1
|
Li X, Cheng Y, Xu D, Cheng B, Xu Y, Chen Z, Tang L, Wang Y. A novel CD40LG mutation causing X‑linked hyper-IgM syndrome. Glob Med Genet 2025; 12:100007. [PMID: 40330326 PMCID: PMC12049815 DOI: 10.1016/j.gmg.2024.100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 05/08/2025] Open
Abstract
X-linked hyper-IgM (X-HIGM), which results from mutations of the CD40 ligand gene (CD40LG) located on chromosome Xq26.3, is characterized by a defective T-B lymphocyte cross talk and class switch recombination (CSR). The present study aimed to evaluate the expression of CD40L and lymphocyte subsets using flow cytometry and to identify the novel genetic defect of CD40LG responsible for X-HIGM in a Chinese family. We reported an X-HIGM case caused by a novel mutation in CD40LG. The expression of CD40L was absent on the surface of activated CD4 + T cells evaluated using flow cytometry. The total number of mature B cells in circulation was normal, but memory B cells were significantly decreased. In helper T cells, Th2 was dominant, and the numbers of Th1 and Th17 were decreased. The results of genetic analysis revealed a new causative mutation in CD40L (NM_000074;exon5;c.505_506del), which leads to a change in amino acids (p.Y169Lfs*31) appearing in the proband. The frame shift mutation led to incorrect amino acid translation and loss of β-pleated sheet and loop region, which produced a mutant dysfunctional protein. This study provides a complete picture of X-HIGM and broadens our knowledge of the pathogenicity of the CD40L variant spectrum.
Collapse
Affiliation(s)
- Xuejing Li
- Department of Pulmonology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yungai Cheng
- Department of Pulmonology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Dan Xu
- Department of Pulmonology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Beilei Cheng
- Department of Pulmonology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yingchun Xu
- Department of Pulmonology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Zhimin Chen
- Department of Pulmonology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Lanfang Tang
- Department of Pulmonology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yingshuo Wang
- Department of Pulmonology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
2
|
Vinh DC. Human immunity to fungal infections. J Exp Med 2025; 222:e20241215. [PMID: 40232283 PMCID: PMC11998751 DOI: 10.1084/jem.20241215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/07/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
Fungi increasingly threaten health globally. Mycoses range from life-threatening, often iatrogenic conditions, to enigmatic syndromes occurring without apparent immunosuppression. Despite some recent advances in antifungal drug development, complementary therapeutic strategies are essential for addressing these opportunistic pathogens. One promising avenue is leveraging host immunity to combat fungal infections; this necessitates deeper understanding of the molecular immunology of human fungal susceptibility to differentiate beneficial versus harmful immunopathological responses. Investigating human models of fungal diseases in natural settings, particularly through genetic immunodeficiencies and ethnographic-specific genetic vulnerabilities, reveals crucial immune pathways essential for fighting various yeasts and molds. This review highlights the diversity in intrinsic fungal susceptibility across individuals and populations, through genetic- and autoantibody-mediated processes, complementing previous principles learned from animal studies and iatrogenic contexts. Improved understanding of human immunity to fungal diseases will facilitate the development of host-directed immunotherapies and targeted public health interventions, paving the way for precision medicine in fungal disease management.
Collapse
Affiliation(s)
- Donald C. Vinh
- Department of Medicine (Division of Infectious Diseases), McGill University Health Center, Montreal, Canada
- Department of OptiLab (Division of Medical Microbiology, Division of Molecular Genetics-Immunology), McGill University Health Center, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
- Center of Reference for Genetic Research in Infection and Immunity, McGill University Health Center Research Institute, Montreal, Canada
| |
Collapse
|
3
|
Bammigatti A, Ghosh SK, Bandyopadhyay S, Saha B. Messages in CD40L are encrypted for residue-specific functions. Cytokine 2025; 185:156824. [PMID: 39615244 DOI: 10.1016/j.cyto.2024.156824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
CD40-CD40-ligand (CD40L) interaction plays crucial immunoregulatory roles, as CD40 signals through different signaling intermediates to convert the messages from CD40L to effector functions. Being a TNFα receptor family member, CD40 binds TNFα receptor-associated factors, assembles signalosome complexes and decrypts the messages from CD40L through different signaling modules to result in residue-specific effector functions. The evidence for such a residue-specific message encryption first came from the CD40L mutations resulting in X-linked hyper-IgM syndrome, as the extent of effects varied with the residue mutated. The structural studies on the CD40-CD40L interaction implied differential involvement of the interacting residues on CD40L in influencing the effector functions. Three lines of evidence indicate the previously implied residue-specific message encryption in CD40L: screening of a dodecameric peptide library for CD40 binders identified two peptides with different sequences resulting in counteractive effector functions in macrophages; a series of CD40L mutants identified that the mutations in these residues selectively affected CD40 signaling and macrophage effector functions; and, a panel of 40-mer peptides, representing the CD40-interacting domain of mouse CD40L, with single substitutions resulted in altered CD40 signaling through various signaling intermediates and effector functions in mouse macrophages. We therefore construct the first-ever message encryption-decryption in a biological receptor-ligand system wherein the CD40L residues that interact with CD40 residues have encrypted messages, which are decoded by CD40 signaling to result in residue-specific effector functions. This review presents a novel perspective of receptor-ligand interaction as a system of message transmission, message decoding by signaling, and its transcription to various read-outs. [250 words].
Collapse
Affiliation(s)
| | | | | | - Bhaskar Saha
- JSPS Government Homeopathic Medical College, Hyderabad 500013, India.
| |
Collapse
|
4
|
Xing S, Zhang Z, Liu C, Zhang W, Zhang Z, Tang X, Chen Y, He W, Zhao X, An Y. Characteristics of Endemic Mycoses Talaromyces marneffei Infection Associated with Inborn Errors of Immunity. J Clin Immunol 2024; 45:17. [PMID: 39325235 DOI: 10.1007/s10875-024-01798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Talaromyces marneffei (T. marneffei) is an opportunistic pathogen that causes endemic mycoses, which could lead to multiple organ damage. Talaromycosis is frequently disregarded as an early cautionary sign of immune system disorders in non-HIV-infected children. OBJECTIVE We conduct a comprehensive review of the genotypes and clinical features of talaromycosis in patients with IEI to enhance clinical awareness regarding T. marneffei as a potential opportunistic pathogen in individuals with immune deficiencies. METHODS A systematic literature review was performed by searching PubMed, Cochrane Central Register of Controlled Trials, Web of Science, EMBASE, and Scopus. Data on IEI patients with talaromycosis, including genotypes and their immunological and clinical features, were collected. RESULTS Fifty patients with talaromycosis and IEI were included: XHIM (30.0%), STAT3-LOF deficiency (20.0%), STAT1-GOF (20.0%), IL2RG (6.00%), IFNGR1 (6.0%), IL12RB1 (4.0%), CARD9 (4.0%), COPA (4.0%), ADA (2.0%), RELB deficiency (2.0%), and NFKB2 (2.0%). Common symptoms of respiratory (43/50, 86.0%), skin (17/50, 34.0%), lymph node (31/50, 62.0%), digestive (34/50, 68.0%), and hematologic (22/50, 44.0%) systems were involved. The CT findings of the lungs may include lymph node calcification (9/30), interstitial lesions (8/30), pulmonary cavities (8/30), or specific pathogens (4/30), which could be easily misdiagnosed as tuberculosis infection. Amphotericin B (26/43), Voriconazole (24/43) and Itraconazole (22/43) were used for induction therapy. Ten patients were treated with Itraconazole sequentially and prophylaxis. 68.0% (34/50) of patients were still alive, and 4.0% (2/50) of were lost to follow-up. The disseminated T. marneffei infection resulted in the deaths of 14 individuals. CONCLUSIONS The XHIM, STAT1-GOF, and STAT3-LOF demonstrated the highest susceptibility to talaromycosis, indicating the potential involvement of cellular immunity, IL-17 signaling, and the IL-12/IFN-γ axis in T. marneffei defense. T. marneffei infection may serve as an early warning indicator of IEI. For IEI patients suspected of T. marneffei, metagenomic next-generation sequencing (mNGS) could rapidly and effectively identify the causative pathogen. Prompt initiation of antifungal therapy is crucial for optimizing patient outcomes.
Collapse
Affiliation(s)
- Shubin Xing
- Department of Rheumatology & Immunology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Department of Pediatrics, Henan Provincial People's Hospital, Henan, China
| | - Zhenzhen Zhang
- Department of Infection Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Cong Liu
- Department of Infection Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Wenjing Zhang
- Department of Rheumatology & Immunology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Zhiyong Zhang
- Department of Rheumatology & Immunology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Xuemei Tang
- Department of Rheumatology & Immunology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Wuyang He
- Chongqing Medical University Second Affiliated Hospital, Chongqing, China.
| | - Xiaodong Zhao
- Department of Rheumatology & Immunology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China.
| | - Yunfei An
- Department of Rheumatology & Immunology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China.
| |
Collapse
|
5
|
Yang S, Lou L, Ma S, Wang H, Rong L, Liu Y, Zhang K, Ai Q, Shi X. Disseminated Talaromyces marneffei infection initially presenting as cutaneous and subcutaneous lesion in an HIV-Negative renal transplant recipient: a case report and literature review. BMC Infect Dis 2024; 24:473. [PMID: 38711014 PMCID: PMC11071178 DOI: 10.1186/s12879-024-09351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND The incidence of Talaromyces marneffei (T. marneffei) infection has increased in recent years with the development of organ transplantation and the widespread use of immunosuppressive agents. However, the lack of clinical suspicion leading to delay or misdiagnosis is an important reason for the high mortality rate in non-human immunodeficiency virus (HIV) and non-endemic population. Herein, we report a case of disseminated T. marneffei infection in a non-HIV and non-endemic recipient after renal transplant, who initially presented with skin rashes and subcutaneous nodules and developed gastrointestinal bleeding. CASE PRESENTATION We describe a 54-year-old renal transplantation recipient presented with scattered rashes, subcutaneous nodules and ulcerations on the head, face, abdomen, and right upper limb. The HIV antibody test was negative. The patient had no obvious symptoms such as fever, cough, etc. Histopathological result of the skin lesion sites showed chronic suppurative inflammation with a large number of fungal spores. Subsequent fungal culture suggested T. marneffei infection. Amphotericin B deoxycholate was given for antifungal treatment, and there was no deterioration in the parameters of liver and kidney function. Unfortunately, the patient was soon diagnosed with gastrointestinal bleeding, gastrointestinal perforation and acute peritonitis. Then he rapidly developed multiple organ dysfunction syndrome and abandoned treatment. CONCLUSIONS The risk of fatal gastrointestinal bleeding can be significantly increased in kidney transplant patients with T. marneffei infection because of the long-term side effects of post-transplant medications. Strengthening clinical awareness and using mNGS or mass spectrometry technologies to improve the detection rate and early diagnosis of T. marneffei are crucial for clinical treatment in non-HIV and non-endemic population.
Collapse
Affiliation(s)
- Shanshan Yang
- Department of Laboratory Medicine, Lequn Branch, The First Hospital of Jilin University, No. 3302 Jilin Road, Changchun, 130031, Jilin Province, China
| | - Lixin Lou
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Shuhong Ma
- Department of Laboratory Medicine, Lequn Branch, The First Hospital of Jilin University, No. 3302 Jilin Road, Changchun, 130031, Jilin Province, China
| | - Haoliang Wang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Lanxiang Rong
- Department of Laboratory Medicine, Lequn Branch, The First Hospital of Jilin University, No. 3302 Jilin Road, Changchun, 130031, Jilin Province, China
| | - Ying Liu
- Department of Laboratory Medicine, Lequn Branch, The First Hospital of Jilin University, No. 3302 Jilin Road, Changchun, 130031, Jilin Province, China
| | - Kaiyu Zhang
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Qing Ai
- Department of Laboratory Medicine, Lequn Branch, The First Hospital of Jilin University, No. 3302 Jilin Road, Changchun, 130031, Jilin Province, China
| | - Xu Shi
- Department of Laboratory Medicine, Lequn Branch, The First Hospital of Jilin University, No. 3302 Jilin Road, Changchun, 130031, Jilin Province, China.
| |
Collapse
|
6
|
Vinh DC. From Mendel to mycoses: Immuno-genomic warfare at the human-fungus interface. Immunol Rev 2024; 322:28-52. [PMID: 38069482 DOI: 10.1111/imr.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 03/20/2024]
Abstract
Fungi are opportunists: They particularly require a defect of immunity to cause severe or disseminated disease. While often secondary to an apparent iatrogenic cause, fungal diseases do occur in the absence of one, albeit infrequently. These rare cases may be due to an underlying genetic immunodeficiency that can present variably in age of onset, severity, or other infections, and in the absence of a family history of disease. They may also be due to anti-cytokine autoantibodies. This review provides a background on how human genetics or autoantibodies underlie cases of susceptibility to severe or disseminated fungal disease. Subsequently, the lessons learned from these inborn errors of immunity marked by fungal disease (IEI-FD) provide a framework to begin to mechanistically decipher fungal syndromes, potentially paving the way for precision therapy of the mycoses.
Collapse
Affiliation(s)
- Donald C Vinh
- Infectious Diseases - Hematology/Oncology/Transplant Clinical Program, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Banday AZ, Nisar R, Patra PK, Kaur A, Sadanand R, Chaudhry C, Bukhari STA, Banday SZ, Bhattarai D, Notarangelo LD. Clinical and Immunological Features, Genetic Variants, and Outcomes of Patients with CD40 Deficiency. J Clin Immunol 2023; 44:17. [PMID: 38129705 PMCID: PMC11252661 DOI: 10.1007/s10875-023-01633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Inherited deficiencies of CD40 and CD40 ligand (CD40L) reflect the crucial immunological functions of CD40-CD40L interaction/signaling. Although numerous studies have provided a detailed description of CD40L deficiency, reports of CD40 deficiency are scarce. Herein, we describe the characteristics of all reported patients with CD40 deficiency. METHODS The PubMed, Embase and Web of Science databases were searched for relevant literature published till 7th August 2023. Study deduplication and identification of relevant reports was performed using the online PICO Portal. The data were extracted using a pre-designed data extraction form and the SPSS software was used for analysis. RESULTS Systematic literature review revealed 40 unique patients with CD40 deficiency. Respiratory tract and gastrointestinal infections were the predominant clinical manifestations (observed in 93% and 57% patients, respectively). Sclerosing cholangitis has been reported in nearly one-third of patients. Cryptosporidium sp. (29%) and Pneumocystis jirovecii (21%) were the most common microbes identified. Very low to undetectable IgG levels and severely reduced/absent switch memory B cells were observed in all patients tested/reported. Elevated IgM levels were observed in 69% patients. Overall, splice-site and missense variants were the most common (36% and 32%, respectively) molecular defects identified. All patients were managed with immunoglobulin replacement therapy and antimicrobial prophylaxis was utilized in a subset. Hematopoietic stem cell transplantation (HSCT) has been performed in 45% patients (curative outcome observed in 73% of these patients). Overall, a fatal outcome was reported in 21% patients. CONCLUSIONS We provide a comprehensive description of all important aspects of CD40 deficiency. HSCT is a promising curative treatment option for CD40 deficiency.
Collapse
Affiliation(s)
- Aaqib Zaffar Banday
- Department of Pediatrics, Government Medical College (GMC), Srinagar, India
- Clinical Immunology & Rheumatology Division, Department of Pediatrics, Khyber Medical Institute, Srinagar, India
- Rheumatology Division, Kashmir Clinics Group, Srinagar, India
| | - Rahila Nisar
- Department of Microbiology, Government Medical College (GMC), Baramulla, India
| | - Pratap Kumar Patra
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Patna, 801507, India.
| | - Anit Kaur
- Department of Translational & Regenerative Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rohit Sadanand
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Chakshu Chaudhry
- Suma Genomics, Manipal, India
- Department of Pediatrics, Maharishi Markandeshwar College of Medical Sciences and Research, Ambala, India
| | | | - Saquib Zaffar Banday
- Department of Medical-Hematoncology and Stem Cell Transplant, Paras Hospital, Srinagar, India
| | | | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
8
|
Diao J, Liu H, Cao H, Chen W. The dysfunction of Tfh cells promotes pediatric recurrent respiratory tract infections development by interfering humoral immune responses. Heliyon 2023; 9:e20778. [PMID: 37876425 PMCID: PMC10590952 DOI: 10.1016/j.heliyon.2023.e20778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/06/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Recurrent respiratory tract infections (RRTIs) are one of the most common pediatric diseases. Although the pathogenesis of pediatric RRTIs remains unknown, ineffective B cell-dominated humoral immunity has been considered as the core mechanism. During the course of pediatric RRTIs, B cell-dominated humoral immunity has changed from "protector" of respiratory system to "bystander" of respiratory tract infections. Under physiological condition, Tfh cells are essential for B cell-dominated humoral immunity, including regulating GC formation, promoting memory B cell (MB)/plasma cell (PC) differentiation, inducting immunoglobulin (Ig) class switching, and selecting affinity-matured antibodies. However, in disease states, Tfh cells are dysfunctional, which can be reflected by phenotypes and cytokine production. Tfh cell dysfunctions can cause the disorders of B cell-dominated humoral immunity, such as promoting B cell presented apoptosis, abrogating total Ig production, reducing MB/PC populations, and delaying affinity maturation of antigens-specific antibodies. In this review, we focused on the functions of B and Tfh cells in the homeostasis of respiratory system, and specifically discussed the disorders of humoral immunity and aberrant Tfh cell responses in the disease process of pediatric RRTIs. We hoped to provide some clues for the prevention and treatment of pediatric RRTIs.
Collapse
Affiliation(s)
- Jun Diao
- Department of Pediatrics, Yueyang Hospital of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huosheng Liu
- Department of Acupuncture and Moxibustion, Jiading Hospital of Traditional Chinese Medicine, Shanghai, 201800, China
| | - Hui Cao
- Department of Liver Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weibin Chen
- Department of Pediatrics, Yueyang Hospital of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Of Mycelium and Men: Inherent Human Susceptibility to Fungal Diseases. Pathogens 2023; 12:pathogens12030456. [PMID: 36986378 PMCID: PMC10058615 DOI: 10.3390/pathogens12030456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
In medical mycology, the main context of disease is iatrogenic-based disease. However, historically, and occasionally, even today, fungal diseases affect humans with no obvious risk factors, sometimes in a spectacular fashion. The field of “inborn errors of immunity” (IEI) has deduced at least some of these previously enigmatic cases; accordingly, the discovery of single-gene disorders with penetrant clinical effects and their immunologic dissection have provided a framework with which to understand some of the key pathways mediating human susceptibility to mycoses. By extension, they have also enabled the identification of naturally occurring auto-antibodies to cytokines that phenocopy such susceptibility. This review provides a comprehensive update of IEI and autoantibodies that inherently predispose humans to various fungal diseases.
Collapse
|
10
|
Infections in Inborn Errors of Immunity with Combined Immune Deficiency: A Review. Pathogens 2023; 12:pathogens12020272. [PMID: 36839544 PMCID: PMC9958715 DOI: 10.3390/pathogens12020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Enhanced susceptibility to microbes, often resulting in severe, intractable and frequent infections due to usually innocuous organisms at uncommon sites, is the most striking feature in individuals with an inborn error of immunity. In this narrative review, based on the International Union of Immunological Societies' 2022 (IUIS 2022) Update on phenotypic classification of human inborn errors of immunity, the focus is on commonly encountered Combined Immunodeficiency Disorders (CIDs) with susceptibility to infections. Combined immune deficiency disorders are usually commensurate with survival beyond infancy unlike Severe Combined Immune Deficiency (SCID) and are often associated with clinical features of a syndromic nature. Defective humoral and cellular immune responses result in susceptibility to a broad range of microbial infections. Although disease onset is usually in early childhood, mild defects may present in late childhood or even in adulthood. A precise diagnosis is imperative not only for determining management strategies, but also for providing accurate genetic counseling, including prenatal diagnosis, and also in deciding empiric treatment of infections upfront before investigation reports are available.
Collapse
|
11
|
Inborn Errors of Immunity Causing Pediatric Susceptibility to Fungal Diseases. J Fungi (Basel) 2023; 9:jof9020149. [PMID: 36836264 PMCID: PMC9964687 DOI: 10.3390/jof9020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
Inborn errors of immunity are a heterogeneous group of genetically determined disorders that compromise the immune system, predisposing patients to infections, autoinflammatory/autoimmunity syndromes, atopy/allergies, lymphoproliferative disorders, and/or malignancies. An emerging manifestation is susceptibility to fungal disease, caused by yeasts or moulds, in a superficial or invasive fashion. In this review, we describe recent advances in the field of inborn errors of immunity associated with increased susceptibility to fungal disease.
Collapse
|
12
|
Gao X, Michel K, Griese M. Interstitial Lung Disease in Immunocompromised Children. Diagnostics (Basel) 2022; 13:diagnostics13010064. [PMID: 36611354 PMCID: PMC9818431 DOI: 10.3390/diagnostics13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The range of pulmonary complications beyond infections in pediatric immunocompromised patients is broad but not well characterized. Our goal was to assess the spectrum of disorders with a focus on interstitial lung diseases (ILD) in immunodeficient patients. METHODS We reviewed 217 immunocompromised children attending a specialized pneumology service during a period of 23 years. We assigned molecular diagnoses where possible and categorized the underlying immunological conditions into inborn errors of immunity or secondary immunodeficiencies according to the IUIS and the pulmonary conditions according to the chILD-EU classification system. RESULTS Among a wide array of conditions, opportunistic and chronic infections were the most frequent. ILD had a 40% prevalence. Of these children, 89% had a CT available, and 66% had a lung biopsy, which supported the diagnosis of ILD in 95% of cases. Histology was often lymphocyte predominant with the histo-pattern of granulomatous and lymphocytic interstitial lung disease (GLILD), follicular bronchiolitis or lymphocytic interstitial pneumonitis. Of interest, DIP, PAP and NSIP were also diagnosed. ILD was detected in several immunological disorders not yet associated with ILD. CONCLUSIONS Specialized pneumological expertise is necessary to manage the full spectrum of respiratory complications in pediatric immunocompromised patients.
Collapse
Affiliation(s)
| | | | - Matthias Griese
- Correspondence: ; Tel.: +49-89-4400-57870; Fax: +49-89-4400-57872
| |
Collapse
|
13
|
Yan H, Mo Y, Liu S, Luo X, Liu L, Zhou L, Zhang X, Chen Y, Cao K. Case report: Hemophagocytic lymphohistiocytosis in a child with primary immunodeficiency infected with Talaromyces marneffei. Front Immunol 2022; 13:1038354. [PMID: 36532052 PMCID: PMC9755863 DOI: 10.3389/fimmu.2022.1038354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening immune-mediated disease that affects patients with known genetic defects and is increasingly found among those with autoimmune diseases and persistent infections. Talaromyces marneffei (TM) is a human opportunistic fungus that commonly infects immunodeficient or immunosuppressed individuals. Few TM-associated secondary HLH cases resulting from autoimmune deficiency have been reported previously. The current case study describes a pediatric patient hospitalized with recurrent fever and lymphadenopathy. The child had abnormal blood cell classification, and microscopy revealed mature granulocytes that phagocytized fungal spores. It was speculated that the patient was infected with TM. The pathogen was detected earlier than the blood culture and confirmed by metagenomic next-generation sequencing. Whole-exome sequencing revealed that the patient had complex mutations associated with immunodeficiency. This included a mutation in exon 3 of the CD40LG gene, c.346G>A, which may be linked to hyper-IgM syndrome, a primary immunodeficiency disease with immunoglobulin conversion recombination defects that could explain the patient's increased susceptibility to serious opportunistic infections. In addition, a heterozygous frameshift variant, c.820dup (p.Asp274GlyfsTer61), was detected in exon 6 of CARD9, a key gene associated with fungal immune surveillance. After 4 days of fungal treatment, the abnormal blood cell clusters disappeared, but other infections occurred in succession for 6 months after rehabilitation. The patient was followed with the aim of providing subsequent immunotherapy. This study found that infection can trigger HLH in HIV-negative individuals, highlighting the importance of early definitive identification of the causative agent and investigation of potential immunodeficiency.
Collapse
Affiliation(s)
- Huimin Yan
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Yunjun Mo
- Medical Laboratory, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
| | - Shilin Liu
- Division of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Xiaojuan Luo
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Lianlian Liu
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Lintao Zhou
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Xiuming Zhang
- Medical Laboratory, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
| | - Yunsheng Chen
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China,*Correspondence: Ke Cao, ; Yunsheng Chen,
| | - Ke Cao
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China,*Correspondence: Ke Cao, ; Yunsheng Chen,
| |
Collapse
|
14
|
Wang L, Luo Y, Li X, Li Y, Xia Y, He T, Huang Y, Xu Y, Yang Z, Ling J, Weng R, Zhu X, Qi Z, Yang J. Talaromyces marneffei Infections in 8 Chinese Children with Inborn Errors of Immunity. Mycopathologia 2022; 187:455-467. [PMID: 36180657 PMCID: PMC9524311 DOI: 10.1007/s11046-022-00659-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/12/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE Talaromyces marneffei (TM) is an opportunistic fungus leading to multi-organ damages and poor prognosis in immunocompromised individuals. TM infections in children are rare and our knowledge to TM infection is insufficient. To investigate the clinical characteristics of TM-infected children and to explore the underlying mechanisms for host against TM, we analysed TM-infected patients diagnosed in our hospital. METHODS Eight patients with TM infections have been identified in Shenzhen Children's Hospital during 2017-2021. Clinical data were collected from medical records. Immunological features were evaluated by flow cytometry. Literatures were also reviewed to summarize the reported inborn errors of immunity (IEIs) with TM infections. RESULTS All 8 children were HIV-negative. The most common symptom of TM infections was fever (8/8), followed by weight loss (7/8), pneumonia (7/8), hepatomegaly (7/8), splenomegaly (6/8), anemia (6/8), lymphadenopathy (5/8), thrombocytopenia (3/8), diarrhea (3/8), rashes or skin lesions (3/8), and osteolytic lesions (1/8). Five children died during the follow-ups. CD3+ T cells were decreased in 6 patients. Eight patients had reduced natural killer cells. All patients went gene sequencing and were finally diagnosed as IEIs, including STAT1 gain-of-function, IL-2 receptor common gamma chain deficiency, adenosine deaminase deficiency, CD40 ligand deficiency, and STAT3 deficiency. Another 4 types of IEIs (CARD9, IFN-γ receptor 1, RelB, and NFKB2 deficiency), have been reported with TM infections based on literature review. CONCLUSION TM infections resulted in systemic injuries and high mortality. The spectrum of IEIs underlying TM infections indicated that T cell-mediated immunity, IFN-γ, IL-17 signalings and NF-κB pathways were important for host responses against TM infection. In reverse, for HIV-negative children without other secondary immunodeficiencies, IEIs should be considered in TM-infected children.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
- Shenzhen Institute of Pediatrics, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Ying Luo
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Xiaolin Li
- Department of Pediatric Rheumatology and Immunology, Zhongshan Boai Hospital Affiliated to Southern Medical University, Zhongshan, 528403, China
| | - Yixian Li
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Yu Xia
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Tingyan He
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Yanyan Huang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Yongbin Xu
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Zhi Yang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Jiayun Ling
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Ruohang Weng
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Xiaona Zhu
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Zhongxiang Qi
- Shenzhen Institute of Pediatrics, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Jun Yang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China.
| |
Collapse
|
15
|
Liu L, Sun B, Ying W, Liu D, Wang Y, Sun J, Wang W, Yang M, Hui X, Zhou Q, Hou J, Wang X. Rapid diagnosis of Talaromyces marneffei infection by metagenomic next-generation sequencing technology in a Chinese cohort of inborn errors of immunity. Front Cell Infect Microbiol 2022; 12:987692. [PMID: 36159645 PMCID: PMC9493038 DOI: 10.3389/fcimb.2022.987692] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Talaromyces marneffei (T. marneffei) is an opportunistic pathogen. Patients with inborn errors of immunity (IEI) have been increasingly diagnosed with T. marneffei in recent years. The disseminated infection of T. marneffei can be life-threatening without timely and effective antifungal therapy. Rapid and accurate pathogenic microbiological diagnosis is particularly critical for these patients. A total of 505 patients with IEI were admitted to our hospital between January 2019 and June 2022, among whom T. marneffei was detected in 6 patients by metagenomic next-generation sequencing (mNGS), and their clinical and immunological characteristics were summarized. We performed a systematic literature review on T. marneffei infections with published immunodeficiency-related gene mutations. All patients in our cohort were confirmed to have genetic mutations in IL12RB1, IFNGR1, STAT1, STAT3, and CD40LG. T. marneffei was detected in both the blood and lymph nodes of P1 with IL12RB1 mutations, and the clinical manifestations were serious and included recurrent fever, weight loss, severe anemia, splenomegaly and lymphadenopathy, all requiring long-term antifungal therapy. These six patients received antifungal treatment, which relieved symptoms and improved imaging findings. Five patients survived, while one patient died of sepsis after hematopoietic stem cell transplantation. The application of mNGS methods for pathogen detection in IEI patients and comparison with traditional diagnosis methods were investigated. Traditional diagnostic methods and mNGS tests were performed simultaneously in 232 patients with IEI. Compared to the traditional methods, the sensitivity and specificity of mNGS in diagnosing T. marneffei infection were 100% and 98.7%, respectively. The reporting time for T. marneffei detection was approximately 26 hours by mNGS, 3-14 days by culture, and 6-11 days by histopathology. T. marneffei infection was first reported in IEI patients with IL12RB1 gene mutation, which expanded the IEI lineage susceptible to T. marneffei. For IEI patients with T. marneffei infection, we highlight the application of mNGS in pathogenic detection. mNGS is recommended as a front-line diagnostic test for rapidly identifying pathogens in complex and severe infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jia Hou
- *Correspondence: Jia Hou, ; Xiaochuan Wang,
| | | |
Collapse
|
16
|
王 子, 孟 岩, 窦 颖, 管 贤, 张 璐, 于 洁. [Clinical effect of allogeneic hematopoietic stem cell transplantation in children with hyper-IgM syndrome]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:635-642. [PMID: 35762429 PMCID: PMC9250404 DOI: 10.7499/j.issn.1008-8830.2112098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES To evaluate the clinical effect of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in children with hyper-IgM syndrome (HIGM). METHODS A retrospective analysis was performed on the medical data of 17 children with HIGM who received allo-HSCT. The Kaplan Meier method was used for the survival analysis of the children with HIGM after allo-HSCT. RESULTS After allo-HSCT, 16 children were diagnosed with sepsis; 14 tested positive for virus within 100 days after allo-HSCT, among whom 11 were positive for Epstein-Barr virus, 7 were positive for cytomegalovirus, and 2 were positive for JC virus; 9 children were found to have invasive fungal disease. There were 6 children with acute graft-versus-host disease and 3 children with chronic graft-versus-host disease. The median follow-up time was about 2 years, and 3 children died in the early stage after allo-HSCT. The children had an overall survival (OS) rate of 82.35%, an event-free survival (EFS) rate of 70.59%, and a disease-free survival (DFS) rate of 76.47%. The univariate analysis showed that the children receiving HLA-matched allo-HSCT had a significantly higher EFS rate than those receiving HLA-mismatched allo-HSCT (P=0.019) and that the children receiving HLA-matched unrelated allo-HSCT had significantly higher OS, EFS, and DFS rates than those receiving HLA-mismatched unrelated allo-HSCT (P<0.05). Compared with the children with fungal infection after allo-HSCT, the children without fungal infection had significantly higher EFS rate (P=0.02) and DFS rate (P=0.04). CONCLUSIONS Allo-HSCT is an effective treatment method for children with HIGM. HLA-matched allo-HSCT and active prevention and treatment of fungal infection and opportunistic infection may help to improve the prognosis of such children.
Collapse
|
17
|
Škorvánek M, Jech R, Winkelmann J, Zech M. Progressive choreodystonia in X-linked hyper-IgM immunodeficiency: a rare but recurrent presentation. Ann Clin Transl Neurol 2022; 9:577-581. [PMID: 35267244 PMCID: PMC8994980 DOI: 10.1002/acn3.51538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/01/2022] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
An association between movement disorders and immune‐system dysfunction has been described in the context of rare genetic diseases such as ataxia telangiectasia as well as infectious encephalopathies. We encountered a male patient who presented immunodeficiency of unknown etiology since childhood. A medication‐refractory, progressive choreodystonic movement disorder emerged at the age of 42 years and prompted an exome‐wide molecular testing approach. This revealed a pathogenic hemizygous variant in CD40LG, the gene implicated in X‐linked hyper‐IgM syndrome. Only two prior reports have specifically suggested a causal relationship between CD40LG mutations and involuntary hyperkinetic movements. Our findings thus confirm the existence of a particular CD40LG‐related condition, combining features of compromised immunity with neurodegenerative movement abnormalities. Establishing the diagnosis is crucial because of potential life‐threatening immunological complications.
Collapse
Affiliation(s)
- Matej Škorvánek
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic.,Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Robert Jech
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.,Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
18
|
França TT, Barreiros LA, Salgado RC, Napoleão SMDS, Gomes LN, Ferreira JFS, Prando C, Weber CW, Di Gesu RSW, Montenegro C, Aranda CS, Kuntze G, Staines-Boone AT, Venegas-Montoya E, Becerra JCA, Bezrodnik L, Di Giovanni D, Moreira I, Seminario GA, Raccio ACG, Dorna MDB, Rosário-Filho NA, Chong-Neto HJ, de Carvalho E, Grotta MB, Orellana JC, Dominguez MG, Porras O, Sasia L, Salvucci K, Garip E, Leite LFB, Forte WCN, Pinto-Mariz F, Goudouris E, Nuñez MEN, Schelotto M, Ruiz LB, Liberatore DI, Ochs HD, Cabral-Marques O, Condino-Neto A. CD40 Ligand Deficiency in Latin America: Clinical, Immunological, and Genetic Characteristics. J Clin Immunol 2022; 42:514-526. [PMID: 34982304 DOI: 10.1007/s10875-021-01182-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
CD40 ligand (CD40L) deficiency is a rare inborn error of immunity presenting with heterogeneous clinical manifestations. While a detailed characterization of patients affected by CD40L deficiency is essential to an accurate diagnosis and management, information about this disorder in Latin American patients is limited. We retrospectively analyzed data from 50 patients collected by the Latin American Society for Immunodeficiencies registry or provided by affiliated physicians to characterize the clinical, laboratory, and molecular features of Latin American patients with CD40L deficiency. The median age at disease onset and diagnosis was 7 months and 17 months, respectively, with a median diagnosis delay of 1 year. Forty-seven patients were genetically characterized revealing 6 novel mutations in the CD40LG gene. Pneumonia was the most common first symptom reported (66%). Initial immunoglobulin levels were variable among patients. Pneumonia (86%), upper respiratory tract infections (70%), neutropenia (70%), and gastrointestinal manifestations (60%) were the most prevalent clinical symptoms throughout life. Thirty-five infectious agents were reported, five of which were not previously described in CD40L deficient patients, representing the largest number of pathogens reported to date in a cohort of CD40L deficient patients. The characterization of the largest cohort of Latin American patients with CD40L deficiency adds novel insights to the recognition of this disorder, helping to fulfill unmet needs and gaps in the diagnosis and management of patients with CD40L deficiency.
Collapse
Affiliation(s)
- Tábata Takahashi França
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Lucila Akune Barreiros
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ranieri Coelho Salgado
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Lillian Nunes Gomes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Carolina Prando
- Hospital Pequeno Príncipe, Curitiba, Brazil.,Faculdades Pequeno Príncipe, Curitiba, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | | | | | | | - Carolina Sanchez Aranda
- Serviço de Alergia e Imunologia, Departamento de Pediatria, Universidade Federal de São Paulo, São Paulo, Brazil.,Jeffrey Modell Center São Paulo, São Paulo, Brazil
| | | | - Aidé Tamara Staines-Boone
- Immunology Service, Hospital de Especialidades Unidad Médica de Alta Especialidad (UMAE, Instituto Mexicano del Seguro Social (IMSS), Monterrey, México
| | - Edna Venegas-Montoya
- Immunology Service, Hospital de Especialidades Unidad Médica de Alta Especialidad (UMAE, Instituto Mexicano del Seguro Social (IMSS), Monterrey, México
| | | | - Liliana Bezrodnik
- Grupo de Imunologia, Hospital de Niños Ricardo Gutierrez, Buenos Aires, Argentina
| | - Daniela Di Giovanni
- Grupo de Imunologia, Hospital de Niños Ricardo Gutierrez, Buenos Aires, Argentina
| | - Ileana Moreira
- Grupo de Imunologia, Hospital de Niños Ricardo Gutierrez, Buenos Aires, Argentina
| | | | | | - Mayra de Barros Dorna
- Divisão de Alergia e Imunologia, Departamento de Pediatria, Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Elisa de Carvalho
- Gastroenterology and Hepatology Clínic, Brasilia Childrens Hospital, Brasília, Brazil
| | | | - Julio Cesar Orellana
- Division Alergia e Imunologia Clinica, Hospital de Niños de La Santísima Trinidad, Córdoba, Argentina
| | | | - Oscar Porras
- Hospital Nacional de Niños Dr. Carlos Sáenz Herrera, San José, Costa Rica
| | - Laura Sasia
- Hospital Infantil Municipal de Córdoba, Córdoba, Argentina
| | | | - Emilio Garip
- Hospital Infantil Municipal de Córdoba, Córdoba, Argentina
| | - Luiz Fernando Bacarini Leite
- Department of Pediatrics, Immunodeficiency Sector, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| | | | - Fernanda Pinto-Mariz
- Department of Pediatrics, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ekaterini Goudouris
- Department of Pediatrics, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - María Enriqueta Nuñez Nuñez
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Hospital Civil de Guadalajara Dr. Juan I. Menchaca, Guadalajara, México
| | | | - Laura Berrón Ruiz
- Unidad de Investigación en Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad del México, México
| | | | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil. .,Jeffrey Modell Center São Paulo, São Paulo, Brazil.
| |
Collapse
|
19
|
Yang A, Hu Y, Chen P, Zheng G, Hu X, Zhang J, Wang J, Wang C, Huang Z, Zhang Y, Guo Y. Diagnosis by metagenomic next-generation sequencing of a Talaromyces marneffei bloodstream infection in an HIV-negative child: A case report. Front Pediatr 2022; 10:903617. [PMID: 36046481 PMCID: PMC9421359 DOI: 10.3389/fped.2022.903617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Talaromyces marneffei (TM) bloodstream infections are life- threatening in immunocompromised individuals. The lack of specific clinical features for these infections and poor sensitivity associated with routine examination procedures make diagnosis challenging. Untimely diagnosis and delayed antifungal treatment threatens the life of such patients. CASE DESCRIPTION We report a case of a TM bloodstream infection, confirmed by the results of blood culture, of a child who was HIV negative and possessed a CD40LG gene mutation. A diagnosis of TM was established by blood metagenomic next-generation sequencing (mNGS) of the patient's blood, which was confirmed by microbiological culture of blood. On admission, this previously healthy male patient was 8-months of age, who presented with recurrent fever and a cough of 6-days in duration. His condition did not improve after antibacterial treatment for 5-days, with significant and recurrent fever and worsening spirit. He was referred to the Department of Pediatrics in our tertiary medical institution with a white blood cell count of 21.5*10∧9/L, C-reactive protein of 47.98 mg/L, and procalcitonin of 0.28 ng/mL. A bloodstream infection was not excluded and blood was collected for microbial culture. The patient received a 1-day treatment of cefoperazone sulbactam and 6-days of imipenem cilastatin. Symptoms did not improve and fever persisted. Blood was submitted for mNGS analysis and within 14-h, 14,352 TM reads were detected with a relative abundance of 98.09%. Antibiotic treatment was immediately changed to intravenous amphotericin B combined with oral itraconazole. The condition of the child gradually improved. Blood culture showed TM on the 7th day after hospitalization, confirming bloodstream infection. After the 13th day of hospital admission, the patient's body temperature dropped close to 38°C and was discharged on the 30th day of hospitalization. Oral itraconazole was prescribed with follow up at the outpatient clinic. CONCLUSIONS HIV-negative patients with CD40LG mutations may be potential hosts for TM. TM infections are rare in children and their detection by conventional microbial culture methods are inadequate for an early diagnosis. mNGS is a rapid detection method that permits early diagnosis of uncommon infectious agents, such as TM, allowing for improved patient outcomes.
Collapse
Affiliation(s)
- Aimei Yang
- Department of Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Hu
- Department of Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Peiling Chen
- Department of Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guilang Zheng
- Department of Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xuejiao Hu
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jingwen Zhang
- Department of Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jing Wang
- Department of Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chun Wang
- Department of Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zijian Huang
- Department of Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuxin Zhang
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuxiong Guo
- Department of Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
20
|
Naik B, Ahmed SMQ, Laha S, Das SP. Genetic Susceptibility to Fungal Infections and Links to Human Ancestry. Front Genet 2021; 12:709315. [PMID: 34490039 PMCID: PMC8417537 DOI: 10.3389/fgene.2021.709315] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Over the ages, fungi have associated with different parts of the human body and established symbiotic associations with their host. They are mostly commensal unless there are certain not so well-defined factors that trigger the conversion to a pathogenic state. Some of the factors that induce such transition can be dependent on the fungal species, environment, immunological status of the individual, and most importantly host genetics. In this review, we discuss the different aspects of how host genetics play a role in fungal infection since mutations in several genes make hosts susceptible to such infections. We evaluate how mutations modulate the key recognition between the pathogen associated molecular patterns (PAMP) and the host pattern recognition receptor (PRR) molecules. We discuss the polymorphisms in the genes of the immune system, the way it contributes toward some common fungal infections, and highlight how the immunological status of the host determines fungal recognition and cross-reactivity of some fungal antigens against human proteins that mimic them. We highlight the importance of single nucleotide polymorphisms (SNPs) that are associated with several of the receptor coding genes and discuss how it affects the signaling cascade post-infection, immune evasion, and autoimmune disorders. As part of personalized medicine, we need the application of next-generation techniques as a feasible option to incorporate an individual’s susceptibility toward invasive fungal infections based on predisposing factors. Finally, we discuss the importance of studying genomic ancestry and reveal how genetic differences between the human race are linked to variation in fungal disease susceptibility.
Collapse
Affiliation(s)
- Bharati Naik
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sumayyah M Q Ahmed
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Suparna Laha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
21
|
Romani L, Williamson PR, Di Cesare S, Di Matteo G, De Luca M, Carsetti R, Figà-Talamanca L, Cancrini C, Rossi P, Finocchi A. Cryptococcal Meningitis and Post-Infectious Inflammatory Response Syndrome in a Patient With X-Linked Hyper IgM Syndrome: A Case Report and Review of the Literature. Front Immunol 2021; 12:708837. [PMID: 34335625 PMCID: PMC8320724 DOI: 10.3389/fimmu.2021.708837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022] Open
Abstract
The hyper IgM syndromes are a rare group of primary immunodeficiency. The X-linked Hyper IgM syndrome (HIGM), due to a gene defect in CD40L, is the commonest variant; it is characterized by an increased susceptibility to a narrow spectrum of opportunistic infection. A few cases of HIGM patients with Cryptococcal meningoencephalitis (CM) have been described in the literature. Herein we report the case of a young male diagnosed in infancy with HIGM who developed CM complicated by a post-infectious inflammatory response syndrome (PIIRS), despite regular immunoglobulin replacement therapy and appropriate antimicrobial prophylaxis. The patient was admitted because of a headache and CM was diagnosed through detection of Cryptococcus neoformans in the cerebrospinal fluid. Despite the antifungal therapy resulting to negative CSF culture, the patient exhibited persistent headaches and developed diplopia. An analysis of inflammatory cytokines on CSF, as well as the brain MRI, suggested a diagnosis of PIIRS. Therefore, a prolonged corticosteroids therapy was started obtaining a complete resolution of symptoms without any relapse.
Collapse
Affiliation(s)
- Lorenza Romani
- Unit of Immune and Infectious Diseases, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy
| | - Peter Richard Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, MD, United States
| | - Silvia Di Cesare
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gigliola Di Matteo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Maia De Luca
- Unit of Immune and Infectious Diseases, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy
| | - Rita Carsetti
- B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy
| | - Lorenzo Figà-Talamanca
- Neuroradiology Unit, Imaging Department, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy
| | - Caterina Cancrini
- Unit of Immune and Infectious Diseases, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Rossi
- Unit of Immune and Infectious Diseases, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Finocchi
- Unit of Immune and Infectious Diseases, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
22
|
You CY, Hu F, Lu SW, Pi DD, Xu F, Liu CJ, Fu YQ. Talaromyces Marneffei Infection in an HIV-Negative Child with a CARD9 Mutation in China: A Case Report and Review of the Literature. Mycopathologia 2021; 186:553-561. [PMID: 34224076 PMCID: PMC8256645 DOI: 10.1007/s11046-021-00576-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/23/2021] [Indexed: 10/28/2022]
Abstract
BACKGROUND Talaromyces marneffei (T. marneffei) is a thermally dimorphic fungus causing systemic mycosis. Due to the atypical symptoms and diverse imaging findings, T. marneffei-infected patients may be misdiagnosed thus preventing timely antifungal therapy. Moreover, HIV-negative patients with T. marneffei infection may be congenitally immunocompromised because of the mutation of immune-related genes. CASE PRESENTATION We describe a case of an HIV-negative child who developed disseminated T. marneffei infection in a nonendemic area. Chest CT showed similar imaging changes of miliary pulmonary tuberculosis, while there was no other evidence of tuberculosis infection, and empirical antituberculosis treatment was not effective. Lymphocyte subset analysis showed reduced natural killer cells, and the immunoglobulin profile showed low levels of IgM, C3 and C4. A bone marrow smear revealed T. marneffei infection, and ascites culture also proved T. marneffei infection. Despite antifungal treatment, the child died of multiple organ failure. Two gene mutations in caspase recruitment domain-containing protein 9 (CARD9) were detected, which had not been reported previously in T. marneffei-infected patients. CONCLUSIONS HIV-negative patients with CARD9 mutations may be potential hosts of T. marneffei. Abnormalities in the immunoglobin profile and lymphocyte subset may provide clues for immunocompromised patients, and further genetic testing is advised to identify gene mutations in HIV-negative patients with T. marneffei infection.
Collapse
Affiliation(s)
- Cheng-Yan You
- Department of Critical Care Medicine, Children's Hospital, Chongqing Medical University, 136# Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Fang Hu
- Department of Critical Care Medicine, Children's Hospital, Chongqing Medical University, 136# Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Si-Wei Lu
- Department of Critical Care Medicine, Children's Hospital, Chongqing Medical University, 136# Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Dan-Dan Pi
- Department of Critical Care Medicine, Children's Hospital, Chongqing Medical University, 136# Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Feng Xu
- Department of Critical Care Medicine, Children's Hospital, Chongqing Medical University, 136# Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Cheng-Jun Liu
- Department of Critical Care Medicine, Children's Hospital, Chongqing Medical University, 136# Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, People's Republic of China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China. .,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China. .,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China. .,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China.
| | - Yue-Qiang Fu
- Department of Critical Care Medicine, Children's Hospital, Chongqing Medical University, 136# Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, People's Republic of China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China. .,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China. .,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China. .,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
23
|
Merrill K, Coffey E, Furrow E, Masseau I, Rindt H, Reinero C. X-linked CD40 ligand deficiency in a 1-year-old male Shih Tzu with secondary Pneumocystis pneumonia. J Vet Intern Med 2020; 35:497-503. [PMID: 33274522 PMCID: PMC7848317 DOI: 10.1111/jvim.15988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
An approximately 1‐year‐old male intact Shih Tzu dog was referred to a tertiary facility with a history of progressive tachypnea, increased respiratory effort, and weight loss over a 3‐month period that failed to improve with empirical antimicrobial treatment. Upon completion of a comprehensive respiratory evaluation, the dog was diagnosed with severe Pneumocystis pneumonia and secondary pulmonary hypertension. Clinical signs resolved and disease resolution was confirmed after completion of an 8‐week course of trimethoprim‐sulfonamide, 4‐week tapering dose of prednisone to decrease an inflammatory response secondary to acute die‐off of organisms, a 2‐week course of clopidogrel to prevent clot formation, and a 2‐week course of a phosphodiesterase‐5 inhibitor to treat pulmonary hypertension. Immunodiagnostic testing and genetic sequencing were performed to evaluate for potential immunodeficiency as an underlying cause for the development Pneumocystis pneumonia, and identified an X‐linked CD40 ligand deficiency.
Collapse
Affiliation(s)
- Kristen Merrill
- Department of Veterinary Medicine and Surgery, University of Missouri, Ringgold Standard Institution - Small Animal Internal Medicine, Columbia, Missouri, USA
| | - Emily Coffey
- University of Minnesota, Ringgold Standard Institution, Minneapolis, Minnesota, USA
| | - Eva Furrow
- University of Minnesota, Internal Medicine Veterinary Medical Center, St. Paul, Minnesota, USA
| | - Isabelle Masseau
- Department of Sciences Cliniques, Universite de Montreal, St. Hyacinthe, Quebec, Canada
| | - Hansjörg Rindt
- University of Missouri, College of Veterinary Medicine, Veterinary Medicine and Surgery, Columbia, Missouri, USA
| | - Carol Reinero
- University of Missouri, Veterinary Medicine and Surgery, Columbia, Missouri, USA
| |
Collapse
|
24
|
Zhu X, Zhu J. CD4 T Helper Cell Subsets and Related Human Immunological Disorders. Int J Mol Sci 2020; 21:E8011. [PMID: 33126494 PMCID: PMC7663252 DOI: 10.3390/ijms21218011] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
The immune system plays a critical role in protecting hosts from the invasion of organisms. CD4 T cells, as a key component of the immune system, are central in orchestrating adaptive immune responses. After decades of investigation, five major CD4 T helper cell (Th) subsets have been identified: Th1, Th2, Th17, Treg (T regulatory), and Tfh (follicular T helper) cells. Th1 cells, defined by the expression of lineage cytokine interferon (IFN)-γ and the master transcription factor T-bet, participate in type 1 immune responses to intracellular pathogens such as mycobacterial species and viruses; Th2 cells, defined by the expression of lineage cytokines interleukin (IL)-4/IL-5/IL-13 and the master transcription factor GAΤA3, participate in type 2 immune responses to larger extracellular pathogens such as helminths; Th17 cells, defined by the expression of lineage cytokines IL-17/IL-22 and the master transcription factor RORγt, participate in type 3 immune responses to extracellular pathogens including some bacteria and fungi; Tfh cells, by producing IL-21 and expressing Bcl6, help B cells produce corresponding antibodies; whereas Foxp3-expressing Treg cells, unlike Th1/Th2/Th17/Tfh exerting their effector functions, regulate immune responses to maintain immune cell homeostasis and prevent immunopathology. Interestingly, innate lymphoid cells (ILCs) have been found to mimic the functions of three major effector CD4 T helper subsets (Th1, Th2, and Th17) and thus can also be divided into three major subsets: ILC1s, ILC2s, and ILC3s. In this review, we will discuss the differentiation and functions of each CD4 T helper cell subset in the context of ILCs and human diseases associated with the dysregulation of these lymphocyte subsets particularly caused by monogenic mutations.
Collapse
Affiliation(s)
- Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Coulter IC, Yan H, Gorodetsky C, Akhbari M, Breitbart S, Kalia SK, Fasano A, Ibrahim GM. Childhood choreoathetosis secondary to hyper-IgM syndrome (CD40 ligand deficiency). NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/6/e899. [PMID: 33067350 PMCID: PMC7577528 DOI: 10.1212/nxi.0000000000000899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/31/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Ian C Coulter
- From the Division of Neurosurgery (I.C.C., H.Y., M.A., S.B., G.M.I.); Division of Neurology (C.G.), The Hospital for Sick Children; Division of Neurosurgery (S.K.K.), Toronto Western Hospital; Krembil Brain Institute (S.K.K.); and Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Han Yan
- From the Division of Neurosurgery (I.C.C., H.Y., M.A., S.B., G.M.I.); Division of Neurology (C.G.), The Hospital for Sick Children; Division of Neurosurgery (S.K.K.), Toronto Western Hospital; Krembil Brain Institute (S.K.K.); and Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Carolina Gorodetsky
- From the Division of Neurosurgery (I.C.C., H.Y., M.A., S.B., G.M.I.); Division of Neurology (C.G.), The Hospital for Sick Children; Division of Neurosurgery (S.K.K.), Toronto Western Hospital; Krembil Brain Institute (S.K.K.); and Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Melika Akhbari
- From the Division of Neurosurgery (I.C.C., H.Y., M.A., S.B., G.M.I.); Division of Neurology (C.G.), The Hospital for Sick Children; Division of Neurosurgery (S.K.K.), Toronto Western Hospital; Krembil Brain Institute (S.K.K.); and Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Sara Breitbart
- From the Division of Neurosurgery (I.C.C., H.Y., M.A., S.B., G.M.I.); Division of Neurology (C.G.), The Hospital for Sick Children; Division of Neurosurgery (S.K.K.), Toronto Western Hospital; Krembil Brain Institute (S.K.K.); and Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Suneil K Kalia
- From the Division of Neurosurgery (I.C.C., H.Y., M.A., S.B., G.M.I.); Division of Neurology (C.G.), The Hospital for Sick Children; Division of Neurosurgery (S.K.K.), Toronto Western Hospital; Krembil Brain Institute (S.K.K.); and Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Alfonso Fasano
- From the Division of Neurosurgery (I.C.C., H.Y., M.A., S.B., G.M.I.); Division of Neurology (C.G.), The Hospital for Sick Children; Division of Neurosurgery (S.K.K.), Toronto Western Hospital; Krembil Brain Institute (S.K.K.); and Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - George M Ibrahim
- From the Division of Neurosurgery (I.C.C., H.Y., M.A., S.B., G.M.I.); Division of Neurology (C.G.), The Hospital for Sick Children; Division of Neurosurgery (S.K.K.), Toronto Western Hospital; Krembil Brain Institute (S.K.K.); and Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
26
|
Kasahara TDM, Bento CADM, Gupta S. Phenotypic analysis of T follicular helper and T follicular regulatory cells in primary selective IgM deficiency. Hum Immunol 2020; 81:625-633. [PMID: 32773096 DOI: 10.1016/j.humimm.2020.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Selective IgM deficiency (SIgMD) is a rare immunodeficiency characterized by serum IgM below two standard of mean, and normal IgG and IgA levels. Both in human and mice with selective IgM deficiency, germinal centers cells are decreased. The development of germinal center and humoral immunity are regulated in part by follicular helper T (TFH) and follicular regulatory T (TFR) cells. However, the analysis of circulating TFH (cTFH) and TFR (cTFR) cells in the pathogenesis of SIgMD has not been explored. We observed lower percentage of cTFR cells in SIgMD patients than in control group. However, we did not observe any significant difference in the percentage of cTFH cells and their subsets between both experimental groups. When data were analyzed according to specific antibody response to pneumococcal polysaccharide, we observed a higher percentage of cTFH cells in SIgMD patients with specific antibody deficiency than in SIgMD patients with normal specific antibody response. Our results suggest that cTFH cells and their subsets are preserved in SIgMD patients. However, the role of lower percentage of cTFR cells in the pathogenesis of this immunodeficiency is not clear.
Collapse
Affiliation(s)
- Taissa de M Kasahara
- Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Brazil; Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil; Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, United States.
| | - Cleonice Alves de Melo Bento
- Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Brazil; Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
27
|
Human inborn errors of immunity to herpes viruses. Curr Opin Immunol 2020; 62:106-122. [PMID: 32014647 DOI: 10.1016/j.coi.2020.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
Infections with any of the nine human herpes viruses (HHV) can be asymptomatic or life-threatening. The study of patients with severe diseases caused by HHVs, in the absence of overt acquired immunodeficiency, has led to the discovery or diagnosis of various inborn errors of immunity. The related inborn errors of adaptive immunity disrupt α/β T-cell rather than B-cell immunity. Affected patients typically develop HHV infections in the context of other infectious diseases. However, this is not always the case, as illustrated by inborn errors of SAP-dependent T-cell immunity to EBV-infected B cells. The related inborn errors of innate immunity disrupt leukocytes other than T and B cells, non-hematopoietic cells, or both. Patients typically develop only a single type of infection due to HHV, although, again, this is not always the case, as illustrated by inborn errors of TLR3 immunity resulting in HSV1 encephalitis in some patients and influenza pneumonitis in others. Most severe HHV infections in otherwise healthy patients remains unexplained. The forward human genetic dissection of isolated and syndromic HHV-driven illnesses will establish the molecular and cellular basis of protective immunity to HHVs, paving the way for novel diagnosis and management strategies.
Collapse
|
28
|
Lee PP, Lao-Araya M, Yang J, Chan KW, Ma H, Pei LC, Kui L, Mao H, Yang W, Zhao X, Trakultivakorn M, Lau YL. Application of Flow Cytometry in the Diagnostics Pipeline of Primary Immunodeficiencies Underlying Disseminated Talaromyces marneffei Infection in HIV-Negative Children. Front Immunol 2019; 10:2189. [PMID: 31572394 PMCID: PMC6753679 DOI: 10.3389/fimmu.2019.02189] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022] Open
Abstract
Talaromyces (Penicillium) marneffei is an AIDS-defining infection in Southeast Asia and is associated with high mortality. It is rare in non-immunosuppressed individuals, especially children. Little is known about host immune response and genetic susceptibility to this endemic fungus. Genetic defects in the interferon-gamma (IFN-γ)/STAT1 signaling pathway, CD40/CD40 ligand- and IL12/IL12-receptor-mediated crosstalk between phagocytes and T-cells, and STAT3-mediated Th17 differentiation have been reported in HIV-negative children with talaromycosis and other endemic mycoses such as histoplasmosis, coccidioidomycosis, and paracoccidioidomycosis. There is a need to design a diagnostic algorithm to evaluate such patients. In this article, we review a cohort of pediatric patients with disseminated talaromycosis referred to the Asian Primary Immunodeficiency Network for genetic diagnosis of PID. Using these illustrative cases, we propose a diagnostics pipeline that begins with immunoglobulin pattern (IgG, IgA, IgM, and IgE) and enumeration of lymphocyte subpopulations (T-, B-, and NK-cells). The former could provide clues for hyper-IgM syndrome and hyper-IgE syndrome. Flow cytometric evaluation of CD40L expression should be performed for patients suspected to have X-linked hyper-IgM syndrome. Defects in interferon-mediated JAK-STAT signaling are evaluated by STAT1 phosphorylation studies by flow cytometry. STAT1 hyperphosphorylation in response to IFN-α or IFN-γ and delayed dephosphorylation is diagnostic for gain-of-function STAT1 disorder, while absent STAT1 phosphorylation in response to IFN-γ but normal response to IFN-α is suggestive of IFN-γ receptor deficiency. This simple and rapid diagnostic algorithm will be useful in guiding genetic studies for patients with disseminated talaromycosis requiring immunological investigations.
Collapse
Affiliation(s)
- Pamela P Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Mongkol Lao-Araya
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Chiang Mai University, Chiang Mai, Thailand
| | - Jing Yang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Koon-Wing Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haiyan Ma
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lim-Cho Pei
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lin Kui
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Huawei Mao
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaodong Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Muthita Trakultivakorn
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Chiang Mai University, Chiang Mai, Thailand
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|