory was normal in an 8-arm maze. Taken together, our findings
suggest that neuroinflammation induced by peripheral LPS administration
contributes to cognitive dysfunction.
Collapse
Affiliation(s)
- Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Alfredo Oliveros
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | | | - Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Phillip Starski
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Sopie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
29
|
Metabolic Regulation of Macrophage Polarization in Cancer. Trends Cancer 2019; 5:822-834. [PMID: 31813459 DOI: 10.1016/j.trecan.2019.10.007] [Citation(s) in RCA: 383] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023]
Abstract
Macrophages act as scavengers, modulating the immune response against pathogens and maintaining tissue homeostasis. Metabolism governs macrophage differentiation, polarization, mobilization, and the ability to mount an effective antitumor response. However, in cancer, the tumor microenvironment (TME) can actively reprogram macrophage metabolism either by direct exchange of metabolites or through cytokines and other signaling mediators. Thus, metabolic reprogramming holds potential for modulating macrophages and developing new therapeutic approaches. In this review, we provide an overview of macrophage metabolism as it relates to macrophage function and plasticity in cancer.
Collapse
|
30
|
Yang T, Richards EM, Pepine CJ, Raizada MK. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol 2019; 14:442-456. [PMID: 29760448 DOI: 10.1038/s41581-018-0018-2] [Citation(s) in RCA: 485] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Crosstalk between the gut microbiota and the host has attracted considerable attention owing to its involvement in diverse diseases. Chronic kidney disease (CKD) is commonly associated with hypertension and is characterized by immune dysregulation, metabolic disorder and sympathetic activation, which are all linked to gut dysbiosis and altered host-microbiota crosstalk. In this Review, we discuss the complex interplay between the brain, the gut, the microbiota and the kidney in CKD and hypertension and explain our brain-gut-kidney axis hypothesis for the pathogenesis of these diseases. Consideration of the role of the brain-gut-kidney axis in the maintenance of normal homeostasis and of dysregulation of this axis in CKD and hypertension could lead to the identification of novel therapeutic targets. In addition, the discovery of unique microbial communities and their associated metabolites and the elucidation of brain-gut-kidney signalling are likely to fill fundamental knowledge gaps leading to innovative research, clinical trials and treatments for CKD and hypertension.
Collapse
Affiliation(s)
- Tao Yang
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Elaine M Richards
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
31
|
Franko J, McCall JL, Barnett JB. Evaluating Macrophages in Immunotoxicity Testing. Methods Mol Biol 2018; 1803:255-296. [PMID: 29882145 DOI: 10.1007/978-1-4939-8549-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Macrophages are a heterogeneous group of cells that have a multitude of functions depending on their differentiation state. While classically known for their phagocytic and antigen presentation abilities, it is now evident that these cells fulfill homeostatic functions beyond the elimination of invading pathogens. In addition, macrophages have also been implicated in the downregulation of inflammatory responses following pathogen removal, tissue remodeling, repair, and angiogenesis. Alterations in macrophage differentiation and/or activity due to xenobiotic exposure can have grave consequences on organismal homeostasis, potentially contributing to disease due to immunosuppression or chronic inflammatory responses, depending upon the pathways affected. In this chapter, we provide an overview of the macrophages subtypes, their origin and a general discussion of several different assays used to assess their functional status.
Collapse
Affiliation(s)
- Jennifer Franko
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jamie L McCall
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - John B Barnett
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.
| |
Collapse
|
32
|
Grant RS. Indoleamine 2,3-Dioxygenase Activity Increases NAD+ Production in IFN-γ-Stimulated Human Primary Mononuclear Cells. Int J Tryptophan Res 2018; 11:1178646917751636. [PMID: 29343967 PMCID: PMC5764136 DOI: 10.1177/1178646917751636] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/05/2017] [Indexed: 11/15/2022] Open
Abstract
IFN-γ activation of mononuclear phagocytes significantly increases indoleamine 2,3-dioxygenase (IDO) and flux through the kynurenine pathway (KP). However, the effect of IDO on NAD+ synthesis, the end product of KP metabolism, is unknown. To investigate this, primary human peripheral blood mononuclear cells were cultured up to 10 days and activated with IFN-γ in the presence or absence of a poly(ADP-ribose) polymerase (PARP) inhibitor. Day 10 macrophages had significantly higher NAD+ levels compared with monocytes. IFN-γ activation of macrophages resulted in the highest induction of IDO but decreased intracellular NAD+ concentrations at both 24 and 48 hours. However, IFN-γ activation of both day 6 and day 10 macrophages in the presence of a PARP inhibitor resulted in significantly higher intracellular NAD+ levels at 24 hours. This study provides evidence for the first time that an immune-mediated increase in IDO activity increases NAD+ biosynthesis concomitantly with an increase in NAD+ catabolism in primary human macrophages.
Collapse
Affiliation(s)
- Ross S Grant
- Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW, Australia
- Sydney Adventist Hospital Clinical School, University of Sydney, Sydney, NSW, Australia
- Ross S Grant, Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
33
|
Baumgartner R, Forteza MJ, Ketelhuth DFJ. The interplay between cytokines and the Kynurenine pathway in inflammation and atherosclerosis. Cytokine 2017; 122:154148. [PMID: 28899580 DOI: 10.1016/j.cyto.2017.09.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 12/20/2022]
Abstract
The kynurenine pathway (KP) is the major metabolic route of tryptophan (Trp) metabolism. Indoleamine 2,3-dioxygenase (IDO1), the enzyme responsible for the first and rate-limiting step in the pathway, as well as other enzymes in the pathway, have been shown to be highly regulated by cytokines. Hence, the KP has been implicated in several pathologic conditions, including infectious diseases, psychiatric disorders, malignancies, and autoimmune and chronic inflammatory diseases. Additionally, recent studies have linked the KP with atherosclerosis, suggesting that Trp metabolism could play an essential role in the maintenance of immune homeostasis in the vascular wall. This review summarizes experimental and clinical evidence of the interplay between cytokines and the KP and the potential role of the KP in cardiovascular diseases.
Collapse
Affiliation(s)
- Roland Baumgartner
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute and Karolinska University Hospital, SE-17176 Stockholm, Sweden.
| | - Maria J Forteza
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Daniel F J Ketelhuth
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
34
|
Protein Malnutrition Alters Tryptophan and Angiotensin-Converting Enzyme 2 Homeostasis and Adaptive Immune Responses in Human Rotavirus-Infected Gnotobiotic Pigs with Human Infant Fecal Microbiota Transplant. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017. [PMID: 28637803 DOI: 10.1128/cvi.00172-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Malnutrition leads to increased morbidity and is evident in almost half of all deaths in children under the age of 5 years. Mortality due to rotavirus diarrhea is common in developing countries where malnutrition is prevalent; however, the relationship between malnutrition and rotavirus infection remains unclear. In this study, gnotobiotic pigs transplanted with the fecal microbiota of a healthy 2-month-old infant were fed protein-sufficient or -deficient diets and infected with virulent human rotavirus (HRV). After human rotavirus infection, protein-deficient pigs had decreased human rotavirus antibody titers and total IgA concentrations, systemic T helper (CD3+ CD4+) and cytotoxic T (CD3+ CD8+) lymphocyte frequencies, and serum tryptophan and angiotensin I-converting enzyme 2. Additionally, deficient-diet pigs had impaired tryptophan catabolism postinfection compared with sufficient-diet pigs. Tryptophan supplementation was tested as an intervention in additional groups of fecal microbiota-transplanted, rotavirus-infected, sufficient- and deficient-diet pigs. Tryptophan supplementation increased the frequencies of regulatory (CD4+ or CD8+ CD25+ FoxP3+) T cells in pigs on both the sufficient and the deficient diets. These results suggest that a protein-deficient diet impairs activation of the adaptive immune response following HRV infection and alters tryptophan homeostasis.
Collapse
|
35
|
Rodriguez Cetina Biefer H, Vasudevan A, Elkhal A. Aspects of Tryptophan and Nicotinamide Adenine Dinucleotide in Immunity: A New Twist in an Old Tale. Int J Tryptophan Res 2017; 10:1178646917713491. [PMID: 28659716 PMCID: PMC5476425 DOI: 10.1177/1178646917713491] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/07/2017] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence underscores the interesting ability of tryptophan to regulate immune responses. However, the exact mechanisms of tryptophan's immune regulation remain to be determined. Tryptophan catabolism via the kynurenine pathway is known to play an important role in tryptophan's involvement in immune responses. Interestingly, quinolinic acid, which is a neurotoxic catabolite of the kynurenine pathway, is the major pathway for the de novo synthesis of nicotinamide adenine dinucleotide (NAD+). Recent studies have shown that NAD+, a natural coenzyme found in all living cells, regulates immune responses and creates homeostasis via a novel signaling pathway. More importantly, the immunoregulatory properties of NAD+ are strongly related to the overexpression of tryptophan hydroxylase 1 (Tph1). This review provides recent knowledge of tryptophan and NAD+ and their specific and intriguing roles in the immune system. Furthermore, it focuses on the mechanisms by which tryptophan regulates NAD+ synthesis as well as innate and adaptive immune responses.
Collapse
Affiliation(s)
| | - Anju Vasudevan
- Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital and Harvard Medical School, Belmont, MA, USA
| | - Abdallah Elkhal
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|