1
|
Sun JX, Yao Y, Li WX, Su X, Yang H, Lu Z, Liu C, Xu XH, Jin L. Upregulation of GPR133 expression impaired the phagocytosis of macrophages in recurrent spontaneous miscarriage. Epigenetics 2024; 19:2337087. [PMID: 38564758 PMCID: PMC10989699 DOI: 10.1080/15592294.2024.2337087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Decidual macrophages are the second-largest immune cell group at the maternal-foetal interface. They participate in apoptotic cell removal, and protect the foetus from microorganisms or pathogens. Dysfunction of decidual macrophages gives rise to pregnancy complications such as preeclampsia and recurrent spontaneous miscarriage (RSM). However, the mechanisms by which decidual macrophages are involved in the occurrence of adverse pregnancy outcomes have not been elucidated. Here we integrated DNA methylation and gene expression data from decidua macrophages to identify potential risk factors related to RSM. GPR133 was significantly hypomethylated and upregulated in decidual macrophages from RSM patients. Further demethylation analysis demonstrated that GPR133 expression in decidual macrophages was significantly increased by 5-Aza-dC treatment. In addition, the influence of GPR133 on the phagocytic ability of macrophages was explored. Phagocytosis was impaired in the decidual macrophages of RSM patients with increased GPR133 expression. Increased GPR133 expression induced by demethylation treatment in the decidual macrophages of healthy control patients led to a significant decrease in phagocytic function. Importantly, knockdown of GPR133 resulted in a significant improvement in the phagocytic function of THP-1 macrophages. In conclusion, the existing studies have shown the influence of GPR133 on the phagocytic function of decidual macrophages and pregnancy outcomes, providing new data and ideas for future research on the role of decidual macrophages in RSM.
Collapse
Affiliation(s)
- Jia-Xue Sun
- Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, P.R, China
| | - Yongli Yao
- Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, P.R, China
| | - Wen-Xuan Li
- Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, P.R, China
| | - Xin Su
- Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, P.R, China
| | - Haoyu Yang
- Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, P.R, China
| | - Zhouping Lu
- Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, P.R, China
| | - Chenfei Liu
- Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, P.R, China
| | - Xiang-Hong Xu
- Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, P.R, China
| | - Liping Jin
- Department of Biobank, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, P.R, China
| |
Collapse
|
2
|
Janez A, Muzurovic E, Bogdanski P, Czupryniak L, Fabryova L, Fras Z, Guja C, Haluzik M, Kempler P, Lalic N, Mullerova D, Stoian AP, Papanas N, Rahelic D, Silva-Nunes J, Tankova T, Yumuk V, Rizzo M. Modern Management of Cardiometabolic Continuum: From Overweight/Obesity to Prediabetes/Type 2 Diabetes Mellitus. Recommendations from the Eastern and Southern Europe Diabetes and Obesity Expert Group. Diabetes Ther 2024; 15:1865-1892. [PMID: 38990471 PMCID: PMC11330437 DOI: 10.1007/s13300-024-01615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
The increasing global incidence of obesity and type 2 diabetes mellitus (T2D) underscores the urgency of addressing these interconnected health challenges. Obesity enhances genetic and environmental influences on T2D, being not only a primary risk factor but also exacerbating its severity. The complex mechanisms linking obesity and T2D involve adiposity-driven changes in β-cell function, adipose tissue functioning, and multi-organ insulin resistance (IR). Early detection and tailored treatment of T2D and obesity are crucial to mitigate future complications. Moreover, personalized and early intensified therapy considering the presence of comorbidities can delay disease progression and diminish the risk of cardiorenal complications. Employing combination therapies and embracing a disease-modifying strategy are paramount. Clinical trials provide evidence confirming the efficacy and safety of glucagon-like peptide 1 receptor agonists (GLP-1 RAs). Their use is associated with substantial and durable body weight reduction, exceeding 15%, and improved glucose control which further translate into T2D prevention, possible disease remission, and improvement of cardiometabolic risk factors and associated complications. Therefore, on the basis of clinical experience and current evidence, the Eastern and Southern Europe Diabetes and Obesity Expert Group recommends a personalized, polymodal approach (comprising GLP-1 RAs) tailored to individual patient's disease phenotype to optimize diabetes and obesity therapy. We also expect that the increasing availability of dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP) agonists will significantly contribute to the modern management of the cardiometabolic continuum.
Collapse
Affiliation(s)
- Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.
| | - Emir Muzurovic
- Department of Internal Medicine, Endocrinology Section, Clinical Centre of Montenegro, Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Pawel Bogdanski
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, University of Medical Sciences, Poznan, Poland
| | - Leszek Czupryniak
- Department of Diabetology and Internal Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Lubomira Fabryova
- MetabolKLINIK sro, Department for Diabetes and Metabolic Disorders, Lipid Clinic, MED PED Centre, Biomedical Research Centre of Slovak Academy of Sciences, Slovak Health University, Bratislava, Slovak Republic
| | - Zlatko Fras
- Preventive Cardiology Unit, Division of Medicine, University Medical Centre Ljubljana and Chair of Internal Medicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Cristian Guja
- Clinic of Diabetes, Nutrition and Metabolic Diseases, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Martin Haluzik
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21, Prague 4, Czech Republic
| | - Peter Kempler
- Department of Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Nebojsa Lalic
- Faculty of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dana Mullerova
- Faculty of Medicine in Pilsen, Department of Public Health and Preventive Medicine and Faculty Hospital in Pilsen, 1st Internal Clinic, Charles University, Pilsen, Czech Republic
| | - Anca Pantea Stoian
- Diabetes, Nutrition and Metabolic Diseases Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dario Rahelic
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Zagreb, Croatia
- Catholic University of Croatia School of Medicine, Zagreb, Croatia
- Josip Juraj Strossmayer, University of Osijek School of Medicine, Osijek, Croatia
| | - José Silva-Nunes
- NOVA Medical School, New University of Lisbon, Lisbon, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Unidade Local de Saúde São José, Lisbon, Portugal
| | - Tsvetalina Tankova
- Department of Endocrinology, Faculty of Medicine, Medical University, Sofia, Bulgaria
| | - Volkan Yumuk
- Division of Endocrinology, Metabolism and Diabetes, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
3
|
Drag MH, Debes KP, Franck CS, Flethøj M, Lyhne MK, Møller JE, Ludvigsen TP, Jespersen T, Olsen LH, Kilpeläinen TO. Nanopore sequencing reveals methylation changes associated with obesity in circulating cell-free DNA from Göttingen Minipigs. Epigenetics 2023; 18:2199374. [PMID: 37032646 PMCID: PMC10088973 DOI: 10.1080/15592294.2023.2199374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/29/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Profiling of circulating cell-free DNA (cfDNA) by tissue-specific base modifications, such as 5-methylcytosines (5mC), may enable the monitoring of ongoing pathophysiological processes. Nanopore sequencing allows genome-wide 5mC detection in cfDNA without bisulphite conversion. The aims of this study were: i) to find differentially methylated regions (DMRs) of cfDNA associated with obesity in Göttingen minipigs using Nanopore sequencing, ii) to validate a subset of the DMRs using methylation-specific PCR (MSP-PCR), and iii) to compare the cfDNA DMRs with those from whole blood genomic DNA (gDNA). Serum cfDNA and gDNA were obtained from 10 lean and 7 obese Göttingen Minipigs both with experimentally induced myocardial infarction and sequenced using Oxford Nanopore MinION. A total of 1,236 cfDNA DMRs (FDR<0.01) were associated with obesity. In silico analysis showed enrichment of the adipocytokine signalling, glucagon signalling, and cellular glucose homoeostasis pathways. A strong cfDNA DMR was discovered in PPARGC1B, a gene linked to obesity and type 2 diabetes. The DMR was validated using MSP-PCR and correlated significantly with body weight (P < 0.05). No DMRs intersected between cfDNA and gDNA, suggesting that cfDNA originates from body-wide shedding of DNA. In conclusion, nanopore sequencing detected differential methylation in minute quantities (0.1-1 ng/µl) of cfDNA. Future work should focus on translation into human and comparing 5mC from somatic tissues to pinpoint the exact location of pathology.
Collapse
Affiliation(s)
- Markus Hodal Drag
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Conservation, Copenhagen Zoo, Frederiksberg, Denmark
| | | | - Clara Sandkamm Franck
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Flethøj
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - Mille Kronborg Lyhne
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Eifer Møller
- Department of Cardiology, Copenhagen University Hospital and Odense University Hospital, Odense, Denmark
| | | | - Thomas Jespersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Høier Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas O. Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Liu Z, Yang J, Du M, Xin W. Functioning and mechanisms of PTMs in renal diseases. Front Pharmacol 2023; 14:1238706. [PMID: 38074159 PMCID: PMC10702752 DOI: 10.3389/fphar.2023.1238706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/13/2023] [Indexed: 12/22/2024] Open
Abstract
Post-translational modifications (PTMs) are crucial epigenetic mechanisms that regulate various cellular biological processes. The use of mass spectrometry (MS)-proteomics has led to the discovery of numerous novel types of protein PTMs, such as acetylation, crotonylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, protein propionylation and butyrylation, succinylation, malonylation, lactylation, and histone methylation. In this review, we specifically highlight the molecular mechanisms and roles of various histone and some non-histone PTMs in renal diseases, including diabetic kidney disease. PTMs exhibit diverse effects on renal diseases, which can be either protective or detrimental, depending on the specific type of protein PTMs and their respective targets. Different PTMs activate various signaling pathways in diverse renal pathological conditions, which could provide novel insights for studying epigenetic mechanisms and developing potential therapeutic strategies for renal diseases.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jian Yang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Minghui Du
- Biomedical Science College, Shandong First Medical University, Jinan, China
| | - Wei Xin
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
5
|
Han S, Luo Y, Liu B, Guo T, Qin D, Luo F. Dietary flavonoids prevent diabetes through epigenetic regulation: advance and challenge. Crit Rev Food Sci Nutr 2023; 63:11925-11941. [PMID: 35816298 DOI: 10.1080/10408398.2022.2097637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pathophysiology of diabetes has been studied extensively in various countries, but effective prevention and treatment methods are still insufficient. In recent years, epigenetics has received increasing attention from researchers in exploring the etiology and treatment of diabetes. DNA methylation, histone modifications, and non-coding RNAs play critical roles in the occurrence, maintenance, and progression of diabetes and its complications. Therefore, preventing or reversing the epigenetic alterations that occur during the development of diabetes may reduce the individual and societal burden of the disease. Dietary flavonoids serve as natural epigenetic modulators for the discovery of biomarkers for diabetes prevention and the development of alternative therapies. However, there is limited knowledge about the potential beneficial effects of flavonoids on the epigenetics of diabetes. In this review, the multidimensional epigenetic effects of different flavonoid subtypes in diabetes were summarized. Furthermore, it was discussed that parental flavonoid diets might reduce diabetes incidence in offspring, which represent a promising opportunity to prevent diabetes in the future. Future work will depend on exploring anti-diabetic effects of different flavonoids with different epigenetic regulation mechanisms and clinical trials.Highlights• "Epigenetic therapy" could reduce the burden of diabetic patients• "Epigenetic diet" ameliorates diabetes• Targeting epigenetic regulations by dietary flavonoids in the diabetes prevention• Dietary flavonoids prevent diabetes via transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Liu
- Central South Food Science Institute of Grain and Oil Co., Ltd., Hunan Grain Group Co., Ltd, Changsha, China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Dandan Qin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
6
|
Wang Y, Ni Z, Li J, Shao Y, Yong Y, Lv W, Zhang S, Fu T, Chen A. Cordyceps cicadae polysaccharides alleviate hyperglycemia by regulating gut microbiota and its mmetabolites in high-fat diet/streptozocin-induced diabetic mice. Front Nutr 2023; 10:1203430. [PMID: 37599693 PMCID: PMC10434777 DOI: 10.3389/fnut.2023.1203430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/21/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction The polysaccharides found in Cordyceps cicadae (C. cicadae) have received increasing academic attention owing to their wide variety of therapeutic activities. Methods This study evaluated the hypoglycemic, antioxidant, and anti-inflammatory effects of polysaccharides from C. cicadae (CH-P). In addition, 16s rDNA sequencing and untargeted metabolomics analysis by liquid chromatography-mass spectrometry (LC-MS) were used to estimate the changes and regulatory relationships between gut microbiota and its metabolites. The fecal microbiota transplantation (FMT) was used to verify the therapeutic effects of microbial remodeling. Results The results showed that CH-P treatment displayed hypoglycemic, antioxidant, and anti-inflammatory effects and alleviated tissue damage induced by diabetes. The CH-P treatment significantly reduced the Firmicutes/Bacteroidetes ratio and increased the abundance of Bacteroides, Odoribacter, Alloprevotella, Parabacteroides, Mucispirillum, and significantly decreased the abundance of Helicobacter and Lactobacillus compared to the diabetic group. The alterations in the metabolic pathways were mostly related to amino acid biosynthesis and metabolic pathways (particularly those involving tryptophan) according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Correlation analysis showed that Bacteroides, Odoribacter, Alloprevotella, Parabacteroides, and Mucispirillum were positively correlated with indole and its derivatives, such as 5-hydroxyindole-3-acetic acid. Indole intervention significantly improved hyperglycemic symptoms and insulin sensitivity, and increased the secretion of glucagon-like peptide-1 (GLP-1) in diabetic mice. FMT reduced blood glucose levels, improved glucose tolerance, and increased insulin sensitivity in diabetic mice. However, FMT did not significantly improve GLP-1 levels. Discussion This indicates that C. cicadae polysaccharides alleviate hyperglycemia by regulating the production of metabolites other than indole and its derivatives by gut microbiota. This study provides an important reference for the development of novel natural products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Anhui Chen
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou, Jiangsu, China
| |
Collapse
|
7
|
Rajlic S, Treede H, Münzel T, Daiber A, Duerr GD. Early Detection Is the Best Prevention-Characterization of Oxidative Stress in Diabetes Mellitus and Its Consequences on the Cardiovascular System. Cells 2023; 12:583. [PMID: 36831253 PMCID: PMC9954643 DOI: 10.3390/cells12040583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Previous studies demonstrated an important role of oxidative stress in the pathogenesis of cardiovascular disease (CVD) in diabetic patients due to hyperglycemia. CVD remains the leading cause of premature death in the western world. Therefore, diabetes mellitus-associated oxidative stress and subsequent inflammation should be recognized at the earliest possible stage to start with the appropriate treatment before the onset of the cardiovascular sequelae such as arterial hypertension or coronary artery disease (CAD). The pathophysiology comprises increased reactive oxygen and nitrogen species (RONS) production by enzymatic and non-enzymatic sources, e.g., mitochondria, an uncoupled nitric oxide synthase, xanthine oxidase, and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). Considering that RONS originate from different cellular mechanisms in separate cellular compartments, adequate, sensitive, and compartment-specific methods for their quantification are crucial for early detection. In this review, we provide an overview of these methods with important information for early, appropriate, and effective treatment of these patients and their cardiovascular sequelae.
Collapse
Affiliation(s)
- Sanela Rajlic
- Department of Cardiothoracic and Vascular Surgery, University of Medicine Mainz, 55131 Mainz, Germany
| | - Hendrik Treede
- Department of Cardiothoracic and Vascular Surgery, University of Medicine Mainz, 55131 Mainz, Germany
| | - Thomas Münzel
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany
| | - Andreas Daiber
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Georg Daniel Duerr
- Department of Cardiothoracic and Vascular Surgery, University of Medicine Mainz, 55131 Mainz, Germany
| |
Collapse
|
8
|
Suárez R, Chapela SP, Álvarez-Córdova L, Bautista-Valarezo E, Sarmiento-Andrade Y, Verde L, Frias-Toral E, Sarno G. Epigenetics in Obesity and Diabetes Mellitus: New Insights. Nutrients 2023; 15:nu15040811. [PMID: 36839169 PMCID: PMC9963127 DOI: 10.3390/nu15040811] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
A long-term complication of obesity is the development of type 2 diabetes (T2D). Patients with T2D have been described as having epigenetic modifications. Epigenetics is the post-transcriptional modification of DNA or associated factors containing genetic information. These environmentally-influenced modifications, maintained during cell division, cause stable changes in gene expression. Epigenetic modifications of T2D are DNA methylation, acetylation, ubiquitylation, SUMOylation, and phosphorylation at the lysine residue at the amino terminus of histones, affecting DNA, histones, and non-coding RNA. DNA methylation has been shown in pancreatic islets, adipose tissue, skeletal muscle, and the liver. Furthermore, epigenetic changes have been observed in chronic complications of T2D, such as diabetic nephropathy, diabetic retinopathy, and diabetic neuropathy. Recently, a new drug has been developed which acts on bromodomains and extraterminal (BET) domain proteins, which operate like epigenetic readers and communicate with chromatin to make DNA accessible for transcription by inhibiting them. This drug (apabetalone) is being studied to prevent major adverse cardiovascular events in people with T2D, low HDL cholesterol, chronic kidney failure, and recent coronary events. This review aims to describe the relationship between obesity, long-term complications such as T2D, and epigenetic modifications and their possible treatments.
Collapse
Affiliation(s)
- Rosario Suárez
- School of Medicine, Universidad Técnica Particular de Loja, Calle París, San Cayetano Alto, Loja 110101, Ecuador
| | - Sebastián P. Chapela
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABE, Argentina
- Hospital Británico de Buenos Aires, Equipo de Soporte Nutricional, Buenos Aires C1280AEB, Argentina
- Correspondence: ; Tel.: +54-91168188308
| | - Ludwig Álvarez-Córdova
- School of Medicine, Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil 090615, Ecuador
- Carrera de Nutrición y Dietética, Facultad de Ciencias Médicas, Universidad Católica De Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil 090615, Ecuador
| | - Estefanía Bautista-Valarezo
- School of Medicine, Universidad Técnica Particular de Loja, Calle París, San Cayetano Alto, Loja 110101, Ecuador
| | - Yoredy Sarmiento-Andrade
- School of Medicine, Universidad Técnica Particular de Loja, Calle París, San Cayetano Alto, Loja 110101, Ecuador
| | - Ludovica Verde
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil 090615, Ecuador
| | - Gerardo Sarno
- “San Giovanni di Dio e Ruggi D’Aragona” University Hospital, Scuola Medica Salernitana, 84131 Salerno, Italy
| |
Collapse
|
9
|
Al-Hakeim HK, Al-Kaabi QJ, Maes M. High mobility group box 1 and Dickkopf-related protein 1 as biomarkers of glucose toxicity, atherogenicity, and lower β cell function in patients with type 2 diabetes mellitus. Growth Factors 2022; 40:240-253. [PMID: 36165005 DOI: 10.1080/08977194.2022.2126317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with increased atherogenicity and inflammatory responses, which may be related to high mobility group box 1 (HMGB1) and Dickkopf-related protein 1 (DKK1). The role of HMGB1 and DKK1 in T2DM is examined in association with lipid and insulin profiles. Serum HMGB1 and DKK1 were measured in T2DM with and without hypertension and compared with controls. The results showed that HMGB1 and DKK1 are higher in T2DM irrespective of hypertension. A large part of the variance in the β-cell index and glucose toxicity was explained by the combined effects of HMGB1 and DKK1. In conclusion, both HMGB1 and DKK1 may contribute to increased atherogenicity in T2DM. Moreover, both biomarkers may cause more deficits in β-cell function and increase glucose toxicity leading to the development of more inflammation and diabetic complications. HMGB1 and the Wnt pathways are other drug targets in treating T2DM.
Collapse
Affiliation(s)
| | | | - Michael Maes
- Faculty of Medicine, Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, Australia
| |
Collapse
|
10
|
Habibe JJ, Clemente-Olivo MP, Scheithauer TPM, Rampanelli E, Herrema H, Vos M, Mieremet A, Nieuwdorp M, van Raalte DH, Eringa EC, de Vries CJM. Glucose-mediated insulin secretion is improved in FHL2-deficient mice and elevated FHL2 expression in humans is associated with type 2 diabetes. Diabetologia 2022; 65:1721-1733. [PMID: 35802167 PMCID: PMC9477948 DOI: 10.1007/s00125-022-05750-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023]
Abstract
AIMS/HYPOTHESIS The general population is ageing, involving an enhanced incidence of chronic diseases such as type 2 diabetes. With ageing, DNA methylation of FHL2 increases, as well as expression of the four and a half LIM domains 2 (FHL2) protein in human pancreatic islets. We hypothesised that FHL2 is actively involved in glucose metabolism. METHODS Publicly available microarray datasets from human pancreatic islets were analysed for FHL2 expression. In FHL2-deficient mice, we studied glucose clearance and insulin secretion. Gene expression analysis and glucose-stimulated insulin secretion (GSIS) were determined in isolated murine FHL2-deficient islets to evaluate insulin-secretory capacity. Moreover, knockdown and overexpression of FHL2 were accomplished in MIN6 cells to delineate the underlying mechanism of FHL2 function. RESULTS Transcriptomics of human pancreatic islets revealed that individuals with elevated levels of HbA1c displayed increased FHL2 expression, which correlated negatively with insulin secretion pathways. In line with this observation, FHL2-deficient mice cleared glucose more efficiently than wild-type littermates through increased plasma insulin levels. Insulin sensitivity was comparable between these genotypes. Interestingly, pancreatic islets isolated from FHL2-deficient mice secreted more insulin in GSIS assays than wild-type mouse islets even though insulin content and islet size was similar. To support this observation, we demonstrated increased expression of the transcription factor crucial in insulin secretion, MAF BZIP transcription factor A (MafA), higher expression of GLUT2 and reduced expression of the adverse factor c-Jun in FHL2-deficient islets. The underlying mechanism of FHL2 was further delineated in MIN6 cells. FHL2-knockdown led to enhanced activation of forkhead box protein O1 (FOXO1) and its downstream genes such as Mafa and Pdx1 (encoding pancreatic and duodenal homeobox 1), as well as increased glucose uptake. On the other hand, FHL2 overexpression in MIN6 cells blocked GSIS, increased the formation of reactive oxygen species and increased c-Jun activity. CONCLUSIONS/INTERPRETATION Our data demonstrate that FHL2 deficiency improves insulin secretion from beta cells and improves glucose tolerance in mice. Given that FHL2 expression in humans increases with age and that high expression levels of FHL2 are associated with beta cell dysfunction, we propose that enhanced FHL2 expression in elderly individuals contributes to glucose intolerance and the development of type 2 diabetes. DATA AVAILABILITY The human islet microarray datasets used are publicly available and can be found on https://www.ncbi.nlm.nih.gov/geo/ .
Collapse
Affiliation(s)
- Jayron J Habibe
- Department of Medical Biochemistry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
- Department of Physiology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Maria P Clemente-Olivo
- Department of Medical Biochemistry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Torsten P M Scheithauer
- Department of Experimental Vascular Medicine, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Elena Rampanelli
- Department of Experimental Vascular Medicine, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Mariska Vos
- Department of Medical Biochemistry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Arnout Mieremet
- Department of Medical Biochemistry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Daniel H van Raalte
- Department of Internal Medicine, Diabetes Center, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Etto C Eringa
- Department of Physiology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Physiology, Cardiovascular Institute Maastricht, Maastricht, the Netherlands
| | - Carlie J M de Vries
- Department of Medical Biochemistry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Luo JF, Zhou H, Lio CK. Akebia Saponin D Inhibits the Inflammatory Reaction by Inhibiting the IL-6-STAT3-DNMT3b Axis and Activating the Nrf2 Pathway. Molecules 2022; 27:molecules27196236. [PMID: 36234773 PMCID: PMC9614599 DOI: 10.3390/molecules27196236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Akebia saponin D (ASD) is derived from the Dipsacus asper Wall. ex Henry, which is a traditional Chinese medicine commonly used to treat rheumatic arthritis (RA). However, the in-depth mechanism of the anti-inflammatory effect of ASD is still unclear. This study aimed to preliminarily explore the anti-inflammatory effect of ASD and the underlying mechanisms from the perspective of DNA methylation and inflammation-related pathways. We found that ASD significantly reduced the production of multiple inflammatory mediators, including nitric oxide (NO) and prostaglandin E2 (PGE2), in LPS-induced RAW264.7 cells. The expression of DNA methyltransferase (DNMT) 3b and inducible nitric oxide synthase (iNOS) was also obviously inhibited by the ASD treatment. The protein and mRNA levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were also significantly inhibited by ASD. ASD inhibited the macrophage M1 phenotype, inhibited the high level of DNMT3b, and downregulated the signal transducer and activator of the transcription 3 (STAT3) pathway to exert its anti-inflammatory activity. Furthermore, DNMT3b siRNA and Nrf2 siRNA significantly promoted the anti-inflammatory effect of ASD. Our study demonstrates for the first time that ASD inhibits the IL-6-STAT3-DNMT3b axis and activates the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway to achieve its inhibitory effect on inflammatory reactions.
Collapse
Affiliation(s)
- Jin-Fang Luo
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guian District, Guiyang 550025, China
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
- Correspondence:
| | - Chon-Kit Lio
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medcine and Immune Disease Research, Guangzhou 510006, China
| |
Collapse
|
12
|
Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther 2022; 7:216. [PMID: 35794109 PMCID: PMC9259665 DOI: 10.1038/s41392-022-01073-0] [Citation(s) in RCA: 296] [Impact Index Per Article: 98.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
The centenary of insulin discovery represents an important opportunity to transform diabetes from a fatal diagnosis into a medically manageable chronic condition. Insulin is a key peptide hormone and mediates the systemic glucose metabolism in different tissues. Insulin resistance (IR) is a disordered biological response for insulin stimulation through the disruption of different molecular pathways in target tissues. Acquired conditions and genetic factors have been implicated in IR. Recent genetic and biochemical studies suggest that the dysregulated metabolic mediators released by adipose tissue including adipokines, cytokines, chemokines, excess lipids and toxic lipid metabolites promote IR in other tissues. IR is associated with several groups of abnormal syndromes that include obesity, diabetes, metabolic dysfunction-associated fatty liver disease (MAFLD), cardiovascular disease, polycystic ovary syndrome (PCOS), and other abnormalities. Although no medication is specifically approved to treat IR, we summarized the lifestyle changes and pharmacological medications that have been used as efficient intervention to improve insulin sensitivity. Ultimately, the systematic discussion of complex mechanism will help to identify potential new targets and treat the closely associated metabolic syndrome of IR.
Collapse
Affiliation(s)
- Mengwei Li
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaowei Chi
- Development Center for Medical Science & Technology National Health Commission of the People's Republic of China, 100044, Beijing, China
| | - Ying Wang
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Wenwei Xie
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China.
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Wang M, Huang J, Wu T, Qi L. Arterial Stiffness, Genetic Risk, and Type 2 Diabetes: A Prospective Cohort Study. Diabetes Care 2022; 45:957-964. [PMID: 35076696 DOI: 10.2337/dc21-1921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/03/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We aimed to investigate prospective associations of pulse wave arterial stiffness index (ASI) and pulse pressure (PP) with type 2 diabetes (T2D) and assess the modifying effect of genetics. RESEARCH DESIGN AND METHODS We included 152,611 participants free of diabetes and cardiovascular disease in the UK Biobank. All participants had ASI and blood pressure measurements collected at baseline visit. In total, 37 single nucleotide polymorphisms were used to calculate the genetic risk score (GRS) of T2D. RESULTS During a median follow-up of 9.5 years, 3,000 participants developed T2D. Per-SD increase in ASI was associated with a 3% higher T2D risk (95% CI 2-4%). The hazard ratio (HR) (95% CI) of T2D was 1.58 (1.39-1.80) in the highest quintile group compared with the lowest quintile group of ASI. However, the association between PP and T2D was nonlinear. Compared with the lowest quintile group, the risk of T2D in higher quintile groups of PP was 0.91 (0.79-1.04), 0.98 (0.86-1.11), 1.15 (1.01-1.30), and 1.24 (1.10-1.41), respectively. Furthermore, we observed an interaction between ASI and genetic susceptibility to T2D, because the elevated HR of T2D associated with high ASI was more evident among participants with higher GRS of T2D (P interaction = 0.008), whereas the interaction between PP and GRS was nonsignificant (P interaction = 0.55). CONCLUSIONS ASI was associated with an elevated risk of T2D in a dose-response fashion, whereas PP and T2D showed a nonlinear J-shaped association. Additionally, the association between ASI and T2D was partially strengthened by higher genetic susceptibility to T2D.
Collapse
Affiliation(s)
- Mengying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jie Huang
- Department of Global Health, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
| |
Collapse
|
14
|
Santos L. The impact of nutrition and lifestyle modification on health. Eur J Intern Med 2022; 97:18-25. [PMID: 34670680 DOI: 10.1016/j.ejim.2021.09.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022]
Abstract
The main recommendations from public health entities include healthy diets and physical activity as the main lifestyle factors impacting the development of chronic diseases such as cardiovascular and metabolic diseases, cancer, and even neurological diseases. Randomized clinical trials have been designed to demonstrate those lifestyle modifications can change the pattern of chronic diseases development and progression. Among these, nutrition is one of the most impacting factors. Therefore, nutrition and diets were also included in different randomized clinical trials, and most of them showed a favorable impact of nutrition modification on the participant's health. Nevertheless, study designs were considerably different, and future studies are needed to support nutrition modifications further. The choice of a healthy considered diet, like the Mediterranean diet, was shown to impact chronic diseases, cardiovascular risk, and adult life expectancy mainly due to its anti-inflammatory and antioxidant properties. Furthermore, a high intake of fibers, fruits, and vegetables together with a low intake of fat and energy-dense, processed foods contribute to an inflammation reduction and a more robust immune system leading. Besides these well-known properties, all lifestyle modifications must be personalized according to the availability of foods, geographic localizations, and the healthy status of the patient.
Collapse
Affiliation(s)
- Lèlita Santos
- Internal Medicine Service, Coimbra Hospital and University Centre, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal; CIMAGO Research Centre, Faculty of Medicine, University of Coimbra, Portugal.
| |
Collapse
|
15
|
OUP accepted manuscript. Nutr Rev 2022; 80:2178-2197. [DOI: 10.1093/nutrit/nuac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Wang W, Chen ZY, Guo XL, Tu M. Monocyte to High-Density lipoprotein and Apolipoprotein A1 Ratios: Novel Indicators for Metabolic Syndrome in Chinese Newly Diagnosed Type 2 Diabetes. Front Endocrinol (Lausanne) 2022; 13:935776. [PMID: 35909551 PMCID: PMC9330493 DOI: 10.3389/fendo.2022.935776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Increasing evidence highlighted that chronic inflammation involved in the development of metabolic syndrome (MetS) and Type 2 diabetes mellitus (T2DM). This prospective study was aimed to assess the association between MetS and novel pro-inflammatory indicators like monocyte-to-high-density lipoprotein and monocyte-to-apolipoprotein A1 ratios (MHR and MAR) in Chinese newly diagnosed T2DM. METHOD A total of 605 Chinese newly diagnosed T2DM with complete and available data were enrolled in this study. Demographic and anthropometric information were collected. Laboratory assessments were determined by standard methods. MetS was based on the Chinese Diabetes Society definition. Multiple binomial logistic regression model was used to estimate the independent variables of MHR and MAR for MetS. Receiver operating characteristic (ROC) curve was conducted to assess the optimal cutoff value of MHR and MAR in identifying MetS. RESULTS Overall, the prevalence of MetS was 60.2%. The correlation analysis showed that MHR and MAR were closely correlated with metabolic risk factors like body mass index, waist circumference, triglycerides, high-density lipoprotein cholesterol, systolic blood pressure, diastolic blood pressure, uric acid, and insulin resistance. MHR and MAR were also significantly associated with higher odds of MetS after adjustment for other confounders, the odds ratios (ORs) (95%CI) were 1.50 (1.14-1.97) and 2.26(1.79-2.87) respectively. Furthermore, MHR and MAR were also seemed to have higher area under the curve (AUC) for MetS than ApoA1 and monocyte alone from the ROC curve analysis (P < 0.05). The AUCs of MHR and MAR identifying MetS were 0.804 (95% CI: 0.768-0.839) and 0.840 (95% CI: 0.806-0.873) respectively (P < 0.001). The optimal cutoff values of MHR and MAR were 3.57 × 108/mmol (sensitivity: 76.1%, specificity: 73.4%) and 3.95 × 108/g (sensitivity: 79.7%, specificity: 84.6%), respectively. CONCLUSIONS MHR and MAR were significantly associated with MetS. These two novel pro-inflammatory indicators may be useful markers for MetS in Chinese newly diagnosed T2DM.
Collapse
|
17
|
Chai S, Wang D, Yao B, Xu L, Ji L, Zhang X. The effect of education and mobile health management on improvement of blood glucose with type 2 diabetes mellitus. J Public Health (Oxf) 2022. [DOI: 10.1007/s10389-020-01210-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
18
|
Wang X, Huang J, Zheng Y, Long S, Lin H, Zhang N, Tian M, Wu X, An R, Ma S, Tan H. Study on the relationship between DNA methylation of target CpG sites in peripheral blood and gestational diabetes during early pregnancy. Sci Rep 2021; 11:20455. [PMID: 34650136 PMCID: PMC8516930 DOI: 10.1038/s41598-021-99836-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/28/2021] [Indexed: 11/15/2022] Open
Abstract
Genome-wide DNA methylation profiling have been used to find maternal CpG sites related to the occurrence of gestational diabetes mellitus (GDM). However, none of these differential sites found has been verified in a larger sample. Here, our aim was to evaluate whether first trimester changes in target CpG sites in the peripheral blood of pregnancy women predict subsequent development of GDM. This nested case–control study was based upon an early pregnancy follow-up cohort (ChiCTR1900020652). Target CpG sites were extracted from related published literature and bioinformatics analysis. The DNA methylation levels at 337 CpG sites of 80 GDM cases and 80 matched healthy controls during the early pregnancy (10–15 weeks) were assessed using MethylTarget sequencing. The best cut-off level for methylation of CpG site was determined using the generated ROC curve. The independent effect of CpG site methylation status on GDM was analyzed using conditional logistic regression. Methylation levels at 6 CpG sites were significantly higher in the GDM group than in controls, whereas those at another 6 CpG sites were significantly lower (FDR < 0.05). The area under the ROC curve at each methylation level of the significant CpG sites ranged between 0.593 and 0.650 for the occurrence of GDM. After adjusting for possible confounders, the hypermethylation status of CpG site 68167324 (OR = 3.168, 1.038–9.666) and 24837915 (OR = 5.232, 1.659–16.506) was identified as more strongly associated with GDM; meanwhile, the hypermethylation of CpG site 157130156 (OR = 0.361, 0.135–0.966) and 89438648 (OR = 0.206, 0.065–0.655) might indicate lower risk of GDM. The methylation status of target CpG sites in the peripheral blood of pregnant women during the first trimester may be associated with GDM pathogenesis, and has potential as a predictor of GDM.
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha City, Hunan Province, 410078, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha City, Hunan Province, 410078, China
| | - Jin Huang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha City, Hunan Province, 410078, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha City, Hunan Province, 410078, China
| | - Yixiang Zheng
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha City, Hunan Province, 410078, China
| | - Sisi Long
- Hospital Infection Control Center, The Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, 410078, China
| | - Huijun Lin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha City, Hunan Province, 410078, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha City, Hunan Province, 410078, China
| | - Na Zhang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha City, Hunan Province, 410078, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha City, Hunan Province, 410078, China
| | - Mengyuan Tian
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha City, Hunan Province, 410078, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha City, Hunan Province, 410078, China
| | - Xinrui Wu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha City, Hunan Province, 410078, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha City, Hunan Province, 410078, China
| | - Rongjing An
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha City, Hunan Province, 410078, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha City, Hunan Province, 410078, China
| | - Shujuan Ma
- Reproductive and Genetic Hospital of CITIC-Xiangya, Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha City, Hunan Province, 410008, China.
| | - Hongzhuan Tan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha City, Hunan Province, 410078, China. .,Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha City, Hunan Province, 410078, China.
| |
Collapse
|
19
|
Porcuna J, Mínguez-Martínez J, Ricote M. The PPARα and PPARγ Epigenetic Landscape in Cancer and Immune and Metabolic Disorders. Int J Mol Sci 2021; 22:ijms221910573. [PMID: 34638914 PMCID: PMC8508752 DOI: 10.3390/ijms221910573] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-modulated nuclear receptors that play pivotal roles in nutrient sensing, metabolism, and lipid-related processes. Correct control of their target genes requires tight regulation of the expression of different PPAR isoforms in each tissue, and the dysregulation of PPAR-dependent transcriptional programs is linked to disorders, such as metabolic and immune diseases or cancer. Several PPAR regulators and PPAR-regulated factors are epigenetic effectors, including non-coding RNAs, epigenetic enzymes, histone modifiers, and DNA methyltransferases. In this review, we examine advances in PPARα and PPARγ-related epigenetic regulation in metabolic disorders, including obesity and diabetes, immune disorders, such as sclerosis and lupus, and a variety of cancers, providing new insights into the possible therapeutic exploitation of PPAR epigenetic modulation.
Collapse
|
20
|
Fu W, Pei H, Shivappa N, Hebert JR, Luo T, Tian T, Alimu D, Zhang Z, Dai J. Association between Dietary Inflammatory Index and Type 2 diabetes mellitus in Xinjiang Uyghur autonomous region, China. PeerJ 2021; 9:e11159. [PMID: 34316387 PMCID: PMC8288110 DOI: 10.7717/peerj.11159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background Diet and inflammation have both been studied in relation to type 2 diabetes mellitus (T2DM). The aim of this cross-sectional study was to examine the association between the Dietary Inflammatory Index (DII®) and T2DM. Methods Subjects were adults enrolled in the baseline study of the Xinjiang multi-ethnic natural population cohort and health follow-up study from January to May 2019. The study involved 5,105 subjects (58.7% men) between 35 and 74 years of age. The DII score was calculated from a data obtained via a food frequency questionnaire consisting of 127 food items. Results Logistic regression analyses were used to estimate the odds ratios (ORs) and 95% confidence intervals (95% CIs) of DII in relation to T2DM. After adjusting for potential confounders, compared to subjects in the 1st DII quintile, subjects in the 5th quintile (i.e., with the most pro-inflammatory diet) had higher odds of T2DM (OR = 3.27, 95%CI:2.38,4.50; p < 0.001). Conclusions Our results suggest that a pro-inflammatory diet is associated with a higher risk of T2DM in this population of Chinese adults.
Collapse
Affiliation(s)
- WenHui Fu
- Department of Epidemiology and Biostatistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China.,Department of Immunization Programme, Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hualian Pei
- Department of Epidemiology and Biostatistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Nitin Shivappa
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States of America.,Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, United States of America
| | - James R Hebert
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States of America.,Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, United States of America
| | - Tao Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Tian Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Dilibaier Alimu
- Department of Epidemiology and Biostatistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Zewen Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jianghong Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
21
|
Zampieri M, Bacalini MG, Barchetta I, Scalea S, Cimini FA, Bertoccini L, Tagliatesta S, De Matteis G, Zardo G, Cavallo MG, Reale A. Increased PARylation impacts the DNA methylation process in type 2 diabetes mellitus. Clin Epigenetics 2021; 13:114. [PMID: 34001206 PMCID: PMC8130175 DOI: 10.1186/s13148-021-01099-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022] Open
Abstract
Background Epigenetic modifications, such as DNA methylation, can influence the genetic susceptibility to type 2 diabetes mellitus (T2DM) and the progression of the disease. Our previous studies demonstrated that the regulation of the DNA methylation pattern involves the poly(ADP-ribosyl)ation (PARylation) process, a post-translational modification of proteins catalysed by the poly(ADP-ribose) polymerase (PARP) enzymes. Experimental data showed that the hyperactivation of PARylation is associated with impaired glucose metabolism and the development of T2DM. Aims of this case–control study were to investigate the association between PARylation and global and site-specific DNA methylation in T2DM and to evaluate metabolic correlates. Results Data were collected from 61 subjects affected by T2DM and 48 healthy individuals, recruited as controls. Global levels of poly(ADP-ribose) (PAR, a surrogate of PARP activity), cytosine methylation (5-methylcytosine, 5mC) and de-methylation intermediates 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) were determined in peripheral blood cells by ELISA-based methodologies. Site-specific DNA methylation profiling of SOCS3, SREBF1 and TXNIP candidate genes was performed by mass spectrometry-based bisulfite sequencing, methyl-sensitive endonucleases digestion and by DNA immuno-precipitation. T2DM subjects presented higher PAR levels than controls. In T2DM individuals, increased PAR levels were significantly associated with higher HbA1c levels and the accumulation of the de-methylation intermediates 5hmC and 5fC in the genome. In addition, T2DM patients with higher PAR levels showed reduced methylation with increased 5hmC and 5fC levels in specific SOCS3 sites, up-regulated SOCS3 expression compared to both T2DM subjects with low PAR levels and controls. Conclusions This study demonstrates the activation of PARylation processes in patients with T2DM, particularly in those with poor glycaemic control. PARylation is linked to dysregulation of DNA methylation pattern via activation of the DNA de-methylation cascade and may be at the basis of the differential gene expression observed in presence of diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01099-1.
Collapse
Affiliation(s)
- Michele Zampieri
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | | | - Ilaria Barchetta
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Stefania Scalea
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Laura Bertoccini
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Stefano Tagliatesta
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Giovanna De Matteis
- Research Centre for Animal Production and Aquaculture, Consiglio Per La Ricerca in Agricoltura E L'Analisi Dell'Economia Agraria (CREA), 00015, Monterotondo, Italy
| | - Giuseppe Zardo
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| | - Anna Reale
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
22
|
Al-Fadhel SZ, Al-Ghuraibawi NHA, Mohammed Ali DM, Al-Hakeim HK. Serum cytokine dependent hematopoietic cell linker (CLNK) as a predictor for the duration of illness in type 2 diabetes mellitus. J Diabetes Metab Disord 2021; 19:959-966. [PMID: 33520815 DOI: 10.1007/s40200-020-00588-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/22/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is an endocrine illness associated with various changes in the immune system and adaptor protein levels. Cytokine dependent hematopoietic cell linker (CLNK) is an adapter protein that regulates immune receptor signaling and acts as a regulator of the receptor signaling of T-cells and natural killer cells. The role of CLNK in T2DM is not studied previously. In the present study, serum CLNK level was measured and correlated with some sociodemographic and insulin resistance (IR) parameters. To achieve these goals, we measured CLNK level and insulin parameters (glucose, insulin, HbA1c, in addition to the calculation of the functions of IR (HOMA2IR), insulin sensitivity (HOMA%S), and beta-cell function (HOMA%B)) in 60 T2DM patients and 30 controls. The results indicated a significant increase (p < 0.05) in serum CLNK in patients group in comparison with the controls. Multivariate generalized linear model (GLM) analysis revealed no significant effect of age, BMI, and sex on the CLNK level. The results of tests for between-subjects showed that the CLNK affects diagnosis significantly (F = 7.445, p = 0.008, partial η2 = 0.081) and its effect is approximately the same as the effect of insulin (F = 8.107, p = 0.006, partial η2 = 0.087). The correlation study showed a highly significant positive correlation between CLNK and the duration of disease (rho = 0.420, p < 0.001). It can be concluded that the increase CLNK in T2DM revealing the role of the adaptor proteins level in the progression of the disease and may act as a predictor for diabetes complications, which deserves more investigations.
Collapse
Affiliation(s)
- Suhaer Zeki Al-Fadhel
- Department of Clinical Laboratory Science, College of Pharmacy, University of Kufa, Kufa, Iraq
| | | | | | | |
Collapse
|
23
|
Zhao R, Wan P, Shariati-Ievari S, Aliani M, Shen GX. North American Wild Rice-Attenuated Hyperglycemia in High-Fat-Induced Obese Mice: Involvement of AMP-Activated Protein Kinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8855-8862. [PMID: 32689799 DOI: 10.1021/acs.jafc.0c03776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Previous studies indicated that North American wild rice (WIR) reduced atherosclerosis and vascular inflammation in low-density lipoprotein receptor knockout mice. The effects of WIR on hyperglycemia in diabetic animal models have not been documented. The present study aims to determine the impact of WIR on glucose metabolism in high-fat (HF)-induced diabetic mice and a key modulator. Male C57 BL/J6 mice were treated with a control diet and a HF diet supplemented with 26% (weight/weight, a substitute for carbohydrates in the diet) of WIR or white rice (WHR) (n = 8/group) for 11 weeks. HF + WHR diet significantly increased fasting plasma glucose, cholesterol, triglycerides, insulin, insulin resistance, monocyte adhesion, and the levels of relevant inflammatory mediators (tumor necrotic factor-α, plasminogen activator inhibitor-1, and monocyte chemotactic protein-1) in mice compared to the control diet (p < 0.01). HF + WIR significantly reduced HF diet-induced metabolic and inflammatory changes compared to the HF + WHR diet (p < 0.01). Metabolomics analysis indicated that an array of metabolites related to glucose metabolism was significantly more abundant in WIR than in WHR, including adenosine 5'-monophosphate (AMP), a potent agonist for AMP-activated protein kinase or AMPK. WIR normalized HF diet-induced reduction in the abundance of phospho-AMPKα in skeletal muscle, liver, and adipose tissue from the mice. The findings for the first time demonstrated that WIR decreased HF diet-induced hyperglycemia in mice compared to WHR. The metabolic benefits of WIR may result, at least in part, from the activation of AMPKα in insulin-sensitive tissue in the mice.
Collapse
Affiliation(s)
- Ruozhi Zhao
- Department of Internal Medicine, University of Manitoba, Winnipeg R3E 3P4, Canada
| | - Peng Wan
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shiva Shariati-Ievari
- The Canadian Centre for Agri-Food Research in Health and Medicine, Division of Neurodegenerative, St. Boniface Hospital Albrechtsen Research, Winnipeg R2H 0G1, Canada
| | - Michel Aliani
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine, Division of Neurodegenerative, St. Boniface Hospital Albrechtsen Research, Winnipeg R2H 0G1, Canada
| | - Garry X Shen
- Department of Internal Medicine, University of Manitoba, Winnipeg R3E 3P4, Canada
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
| |
Collapse
|
24
|
Lou YM, Liao MQ, Wang CY, Chen HE, Peng XL, Zhao D, Gao XP, Xu S, Wang L, Ma JP, Ping Z, Zeng FF. Association between brachial-ankle pulse wave velocity and risk of type 2 diabetes mellitus: results from a cohort study. BMJ Open Diabetes Res Care 2020; 8:e001317. [PMID: 32699113 PMCID: PMC7375424 DOI: 10.1136/bmjdrc-2020-001317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Brachial-ankle pulse wave velocity (ba-PWV), as a simple and easily measured marker of arterial stiffness, has not been prospectively explored for its role in type 2 diabetes mellitus (T2DM) risk among the general population. This study aimed to explore the association between baseline ba-PWV value and new-onset T2DM among Chinese adults. RESEARCH DESIGN AND METHODS Using data from Xiaotangshan Hospital, we conducted a prospective cohort study among those who underwent annual or biennial health check-up examinations and who had their ba-PWV measured from 2009 to 2016. We explored the risk of new-onset T2DM across ba-PWV tertiles using Cox proportional-hazards regression analysis. RESULTS Of 6122 adults (68.9% male; mean age: 51.0 (SD 13.0) years) without T2DM and with ba-PWV measured at baseline, 599 participants developed T2DM during an average of 3.8 (SD 2.3) years of follow-up. After multivariable adjustment, ba-PWV was positively related to T2DM risk (p for trend=0.008). Compared with the lowest ba-PWV tertile, the HRs and their 95% CIs were 1.57 (1.18 to 2.10) for the second and 1.66 (1.24 to 2.22) for the third tertile. The risk across ba-PWV tertiles increased steadily from 1000 cm/s to 1400 cm/s and then reached a plateau. Subgroup analyses indicated a significantly higher risk among those aged <65 years and current smokers (p for interactions: <0.001 and 0.006). CONCLUSIONS Our findings suggest that ba-PWV might be a useful and independent predictor of new-onset T2DM with ba-PWV ranging between 1000 cm/s and 1400 cm/s, especially among younger individuals and current smokers.
Collapse
Affiliation(s)
- Yan-Mei Lou
- Department of Health Management, Beijing Xiao Tang Shan Hospital, Beijing, China
| | - Min-Qi Liao
- Department of Epidemiology, Jinan University, Guangzhou, China
| | - Chang-Yi Wang
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Hong-En Chen
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Xiao-Lin Peng
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Dan Zhao
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Xu-Ping Gao
- Department of Epidemiology, Jinan University, Guangzhou, China
| | - Shan Xu
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Li Wang
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Jian-Ping Ma
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Zhao Ping
- Department of Health Management, Beijing Xiao Tang Shan Hospital, Beijing, China
| | - Fang-Fang Zeng
- Department of Epidemiology, Jinan University, Guangzhou, China
| |
Collapse
|
25
|
Lu Y, Li Y, Li G, Lu H. Identification of potential markers for type 2 diabetes mellitus via bioinformatics analysis. Mol Med Rep 2020; 22:1868-1882. [PMID: 32705173 PMCID: PMC7411335 DOI: 10.3892/mmr.2020.11281] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial and multigenetic disease, and its pathogenesis is complex and largely unknown. In the present study, microarray data (GSE201966) of β-cell enriched tissue obtained by laser capture microdissection were downloaded, including 10 control and 10 type 2 diabetic subjects. A comprehensive bioinformatics analysis of microarray data in the context of protein-protein interaction (PPI) networks was employed, combined with subcellular location information to mine the potential candidate genes for T2DM and provide further insight on the possible mechanisms involved. First, differential analysis screened 108 differentially expressed genes. Then, 83 candidate genes were identified in the layered network in the context of PPI via network analysis, which were either directly or indirectly linked to T2DM. Of those genes obtained through literature retrieval analysis, 27 of 83 were involved with the development of T2DM; however, the rest of the 56 genes need to be verified by experiments. The functional analysis of candidate genes involved in a number of biological activities, demonstrated that 46 upregulated candidate genes were involved in ‘inflammatory response’ and ‘lipid metabolic process’, and 37 downregulated candidate genes were involved in ‘positive regulation of cell death’ and ‘positive regulation of cell proliferation’. These candidate genes were also involved in different signaling pathways associated with ‘PI3K/Akt signaling pathway’, ‘Rap1 signaling pathway’, ‘Ras signaling pathway’ and ‘MAPK signaling pathway’, which are highly associated with the development of T2DM. Furthermore, a microRNA (miR)-target gene regulatory network and a transcription factor-target gene regulatory network were constructed based on miRNet and NetworkAnalyst databases, respectively. Notably, hsa-miR-192-5p, hsa-miR-124-5p and hsa-miR-335-5p appeared to be involved in T2DM by potentially regulating the expression of various candidate genes, including procollagen C-endopeptidase enhancer 2, connective tissue growth factor and family with sequence similarity 105, member A, protein phosphatase 1 regulatory inhibitor subunit 1 A and C-C motif chemokine receptor 4. Smad5 and Bcl6, as transcription factors, are regulated by ankyrin repeat domain 23 and transmembrane protein 37, respectively, which might also be used in the molecular diagnosis and targeted therapy of T2DM. Taken together, the results of the present study may offer insight for future genomic-based individualized treatment of T2DM and help determine the underlying molecular mechanisms that lead to T2DM.
Collapse
Affiliation(s)
- Yana Lu
- Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, Yunnan 666100, P.R. China
| | - Yihang Li
- Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, Yunnan 666100, P.R. China
| | - Guang Li
- Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, Yunnan 666100, P.R. China
| | - Haitao Lu
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
26
|
Margină D, Ungurianu A, Purdel C, Tsoukalas D, Sarandi E, Thanasoula M, Tekos F, Mesnage R, Kouretas D, Tsatsakis A. Chronic Inflammation in the Context of Everyday Life: Dietary Changes as Mitigating Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4135. [PMID: 32531935 PMCID: PMC7312944 DOI: 10.3390/ijerph17114135] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
The lifestyle adopted by most people in Western societies has an important impact on the propensity to metabolic disorders (e.g., diabetes, cancer, cardiovascular disease, neurodegenerative diseases). This is often accompanied by chronic low-grade inflammation, driven by the activation of various molecular pathways such as STAT3 (signal transducer and activator of transcription 3), IKK (IκB kinase), MMP9 (matrix metallopeptidase 9), MAPK (mitogen-activated protein kinases), COX2 (cyclooxigenase 2), and NF-Kβ (nuclear factor kappa-light-chain-enhancer of activated B cells). Multiple intervention studies have demonstrated that lifestyle changes can lead to reduced inflammation and improved health. This can be linked to the concept of real-life risk simulation, since humans are continuously exposed to dietary factors in small doses and complex combinations (e.g., polyphenols, fibers, polyunsaturated fatty acids, etc.). Inflammation biomarkers improve in patients who consume a certain amount of fiber per day; some even losing weight. Fasting in combination with calorie restriction modulates molecular mechanisms such as m-TOR, FOXO, NRF2, AMPK, and sirtuins, ultimately leads to significantly reduced inflammatory marker levels, as well as improved metabolic markers. Moving toward healthier dietary habits at the individual level and in publicly-funded institutions, such as schools or hospitals, could help improving public health, reducing healthcare costs and improving community resilience to epidemics (such as COVID-19), which predominantly affects individuals with metabolic diseases.
Collapse
Affiliation(s)
- Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Carmen Purdel
- Department of Toxicology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Dimitris Tsoukalas
- European Institute of Nutritional Medicine EINuM, 00198 Rome , Italy
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Evangelia Sarandi
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Maria Thanasoula
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, School of Health Sciences, 41500 Larisa, Greece
| | - Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences and Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, School of Health Sciences, 41500 Larisa, Greece
| | - Aristidis Tsatsakis
- Department Forensic Sciences and Toxicology, University of Crete, Faculty of Medicine, 71003 Heraklion, Greece
| |
Collapse
|
27
|
Kim DH, Bang E, Arulkumar R, Ha S, Chung KW, Park MH, Choi YJ, Yu BP, Chung HY. Senoinflammation: A major mediator underlying age-related metabolic dysregulation. Exp Gerontol 2020; 134:110891. [PMID: 32114077 DOI: 10.1016/j.exger.2020.110891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
Chronic inflammation is a complex and unresolved inflammatory response with low-grade multivariable patterns that aggravate systemic pathophysiological conditions and the aging process. To redefine and delineate these age-related complex inflammatory phenomena at the molecular, cellular, and systemic levels, the concept of "Senoinflammation" was recently formulated. In this review, we describe the accumulated data on both the multiphase systemic inflammatory process and the cellular proinflammatory signaling pathway. We also describe the proinflammatory mechanisms underlying the metabolic molecular pathways in aging. Additionally, we review age-related lipid accumulation, the role of the inflammatory senescence-associated secretory phenotype (SASP), the involvement of cytokine/chemokine secretion, endoplasmic reticulum (ER) stress, insulin resistance, and autophagy. The last section of the review highlights the modulation of the senoinflammatory process by the anti-aging and anti-inflammatory action of calorie restriction (CR). Evidence from aging and CR research strongly suggests that SASP from senescent cells may be the major source of secreted cytokines and chemokines during aging. A better understanding of the mechanisms underpinning the senoinflammatory response and the mitigating role of CR will provide insights into the molecular mechanisms of chronic inflammation and aging for potential interventions.
Collapse
Affiliation(s)
- Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gi, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - EunJin Bang
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gi, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Radha Arulkumar
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gi, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Sugyeong Ha
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gi, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gi, Geumjeong-Gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Kyungsung University, Nam-gu, Busan 48434, Republic of Korea
| | - Min Hi Park
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gi, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Yeon Ja Choi
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gi, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
28
|
Long-term outcomes of macrovascular diseases and metabolic indicators of bariatric surgery for severe obesity type 2 diabetes patients with a meta-analysis. PLoS One 2019; 14:e0224828. [PMID: 31794559 PMCID: PMC6890174 DOI: 10.1371/journal.pone.0224828] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
There is currently no detailed evidence for the long-term effects of bariatric surgery on severely obese with type 2 diabetes, such as the risk of myocardial infarction and stroke. In order to provide evidence on the risks of macrovascular diseases and metabolic indicators of bariatric surgery follow-up for more than five years, we searched in the Cochrane library, Pubmed, and EMBASE databases from the earliest studies to January 31, 2019. Randomized clinical trials or cohort studies compared bariatric surgery and conventional medical therapy for long-term incidence of macrovascular events and metabolic outcomes in severely obese patients with T2DM. Fixed-effects and random-effects meta-analyses were performed to pool the relative risks (RRs), hazard ratios (HRs) and weighted mean difference (WMD). Publication bias and heterogeneity were examined. Four RCTs and six cohort studies were finally involved in this review. Patients in the bariatric surgery group as compared to the conventional treatment group had lower incidence of macrovascular complications (RR = 0.43, 95%CI = 0.27~0.70), cardiovascular events (CVEs) (HR = 0.52, 95%CI = 0.39~0.71), and myocardial infarction (MI) (RR = 0.40, 95%CI = 0.26~0.61). At the same time, the results demonstrate that bariatric surgery is associated with better weight and better glycemic control over the long-term than non-surgical therapies, and reveal that different surgical methods have different effects on various metabolic indicators. Bariatric surgery significantly decreases macrovascular complications over the long term and is associated with greater weight loss and better intermediate glucose outcomes among T2DM patients with severe obesity as compared to patients receiving only conservative medical measures.
Collapse
|
29
|
Qian S, Golubnitschaja O, Zhan X. Chronic inflammation: key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles. EPMA J 2019; 10:365-381. [PMID: 31832112 PMCID: PMC6882964 DOI: 10.1007/s13167-019-00194-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022]
Abstract
A strong relationship exists between tumor and inflammation, which is the hot point in cancer research. Inflammation can promote the occurrence and development of cancer by promoting blood vessel growth, cancer cell proliferation, and tumor invasiveness, negatively regulating immune response, and changing the efficacy of certain anti-tumor drugs. It has been demonstrated that there are a large number of inflammatory factors and inflammatory cells in the tumor microenvironment, and tumor-promoting immunity and anti-tumor immunity exist simultaneously in the tumor microenvironment. The typical relationship between chronic inflammation and tumor has been presented by the relationships between Helicobacter pylori, chronic gastritis, and gastric cancer; between smoking, development of chronic pneumonia, and lung cancer; and between hepatitis virus (mainly hepatitis virus B and C), development of chronic hepatitis, and liver cancer. The prevention of chronic inflammation is a factor that can prevent cancer, so it effectively inhibits or blocks the occurrence, development, and progression of the chronic inflammation process playing important roles in the prevention of cancer. Monitoring of the causes and inflammatory factors in chronic inflammation processes is a useful way to predict cancer and assess the efficiency of cancer prevention. Chronic inflammation-based biomarkers are useful tools to predict and prevent cancer.
Collapse
Affiliation(s)
- Shehua Qian
- 1Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 2Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 3State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Olga Golubnitschaja
- 4Radiological Clinic, UKB, Excellence Rheinische Friedrich-Wilhelms-University of Bonn, Sigmund-Freud-Str 25, 53105 Bonn, Germany
- 5Breast Cancer Research Centre, UKB, Excellence Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
- 6Centre for Integrated Oncology, Cologne-Bonn, Excellence Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Xianquan Zhan
- 1Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 2Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 3State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 7Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan People's Republic of China
- 8National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan People's Republic of China
| |
Collapse
|
30
|
The inflammatory effect of epigenetic factors and modifications in type 2 diabetes. Inflammopharmacology 2019; 28:345-362. [PMID: 31707555 DOI: 10.1007/s10787-019-00663-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Abstract
Inflammation has a central role in the etiology of type 2 diabetes (T2D) and its complications. Both genetic and epigenetic factors have been implicated in the development of T2D-associated inflammation. Epigenetic mechanisms regulate the function of several components of the immune system. Diabetic conditions trigger aberrant epigenetic alterations that contribute to the progression of insulin resistance and β-cell dysfunction by induction of inflammatory responses. Thus, targeting epigenetic factors and modifications, as one of the underlying causes of inflammation, could lead to the development of novel immune-based strategies for the treatment of T2D. The aim of this review is to provide an overview of the epigenetic mechanisms involved in the propagation and perpetuation of chronic inflammation in T2D. We also discuss the possible anti-inflammatory approaches that target epigenetic factors for the treatment of T2D.
Collapse
|
31
|
Exosomes and Their Noncoding RNA Cargo Are Emerging as New Modulators for Diabetes Mellitus. Cells 2019; 8:cells8080853. [PMID: 31398847 PMCID: PMC6721737 DOI: 10.3390/cells8080853] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetes belongs to a group of metabolic disorders characterized by long term high blood glucose levels due to either inadequate production of insulin (Type 1 diabetes, T1DM) or poor response of the recipient cell to insulin (Type 2 diabetes, T2DM). Organ dysfunctions are the main causes of morbidity and mortality due to high glucose levels. Understanding the mechanisms of organ crosstalk may help us improve our basic knowledge and find novel strategies to better treat the disease. Exosomes are part of a newly emerged research area and have attracted a great deal of attention for their capacity to regulate communications between cells. In conditions of diabetes, exosomes play important roles in the pathological processes in both T1DM and T2DM, such as connecting the immune cell response to pancreatic tissue injury, as well as adipocyte stimulation to insulin resistance of skeletal muscle or liver. Furthermore, in recent years, nucleic acids containing exosomes—especially microRNAs (miRNAs) and long noncoding RNAs (lncRNAs)—have been shown to mainly regulate communications between organs in pathological processes of diabetes, including influencing metabolic signals and insulin signals in target tissues, affecting cell viability, and modulating inflammatory pancreatic cells. Moreover, exosome miRNAs show promise in their use as biomarkers or in treatments for diabetes and diabetic complications. Thus, this paper summarizes the recent work on exosomes related to diabetes as well as the roles of exosomal miRNAs and lncRNAs in diabetic pathology and diagnosis in order to help us better understand the exact roles of exosomes in diabetes development.
Collapse
|
32
|
Karras SN, Koufakis T, Zebekakis P, Kotsa K. Pharmacologic adjunctive to insulin therapies in type 1 diabetes: The journey has just begun. World J Diabetes 2019; 10:234-240. [PMID: 31040899 PMCID: PMC6475707 DOI: 10.4239/wjd.v10.i4.234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/13/2019] [Accepted: 03/28/2019] [Indexed: 02/05/2023] Open
Abstract
Treatment of type 1 diabetes (T1D) is currently based exclusively on insulin replacement therapy. However, there is a need for better glycemic control, lower hypoglycemia rates, more effective weight management, and further reduction of cardiovascular risk in people with T1D. In this context, agents from the pharmaceutical quiver of type 2 diabetes are being tested in clinical trials, as adjunctive to insulin therapies for T1D patients. Despite the limited amount of relevant evidence and the inter-class variability, it can be said that these agents have a role in optimizing metabolic control, assisting weight management and reducing glycemic variability in people with T1D. Specific safety issues, including the increased risk of hypoglycemia and diabetic ketoacidosis, as well as the effects of these treatments on major cardiovascular outcomes should be further assessed by future studies, before these therapeutic choices become widely available for T1D management.
Collapse
Affiliation(s)
- Spyridon N Karras
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki 55535, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki 55535, Greece
| | - Pantelis Zebekakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki 55535, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki 55535, Greece
| |
Collapse
|
33
|
Qin J, Li Z, Gong G, Li H, Chen L, Song B, Liu X, Shi C, Yang J, Yang T, Xu Y. Early increased neutrophil-to-lymphocyte ratio is associated with poor 3-month outcomes in spontaneous intracerebral hemorrhage. PLoS One 2019; 14:e0211833. [PMID: 30730945 PMCID: PMC6366889 DOI: 10.1371/journal.pone.0211833] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to evaluate the association of dynamic neutrophil-to-lymphocyte ratio (NLR) with 3-month functional outcomes in patients with sICH. We retrospectively identified 213 consecutive patients with sICH hospitalized in The First Affiliated Hospital of Zhengzhou University from January 2017 to May 2018. Patients were divided into functional independence (FI) or unfavorable prognosis (UP) groups based on 3-month outcomes. Admission leukocyte counts within 24 hours of symptom onset were obtained, and the recorded fraction, of which the numerator is neutrophil and the denominator is lymphocyte, as NLR0. Determined NLR1, NLR3, NLR7, and NLR14 were recorded on day 1 (n = 77), day 3 (n = 126), day 7 (n = 123), and day 14 (n = 105), respectively. The relationships between dynamic NLR or leukocyte counts and clinical features were evaluated using Spearman’s or Kendall’s correlation analysis. Logistic regression analyses were used to identify the risk factors for unfavorable 3-month prognosis. The patients’ dynamic NLR was positively associated with the National Institutes of Health Stroke Scale, ICH score, and hematoma volume at admission, while inversely correlated to the onset GCS score and FI at 3-month follow-up. Furthermore, higher NLR or lower absolute lymphocyte count obtained at admission was independently risk factor for UP at 3 months (adjusted odds ratio [OR]: 1.06, 95% confidence interval [CI]: 1.003, 1.12; OR: 0.41, 95% CI: 0.18, 0.94, respectively). In conclusion, higher NLR and lower lymphocyte counts at early stages were predictive of 3-month unfavorable outcomes in sICH patients.
Collapse
Affiliation(s)
- Jie Qin
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
- * E-mail: (JQ); (GG)
| | - Zhu Li
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Guangming Gong
- Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China
- * E-mail: (JQ); (GG)
| | - Hongwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Ling Chen
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Bo Song
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xinjing Liu
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Changhe Shi
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jing Yang
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Ting Yang
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yuming Xu
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| |
Collapse
|