1
|
Zaidi SA, Fan Z, Chauhdari T, Ding Y. MicroRNA regulatory dynamic, emerging diagnostic and therapeutic frontier in atherosclerosis. Microvasc Res 2025; 160:104818. [PMID: 40368159 DOI: 10.1016/j.mvr.2025.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
MicroRNAs (miRNAs), a class of non-coding RNAs, are pivotal post-transcriptional regulators of gene expression with profound implications in the pathogenesis of atherosclerosis (AS). As a progressive arterial disease driven by vascular cells dysfunction, lipid dysregulation and subsequent chronic inflammation, AS remains a leading cause of global morbidity. Recent studies have demonstrated how important miRNAs are in regulating central biological processes in the vascular wall, such as endothelial function, vascular smooth muscle cell (VSMC) phenotypic switching, and macrophage polarization. This review provides comprehensive insight into the role of miRNAs in the development and complexity of atherosclerotic plaques according to their effects on endothelial cells, macrophages, and VSMCs. We also go over the growing prospects of miRNAs as therapeutic targets and diagnostic biomarkers, providing information to be used in the study of vascular diseases. Lastly, we address recent complications and potential applications of miRNA-based approaches in clinical practice.
Collapse
Affiliation(s)
- Syeda Armana Zaidi
- College of Life Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China.
| | - Zhiyu Fan
- College of Life Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China.
| | - Talha Chauhdari
- College of Life Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China.
| | - Yongsheng Ding
- College of Life Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China.
| |
Collapse
|
2
|
Cramer M, Borrelli M, Mathews L, Dewey M, Schwarzmann W, Soman V, Sembrat J, Rojas M, McTiernan C, Chandran U, Hussey GS, Badylak SF, Turnquist HR. Cardiac matrix-bound Nanovesicles provide insight into mechanisms of clinical heart disease progression to failure. Int J Cardiol 2025; 421:132892. [PMID: 39662751 PMCID: PMC12051099 DOI: 10.1016/j.ijcard.2024.132892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/07/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
AIMS Remodeling of the extracellular matrix (ECM) is critical for effective wound healing and maintaining organ homeostasis. The ECM of soft tissues, including cardiac, contains embedded nanovesicles; or matrix-bound nanovesicles (MBV). The luminal cargo of MBV consists of lipids, microRNAs (miRNAs), and proteins that influence the function of immune and stromal cells. ECM remodeling is extensive during heart disease, yet it is unknown if MBV are altered during the development of heart disease. We conducted the present study to answer this question. METHODS AND RESULTS MBV were isolated from de-identified human left ventricle (LV) tissue samples from: 1) non-ischemic, failing hearts (failing) and 2) non-failing, non-ischemic hearts (control). MBV morphology was analyzed and the protein and miRNA cargo were quantified. Immunomodulatory capacity of MBV was assessed on macrophages. Failing and control heart tissue had similar concentrations of MBV, however, their size and cargo differed. MBV from failing tissue had increased levels of Apolipoprotein A-1 and decreased levels of C-Reactive Protein. Over 600 unique miRNA were detected. Of these, 5 % showed significantly different levels, with most being downregulated in MBV from failing heart tissue. Ex vivo stimulation of human macrophages with MBV isolated from control ventricular tissue, but not failing ventricles, induced gene expression suggesting increased reparative functions. CONCLUSION These data reveal that MBV are present within the human heart and suggests that disease progression alters MBV cargo (lipids, microRNAs, and proteins). Furthermore, it is suggested that alterations in local MBV cargo may perpetuate pathology when their capacity to modulate reparative immune cells is diminished.
Collapse
Affiliation(s)
- Madeline Cramer
- Department of Surgery, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15213, USA
| | - Matt Borrelli
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15213, USA; Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA
| | - Lisa Mathews
- Department of Surgery, Pittsburgh, PA 15213, USA; Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marley Dewey
- Department of Surgery, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - William Schwarzmann
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vishal Soman
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - John Sembrat
- Department of Medicine Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, USA
| | - Mauricio Rojas
- Department of Medicine Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, USA
| | - Charlie McTiernan
- Department of Medicine Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, USA
| | - Uma Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - George S Hussey
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15213, USA; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephen F Badylak
- Department of Surgery, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15213, USA
| | - Heth R Turnquist
- Department of Surgery, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
3
|
Liu Y, Weng L, Wang Y, Zhang J, Wu Q, Zhao P, Shi Y, Wang P, Fang L. Deciphering the role of CD47 in cancer immunotherapy. J Adv Res 2024; 63:129-158. [PMID: 39167629 PMCID: PMC11380025 DOI: 10.1016/j.jare.2023.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Immunotherapy has emerged as a novel strategy for cancer treatment following surgery, radiotherapy, and chemotherapy. Immune checkpoint blockade and Chimeric antigen receptor (CAR)-T cell therapies have been successful in clinical trials. Cancer cells evade immune surveillance by hijacking inhibitory pathways via overexpression of checkpoint genes. The Cluster of Differentiation 47 (CD47) has emerged as a crucial checkpoint for cancer immunotherapy by working as a "don't eat me" signal and suppressing innate immune signaling. Furthermore, CD47 is highly expressed in many cancer types to protect cancer cells from phagocytosis via binding to SIRPα on phagocytes. Targeting CD47 by either interrupting the CD47-SIRPα axis or combing with other therapies has been demonstrated as an encouraging therapeutic strategy in cancer immunotherapy. Antibodies and small molecules that target CD47 have been explored in pre- and clinical trials. However, formidable challenges such as the anemia and palate aggregation cannot be avoided because of the wide presentation of CD47 on erythrocytes. AIM OF VIEW This review summarizes the current knowledge on the regulation and function of CD47, and provides a new perspective for immunotherapy targeting CD47. It also highlights the clinical progress of targeting CD47 and discusses challenges and potential strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review provides a comprehensive understanding of targeting CD47 in cancer immunotherapy, it also augments the concept of combination immunotherapy strategies by employing both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Linjun Weng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yanjin Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi, Medical Center, 39216 Jackson, MS, USA
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Pengcheng Zhao
- School of Life Sciences and Medicine, Shandong University of Technology, No.266 Xincun West Road, Zibo 255000, Shandong Province, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China.
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Lan Fang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
4
|
Zhu Y, Ren S, Huang H, Wu J, You X, Gao J, Ren Y, Wang R, Zhao W, Tan S. Restoration of miR-299-3p promotes efferocytosis and ameliorates atherosclerosis via repressing CD47 in mice. FASEB J 2024; 38:e23857. [PMID: 39114953 DOI: 10.1096/fj.202400639r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 08/11/2024]
Abstract
Atherosclerotic plaque formation is largely attributed to the impaired efferocytosis, which is known to be associated with the pathologic upregulation of cluster of differentiation 47 (CD47), a key antiphagocytic molecule. By gene expression omnibus (GEO) datasets analysis, we identified that four miRNAs are aberrantly downregulated in atherosclerosis, coronary artery disease, and obesity. Of them, hsa-miR-299-3p (miR-299-3p) was predicted to target the 3'UTR of human CD47 mRNA by bioinformatics analysis. Further, we demonstrated that miR-299-3p negatively regulates CD47 expression by binding to the target sequence "CCCACAU" in the 3'UTR of CD47 mRNA through luciferase reporter assay and site-directed mutagenesis. Additionally, we found that miR-299-3p was downregulated by ~32% in foam cells in response to oxidized low-density lipoprotein (ox-LDL) stimulation, thus upregulating CD47 and contributing to the impaired efferocytosis. Whereas, restoration of miR-299-3p reversed the ox-LDL-induced upregulation of CD47, thereby facilitating efferocytosis. In high-fat diet (HFD) fed ApoE-/- mice, we discovered that miR-299-3p was downregulated thus leading to upregulation of CD47 in abdominal aorta. Conversely, miR-299-3p restoration potently suppressed HFD-induced upregulation of CD47 and promoted phagocytosis of foam cells by macrophages in atherosclerotic plaques, thereby reducing necrotic core, increasing plaque stability, and mitigating atherosclerosis. Conclusively, we identify miR-299-3p as a negative regulator of CD47, and reveal a molecular mechanism whereby the ox-LDL-induced downregulation of miR-299-3p leads to the upregulation of CD47 in foam cells thus contributing to the impaired efferocytosis in atherosclerosis, and propose miR-299-3p can potentially serve as an inhibitor of CD47 to promote efferocytosis and ameliorate atherosclerosis.
Collapse
Affiliation(s)
- Yingli Zhu
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuang Ren
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Haijuan Huang
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Jiale Wu
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Xiangyan You
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Jie Gao
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuzhi Ren
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Ruize Wang
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Wenfeng Zhao
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuhua Tan
- Department of Cell and Molecular Biology, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
5
|
Feng Y, Huang C, Wang Y, Chen J. SIRPα: A key player in innate immunity. Eur J Immunol 2023; 53:e2350375. [PMID: 37672390 DOI: 10.1002/eji.202350375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/15/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
Signal regulatory protein alpha (SIRPα) is a crucial inhibitory regulator expressed on the surface of myeloid cells, including macrophages, dendritic cells, monocytes, neutrophils, and microglia. SIRPα plays an indispensable role in innate immune and adoptive immune responses in cancer immunology, tissue homeostasis, and other physiological or phycological conditions. This review provides an overview of the research history, ligands, signal transduction pathways, and functional mechanisms associated with SIRPα. Additionally, we summarize the therapeutic implications of targeting SIRPα as a promising novel strategy in immuno-oncology.
Collapse
Affiliation(s)
- Yongyi Feng
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunliu Huang
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yingzhao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
6
|
Li Z, Zhao Y, Suguro S, Suguro R. MicroRNAs Regulate Function in Atherosclerosis and Clinical Implications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2561509. [PMID: 37675243 PMCID: PMC10480027 DOI: 10.1155/2023/2561509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
Background Atherosclerosis is considered the most common cause of morbidity and mortality worldwide. Athermanous plaque formation is pathognomonic of atherosclerosis. The main feature of atherosclerosis is the formation of plaque, which is inseparable from endothelial cells, vascular smooth muscle cells, and macrophages. MicroRNAs, a small highly conserved noncoding ribonucleic acid (RNA) molecule, have multiple biological functions, such as regulating gene transcription, silencing target gene expression, and affecting protein translation. MicroRNAs also have various pharmacological activities, such as regulating cell proliferation, apoptosis, and metabolic processes. It is noteworthy that many studies in recent years have also proved that microRNAs play a role in atherosclerosis. Methods To summarize the functions of microRNAs in atherosclerosis, we reviewed all relevant articles published in the PubMed database before June 2022, with keywords "atherosclerosis," "microRNA," "endothelial cells," "vascular smooth muscle cells," "macrophages," and "cholesterol homeostasis," briefly summarized a series of research progress on the function of microRNAs in endothelial cells, vascular smooth muscle cells, and macrophages and atherosclerosis. Results and Conclusion. In general, the expression levels of some microRNAs changed significantly in different stages of atherosclerosis pathogenesis; therefore, MicroRNAs may become new diagnostic biomarkers for atherosclerosis. In addition, microRNAs are also involved in the regulation of core processes such as endothelial dysfunction, plaque formation and stabilization, and cholesterol metabolism, which also suggests the great potential of microRNAs as a therapeutic target.
Collapse
Affiliation(s)
- Zhaoyi Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Yidan Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Sei Suguro
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong SAR, China
| | - Rinkiko Suguro
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| |
Collapse
|
7
|
Komal S, Han SN, Cui LG, Zhai MM, Zhou YJ, Wang P, Shakeel M, Zhang LR. Epigenetic Regulation of Macrophage Polarization in Cardiovascular Diseases. Pharmaceuticals (Basel) 2023; 16:141. [PMID: 37259293 PMCID: PMC9963081 DOI: 10.3390/ph16020141] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 08/17/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of hospitalization and death worldwide, especially in developing countries. The increased prevalence rate and mortality due to CVDs, despite the development of several approaches for prevention and treatment, are alarming trends in global health. Chronic inflammation and macrophage infiltration are key regulators of the initiation and progression of CVDs. Recent data suggest that epigenetic modifications, such as DNA methylation, posttranslational histone modifications, and RNA modifications, regulate cell development, DNA damage repair, apoptosis, immunity, calcium signaling, and aging in cardiomyocytes; and are involved in macrophage polarization and contribute significantly to cardiac disease development. Cardiac macrophages not only trigger damaging inflammatory responses during atherosclerotic plaque formation, myocardial injury, and heart failure but are also involved in tissue repair, remodeling, and regeneration. In this review, we summarize the key epigenetic modifications that influence macrophage polarization and contribute to the pathophysiology of CVDs, and highlight their potential for the development of advanced epigenetic therapies.
Collapse
Affiliation(s)
- Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Liu-Gen Cui
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Miao-Miao Zhai
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yue-Jiao Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Muhammad Shakeel
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Gao L, He Z, Wu Y. Advances in Anti-metabolic Disease Treatments Targeting CD47. Curr Pharm Des 2022; 28:3720-3728. [PMID: 36201266 DOI: 10.2174/1381612828666221006123144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 01/28/2023]
Abstract
Metabolic disorders include a cluster of conditions that result from hyperglycemia, hyperlipidemia, insulin resistance, obesity, and hepatic steatosis, which cause the dysfunction of immune cells and innate cells, such as macrophages, natural killer cells, vascular endothelial cells, hepatocytes, and human kidney tubular epithelial cells. Besides targeting the derangements in lipid metabolism, therapeutic modulations to regulate abnormal responses in the immune system and innate cell dysfunctions may prove to be promising strategies in the management of metabolic diseases. In recent years, several targets have been explored for the CD47 molecule (CD47), a glycosylated protein, which was originally reported to transmit an anti-phagocytic signal known as "don't eat me" in the atherosclerotic environment, hindering the efferocytosis of immune cells and promoting arterial plaque accumulation. Subsequently, the role of CD47 has been explored in obesity, fatty liver, and lipotoxic nephropathy, and its utility as a therapeutic target has been investigated using anti-CD47 antibodies or inhibitors of the THBS1/CD47 axis and the CD47/SIRPα signaling pathway. This review summarizes the mechanisms of action of CD47 in different cell types during metabolic diseases and the clinical research progress to date, providing a reference for the comprehensive targeting of CD47 to treat metabolic diseases and the devising of potential improvements to possible side effects.
Collapse
Affiliation(s)
- Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Center for Scientific Research of Anhui Medical University, Hefei 230022, China
| | - Zhe He
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Center for Scientific Research of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
9
|
Gierlikowski W, Gierlikowska B. MicroRNAs as Regulators of Phagocytosis. Cells 2022; 11:cells11091380. [PMID: 35563685 PMCID: PMC9106007 DOI: 10.3390/cells11091380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 12/10/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression and thus act as important regulators of cellular phenotype and function. As their expression may be dysregulated in numerous diseases, they are of interest as biomarkers. What is more, attempts of modulation of some microRNAs for therapeutic reasons have been undertaken. In this review, we discuss the current knowledge regarding the influence of microRNAs on phagocytosis, which may be exerted on different levels, such as through macrophages polarization, phagosome maturation, reactive oxygen species production and cytokines synthesis. This phenomenon plays an important role in numerous pathological conditions.
Collapse
Affiliation(s)
- Wojciech Gierlikowski
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
- Correspondence:
| | - Barbara Gierlikowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Żwirki i Wigury 63a, 02-091 Warsaw, Poland;
| |
Collapse
|
10
|
Brom VC, Burger C, Wirtz DC, Schildberg FA. The Role of Immune Checkpoint Molecules on Macrophages in Cancer, Infection, and Autoimmune Pathologies. Front Immunol 2022; 13:837645. [PMID: 35418973 PMCID: PMC8995707 DOI: 10.3389/fimmu.2022.837645] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint inhibitors have revolutionized immunotherapy against various cancers over the last decade. The use of checkpoint inhibitors results in remarkable re-activation of patients’ immune system, but is also associated with significant adverse events. In this review, we emphasize the importance of cell-type specificity in the context of immune checkpoint-based interventions and particularly focus on the relevance of macrophages. Immune checkpoint blockade alters the dynamic macrophage phenotypes and thereby substantially manipulates therapeutical outcome. Considering the macrophage-specific immune checkpoint biology, it seems feasible to ameliorate the situation of patients with severe side effects and even increase the probability of survival for non-responders to checkpoint inhibition. Apart from malignancies, investigating immune checkpoint molecules on macrophages has stimulated their fundamental characterization and use in other diseases as well, such as acute and chronic infections and autoimmune pathologies. Although the macrophage-specific effect of checkpoint molecules has been less studied so far, the current literature shows that a macrophage-centered blockade of immune checkpoints as well as a stimulation of their expression represents promising therapeutic avenues. Ultimately, the therapeutic potential of a macrophage-focused checkpoint therapy might be maximized by diagnostically assessing individual checkpoint expression levels on macrophages, thereby personalizing an effective treatment approach for each patient having cancer, infection, or autoimmune diseases.
Collapse
Affiliation(s)
- Victoria C Brom
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C Wirtz
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
11
|
Qu T, Li B, Wang Y. Targeting CD47/SIRPα as a therapeutic strategy, where we are and where we are headed. Biomark Res 2022; 10:20. [PMID: 35418166 PMCID: PMC9009010 DOI: 10.1186/s40364-022-00373-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/31/2022] [Indexed: 02/08/2023] Open
Abstract
Immunotherapy using PD-1 and CTLA4 inhibitors to stimulate T cell immunity has achieved significant clinical success. However, only a portion of patients benefit from T cell-based immunotherapy. Macrophages, the most abundant type of innate immune cells in the body, play an important role in eliminating tumor cells and infectious microbes. The phagocytic check point protein CD47 inhibits the phagocytic activity of macrophages through binding to SIRPα expressed on macrophages. Blockade of the interaction between CD47 and SIRPα could restore phagocytic activity and eliminate tumor cells in vitro and in vivo. In this manuscript, we review the mechanism of action and development status of agents (antibodies targeting CD47 and SIRPα, SIRPα-Fc fusion proteins, and bi-specific antibodies) that block CD47/SIRPα interaction in preclinical studies and in the clinical setting. In addition, small molecules, mRNA, and CAR-T/M that target the CD47/SIRPα axis are also reviewed in this article.
Collapse
Affiliation(s)
- Tailong Qu
- College of life Science and Technology, Jinan University, No.601, West Huangpu Avenue, Guangzhou, Guangdong 510632 People’s Republic of China
- Department of Antibody Discovery, Akeso Biopharma, No.6 of Shennong Road, Torch Development District, Zhongshan, 528437 People’s Republic of China
| | - Baiyong Li
- Department of Antibody Discovery, Akeso Biopharma, No.6 of Shennong Road, Torch Development District, Zhongshan, 528437 People’s Republic of China
| | - Yifei Wang
- College of life Science and Technology, Jinan University, No.601, West Huangpu Avenue, Guangzhou, Guangdong 510632 People’s Republic of China
| |
Collapse
|
12
|
Li L, Liu S, Tan J, Wei L, Wu D, Gao S, Weng Y, Chen J. Recent advance in treatment of atherosclerosis: Key targets and plaque-positioned delivery strategies. J Tissue Eng 2022; 13:20417314221088509. [PMID: 35356091 PMCID: PMC8958685 DOI: 10.1177/20417314221088509] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of vascular wall, is a progressive pathophysiological process with lipids oxidation/depositing initiation and innate/adaptive immune responses. The coordination of multi systems covering oxidative stress, dysfunctional endothelium, diseased lipid uptake, cell apoptosis, thrombotic and pro-inflammatory responding as well as switched SMCs contributes to plaque growth. In this circumstance, inevitably, targeting these processes is considered to be effective for treating atherosclerosis. Arriving, retention and working of payload candidates mediated by targets in lesion direct ultimate therapeutic outcomes. Accumulating a series of scientific studies and clinical practice in the past decades, lesion homing delivery strategies including stent/balloon/nanoparticle-based transportation worked as the potent promotor to ensure a therapeutic effect. The objective of this review is to achieve a very brief summary about the effective therapeutic methods cooperating specifical targets and positioning-delivery strategies in atherosclerosis for better outcomes.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Lai Wei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
13
|
Xia P, Pasquali L, Gao C, Srivastava A, Khera N, Freisenhausen JC, Luo L, Rosén E, van Lierop A, Homey B, Pivarcsi A, Sonkoly E. miR-378a regulates keratinocyte responsiveness to IL-17A in psoriasis. Br J Dermatol 2022; 187:211-222. [PMID: 35257359 PMCID: PMC9545829 DOI: 10.1111/bjd.21232] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022]
Abstract
Background Psoriasis is an immune‐mediated inflammatory skin disease, in which an interplay between infiltrating immune cells and keratinocytes sustains chronic skin inflammation. Interleukin (IL)‐17A is a key inflammatory cytokine in psoriasis and its main cellular targets are keratinocytes. Objectives To explore the role of miR‐378a in psoriasis. Methods Keratinocytes obtained from psoriatic skin and healthy epidermis were separated by magnetic sorting, and the expression of miR‐378a was analysed by quantitative polymerase chain reaction. The regulation and function of miR‐378a was studied using primary human keratinocytes. The expression of miR‐378a was modulated by synthetic mimics, and nuclear factor kappa B (NF‐κB) activity and transcriptomic changes were studied. Synthetic miR‐378a was delivered to mouse skin in conjunction with induction of psoriasiform skin inflammation by imiquimod. Results We show that miR‐378a is induced by IL‐17A in keratinocytes through NF‐κB, C/EBP‐β and IκBζ and that it is overexpressed in psoriatic epidermis. In cultured keratinocytes, ectopic expression of miR‐378a resulted in the nuclear translocation of p65 and enhanced NF‐κB‐driven promoter activity even in the absence of inflammatory stimuli. Moreover, miR‐378a potentiated the effect of IL‐17A on NF‐κB nuclear translocation and downstream activation of the NF‐κB pathway. Finally, injection of miR‐378a into mouse skin augmented psoriasis‐like skin inflammation with increased epidermal proliferation and induction of inflammatory mediators. Mechanistically, miR‐378a acts as a suppressor of NFKBIA/IκBζ, an important negative regulator of the NF‐κB pathway in keratinocytes. Conclusions Collectively, our findings identify miR‐378a as an amplifier of IL‐17A‐induced NF‐κB signalling in keratinocytes and suggest that increased miR‐378a levels contribute to the amplification of IL‐17A‐driven skin inflammation in psoriasis.
Collapse
Affiliation(s)
- Ping Xia
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden.,Dermatology Unit, Wuhan No.1 Hospital, Wuhan, China
| | - Lorenzo Pasquali
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden
| | - Chenying Gao
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden.,Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Ankit Srivastava
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.,The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Nupur Khera
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden
| | - Jan Cedric Freisenhausen
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden
| | - Longlong Luo
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden
| | - Einar Rosén
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Anke van Lierop
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Bernhard Homey
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Andor Pivarcsi
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, Uppsala, Sweden
| | - Enikö Sonkoly
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Misra A, Rehan R, Lin A, Patel S, Fisher EA. Emerging Concepts of Vascular Cell Clonal Expansion in Atherosclerosis. Arterioscler Thromb Vasc Biol 2022; 42:e74-e84. [PMID: 35109671 PMCID: PMC8988894 DOI: 10.1161/atvbaha.121.316093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clonal expansion is a process that can drive pathogenesis in human diseases, with atherosclerosis being a prominent example. Despite advances in understanding the etiology of atherosclerosis, clonality studies of vascular cells remain in an early stage. Recently, several paradigm-shifting preclinical studies have identified clonal expansion of progenitor cells in the vasculature in response to atherosclerosis. This review provides an overview of cell clonality in atherosclerotic progression, focusing particularly on smooth muscle cells and macrophages. We discuss key findings from the latest research that give insight into the mechanisms by which clonal expansion of vascular cells contributes to disease pathology. The further probing of these mechanisms will provide innovative directions for future progress in the understanding and therapy of atherosclerosis and its associated cardiovascular diseases.
Collapse
Affiliation(s)
- Ashish Misra
- Heart Research Institute, Sydney, NSW 2042, Australia,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rajan Rehan
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia,Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Alexander Lin
- Heart Research Institute, Sydney, NSW 2042, Australia,School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sanjay Patel
- Heart Research Institute, Sydney, NSW 2042, Australia,Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia,Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward A Fisher
- Department of Medicine/Division of Cardiology, New York University Grossman School of Medicine, New York, NY, USA,Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
15
|
Boua PR, Brandenburg JT, Choudhury A, Sorgho H, Nonterah EA, Agongo G, Asiki G, Micklesfield L, Choma S, Gómez-Olivé FX, Hazelhurst S, Tinto H, Crowther NJ, Mathew CG, Ramsay M. Genetic associations with carotid intima-media thickness link to atherosclerosis with sex-specific effects in sub-Saharan Africans. Nat Commun 2022; 13:855. [PMID: 35165267 PMCID: PMC8844072 DOI: 10.1038/s41467-022-28276-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/13/2022] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis precedes the onset of clinical manifestations of cardiovascular diseases (CVDs). We used carotid intima-media thickness (cIMT) to investigate genetic susceptibility to atherosclerosis in 7894 unrelated adults (3963 women, 3931 men; 40 to 60 years) resident in four sub-Saharan African countries. cIMT was measured by ultrasound and genotyping was performed on the H3Africa SNP Array. Two new African-specific genome-wide significant loci for mean-max cIMT, SIRPA (p = 4.7E-08), and FBXL17 (p = 2.5E-08), were identified. Sex-stratified analysis revealed associations with one male-specific locus, SNX29 (p = 6.3E-09), and two female-specific loci, LARP6 (p = 2.4E-09) and PROK1 (p = 1.0E-08). We replicate previous cIMT associations with different lead SNPs in linkage disequilibrium with SNPs primarily identified in European populations. Our study find significant enrichment for genes involved in oestrogen response from female-specific signals. The genes identified show biological relevance to atherosclerosis and/or CVDs, sex-differences and transferability of signals from non-African studies.
Collapse
Affiliation(s)
- Palwende Romuald Boua
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Centre national de la Recherche scientifique et technologique (CNRST), Nanoro, Burkina Faso.
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Hermann Sorgho
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Centre national de la Recherche scientifique et technologique (CNRST), Nanoro, Burkina Faso
| | - Engelbert A Nonterah
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
- Julius Global Health, Julius Centre for Health Sciences and Primary Care, University Medical Centre, Utrecht University, Utrecht, The Netherlands
| | - Godfred Agongo
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
- C.K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Gershim Asiki
- African Population and Health Research Center, Nairobi, Kenya
| | - Lisa Micklesfield
- MRC/Wits Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Solomon Choma
- Department of Pathology and Medical Sciences, University of Limpopo, Polokwane, South Africa
| | - Francesc Xavier Gómez-Olivé
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Scott Hazelhurst
- School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Halidou Tinto
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Centre national de la Recherche scientifique et technologique (CNRST), Nanoro, Burkina Faso
| | - Nigel J Crowther
- Department of Chemical Pathology, National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Christopher G Mathew
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
16
|
Wu Y, Luo X, Zhou Q, Gong H, Gao H, Liu T, Chen J, Liang L, Kurihara H, Li YF, He RR. The disbalance of LRP1 and SIRP α by psychological stress dampens the clearance of tumor cells by macrophages. Acta Pharm Sin B 2022; 12:197-209. [PMID: 35127380 PMCID: PMC8799994 DOI: 10.1016/j.apsb.2021.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
The relationship between chronic psychological stress and tumorigenesis has been well defined in epidemiological studies; however, the underlying mechanism remains underexplored. In this study, we discovered that impaired macrophage phagocytosis contributed to the psychological stress-evoked tumor susceptibility, and the stress hormone glucocorticoid (GC) was identified as a principal detrimental factor. Mechanistically, GC disturbed the balance of the “eat me” signal receptor (low-density lipoprotein receptor-related protein-1, LRP1) and the “don't eat me” signal receptor (signal regulatory protein alpha, SIRPα). Further analysis revealed that GC led to a direct, glucocorticoid receptor (GR)-dependent trans-repression of LRP1 expression, and the repressed LRP1, in turn, resulted in the elevated gene level of SIRPα by down-regulating miRNA-4695-3p. These data collectively demonstrate that stress induces the imbalance of the LRP1/SIRPα axis and entails the disturbance of tumor cell clearance by macrophages. Our findings provide the mechanistic insight into psychological stress-evoked tumor susceptibility and indicate that the balance of LRP1/SIRPα axis may serve as a potential therapeutic strategy for tumor treatment.
Collapse
Affiliation(s)
- Yanping Wu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Xiang Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qingqing Zhou
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Haibiao Gong
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Huaying Gao
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Tongzheng Liu
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiaxu Chen
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
- Corresponding authors.
| | - Lei Liang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Corresponding authors.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
- Corresponding authors.
| |
Collapse
|
17
|
Soni N, Gupta S, Rawat S, Krishnakumar V, Mohanty S, Banerjee A. MicroRNA-Enriched Exosomes from Different Sources of Mesenchymal Stem Cells Can Differentially Modulate Functions of Immune Cells and Neurogenesis. Biomedicines 2021; 10:biomedicines10010069. [PMID: 35052749 PMCID: PMC8772751 DOI: 10.3390/biomedicines10010069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023] Open
Abstract
Adult Mesenchymal stem cells-derived exosomes carry several biologically active molecules that play prominent roles in controlling disease manifestations. The content of these exosomes, their functions, and effect on the immune cells may differ depending on their tissue sources. Therefore, in this study, we purified the exosomes from three different sources and, using the RNA-Seq approach, highly abundant microRNAs were identified and compared between exosomes and parental cells. The effects of exosomes on different immune cells were studied in vitro by incubating exosomes with PBMC and neutrophils and assessing their functions. The expression levels of several miRNAs varied within the different MSCs and exosomes. Additionally, the expression profile of most of the miRNAs was not similar to that of their respective sources. Exosomes isolated from different sources had different abilities to induce the process of neurogenesis and angiogenesis. Moreover, these exosomes demonstrated their varying effect on PBMC proliferation, neutrophil survival, and NET formation, highlighting their versatility and broad interaction with immune cells. The knowledge gained from this study will improve our understanding of the miRNA landscape of exosomes from hMSCs and provide a resource for further improving our understanding of exosome cargo and their interaction with immune cells.
Collapse
Affiliation(s)
- Naina Soni
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad 121001, India; (N.S.); (S.R.)
| | - Suchi Gupta
- DBT-Centre of Excellence for Stem Cell Research, Stem Cell Facility, All India Institute of Medical Sciences, New Delhi 110029, India; (S.G.); (V.K.)
| | - Surender Rawat
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad 121001, India; (N.S.); (S.R.)
| | - Vishnu Krishnakumar
- DBT-Centre of Excellence for Stem Cell Research, Stem Cell Facility, All India Institute of Medical Sciences, New Delhi 110029, India; (S.G.); (V.K.)
| | - Sujata Mohanty
- DBT-Centre of Excellence for Stem Cell Research, Stem Cell Facility, All India Institute of Medical Sciences, New Delhi 110029, India; (S.G.); (V.K.)
- Correspondence: (S.M.); (A.B.)
| | - Arup Banerjee
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad 121001, India; (N.S.); (S.R.)
- Correspondence: (S.M.); (A.B.)
| |
Collapse
|
18
|
Roberts LB, Kapoor P, Howard JK, Shah AM, Lord GM. An update on the roles of immune system-derived microRNAs in cardiovascular diseases. Cardiovasc Res 2021; 117:2434-2449. [PMID: 33483751 PMCID: PMC8562329 DOI: 10.1093/cvr/cvab007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVD) are a leading cause of human death worldwide. Over the past two decades, the emerging field of cardioimmunology has demonstrated how cells of the immune system play vital roles in the pathogenesis of CVD. MicroRNAs (miRNAs) are critical regulators of cellular identity and function. Cell-intrinsic, as well as cell-extrinsic, roles of immune and inflammatory cell-derived miRNAs have been, and continue to be, extensively studied. Several 'immuno-miRNAs' appear to be specifically expressed or demonstrate greatly enriched expression within leucocytes. Identification of miRNAs as critical regulators of immune system signalling pathways has posed the question of whether and how targeting these molecules therapeutically, may afford opportunities for disease treatment and/or management. As the field of cardioimmunology rapidly continues to advance, this review discusses findings from recent human and murine studies which contribute to our understanding of how leucocytes of innate and adaptive immunity are regulated-and may also regulate other cell types, via the actions of the miRNAs they express, in the context of CVD. Finally, we focus on available information regarding miRNA regulation of regulatory T cells and argue that targeted manipulation of miRNA regulated pathways in these cells may hold therapeutic promise for the treatment of CVD and associated risk factors.
Collapse
Affiliation(s)
- Luke B Roberts
- School of Immunology and Microbial Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
| | - Puja Kapoor
- School of Immunology and Microbial Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
- School of Cardiovascular Medicine and Sciences, King’s British Heart Foundation Centre, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Jane K Howard
- School of Life Course Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King’s British Heart Foundation Centre, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| |
Collapse
|
19
|
Su Y, Guan P, Li D, Hang Y, Ye X, Han L, Lu Y, Bai X, Zhang P, Hu W. Intermedin attenuates macrophage phagocytosis via regulation of the long noncoding RNA Dnm3os/miR-27b-3p/SLAMF7 axis in a mouse model of atherosclerosis in diabetes. Biochem Biophys Res Commun 2021; 583:35-42. [PMID: 34717123 DOI: 10.1016/j.bbrc.2021.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/08/2021] [Accepted: 10/16/2021] [Indexed: 12/25/2022]
Abstract
Atherosclerosis in diabetes is a leading cause of cardiovascular complications. Intermedin (IMD) is a calcitonin peptide that is known to inhibit macrophage phagocytosis in atherosclerosis, but the exact mechanism is unclear. We investigate genes that are differentially expressed in response to IMD in hyperglycemic conditions and determine whether they delay the progression of atherosclerosis. An atherosclerotic and diabetic-murine model was generated in 8-week-old male ApoE-/- mice receiving streptozotocin and a high-fat diet. The mouse model was treated with IMD and the expression levels of NF-κB, Dnm3os, miR-27b-3p, and SLAMF7 were detected in plaque tissue and macrophages cultured with high glucose concentrations. Phagocytosis was determined by oxidized-low-density lipoprotein (Ox-LDL) uptake and the interactions among Dnm3os, SLAMF7 and miR-27b-3p were assessed by dual-luciferase reporter assays. The expression of NF-κB, Dnm3os, and SLAMF7 was enhanced in atherosclerotic plaques but decreased by IMD. The suppression of Dnm3os reduced plaque formation in IMD-treated mice even further whereas increased by miR-27b-3p. Dnm3os and SLAMF7 were competitively bind to miR-27b-3p in vivo. In vitro, ox-LDL uptake is elevated in macrophages cultured in hyperglycemic conditions but reduced by IMD. Dual-luciferase assays indicate that Dnm3os positively regulates SLAMF7 through miR-27b-3p expression. In conclusion, Dnm3os is involved in macrophage phagocytosis through the competitive binding of SLAMF7 with miR-27b-3p. IMD induces the suppression of Dnm3os to inhibit macrophage phagocytosis and alleviate atherosclerosis in diabetes.
Collapse
Affiliation(s)
- Yanling Su
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Ping Guan
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Dandan Li
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Yanwen Hang
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaomiao Ye
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Lu Han
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Yi Lu
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaolu Bai
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Peng Zhang
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China.
| | - Wei Hu
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Xu LN, Wang SH, Su XL, Komal S, Fan HK, Xia L, Zhang LR, Han SN. Targeting Glycogen Synthase Kinase 3 Beta Regulates CD47 Expression After Myocardial Infarction in Rats via the NF-κB Signaling Pathway. Front Pharmacol 2021; 12:662726. [PMID: 34349643 PMCID: PMC8327268 DOI: 10.3389/fphar.2021.662726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate the effects of the GSK-3β/NF-κB pathway on integrin-associated protein (CD47) expression after myocardial infarction (MI) in rats. An MI Sprague Dawley rat model was established by ligating the left anterior descending coronary artery. The rats were divided into three groups: Sham, MI, and SB + MI (SB216763) groups. Immunohistochemistry was used to observe the changes in cardiac morphology. A significant reduction in the sizes of fibrotic scars was observed in the SB + MI group compared to that in the MI group. SB216763 decreased the mRNA and protein expression of CD47 and NF-κB during MI. Primary rat cardiomyocytes (RCMs) and the H9c2 cell line were used to establish in vitro hypoxia models. Quantitative real-time PCR and western blotting analyses were conducted to detect mRNA and protein expression levels of CD47 and NF-κB and apoptosis-related proteins, respectively. Apoptosis of hypoxic cells was assessed using flow cytometry. SB216763 reduced the protein expression of CD47 and NF-κB in RCMs and H9c2 cells under hypoxic conditions for 12 h, and alleviated hypoxia-induced apoptosis. SN50 (an NF-κB inhibitor) also decreased CD47 protein expression in RCMs and H9c2 cells under hypoxic conditions for 12 h and protected cells from apoptosis. GSK-3β upregulates CD47 expression in cardiac tissues after MI by activating NF-κB, which in turn leads to myocardial cell damage and apoptosis.
Collapse
Affiliation(s)
- Li-Na Xu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shu-Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xue-Ling Su
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hong-Kun Fan
- Department of Physiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Li Xia
- Department of Anesthesiology in Surgery Branch, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Beizavi Z, Gheibihayat SM, Moghadasian H, Zare H, Yeganeh BS, Askari H, Vakili S, Tajbakhsh A, Savardashtaki A. The regulation of CD47-SIRPα signaling axis by microRNAs in combination with conventional cytotoxic drugs together with the help of nano-delivery: a choice for therapy? Mol Biol Rep 2021; 48:5707-5722. [PMID: 34275112 DOI: 10.1007/s11033-021-06547-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
CD47, a member of the immunoglobulin superfamily, is an important "Don't Eat-Me" signal in phagocytosis process [clearance of apoptotic cells] as well as a regulator of the adaptive immune response. The lower level of CD47 on the cell surface leads to the clearance of apoptotic cells. Dysregulation of CD47 plays a critical role in the development of disorders, particularly cancers. In cancers, recognition of CD47 overexpression on the surface of cancer cells by its receptor, SIRPα on the phagocytic cells, inhibits phagocytosis of cancer cells. Thus, blocking of CD47-SIRPα signaling axis might be as a promising therapeutic target, which promotes phagocytosis of cancer cells, antigen-presenting cell function as well as adaptive T cell-mediated anti-cancer immunity. In this respect, it has been reported that CD47 expression can be regulated by microRNAs (miRNAs). MiRNAs can regulate phagocytosis of macrophages apoptotic process, drug resistance, relapse of disease, radio-sensitivity, and suppress cell proliferation, migration, and invasion through post-transcriptional regulation of CD47-SIRPα signaling axis. Moreover, the regulation of CD47 expression by miRNAs and combination with conventional cytotoxic drugs together with the help of nano-delivery represent a valuable opportunity for effective cancer treatment. In this review, we review studies that evaluate the role of miRNAs in the regulation of CD47-SIRPα in disorders to achieve a novel preventive, diagnostic, and therapeutic strategy.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Also, kindly confirm the details in the metadata are correct. Confirmed.Journal standard instruction requires a structured abstract; however, none was provided. Please supply an Abstract with subsections..Not confirmed. This is a review article. According to submission guidelines: "The abstract should be presented divided into subheadings (unless it is a mini or full review article)". Kindly check and confirm whether the corresponding authors and mail ID are correctly identified. Confirmed.
Collapse
Affiliation(s)
- Zahra Beizavi
- Department of General Surgery, Shiraz University of Medical Science, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hadis Moghadasian
- Laboratory of Common Basic Sciences, Mohammad Rasool Allah Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Zare
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Babak Shirazi Yeganeh
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Askari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
22
|
Shi D, Mu S, Pu F, Zhong B, Hu B, Liu J, He T, Zhang Z, Shao Z. Development of a Novel Immune Infiltration-Related ceRNA Network and Prognostic Model for Sarcoma. Front Cell Dev Biol 2021; 9:652300. [PMID: 34277600 PMCID: PMC8281254 DOI: 10.3389/fcell.2021.652300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Due to the rarity and heterogeneity, it is challenging to explore and develop new therapeutic targets for patients with sarcoma. Recently, immune cell infiltration in the tumor microenvironment (TME) was widely studied, which provided a novel potential approach for cancer treatment. The competing endogenous RNA (ceRNA) regulatory network has been reported as a critical molecular mechanism of tumor development. However, the role of the ceRNA regulatory network in the TME of sarcoma remains unclear. In this study, gene expression data and clinical information were obtained from The Cancer Genome Atlas (TCGA) sarcoma datasets, and an immune infiltration-related ceRNA network was constructed, which comprised 14 lncRNAs, 13 miRNAs, and 23 mRNAs. Afterward, we constructed an immune infiltration-related risk score model based on the expression of IRF1, MFNG, hsa-miR-940, and hsa-miR-378a-5p, presenting a promising performance in predicting the prognosis of patients with sarcoma.
Collapse
Affiliation(s)
- Deyao Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Shidai Mu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binlong Zhong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxiang Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongchuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Zhicai Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Sileno S, Beji S, D'Agostino M, Carassiti A, Melillo G, Magenta A. microRNAs involved in psoriasis and cardiovascular diseases. VASCULAR BIOLOGY 2021; 3:R49-R68. [PMID: 34291190 PMCID: PMC8284950 DOI: 10.1530/vb-21-0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
Psoriasis is a chronic inflammatory disease involving the skin. Both genetic and environmental factors play a pathogenic role in psoriasis and contribute to the severity of the disease. Psoriasis, in fact, has been associated with different comorbidities such as diabetes, metabolic syndrome, gastrointestinal or kidney diseases, cardiovascular disease (CVD), and cerebrovascular diseases (CeVD). Indeed, life expectancy in severe psoriasis is reduced by up to 5 years due to CVD and CeVD. Moreover, patients with severe psoriasis have a higher prevalence of traditional cardiovascular (CV) risk factors, including dyslipidemia, diabetes, smoking, and hypertension. Further, systemic inflammation is associated with oxidative stress increase and induces endothelial damage and atherosclerosis progression. Different miRNA have been already described in psoriasis, both in the skin tissues and in the blood flow, to play a role in the progression of disease. In this review, we will summarize and discuss the most important miRNAs that play a role in psoriasis and are also linked to CVD.
Collapse
Affiliation(s)
- Sara Sileno
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Experimental Immunology Laboratory Via Monti di Creta, Rome, Italy
| | - Sara Beji
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Experimental Immunology Laboratory Via Monti di Creta, Rome, Italy
| | - Marco D'Agostino
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Experimental Immunology Laboratory Via Monti di Creta, Rome, Italy
| | - Alessandra Carassiti
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Experimental Immunology Laboratory Via Monti di Creta, Rome, Italy
| | - Guido Melillo
- Unit of Cardiology, IDI-IRCCS, Via Monti di Creta, Rome, Italy
| | - Alessandra Magenta
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Via Fosso del Cavaliere, Rome, Italy
| |
Collapse
|
24
|
Singh S, Nguyen HC, Ehsan M, Michels DCR, Singh P, Qadura M, Singh KK. Pravastatin-induced changes in expression of long non-coding and coding RNAs in endothelial cells. Physiol Rep 2021; 9:e14661. [PMID: 33369888 PMCID: PMC7769171 DOI: 10.14814/phy2.14661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Atherosclerosis is the main cause of the cardiovascular disease (CVD). Elevated blood cholesterol and inflammation of the endothelium are two major mechanisms contributing to the establishment of atherosclerotic plaques. Statins, such as pravastatin, are blood-cholesterol lowering drugs commonly prescribed for patients with or at risk for CVDs. In addition to lowering blood cholesterols, statins have recently been shown to improve endothelial function in both hyper- and normocholesterolemic patients with atherosclerosis. To understand the molecular mechanisms underlying the endothelial function improvement by statins, we assessed the RNA profile of pravastatin-treated endothelial cells, particularly their mRNAs and long non-coding RNAs (lncRNAs). METHODS Human umbilical vein endothelial cells (HUVECs) treated with pravastatin (10 µM) for 24 hr were profiled for lncRNAs and mRNAs using the Arraystar Human lncRNA Expression Microarray V3.0. RESULTS Of the 30,584 different lncRNAs screened, 95 were significantly upregulated, while 86 were downregulated in HUVECs responding to pravastatin. LINC00281 and BC045663 were the most upregulated (~8-fold) and downregulated (~3.5-fold) lncRNAs, respectively. Of the 26,106 different mRNAs screened in the pravastatin-treated HUVEC samples, 190 were significantly upregulated, while 90 were downregulated. Assigning the differentially expressed genes by bioinformatics into functional groups revealed their molecular signaling involvement in the following physiological processes: osteoclast differentiation, Rap1 signaling pathway, hematopoiesis, immunity, and neurotrophin signaling pathway. CONCLUSIONS This is the first lncRNA and mRNA expression profiling of pravastatin-mediated changes in human endothelial cells. Our results reveal potential novel targets and mechanisms for pravastatin-mediated vascular protection in atherosclerosis.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Chemical and Biochemical EngineeringSchulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
| | - Hien C. Nguyen
- Department of Medical BiophysicsSchulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
- Department of Anatomy and Cell BiologySchulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
| | - Mehroz Ehsan
- Department of Medical BiophysicsSchulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
- Schulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
| | - David C. R. Michels
- Department of Medical BiophysicsSchulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
| | - Priyanka Singh
- Schulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
| | - Mohammad Qadura
- Vascular SurgeryKeenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s HospitalTorontoONCanada
- Institute of Medical ScienceUniversity of TorontoTorontoONCanada
| | - Krishna K. Singh
- Department of Medical BiophysicsSchulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
- Department of Anatomy and Cell BiologySchulich School of Medicine and DentistryUniversity of Western OntarioLondonONCanada
- Institute of Medical ScienceUniversity of TorontoTorontoONCanada
- Pharmacology and ToxicologyUniversity of TorontoTorontoONCanada
| |
Collapse
|
25
|
Recent Advancements in CD47 Signal Transduction Pathways Involved in Vascular Diseases. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4749135. [PMID: 32733941 PMCID: PMC7378613 DOI: 10.1155/2020/4749135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular and cerebrovascular diseases caused by atherosclerosis have a high disability rate and reduce the quality of life of the population. Therefore, understanding the mechanism of atherosclerosis and its control may interfere with the progression of atherosclerosis and thus control the occurrence of diseases closely related to atherosclerosis. TSP-1 is a factor that has been found to have an antiangiogenic effect, and CD47, as the receptor of TSP-1, can participate in the regulation of antiangiogenesis of atherosclerosis. VEGF is an important regulator of angiogenesis, and TSP-1/CD47 can cause VEGF and its downstream expression. Therefore, the TSP-1/CD47/VEGF/VEGFR2 signal may have an important influence on atherosclerosis. In addition, some inflammatory factors, such as IL-1 and NLRP3, can also affect atherosclerosis. This review will be expounded focusing on the pathogenesis and influencing factors of atherosclerosis.
Collapse
|
26
|
Li D, Yao D, Li C, Luo Y, Liang A, Wen G, Jiang Z. Nanosol SERS quantitative analytical method: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115885] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Lecchi C, Zamarian V, Borriello G, Galiero G, Grilli G, Caniatti M, D'Urso ES, Roccabianca P, Perego R, Minero M, Legnani S, Calogero R, Arigoni M, Ceciliani F. Identification of Altered miRNAs in Cerumen of Dogs Affected by Otitis Externa. Front Immunol 2020; 11:914. [PMID: 32547539 PMCID: PMC7273745 DOI: 10.3389/fimmu.2020.00914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Otitis externa is one of the most common diseases in dogs. It is associated with bacteria and yeast, which are regarded as secondary causes. Cerumen is a biological substance playing an important role in the protection of ear skin. The involvement of cerumen in immune defense is poorly understood. MicroRNAs can modulate the host immune response and can provide promising biomarkers for several inflammatory and infectious disorder diagnosis. The aims of this study were to profile the cerumen miRNA signature associated with otitis externa in dogs, integrate miRNAs to their target genes related to immune functions, and investigate their potential use as biomarkers. Cerumen was collected from healthy and otitis affected dogs and the expression of miRNAs was profiled by Next Generation Sequencing; the validation of the altered miRNAs was performed using RT-qPCR. The potential ability of miRNAs to modulate immune-related genes was investigated using bioinformatics tools. The results pointed out that 32 miRNAs, of which 14 were up- and 18 down-regulated, were differentially expressed in healthy vs. otitis-affected dogs. These results were verified by RT-qPCR. To assess the diagnostic value of miRNAs, ROC analysis was carried out, highlighting that 4 miRNAs are potential biomarkers to discriminate otitis-affected dogs. Bioinformatics showed that cerumen miRNAs may be involved in the modulation of host immune response. In conclusion, we have demonstrated for the first time that miRNAs can be efficiently extracted and quantified from cerumen, that their profile changes between healthy and otitis affected dogs, and that they may serve as potential biomarkers. Further studies are necessary to confirm their diagnostic value and to investigate their interaction with immune-related genes.
Collapse
Affiliation(s)
- Cristina Lecchi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Valentina Zamarian
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Giorgia Borriello
- Dipartimento di Sanità Animale, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Giorgio Galiero
- Dipartimento di Sanità Animale, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Guido Grilli
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Mario Caniatti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Elisa Silvia D'Urso
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Paola Roccabianca
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Roberta Perego
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Michela Minero
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Sara Legnani
- Department of Small Animal Clinical Science, Institute of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Raffaele Calogero
- Department of Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di Torino, Turin, Italy
| | - Maddalena Arigoni
- Department of Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di Torino, Turin, Italy
| | - Fabrizio Ceciliani
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
28
|
Zhu L, Gong X, Gong J, Xuan Y, Fu T, Ni S, Xu L, Ji N. Notoginsenoside R1 upregulates miR-221-3p expression to alleviate ox-LDL-induced apoptosis, inflammation, and oxidative stress by inhibiting the TLR4/NF-κB pathway in HUVECs. Braz J Med Biol Res 2020; 53:e9346. [PMID: 32401923 PMCID: PMC7233198 DOI: 10.1590/1414-431x20209346] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis (AS) is a common vascular disease, which can cause apoptosis of vascular endothelial cells. Notoginsenoside R1 (NGR1) is considered an anti-AS drug. MicroRNAs (miRNAs) are believed to play a vital role in cell apoptosis and angiogenesis. This study aimed to explore the mechanism of NGR1 for treating AS through miRNAs. Flow cytometry was used to detect the apoptosis rate. The levels of inflammatory cytokines interleukin (IL)-6 and IL-1β were detected using ELISA. Reactive oxygen species (ROS) and malondialdehyde (MDA) levels were measured using corresponding assay kits. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was performed to detect miR-221-3p expression. Dual-luciferase reporter and RNA immunoprecipitation assays were carried out to examine the relationship between miR-221-3p and toll-like receptors 4 (TLR4). Also, western blot analysis was performed to determine the levels of TLR4 and nuclear factor kappa B (NF-κB) signaling pathway-related proteins. Oxidized low-density lipoprotein (ox-LDL) induced human umbilical vein endothelial cells (HUVECs) apoptosis, inflammation, and oxidative stress. NGR1 alleviated the negative effect of ox-LDL through promoting the expression of miR-221-3p in HUVECs. TLR4 was a target of miR-221-3p, and its overexpression could reverse the inhibition effects of miR-221-3p on apoptosis, inflammation, and oxidative stress. NGR1 improved miR-221-3p expression to inhibit the activation of the TLR4/NF-κB pathway in ox-LDL-treated HUVECs. NGR1 decreased ox-LDL-induced HUVECs apoptosis, inflammation, and oxidative stress through increasing miR-221-3p expression, thereby inhibiting the activation of the TLR4/NF-κB pathway. This study of the mechanism of NGR1 provided a more theoretical basis for the treatment of AS.
Collapse
Affiliation(s)
- Lingbo Zhu
- Department of Cardiology, Central Hospital of Yiwu, Yiwu, Zhejiang, China
| | - Xinyan Gong
- Department of Cardiology, Central Hospital of Yiwu, Yiwu, Zhejiang, China
| | - Jianping Gong
- Department of Cardiology, Central Hospital of Yiwu, Yiwu, Zhejiang, China
| | - Yungang Xuan
- Department of Cardiology, Central Hospital of Yiwu, Yiwu, Zhejiang, China
| | - Ting Fu
- Department of Cardiology, Central Hospital of Yiwu, Yiwu, Zhejiang, China
| | - Shimao Ni
- Department of Cardiology, Central Hospital of Yiwu, Yiwu, Zhejiang, China
| | - Lei Xu
- Department of Cardiology, Central Hospital of Yiwu, Yiwu, Zhejiang, China
| | - Ningning Ji
- Department of Cardiology, Central Hospital of Yiwu, Yiwu, Zhejiang, China
| |
Collapse
|
29
|
The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int J Mol Sci 2020; 21:ijms21051835. [PMID: 32155866 PMCID: PMC7084712 DOI: 10.3390/ijms21051835] [Citation(s) in RCA: 597] [Impact Index Per Article: 119.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus comprises a group of carbohydrate metabolism disorders that share a common main feature of chronic hyperglycemia that results from defects of insulin secretion, insulin action, or both. Insulin is an important anabolic hormone, and its deficiency leads to various metabolic abnormalities in proteins, lipids, and carbohydrates. Atherosclerosis develops as a result of a multistep process ultimately leading to cardiovascular disease associated with high morbidity and mortality. Alteration of lipid metabolism is a risk factor and characteristic feature of atherosclerosis. Possible links between the two chronic disorders depending on altered metabolic pathways have been investigated in numerous studies. It was shown that both types of diabetes mellitus can actually induce atherosclerosis development or further accelerate its progression. Elevated glucose level, dyslipidemia, and other metabolic alterations that accompany the disease development are tightly involved in the pathogenesis of atherosclerosis at almost every step of the atherogenic process. Chronic inflammation is currently considered as one of the key factors in atherosclerosis development and is present starting from the earliest stages of the pathology initiation. It may also be regarded as one of the possible links between atherosclerosis and diabetes mellitus. However, the data available so far do not allow for developing effective anti-inflammatory therapeutic strategies that would stop atherosclerotic lesion progression or induce lesion reduction. In this review, we summarize the main aspects of diabetes mellitus that possibly affect the atherogenic process and its relationship with chronic inflammation. We also discuss the established pathophysiological features that link atherosclerosis and diabetes mellitus, such as oxidative stress, altered protein kinase signaling, and the role of certain miRNA and epigenetic modifications.
Collapse
|
30
|
Solly EL, Dimasi CG, Bursill CA, Psaltis PJ, Tan JTM. MicroRNAs as Therapeutic Targets and Clinical Biomarkers in Atherosclerosis. J Clin Med 2019; 8:E2199. [PMID: 31847094 PMCID: PMC6947565 DOI: 10.3390/jcm8122199] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality worldwide. Atherosclerosis develops over several decades and is mediated by a complex interplay of cellular mechanisms that drive a chronic inflammatory milieu and cell-to-cell interactions between endothelial cells, smooth muscle cells and macrophages that promote plaque development and progression. While there has been significant therapeutic advancement, there remains a gap where novel therapeutic approaches can complement current therapies to provide a holistic approach for treating atherosclerosis to orchestrate the regulation of complex signalling networks across multiple cell types and different stages of disease progression. MicroRNAs (miRNAs) are emerging as important post-transcriptional regulators of a suite of molecular signalling pathways and pathophysiological cellular effects. Furthermore, circulating miRNAs have emerged as a new class of disease biomarkers to better inform clinical diagnosis and provide new avenues for personalised therapies. This review focusses on recent insights into the potential role of miRNAs both as therapeutic targets in the regulation of the most influential processes that govern atherosclerosis and as clinical biomarkers that may be reflective of disease severity, highlighting the potential theranostic (therapeutic and diagnostic) properties of miRNAs in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Emma L. Solly
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Catherine G. Dimasi
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
| | - Christina A. Bursill
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Peter J. Psaltis
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Joanne T. M. Tan
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
31
|
He W, Kapate N, Shields CW, Mitragotri S. Drug delivery to macrophages: A review of targeting drugs and drug carriers to macrophages for inflammatory diseases. Adv Drug Deliv Rev 2019; 165-166:15-40. [PMID: 31816357 DOI: 10.1016/j.addr.2019.12.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022]
Abstract
Macrophages play a key role in defending against foreign pathogens, healing wounds, and regulating tissue homeostasis. Driving this versatility is their phenotypic plasticity, which enables macrophages to respond to subtle cues in tightly coordinated ways. However, when this coordination is disrupted, macrophages can aid the progression of numerous diseases, including cancer, cardiovascular disease, and autoimmune disease. The central link between these disorders is aberrant macrophage polarization, which misguides their functional programs, secretory products, and regulation of the surrounding tissue microenvironment. As a result of their important and deterministic roles in both health and disease, macrophages have gained considerable attention as targets for drug delivery. Here, we discuss the role of macrophages in the initiation and progression of various inflammatory diseases, summarize the leading drugs used to regulate macrophages, and review drug delivery systems designed to target macrophages. We emphasize strategies that are approved for clinical use or are poised for clinical investigation. Finally, we provide a prospectus of the future of macrophage-targeted drug delivery systems.
Collapse
Affiliation(s)
- Wei He
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|