1
|
Jablonska O, Duda S, Gajowniczek S, Nitkiewicz A, Fopp-Bayat D. Toll-like Receptor Type 2 and 13 Gene Expression and Immune Cell Profiles in Diploid and Triploid Sterlets ( Acipenser ruthenus): Insights into Immune Competence in Polyploid Fish. Int J Mol Sci 2025; 26:3986. [PMID: 40362225 PMCID: PMC12071315 DOI: 10.3390/ijms26093986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Toll-like receptors (TLRs) are key components of the innate immune system in fish, responsible for recognizing pathogen-associated molecular patterns derived from bacteria, viruses, and fungi. The sterlet (Acipenser ruthenus), an endangered sturgeon species valued for its meat and caviar, is a promising model for studying the effects of polyploidy on immune gene regulation. This study examined the expression of Toll-like receptor type 2 (TLR2) and type 13 (TLR13) in the heart, liver, gills, spleen, and kidney of diploid and triploid healthy sterlets using real-time PCR. TLR2 and TLR13 were expressed in all tissues of both diploids and triploids. In diploids, TLR2 expression was the highest in the kidney and the lowest in the liver (p < 0.05). Similarly, TLR13 expression in diploids was highest in the kidney and gills, and lowest in the liver (p < 0.05). In triploids, no significant tissue-specific variation in TLR expression was observed (p > 0.05). Comparisons between diploid and triploid sterlets revealed higher TLR2 expression in the kidney and higher TLR13 expression in the heart and kidney of diploids (p < 0.05). These molecular findings were supported by leukocyte analysis, which showed a significantly lower percentage of lymphocytes and a higher proportion of neutrophils in triploids compared to diploids. Additionally, the proportion of thrombocytes was significantly elevated in triploids (p < 0.05). This study provides the first report of TLR expression in polyploid fish, offering new insights into immune modulation associated with polyploidy in sturgeons.
Collapse
Affiliation(s)
- Olga Jablonska
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-718 Olsztyn, Poland; (S.D.); (S.G.)
| | - Sara Duda
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-718 Olsztyn, Poland; (S.D.); (S.G.)
| | - Szczepan Gajowniczek
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-718 Olsztyn, Poland; (S.D.); (S.G.)
- Department of Anatomy, School of Medicine, Collegium Medicum, Warszawska 30 St., 10-082 Olsztyn, Poland
| | - Anna Nitkiewicz
- Department of Pond Fishery, National Inland Fisheries Research Institute, Oczapowskiego 10, 10-719 Olsztyn, Poland;
| | - Dorota Fopp-Bayat
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| |
Collapse
|
2
|
Mekhemar M, Terheyden I, Dörfer C, Fawzy El-Sayed K. Inflammatory Modulation of Toll-like Receptors in Periodontal Ligament Stem Cells: Implications for Periodontal Therapy. Cells 2025; 14:432. [PMID: 40136681 PMCID: PMC11941712 DOI: 10.3390/cells14060432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Toll-like receptors (TLRs) play a crucial role in the innate immune response, mediating cellular interactions with the microenvironment and influencing periodontal disease progression. This in vitro study aimed to comprehensively characterize the TLR expression profile of periodontal ligament mesenchymal stem/progenitor cells (PDLSCs) and investigate its modulation by inflammatory stimuli associated with periodontal disease. PDLSCs (n = 6) were isolated, selected using anti-STRO-1 antibodies, and cultured to evaluate their colony-forming abilities and stem/progenitor characteristics. Baseline and inflammation-induced TLR expressions were evaluated using RT-PCR and protein analyses following cytokine-mediated stimulation. PDLSCs exhibited the expected stem cell characteristics and expressed multiple TLRs under both conditions. Notably, inflammatory stimulation significantly upregulated TLR1 and TLR2 while downregulating TLR10 (p < 0.05). These findings provide a comprehensive characterization of TLR expression in PDLSCs and demonstrate how inflammation modulates their innate immune profile. The observed shifts in TLR expression may influence PDLSC responses to microbial pathogens and impact their immunomodulatory and regenerative properties in periodontal tissues. Understanding these interactions could contribute to developing targeted strategies for improving PDLSC-based therapies in periodontal disease.
Collapse
Affiliation(s)
- Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht’s University, 24105 Kiel, Germany; (I.T.); (C.D.)
| | - Immo Terheyden
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht’s University, 24105 Kiel, Germany; (I.T.); (C.D.)
| | - Christof Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht’s University, 24105 Kiel, Germany; (I.T.); (C.D.)
| | - Karim Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht’s University, 24105 Kiel, Germany; (I.T.); (C.D.)
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Giza 12613, Egypt
- Stem Cells and Tissue Engineering Unit, Faculty of Oral and Dental Medicine, Cairo University, Giza 12613, Egypt
| |
Collapse
|
3
|
Shi Y, Shi Y, Jie R, He J, Luo Z, Li J. Vitamin D: The crucial neuroprotective factor for nerve cells. Neuroscience 2024; 560:272-285. [PMID: 39343160 DOI: 10.1016/j.neuroscience.2024.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
Vitamin D is well known for its role in regulating the absorption and utilization of calcium and phosphorus as well as bone formation, and a growing number of studies have shown that vitamin D also has important roles in the nervous system, such as maintaining neurological homeostasis and protecting normal brain function, and that neurons and glial cells may be the targets of these effects. Most reviews of vitamin D's effects on the nervous system have focused on its overall effects, without distinguishing the contributors to these effects. In this review, we mainly focus on the cells of the central nervous system, summarizing the effects of vitamin D on them and the related pathways. With this review, we hope to elucidate the role of vitamin D in the nervous system at the cellular level and provide new insights into the prevention and treatment of neurodegenerative diseases in the direction of neuroprotection, myelin regeneration, and so on.
Collapse
Affiliation(s)
- Yuxin Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Yuchen Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Rao Jie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiawei He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha 410008, Hunan, PR China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China.
| | - Jing Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China.
| |
Collapse
|
4
|
Ong YC, Tejo BA, Yap WB. An Immunoinformatic Approach for Identifying and Designing Conserved Multi-Epitope Vaccines for Coronaviruses. Biomedicines 2024; 12:2530. [PMID: 39595095 PMCID: PMC11592158 DOI: 10.3390/biomedicines12112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The COVID-19 pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has exposed the vulnerabilities and unpreparedness of the global healthcare system in dealing with emerging zoonoses. In the past two decades, coronaviruses (CoV) have been responsible for three major viral outbreaks, and the likelihood of future outbreaks caused by these viruses is high and nearly inevitable. Therefore, effective prophylactic universal vaccines targeting multiple circulating and emerging coronavirus strains are warranted. METHODS This study utilized an immunoinformatic approach to identify evolutionarily conserved CD4+ (HTL) and CD8+ (CTL) T cells, and B-cell epitopes in the coronaviral spike (S) glycoprotein. RESULTS A total of 132 epitopes were identified, with the majority of them found to be conserved across the bat CoVs, pangolin CoVs, endemic coronaviruses, SARS-CoV-2, and Middle East respiratory syndrome coronavirus (MERS-CoV). Their peptide sequences were then aligned and assembled to identify the overlapping regions. Eventually, two major peptide assemblies were derived based on their promising immune-stimulating properties. CONCLUSIONS In this light, they can serve as lead candidates for universal coronavirus vaccine development, particularly in the search for pan-coronavirus multi-epitope universal vaccines that can confer protection against current and novel coronaviruses.
Collapse
Affiliation(s)
- Yu Chuan Ong
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Bimo Ario Tejo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Wei Boon Yap
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
- One Health UKM, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
5
|
Ghani MU, Chen J, Khosravi Z, Wu Q, Liu Y, Zhou J, Zhong L, Cui H. Unveiling the multifaceted role of toll-like receptors in immunity of aquatic animals: pioneering strategies for disease management. Front Immunol 2024; 15:1378111. [PMID: 39483482 PMCID: PMC11524855 DOI: 10.3389/fimmu.2024.1378111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/12/2024] [Indexed: 11/03/2024] Open
Abstract
The pattern recognition receptor (PRR), which drives innate immunity, shields the host against invasive pathogens. Fish and other aquatic species with poorly developed adaptive immunity mostly rely on their innate immunity, regulated by PRRs such as inherited-encoded toll-like receptors (TLRs). The discovery of 21 unique TLR variations in various aquatic animals over the past several years has sparked interest in using TLRs to improve aquatic animal's immune response and disease resistance. This comprehensive review provides an overview of the latest investigations on the various characteristics of TLRs in aquatic animals. It emphasizes their categorization, insights into 3D architecture, ligand recognition, signaling pathways, TLRs mediated immune responses under biotic and abiotic stressors, and expression variations during several developmental stages. It also highlights the differences among aquatic animals' TLRs and their mammal counterparts, which signifies the unique roles that TLRs play in aquatic animal's immune systems. This article summarizes current aquaculture research to enhance our understanding of fish immune systems for effective aquaculture -related disease management.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- Medical Research Institute, Southwest University, Chongqing, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Junfan Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Zahra Khosravi
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Qishu Wu
- Medical Research Institute, Southwest University, Chongqing, China
| | - Yujie Liu
- Medical Research Institute, Southwest University, Chongqing, China
| | - Jingjie Zhou
- Medical Research Institute, Southwest University, Chongqing, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| |
Collapse
|
6
|
He Y, Chen H, Li M, Tang Z, Yu H, Huang C, Zhang X, Ling X, Xie X, Wei G, He Y, Chen J. Analysis of TLR10 gene polymorphisms in patients with rheumatoid arthritis. Int Immunopharmacol 2024; 138:112565. [PMID: 38941669 DOI: 10.1016/j.intimp.2024.112565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a chronic systemic disease characterized by inflammatory synovitis, and genetic factors play the greatest role in RA. This study aimed to investigate the relationship between Toll-like receptor 10(TLR10) gene polymorphisms and susceptibility to RA. METHODS A total of 271 patients with RA and an equal number of healthy controls were included, and the TLR10 rs2101521, rs10004195 and rs11725309 loci were genotyped by time-of-flight mass spectrometry. RESULTS Compared with healthy controls, Individuals carrying the rs2101521 G allele had an increased risk of developing RA (P = 0.01; odds ratio (OR) = 1.367; 95 % confidence interval (CI): 1.076-1.736). Individuals with the rs2101521 GG genotype had a greater risk of RA (P = 0.01; OR = 1.816; 95 % CI: 1.161-2.984). Stratified analysis demonstrated a greater prevalence of positive anti-cyclic citrullinated peptide (CCP)antibody in patients carrying the rs2101521 G allele (P = 0.03). Additionally, patients with the rs11725309 CT genotype had elevated levels of C-reactive protein (CRP)(P = 0.007). CONCLUSION In conclusion, TLR10 gene polymorphisms are associated with RA susceptibility.
Collapse
Affiliation(s)
- Youxian He
- Department of Rheumatologyand Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Huidong Chen
- Department of Rheumatologyand Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Mengxiang Li
- Department of Rheumatologyand Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Zhenboyang Tang
- Department of Rheumatologyand Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Hao Yu
- Department of Rheumatologyand Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Chunyan Huang
- Department of Rheumatologyand Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Xue Zhang
- Department of Rheumatologyand Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Xiru Ling
- Department of Rheumatologyand Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Xintong Xie
- Department of Rheumatologyand Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Guangliang Wei
- Department of Rheumatologyand Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Yue He
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Jie Chen
- Department of Rheumatologyand Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China; Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, PR China.
| |
Collapse
|
7
|
Abarca-Merlin DM, Martínez-Durán JA, Medina-Pérez JD, Rodríguez-Santos G, Alvarez-Arellano L. From Immunity to Neurogenesis: Toll-like Receptors as Versatile Regulators in the Nervous System. Int J Mol Sci 2024; 25:5711. [PMID: 38891900 PMCID: PMC11171594 DOI: 10.3390/ijms25115711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 06/21/2024] Open
Abstract
Toll-like receptors (TLRs) are among the main components of the innate immune system. They can detect conserved structures in microorganisms and molecules associated with stress and cellular damage. TLRs are expressed in resident immune cells and both neurons and glial cells of the nervous system. Increasing evidence is emerging on the participation of TLRs not only in the immune response but also in processes of the nervous system, such as neurogenesis and cognition. Below, we present a review of the literature that evaluates the expression and role of TLRs in processes such as neurodevelopment, behavior, cognition, infection, neuroinflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Daniela Melissa Abarca-Merlin
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Av. Dr. Márquez 162. Colonia Doctores, Mexico City 06720, Mexico; (D.M.A.-M.)
| | - J. Abigail Martínez-Durán
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Av. Dr. Márquez 162. Colonia Doctores, Mexico City 06720, Mexico; (D.M.A.-M.)
| | - J. David Medina-Pérez
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Av. Dr. Márquez 162. Colonia Doctores, Mexico City 06720, Mexico; (D.M.A.-M.)
| | - Guadalupe Rodríguez-Santos
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Av. Dr. Márquez 162. Colonia Doctores, Mexico City 06720, Mexico; (D.M.A.-M.)
| | - Lourdes Alvarez-Arellano
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Av. Dr. Márquez 162. Colonia Doctores, Mexico City 06720, Mexico; (D.M.A.-M.)
- CONAHCYT-Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
8
|
Bayyurt B, Baltacı S, Şahin NÖ, Arslan S, Bakır M. Relationship of Toll-Like Receptor 7, 9, and 10 Polymorphisms and the Severity of Coronavirus Disease 2019. Jpn J Infect Dis 2024; 77:161-168. [PMID: 38296538 DOI: 10.7883/yoken.jjid.2023.411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Coronavirus disease 2019 (COVID-19) is a pandemic that is still affecting people and has caused many deaths. Toll-like receptors (TLRs) have an important role in the binding of disease agents to the host cell, disease susceptibility and severity, and host disease resistance. In this study, we investigated the frequencies of TLR7 (C.4-151 A/G), TLR9 (T-1486C and G2848A), and TLR10 (720A/C and 992T/A) single nucleotide polymorphisms in 150 cases with COVID-19 and 171 control samples. We also examined whether TLR7, TLR9, and TLR10 were related to COVID-19 severity. Furthermore, we analyzed the association between COVID-19 and some clinical parameters. Polymerase chain reaction based on restriction fragment length polymorphisms performed for the TLR7, TLR9, and TLR10 single nucleotide polymorphisms. TLR7 C.4-151 A/G G allele and GG genotype; TLR9 T-1486C C allele and TC, CC genotypes; and TLR10 720A/C C allele; TLR10 992T/A A allele and AA genotype frequencies were statistically significant in cases with COVID-19 compared with controls (P < 0.05*). In addition, there was a statistically significant difference in the distribution of TLR7, TLR9, and TLR10 allele and genotype frequencies between the severity groups (P < 0.05*). Our findings suggest that TLR7, TLR9, and TLR10 polymorphisms may be crucial for the clinical course and susceptibility to infection.
Collapse
Affiliation(s)
- Burcu Bayyurt
- Department of Medical Biology, Faculty of Medicine, Sivas Cumhuriyet University, Turkey
| | - Sevgi Baltacı
- Departments of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Sivas Cumhuriyet University, Turkey
| | - Nil Özbilüm Şahin
- Department of Molecular Biology and Genetic, Faculty of Science, Sivas Cumhuriyet University, Turkey
| | - Serdal Arslan
- Department of Medical Biology, Faculty of Medicine, Mersin University, Turkey
| | - Mehmet Bakır
- Departments of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Sivas Cumhuriyet University, Turkey
| |
Collapse
|
9
|
Hiltunen N, Kemi N, Väyrynen JP, Böhm J, Kauppila JH, Huhta H, Helminen O. Toll-like receptors 1-9 in small bowel neuroendocrine tumors-Clinical significance and prognosis. PLoS One 2024; 19:e0302813. [PMID: 38709790 PMCID: PMC11073674 DOI: 10.1371/journal.pone.0302813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/12/2024] [Indexed: 05/08/2024] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors of the innate immunity. TLRs are known to mediate both antitumor effects and tumorigenesis. TLRs are abundant in many cancers, but their expression in small bowel neuroendocrine tumors (SB-NETs) is unknown. We aimed to characterize the expression of TLRs 1-9 in SB-NETs and lymph node metastases and evaluate their prognostic relevance. The present study included 125 patients with SB-NETs, of whom 95 had lymph node metastases, from two Finnish hospitals. Tissue samples were stained immunohistochemically for TLR expression, assessed based on cytoplasmic and nucleic staining intensity and percentage of positively stained cells. Statistical methods for survival analysis included Kaplan-Meier method and Cox regression adjusted for confounding factors. Disease-specific survival (DSS) was the primary outcome. TLRs 1-2 and 4-9 were expressed in SB-NETs and lymph node metastases. TLR3 showed no positive staining. In primary SB-NETs, TLRs 1-9 were not associated with survival. For lymph node metastases, high cytoplasmic TLR7 intensity associated with worse DSS compared to low cytoplasmic intensity (26.4% vs. 84.9%, p = 0.028). Adjusted mortality hazard (HR) was 3.90 (95% CI 1.07-14.3). The expression of TLRs 1-6 and 8-9 in lymph node metastases were not associated with survival. SB-NETs and their lymph node metastases express cytoplasmic TLR 1-2 and 4-9 and nucleic TLR5. High TLR7 expression in SB-NET lymph node metastases was associated with worse prognosis. The current research has future perspective, as it can help create base for clinical drug trials to target specific TLRs with agonists or antagonists to treat neuroendocrine tumors.
Collapse
Affiliation(s)
- Niko Hiltunen
- Translational Medicine Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Niko Kemi
- Translational Medicine Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Juha P. Väyrynen
- Translational Medicine Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jan Böhm
- Department of Pathology, Central Finland Central Hospital, Jyväskylä, Finland
| | - Joonas H. Kauppila
- Surgery Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital, Upper Gastrointestinal Surgery, Stockholm, Sweden
| | - Heikki Huhta
- Surgery Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Olli Helminen
- Translational Medicine Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- Surgery Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
10
|
Wang K, Huang H, Zhan Q, Ding H, Li Y. Toll-like receptors in health and disease. MedComm (Beijing) 2024; 5:e549. [PMID: 38685971 PMCID: PMC11057423 DOI: 10.1002/mco2.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Toll-like receptors (TLRs) are inflammatory triggers and belong to a family of pattern recognition receptors (PRRs) that are central to the regulation of host protective adaptive immune responses. Activation of TLRs in innate immune myeloid cells directs lymphocytes to produce the most appropriate effector responses to eliminate infection and maintain homeostasis of the body's internal environment. Inappropriate TLR stimulation can lead to the development of general autoimmune diseases as well as chronic and acute inflammation, and even cancer. Therefore, TLRs are expected to be targets for therapeutic treatment of inflammation-related diseases, autoimmune diseases, microbial infections, and human cancers. This review summarizes the recent discoveries in the molecular and structural biology of TLRs. The role of different TLR signaling pathways in inflammatory diseases, autoimmune diseases such as diabetes, cardiovascular diseases, respiratory diseases, digestive diseases, and even cancers (oral, gastric, breast, colorectal) is highlighted and summarizes new drugs and related clinical treatments in clinical trials, providing an overview of the potential and prospects of TLRs for the treatment of TLR-related diseases.
Collapse
Affiliation(s)
- Kunyu Wang
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Hanyao Huang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Qi Zhan
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Haoran Ding
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yi Li
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
11
|
Rusanen P, Marttila E, Amatya SB, Hagström J, Uittamo J, Reunanen J, Rautemaa-Richardson R, Salo T. Expression of Toll-like receptors in oral squamous cell carcinoma. PLoS One 2024; 19:e0300437. [PMID: 38593176 PMCID: PMC11003673 DOI: 10.1371/journal.pone.0300437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/28/2024] [Indexed: 04/11/2024] Open
Abstract
Almost 380,000 new cases of oral cancer were reported worldwide in 2020. Oral squamous cell carcinoma (OSCC) accounts for 90% of all types of oral cancers. Emerging studies have shown association of Toll-like receptors (TLRs) in carcinogenesis. The present study aimed to investigate the expression levels and tissue localization of TRL1 to TRL10 and NF-κB between OSCC and healthy oral mucosa, as well as effect of Candida colonization in TRL expression in OSCC. Full thickness biopsies and microbial samples from 30 newly diagnosed primary OSCC patients and 26 health controls were collected. The expression of TLR1 to TLR10 and NF-κB was analyzed by immunohistochemistry. Microbial samples were collected from oral mucosa to detect Candida. OSCC epithelium showed lower staining intensity of TRL1, TRL2 TRL5, and TRL8 as compared to healthy controls. Similarly, staining intensity of TRL3, TRL4, TRL7, and TRL8 were significantly decreased in basement membrane (BM) zone. Likewise, OSCC endothelium showed lower staining intensity of TLR4, TLR7 and TLR8. Expression of NF-κB was significantly stronger in normal healthy tissue compared to OSCC sample. Positive correlation was found between the expression of NF-κB, TRL9 and TRL10 in basal layer of the infiltrative zone OSCC samples (P = 0.04 and P = 0.002, respectively). Significant increase in TRL4 was seen in BM zone of sample colonized with Candida (P = 0.01). According to the limited number of samples, our data indicates downregulation of TLRs and NF-κB in OSCC, and upregulation of TLR4 expression with presence of Candida.
Collapse
Affiliation(s)
- Peter Rusanen
- Department of Bacteriology and Immunology, Haartman institute, University of Helsinki, Helsinki, Finland
| | - Emilia Marttila
- Department of Oral and Maxillofacial Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sajeen Bahadur Amatya
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| | - Jaana Hagström
- Department of Bacteriology and Immunology, Haartman institute, University of Helsinki, Helsinki, Finland
| | - Johanna Uittamo
- Department of Oral and Maxillofacial Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Research Unit on Acetaldehyde and Cancer, University of Helsinki, Helsinki, Finland
| | - Justus Reunanen
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| | - Riina Rautemaa-Richardson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, NIHR Manchester Biomedical Research Centre (BRC) at the Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Tuula Salo
- Department of Oral and Maxillofacial Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- HUSLAB, Department of Pathology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
| |
Collapse
|
12
|
Stejskalova K, Janova E, Splichalova P, Futas J, Oppelt J, Vodicka R, Horin P. Twelve toll-like receptor (TLR) genes in the family Equidae - comparative genomics, selection and evolution. Vet Res Commun 2024; 48:725-741. [PMID: 37874499 PMCID: PMC10998774 DOI: 10.1007/s11259-023-10245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
Toll-like receptors (TLRs) represent an important part of the innate immune system. While human and murine TLRs have been intensively studied, little is known about TLRs in non-model species. The order Perissodactyla comprises a variety of free-living and domesticated species exposed to different pathogens in different habitats and is therefore suitable for analyzing the diversity and evolution of immunity-related genes. We analyzed TLR genes in the order Perissodactyla with a focus on the family Equidae. Twelve TLRs were identified by bioinformatic analyses of online genomic resources; their sequences were confirmed in equids by genomic DNA re-sequencing of a panel of nine species. The expression of TLR11 and TLR12 was confirmed in the domestic horse by cDNA sequencing. Phylogenetic reconstruction of the TLR gene family in Perissodactyla identified six sub-families. TLR4 clustered together with TLR5; the TLR1-6-10 subfamily showed a high degree of sequence identity. The average estimated evolutionary divergence of all twelve TLRs studied was 0.3% among the Equidae; the most divergent CDS were those of Equus caballus and Equus hemionus kulan (1.34%) in the TLR3, and Equus africanus somaliensis and Equus quagga antiquorum (2.1%) in the TLR1 protein. In each TLR gene, there were haplotypes shared between equid species, most extensively in TLR3 and TLR9 CDS, and TLR6 amino acid sequence. All twelve TLR genes were under strong negative overall selection. Signatures of diversifying selection in specific codon sites were detected in all TLRs except TLR8. Differences in the selection patterns between virus-sensing and non-viral TLRs were observed.
Collapse
Affiliation(s)
- K Stejskalova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 61242, Czech Republic
| | - E Janova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 61242, Czech Republic
- RG Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - P Splichalova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 61242, Czech Republic
| | - J Futas
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 61242, Czech Republic
- RG Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - J Oppelt
- RG Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic
| | | | - P Horin
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 61242, Czech Republic.
- RG Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic.
| |
Collapse
|
13
|
Malik JA, Kaur G, Agrewala JN. Revolutionizing medicine with toll-like receptors: A path to strengthening cellular immunity. Int J Biol Macromol 2023; 253:127252. [PMID: 37802429 DOI: 10.1016/j.ijbiomac.2023.127252] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Toll-like receptors play a vital role in cell-mediated immunity, which is crucial for the immune system's defense against pathogens and maintenance of homeostasis. The interaction between toll-like-receptor response and cell-mediated immunity is complex and essential for effectively eliminating pathogens and maintaining immune surveillance. In addition to pathogen recognition, toll-like receptors serve as adjuvants in vaccines, as molecular sensors, and recognize specific patterns associated with pathogens and danger signals. Incorporating toll-like receptor ligands into vaccines can enhance the immune response to antigens, making them potent adjuvants. Furthermore, they bridge the innate and adaptive immune systems and improve antigen-presenting cells' capacity to process and present antigens to T cells. The intricate signaling pathways and cross-talk between toll-like-receptor and T cell receptor (TCR) signaling emphasize their pivotal role in orchestrating effective immune responses against pathogens, thus facilitating the development of innovative vaccine strategies. This article provides an overview of the current understanding of toll-like receptor response and explores their potential clinical applications. By unraveling the complex mechanisms of toll-like-receptor signaling, we can gain novel insights into immune responses and potentially develop innovative therapeutic approaches. Ongoing investigations into the toll-like-receptor response hold promise in the future in enhancing our ability to combat infections, design effective vaccines, and improve clinical outcomes.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India
| | - Gurpreet Kaur
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India; Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab 140055, India
| | - Javed N Agrewala
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India.
| |
Collapse
|
14
|
He X, Li N, Liu D, Zang M, Zhao M, Ran N, Liu C, Xing L, Wang H, Wang T, Shao Z. Regulatory role of ceRNA network in B lymphocytes of patients with immune thrombocytopenia. Autoimmunity 2023; 56:2281225. [PMID: 38053370 DOI: 10.1080/08916934.2023.2281225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023]
Abstract
OBJECTIVE High-throughput sequencing was used to screen expressing differences of miRNA, lncRNA, and mRNA in CD19+ B peripheral blood samples of newly diagnosed immune thrombocytopenia (ITP) patients and healthy controls. The study aimed to explore the regulatory role of ceRNA network in the pathogenesis of dysfunctional CD19 + B lymphocytes of ITP patients. METHODS CD19+ B lymphocytes were isolated from peripheral blood samples of ITP patients and their healthy counterparts. High-throughput sequencing was used to screen for the expression of miRNA, lncRNA, and mRNA of ITP patients and healthy controls, which were analysed by the ceRNA network. Moreover, qPCR was used to verify the differential expression of miRNA, lncRNA, and mRNA in ITP patients and healthy controls. The correlation between differentially expressed miRNA, lncRNA, mRNA, and B lymphocyte subsets was also analysed. RESULTS The CD19+ B lymphocytes of 4 newly diagnosed ITP patients and 4 healthy controls were sequenced and analysed. There were 65 differentially expressed lncRNA and 149 mRNA forming a ceRNA network showed that 12 lncRNA and 136 differentially expressed mRNA were closely associated. Similarly, miR-144-3p, miR-374c-3p, and miR-451a were highly expressed in ITP patients, as confirmed by qPCR, which was consistent with the high-throughput sequence results. LOC102724852 and CCL20 were highly expressed in ITP patients, while LOC105378901, LOC112268311, ALAS2, and TBC1D3F were not as compared to healthy controls, which was consistent with the high-throughput sequence results. In addition, the expression of miR-374c-3p, LOC112268311, LOC105378901, and CXCL3 were correlated with the percentage of B lymphocyte subsets. CONCLUSIONS The ceRNA network of miRNA, lncRNA, and mRNA in peripheral CD19 + B lymphocytes plays an essential role in the pathogenesis of ITP.
Collapse
Affiliation(s)
- Xin He
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Nianbin Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Donglan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengtong Zang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Manjun Zhao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ningyuan Ran
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunyan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Limin Xing
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huaquan Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ting Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
15
|
Stierschneider A, Wiesner C. Shedding light on the molecular and regulatory mechanisms of TLR4 signaling in endothelial cells under physiological and inflamed conditions. Front Immunol 2023; 14:1264889. [PMID: 38077393 PMCID: PMC10704247 DOI: 10.3389/fimmu.2023.1264889] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Toll-like receptor 4 (TLR4) are part of the innate immune system. They are capable of recognizing pathogen-associated molecular patterns (PAMPS) of microbes, and damage-associated molecular patterns (DAMPs) of damaged tissues. Activation of TLR4 initiates downstream signaling pathways that trigger the secretion of cytokines, type I interferons, and other pro-inflammatory mediators that are necessary for an immediate immune response. However, the systemic release of pro-inflammatory proteins is a powerful driver of acute and chronic inflammatory responses. Over the past decades, immense progress has been made in clarifying the molecular and regulatory mechanisms of TLR4 signaling in inflammation. However, the most common strategies used to study TLR4 signaling rely on genetic manipulation of the TLR4 or the treatment with agonists such as lipopolysaccharide (LPS) derived from the outer membrane of Gram-negative bacteria, which are often associated with the generation of irreversible phenotypes in the target cells or unintended cytotoxicity and signaling crosstalk due to off-target or pleiotropic effects. Here, optogenetics offers an alternative strategy to control and monitor cellular signaling in an unprecedented spatiotemporally precise, dose-dependent, and non-invasive manner. This review provides an overview of the structure, function and signaling pathways of the TLR4 and its fundamental role in endothelial cells under physiological and inflammatory conditions, as well as the advances in TLR4 modulation strategies.
Collapse
Affiliation(s)
| | - Christoph Wiesner
- Department Science & Technology, Institute Biotechnology, IMC Krems University of Applied Sciences, Krems, Austria
| |
Collapse
|
16
|
Chang JS, Vinogradov AA, Zhang Y, Goto Y, Suga H. Deep Learning-Driven Library Design for the De Novo Discovery of Bioactive Thiopeptides. ACS CENTRAL SCIENCE 2023; 9:2150-2160. [PMID: 38033794 PMCID: PMC10683472 DOI: 10.1021/acscentsci.3c00957] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
Broad substrate tolerance of ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic enzymes has allowed numerous strategies for RiPP engineering. However, despite relaxed specificities, exact substrate preferences of RiPP enzymes are often difficult to pinpoint. Thus, when designing combinatorial libraries of RiPP precursors, balancing the compound diversity with the substrate fitness can be challenging. Here, we employed a deep learning model to streamline the design of mRNA display libraries. Using an in vitro reconstituted thiopeptide biosynthesis platform, we performed mRNA display-based profiling of substrate fitness for the biosynthetic pathway involving five enzymes to train an accurate deep learning model. We then utilized the model to design optimal mRNA libraries and demonstrated their utility in affinity selections against IRAK4 kinase and the TLR10 cell surface receptor. The selections led to the discovery of potent thiopeptide ligands against both target proteins (KD up to 1.3 nM for the best compound against IRAK4 and 300 nM for TLR10). The IRAK4-targeting compounds also inhibited the kinase at single-digit μM concentrations in vitro, exhibited efficient internalization into HEK293H cells, and suppressed NF-kB-mediated signaling in cells. Altogether, the developed approach streamlines the discovery of pseudonatural RiPPs with de novo designed biological activities and favorable pharmacological properties.
Collapse
Affiliation(s)
- Jun Shi Chang
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Alexander A. Vinogradov
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yue Zhang
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Goto
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
17
|
Liu R, Sun B. Lactic Acid Bacteria and Aging: Unraveling the Interplay for Healthy Longevity. Aging Dis 2023; 15:AD.2023.0926. [PMID: 37962461 PMCID: PMC11272207 DOI: 10.14336/ad.2023.0926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 11/15/2023] Open
Abstract
Lactic Acid Bacteria (LAB) are beneficial microorganisms widely utilized in food fermentation processes and as probiotic supplements. They offer multifarious health benefits, including enhancing digestion, strengthening immune mechanisms, and mitigating inflammation. Recent studies suggest that LAB might be instrumental in the anti-aging domain, modulating key molecular pathways involved in the aging continuum, such as IL-13, TNF-α, mTOR, IFN-γ, TGF-β, AMPK, and GABA. The TLR family, particularly TLR2, appears pivotal during the primary cellular interactions with bacteria and their byproducts. Concurrently, the Sirtuin family, predominantly Sirtuin-1, plays diverse roles upon cellular stimuli by bacterial components. The potential anti-aging benefits postulated include restoring gut balance, enhancing antioxidant potential, and fortifying cognitive and mental faculties. However, the current body of evidence is still embryonic and calls for expansive human trials and deeper mechanistic analyses. The safety and optimal consumption metrics for LAB also warrant rigorous evaluation. Future research trajectories should identify specific LAB strains with potent anti-aging properties and unravel the underlying biological pathways. Given the promising implications, LAB strains stand as potential dietary contenders to foster healthy aging and enrich the quality of life among the elderly population.
Collapse
Affiliation(s)
- Rui Liu
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Bo Sun
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
18
|
Colleselli K, Stierschneider A, Wiesner C. An Update on Toll-like Receptor 2, Its Function and Dimerization in Pro- and Anti-Inflammatory Processes. Int J Mol Sci 2023; 24:12464. [PMID: 37569837 PMCID: PMC10419760 DOI: 10.3390/ijms241512464] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
While a certain level of inflammation is critical for humans to survive infection and injury, a prolonged inflammatory response can have fatal consequences. Pattern recognition Toll-like receptors (TLRs) are key players in the initiation of an inflammatory process. TLR2 is one of the most studied pattern recognition receptors (PRRs) and is known to form heterodimers with either TLR1, TLR4, TLR6, and TLR10, allowing it to recognize a wide range of pathogens. Although a large number of studies have been conducted over the past decades, there are still many unanswered questions regarding TLR2 mechanisms in health and disease. In this review, we provide an up-to-date overview of TLR2, including its homo- and heterodimers. Furthermore, we will discuss the pro- and anti-inflammatory properties of TLR2 and recent findings in prominent TLR2-associated infectious and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Christoph Wiesner
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| |
Collapse
|
19
|
Panzer B, Kopp CW, Neumayer C, Koppensteiner R, Jozkowicz A, Poledniczek M, Gremmel T, Jilma B, Wadowski PP. Toll-like Receptors as Pro-Thrombotic Drivers in Viral Infections: A Narrative Review. Cells 2023; 12:1865. [PMID: 37508529 PMCID: PMC10377790 DOI: 10.3390/cells12141865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Toll-like receptors (TLRs) have a critical role in the pathogenesis and disease course of viral infections. The induced pro-inflammatory responses result in the disturbance of the endovascular surface layer and impair vascular homeostasis. The injury of the vessel wall further promotes pro-thrombotic and pro-coagulatory processes, eventually leading to micro-vessel plugging and tissue necrosis. Moreover, TLRs have a direct role in the sensing of viruses and platelet activation. TLR-mediated upregulation of von Willebrand factor release and neutrophil, as well as macrophage extra-cellular trap formation, further contribute to (micro-) thrombotic processes during inflammation. The following review focuses on TLR signaling pathways of TLRs expressed in humans provoking pro-thrombotic responses, which determine patient outcome during viral infections, especially in those with cardiovascular diseases.
Collapse
Affiliation(s)
- Benjamin Panzer
- Department of Cardiology, Wilhelminenspital, 1090 Vienna, Austria
| | - Christoph W Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Alicja Jozkowicz
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Medical Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Gremmel
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, 3100 St. Pölten, Austria
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Patricia P Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
20
|
Mantovani S, Oliviero B, Varchetta S, Renieri A, Mondelli MU. TLRs: Innate Immune Sentries against SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:8065. [PMID: 37175768 PMCID: PMC10178469 DOI: 10.3390/ijms24098065] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been responsible for a devastating pandemic since March 2020. Toll-like receptors (TLRs), crucial components in the initiation of innate immune responses to different pathogens, trigger the downstream production of pro-inflammatory cytokines, interferons, and other mediators. It has been demonstrated that they contribute to the dysregulated immune response observed in patients with severe COVID-19. TLR2, TLR3, TLR4 and TLR7 have been associated with COVID-19 severity. Here, we review the role of TLRs in the etiology and pathogenesis of COVID-19, including TLR7 and TLR3 rare variants, the L412F polymorphism in TLR3 that negatively regulates anti-SARS-CoV-2 immune responses, the TLR3-related cellular senescence, the interaction of TLR2 and TLR4 with SARS-CoV-2 proteins and implication of TLR2 in NET formation by SARS-CoV-2. The activation of TLRs contributes to viral clearance and disease resolution. However, TLRs may represent a double-edged sword which may elicit dysregulated immune signaling, leading to the production of proinflammatory mediators, resulting in severe disease. TLR-dependent excessive inflammation and TLR-dependent antiviral response may tip the balance towards the former or the latter, altering the equilibrium that drives the severity of disease.
Collapse
Affiliation(s)
- Stefania Mantovani
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
| | - Barbara Oliviero
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
| | - Stefania Varchetta
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy;
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Mario U. Mondelli
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
21
|
Maurić Maljković M, Vlahek I, Piplica A, Ekert Kabalin A, Sušić V, Stevanović V. Prospects of toll-like receptors in dairy cattle breeding. Anim Genet 2023. [PMID: 37051618 DOI: 10.1111/age.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
Toll-like receptors (TLRs) play an important role in mediating the immune response against various microbes, such as bacteria, viruses, parasites, and fungi, in innate and adaptive immunity. Ten functional TLRs (TLR1 to TLR10) have been identified and mapped in cattle, with each TLR recognising specific pathogen-associated molecular patterns. The variation in genes controlling the immune response contributes to susceptibility or resistance to various infectious diseases such as mastitis, bovine tuberculosis, and paratuberculosis. Identifying TLR SNPs shows promising results for future marker-assisted breeding strategies, screening for disease risks, and improving the genetic resistance of dairy cattle. This article aims not only to review the research into susceptibility or resistance to infectious diseases and milk production traits in dairy cattle but also to discuss the limitations in current studies and the prospects in dairy cattle breeding.
Collapse
Affiliation(s)
- M Maurić Maljković
- Department of Animal Breeding and Livestock Production, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - I Vlahek
- Department of Animal Breeding and Livestock Production, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - A Piplica
- Department of Animal Breeding and Livestock Production, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - A Ekert Kabalin
- Department of Animal Breeding and Livestock Production, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - V Sušić
- Department of Animal Breeding and Livestock Production, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - V Stevanović
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
22
|
Host Cell Restriction Factors Blocking Efficient Vector Transduction: Challenges in Lentiviral and Adeno-Associated Vector Based Gene Therapies. Cells 2023; 12:cells12050732. [PMID: 36899868 PMCID: PMC10001033 DOI: 10.3390/cells12050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Gene therapy relies on the delivery of genetic material to the patient's cells in order to provide a therapeutic treatment. Two of the currently most used and efficient delivery systems are the lentiviral (LV) and adeno-associated virus (AAV) vectors. Gene therapy vectors must successfully attach, enter uncoated, and escape host restriction factors (RFs), before reaching the nucleus and effectively deliver the therapeutic genetic instructions to the cell. Some of these RFs are ubiquitously expressed in mammalian cells, while others are cell-specific, and others still are expressed only upon induction by danger signals as type I interferons. Cell restriction factors have evolved to protect the organism against infectious diseases and tissue damage. These restriction factors can be intrinsic, directly acting on the vector, or related with the innate immune response system, acting indirectly through the induction of interferons, but both are intertwined. The innate immunity is the first line of defense against pathogens and, as such cells derived from myeloid progenitors (but not only), are well equipped with RFs to detect pathogen-associated molecular patterns (PAMPs). In addition, some non-professional cells, such as epithelial cells, endothelial cells, and fibroblasts, play major roles in pathogen recognition. Unsurprisingly, foreign DNA and RNA molecules are among the most detected PAMPs. Here, we review and discuss identified RFs that block LV and AAV vector transduction, hindering their therapeutic efficacy.
Collapse
|
23
|
Tiwari V, Sowdhamini R. Structural modelling and dynamics of full-length of TLR10 sheds light on possible modes of dimerization, ligand binding and mechanism of action. Curr Res Struct Biol 2023; 5:100097. [PMID: 36911652 PMCID: PMC9996232 DOI: 10.1016/j.crstbi.2023.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/22/2023] Open
Abstract
Toll like receptors (TLRs) play a pivotal role in innate and adaptive immunity. There are 10 TLRs in the human genome, of which TLR10 is the least characterized. Genetic polymorphism of TLR10 has been shown to be associated with multiple diseases including tuberculosis and rheumatoid arthritis. TLR10 consists of an extracellular domain (ECD), a single-pass transmembrane (TM) helix and intracellular TIR (Toll/Interleukin-1 receptor) domain. ECD is employed for ligand recognition and the intracellular domain interacts with other TIR domain-containing adapter proteins for signal transduction. Experimental structure of ECD or TM domain is not available for TLR10. In this study, we have modelled multiple forms of TLR10-ECD dimers, such as closed and open forms, starting from available structures of homologues. Subsequently, multiple full-length TLR10 homodimer models were generated by utilizing homology modelling and protein-protein docking. The dynamics of these models in membrane-aqueous environment revealed the global motion of ECD and TIR domain towards membrane bilayer. The TIR domain residues exhibited high root mean square fluctuation compared to ECD. The 'closed form' model was observed to be energetically more favorable than 'open form' model. The evaluation of persistent interchain interactions, along with their conservation score, unveiled critical residues for each model. Further, the binding of dsRNA to TLR10 was modelled by defined and blind docking approaches. Differential binding of dsRNA to the protomers of TLR10 was observed upon simulation that could provide clues on ligand disassociation. Dynamic network analysis revealed that the 'open form' model can be the functional form while 'closed form' model can be the apo form of TLR10.
Collapse
Affiliation(s)
- Vikas Tiwari
- National Centre for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - R Sowdhamini
- National Centre for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| |
Collapse
|
24
|
Tiruvayipati S, Hameed DS, Ahmed N. Play the plug: How bacteria modify recognition by host receptors? Front Microbiol 2022; 13:960326. [PMID: 36312954 PMCID: PMC9615552 DOI: 10.3389/fmicb.2022.960326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The diverse microbial community that colonizes the gastrointestinal tract has remarkable effects on the host immune system and physiology resulting in homeostasis or disease. In both scenarios, the gut microbiota interacts with their host through ligand-receptor binding whereby the downstream signaling processes determine the outcome of the interaction as disease or the counteractive immune responses of the host. Despite several studies on microbe-host interactions and the mechanisms by which this intricate process happens, a comprehensive and updated inventory of known ligand-receptor interactions and their roles in disease is paramount. The ligands which originate as a result of microbial responses to the host environment contribute to either symbiotic or parasitic relationships. On the other hand, the host receptors counteract the ligand actions by mounting a neutral or an innate response. The varying degrees of polymorphic changes in the host receptors contribute to specificity of interaction with the microbial ligands. Additionally, pathogenic microbes manipulate host receptors with endogenous enzymes belonging to the effector protein family. This review focuses on the diversity and similarity in the gut microbiome-host interactions both in health and disease conditions. It thus establishes an overview that can help identify potential therapeutic targets in response to critically soaring antimicrobial resistance as juxtaposed to tardy antibiotic development research.
Collapse
Affiliation(s)
- Suma Tiruvayipati
- Infectious Diseases Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dharjath S. Hameed
- Department of Chemical Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
- *Correspondence: Niyaz Ahmed, ,
| |
Collapse
|
25
|
Atiyah NS, Fadhil HY, Ad’hiah AH. Toll-like receptor 10 gene polymorphism and risk of multiple sclerosis among Iraqi patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00301-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Toll-like receptors (TLRs) are a family of 10 pattern recognition receptors (TLR1–TLR10) involved in the regulation of inflammatory and immune responses besides their role in the pathogenesis of autoimmune diseases including multiple sclerosis (MS). TLR10 is the least studied TLR in MS, and data for single nucleotide polymorphisms (SNPs) of the TLR10 gene are limited. Therefore, a case–control study was performed on 85 patients with relapsing–remitting MS and 86 healthy controls (HC) to explore SNPs in the promoter region of TLR10 gene. A 927-bp region was amplified, and Sanger sequencing identified 10 SNPs with a minor allele frequency ≥ 10% (rs200395112 T/A, rs201802754 A/T, rs201228097 T/A, rs113588825 G/A, rs10004195 T/A, rs10034903 C/G, rs10012016 G/A/C, rs10012017 G/T, rs33994884 T/Deletion [Del] and rs28393318 A/G).
Results
Del allele and T/Del genotype of rs33994884, as well as AG genotype of rs28393318, showed significantly lower frequencies in MS patients compared to HC. Allele and genotype frequencies of the 10 SNPs showed no significant differences between MS patients classified according to the Expanded Disability Status Scale. Haplotype analysis revealed that haplotype A-T-A-G-A-G-G-T-A showed a significantly increased frequency in MS patients compared to HC (odds ratio [OR] = 9.70; 95% confidence interval [CI] = 1.28–73.31; corrected probability [pc] = 0.03), while frequency of A-T-A-G-T-C-A-T-G haplotype was significantly decreased (OR = 0.10; 95% CI = 0.01–0.85; pc = 0.05).
Conclusions
The study indicated that two SNPs may influence susceptibility to MS (rs33994884 and rs28393318), but haplotype analysis of TLR10 gene SNPs was more informative.
Collapse
|
26
|
Lai N, Qian Y, Wu Y, Jiang X, Sun H, Luo Z, Zhao Y, Zeng C, Zheng X, Zhan XY, Tang C, Wang Q, Huang B. Toll-like receptor 10 expression in B cells is negatively correlated with the progression of primary Sjögren's disease. Clin Immunol 2022; 237:108989. [PMID: 35358679 DOI: 10.1016/j.clim.2022.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Abstract
Primary Sjögren's Disease (pSjD) is considered a B cell-mediated disease. Toll-like receptor 10 (TLR10) is highly expressed in human B cells, indicating that TLR10 probably plays a vital role in pSjD. We examined TLR10 expression in peripheral B subsets of pSjD patients and analyzed their association with disease activity. We observed that TLR10 expression in total, naïve, memory, and switched memory B cells was significantly increased in low-activity pSjD patients as compared with healthy controls and high-activity patients. TLR10 expression in the above mentioned B subsets (except naïve B) was negatively correlated with serum levels of anti-SSA antibody and BAFF, respectively. Moreover, a higher proportion of high-activity pSjD patients was observed in TLR10 low- than high-expressed patients. Our study concluded that TLR10 expression in CD19+ B and memory B was negatively correlated with pSjD disease activity, suggesting that TLR10 might take part in the progression of pSjD.
Collapse
Affiliation(s)
- Nannan Lai
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - YiChao Qian
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yilin Wu
- Department of Stomatology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Xi Jiang
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Honghua Sun
- Department of Transfusion, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhaofan Luo
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yanli Zhao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen 518100, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen 518100, China
| | - Xiaoming Zheng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiao-Yong Zhan
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Chun Tang
- Department of Nephrology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China.
| | - Qingwen Wang
- Department of Rheumatology, Shenzhen Hospital, Peking University, Shenzhen 518034, China.
| | - Bihui Huang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
27
|
Abstract
The immune (innate and adaptive) system has evolved to protect the host from any danger present in the surrounding outer environment (microbes and associated MAMPs or PAMPs, xenobiotics, and allergens) and dangers originated within the host called danger or damage-associated molecular patterns (DAMPs) and recognizing and clearing the cells dying due to apoptosis. It also helps to lower the tissue damage during trauma and initiates the healing process. The pattern recognition receptors (PRRs) play a crucial role in recognizing different PAMPs or MAMPs and DAMPs to initiate the pro-inflammatory immune response to clear them. Toll-like receptors (TLRs) are first recognized PRRs and their discovery proved milestone in the field of immunology as it filled the gap between the first recognition of the pathogen by the immune system and the initiation of the appropriate immune response required to clear the infection by innate immune cells (macrophages, neutrophils, dendritic cells or DCs, and mast cells). However, in addition to their expression by innate immune cells and controlling their function, TLRs are also expressed by adaptive immune cells. We have identified 10 TLRs (TLR1-TLR10) in humans and 12 TLRs (TLR1-TLR13) in laboratory mice till date as TLR10 in mice is present only as a defective pseudogene. The present chapter starts with the introduction of innate immunity, timing of TLR evolution, and the evolution of adaptive immune system and its receptors (T cell receptors or TCRs and B cell receptors or BCRs). The next section describes the role of TLRs in the innate immune function and signaling involved in the generation of inflammation. The subsequent sections describe the expression and function of different TLRs in murine and human adaptive immune cells (B cells and different types of T cells, including CD4+T cells, CD8+T cells, CD4+CD25+Tregs, and CD8+CD25+Tregs, etc.). The modulation of TLRs expressed on T and B cells has a great potential to develop different vaccine candidates, adjuvants, immunotherapies to target various microbial infections, including current COVID-19 pandemic, cancers, and autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA.
| |
Collapse
|
28
|
Unterberger S, Davies KA, Rambhatla SB, Sacre S. Contribution of Toll-Like Receptors and the NLRP3 Inflammasome in Rheumatoid Arthritis Pathophysiology. Immunotargets Ther 2021; 10:285-298. [PMID: 34350135 PMCID: PMC8326786 DOI: 10.2147/itt.s288547] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease that is characterized by inflammation of the synovial joints leading to cartilage and bone damage. The pathogenesis is sustained by the production of pro-inflammatory cytokines including tumor necrosis factor (TNF), interleukin (IL)-1 and IL-6, which can be targeted therapeutically to alleviate disease severity. Several innate immune receptors are suggested to contribute to the chronic inflammation in RA, through the production of pro-inflammatory factors in response to endogenous danger signals. Much research has focused on toll-like receptors and more recently the nucleotide-binding domain and leucine-rich repeat pyrin containing protein-3 (NLRP3) inflammasome, which is required for the processing and release of IL-1β. This review summarizes the current understanding of the potential involvement of these receptors in the initiation and maintenance of inflammation and tissue damage in RA and experimental arthritis models.
Collapse
Affiliation(s)
- Sarah Unterberger
- Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, BN1 9PS, UK
| | - Kevin A Davies
- Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, BN1 9PS, UK
| | | | - Sandra Sacre
- Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, BN1 9PS, UK
| |
Collapse
|
29
|
Xia P, Wu Y, Lian S, Yan L, Meng X, Duan Q, Zhu G. Research progress on Toll-like receptor signal transduction and its roles in antimicrobial immune responses. Appl Microbiol Biotechnol 2021; 105:5341-5355. [PMID: 34180006 PMCID: PMC8236385 DOI: 10.1007/s00253-021-11406-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022]
Abstract
When microorganisms invade a host, the innate immune system first recognizes the pathogen-associated molecular patterns of these microorganisms through pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are known transmembrane PRRs existing in both invertebrates and vertebrates. Upon ligand recognition, TLRs initiate a cascade of signaling events; promote the pro-inflammatory cytokine, type I interferon, and chemokine expression; and play an essential role in the modulation of the host's innate and adaptive immunity. Therefore, it is of great significance to improve our understanding of antimicrobial immune responses by studying the role of TLRs and their signal molecules in the host's defense against invading microbes. This paper aims to summarize the specificity of TLRs in recognition of conserved microbial components, such as lipoprotein, lipopolysaccharide, flagella, endosomal nucleic acids, and other bioactive metabolites derived from microbes. This set of interactions helps to elucidate the immunomodulatory effect of TLRs and the signal transduction changes involved in the infectious process and provide a novel therapeutic strategy to combat microbial infections.
Collapse
Affiliation(s)
- Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Li Yan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Xia Meng
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Qiangde Duan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
30
|
Mayslich C, Grange PA, Dupin N. Cutibacterium acnes as an Opportunistic Pathogen: An Update of Its Virulence-Associated Factors. Microorganisms 2021; 9:303. [PMID: 33540667 PMCID: PMC7913060 DOI: 10.3390/microorganisms9020303] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cutibacterium acnes is a member of the skin microbiota found predominantly in regions rich in sebaceous glands. It is involved in maintaining healthy skin and has long been considered a commensal bacterium. Its involvement in various infections has led to its emergence as an opportunist pathogen. Interactions between C. acnes and the human host, including the human skin microbiota, promote the selection of C. acnes strains capable of producing several virulence factors that increase inflammatory capability. This pathogenic property may be related to many infectious mechanisms, such as an ability to form biofilms and the expression of putative virulence factors capable of triggering host immune responses or enabling C. acnes to adapt to its environment. During the past decade, many studies have identified and characterized several putative virulence factors potentially involved in the pathogenicity of this bacterium. These virulence factors are involved in bacterial attachment to target cells, polysaccharide-based biofilm synthesis, molecular structures mediating inflammation, and the enzymatic degradation of host tissues. C. acnes, like other skin-associated bacteria, can colonize various ecological niches other than skin. It produces several proteins or glycoproteins that could be considered to be active virulence factors, enabling the bacterium to adapt to the lipophilic environment of the pilosebaceous unit of the skin, but also to the various organs it colonizes. In this review, we summarize current knowledge concerning characterized C. acnes virulence factors and their possible implication in the pathogenicity of C. acnes.
Collapse
Affiliation(s)
- Constance Mayslich
- NSERM Institut Cochin, INSERM U1016-CNRS UMR8104, Equipe de Biologie Cutanée, Université de Paris, 75014 Paris, France; (C.M.); (P.A.G.)
| | - Philippe Alain Grange
- NSERM Institut Cochin, INSERM U1016-CNRS UMR8104, Equipe de Biologie Cutanée, Université de Paris, 75014 Paris, France; (C.M.); (P.A.G.)
- Service de Dermatologie-Vénéréologie, Groupe Hospitalier APHP.5, CNR IST Bactériennes—Laboratoire Associé Syphilis, 75014 Paris, France
| | - Nicolas Dupin
- NSERM Institut Cochin, INSERM U1016-CNRS UMR8104, Equipe de Biologie Cutanée, Université de Paris, 75014 Paris, France; (C.M.); (P.A.G.)
- Service de Dermatologie-Vénéréologie, Groupe Hospitalier APHP.5, CNR IST Bactériennes—Laboratoire Associé Syphilis, 75014 Paris, France
| |
Collapse
|