1
|
Aguilera-Sepúlveda P, Cano-Gómez C, Villalba R, Borges V, Agüero M, Bravo-Barriga D, Frontera E, Jiménez-Clavero MÁ, Fernández-Pinero J. The key role of Spain in the traffic of West Nile virus lineage 1 strains between Europe and Africa. Infect Dis (Lond) 2024; 56:743-758. [PMID: 38836293 DOI: 10.1080/23744235.2024.2348633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND West Nile Virus (WNV) is a zoonotic arbovirus worldwide spread. Seasonal WNV outbreaks occur in the Mediterranean basin since the late 1990's with ever-increasing incidence. In Southern Spain WNV is endemic, as disease foci - caused by WNV lineage 1 (WNV-L1) strains - occur every year. On the contrary, WNV-L2 is the dominant lineage in Europe, so most European WNV sequences available belong to this lineage, WNV-L1 sequences being still scarce. METHODS To fill this gap, this study reports the genetic characterisation of 27 newly described WNV-L1 strains, involved in outbreaks affecting wild birds and horses during the last decade in South-Western Spain. RESULTS All strains except one belong to the Western Mediterranean-1 sub-cluster (WMed-1), related phylogenetically to Italian, French, Portuguese, Moroccan and, remarkably, Senegalese strains. This sub-cluster persisted, spread and evolved into three distinguishable WMed-1 phylogenetic groups that co-circulated, notably, in the same province (Cádiz). They displayed different behaviours: from long-term persistence and rapid spread to neighbouring regions within Spain, to long-distance spread to different countries, including transcontinental spread to Africa. Among the different introductions of WNV in Spain revealed in this study, some of them succeeded to get established, some extinguished from the territory shortly afterwards. Furthermore, Spain's southernmost province, Cádiz, constitutes a hotspot for virus incursion. CONCLUSION Southern Spain seems a likely scenario for emergence of exotic pathogens of African origin. Therefore, circulation of diverse WNV-L1 variants in Spain prompts for an extensive surveillance under a One Health approach.
Collapse
Affiliation(s)
| | - Cristina Cano-Gómez
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Rubén Villalba
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), Algete, Spain
| | - Vítor Borges
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), Algete, Spain
| | - Daniel Bravo-Barriga
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Eva Frontera
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | |
Collapse
|
2
|
Williams RAJ, Criollo Valencia HA, López Márquez I, González González F, Llorente F, Jiménez-Clavero MÁ, Busquets N, Mateo Barrientos M, Ortiz-Díez G, Ayllón Santiago T. West Nile Virus Seroprevalence in Wild Birds and Equines in Madrid Province, Spain. Vet Sci 2024; 11:259. [PMID: 38922006 PMCID: PMC11209238 DOI: 10.3390/vetsci11060259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
West Nile virus (WNV) is a re-emerging flavivirus, primarily circulating among avian hosts and mosquito vectors, causing periodic outbreaks in humans and horses, often leading to neuroinvasive disease and mortality. Spain has reported several outbreaks, most notably in 2020 with seventy-seven human cases and eight fatalities. WNV has been serologically detected in horses in the Community of Madrid, but to our knowledge, it has never been reported from wild birds in this region. To estimate the seroprevalence of WNV in wild birds and horses in the Community of Madrid, 159 wild birds at a wildlife rescue center and 25 privately owned equines were sampled. Serum from thirteen birds (8.2%) and one equine (4.0%) tested positive with a WNV competitive enzyme-linked immunosorbent assay (cELISA) designed for WNV antibody detection but sensitive to cross-reacting antibodies to other flaviviruses. Virus-neutralization test (VNT) confirmed WNV antibodies in four bird samples (2.5%), and antibodies to undetermined flavivirus in four additional samples. One equine sample (4.0%) tested positive for WNV by VNT, although this horse previously resided in a WN-endemic area. ELISA-positive birds included both migratory and resident species, juveniles and adults. Two seropositive juvenile birds suggest local flavivirus transmission within the Community of Madrid, while WNV seropositive adult birds may have been infected outside Madrid. The potential circulation of flaviviruses, including WNV, in birds in the Madrid Community raises concerns, although further surveillance of mosquitoes, wild birds, and horses in Madrid is necessary to establish the extent of transmission and the principal species involved.
Collapse
Affiliation(s)
- Richard A. J. Williams
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, José Antonio Nováis, 28040 Madrid, Spain
| | | | - Irene López Márquez
- Group for the Rehabilitation of Native Fauna and their Habitat—GREFA, 28220 Madrid, Spain; (I.L.M.); (F.G.G.)
| | - Fernando González González
- Group for the Rehabilitation of Native Fauna and their Habitat—GREFA, 28220 Madrid, Spain; (I.L.M.); (F.G.G.)
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco Llorente
- Animal Health Research Center (CISA-INIA), CSIC, 28130 Valdeolmos, Spain; (F.L.)
| | | | - Núria Busquets
- IRTA, Animal Health Program, Animal Health Research Center (CReSA), Campus of the Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
- Mixed Research Unit IRTA-UAB in Animal Health, Animal Health Research Center (CReSA), Campus of the Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - Marta Mateo Barrientos
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Gustavo Ortiz-Díez
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Tania Ayllón Santiago
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, José Antonio Nováis, 28040 Madrid, Spain
- Faculty of Health Sciences, Alfonso X El Sabio University, 28691 Madrid, Spain;
| |
Collapse
|
3
|
Magallanes S, Llorente F, Ruiz-López MJ, Martínez-de la Puente J, Soriguer R, Calderon J, Jímenez-Clavero MÁ, Aguilera-Sepúlveda P, Figuerola J. Long-term serological surveillance for West Nile and Usutu virus in horses in south-West Spain. One Health 2023; 17:100578. [PMID: 38024263 PMCID: PMC10665154 DOI: 10.1016/j.onehlt.2023.100578] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 11/26/2023] Open
Abstract
West Nile virus (WNV) is a re-emerging zoonotic pathogen with increasing incidence in Europe, producing a recent outbreak in 2020 in Spain with 77 human cases and eight fatalities. However, the factors explaining the observed changes in the incidence of WNV in Europe are not completely understood. Longitudinal monitoring of WNV in wild animals across Europe is a useful approach to understand the eco-epidemiology of WNV in the wild and the risk of spillover into humans. However, such studies are very scarce up to now. Here, we analysed the occurrence of WNV and Usutu virus (USUV) antibodies in 2102 samples collected between 2005 and 2020 from a population of feral horses in Doñana National Park. The prevalence of WNV antibodies varied between years, with a mean seroprevalence of 8.1% (range 0%-25%) and seasonally. Climate conditions including mean minimum annual temperatures and mean rainy days per year were positively correlated with WNV seroprevalence, while the annual rainfall was negatively. We also detected the highest incidence of seroconversions in 2020 coinciding with the human outbreak in southern Spain. Usutu virus-specific antibodies were detected in the horse population since 2011. The WNV outbreak in humans was preceded by a long period of increasing circulation of WNV among horses with a very high exposure in the year of the outbreak. These results highlight the utility of One Health approaches to better understand the transmission dynamics of zoonotics pathogens.
Collapse
Affiliation(s)
- Sergio Magallanes
- Department of Wetland Ecology (EBD-CSIC), Estación Biológica de Doñana, Avda. Américo Vespucio 26, E-41092 Sevilla, Spain
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, 28130, Valdeolmos, Madrid, Spain
| | - María José Ruiz-López
- Department of Wetland Ecology (EBD-CSIC), Estación Biológica de Doñana, Avda. Américo Vespucio 26, E-41092 Sevilla, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Spain
| | - Josué Martínez-de la Puente
- CIBER of Epidemiology and Public Health (CIBERESP), Spain
- Department of Parasitology, University of Granada, Granada E-18071, Spain
| | - Ramon Soriguer
- Department of Wetland Ecology (EBD-CSIC), Estación Biológica de Doñana, Avda. Américo Vespucio 26, E-41092 Sevilla, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Spain
| | - Juan Calderon
- Department of Wetland Ecology (EBD-CSIC), Estación Biológica de Doñana, Avda. Américo Vespucio 26, E-41092 Sevilla, Spain
| | - Miguel Ángel Jímenez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, 28130, Valdeolmos, Madrid, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Spain
| | | | - Jordi Figuerola
- Department of Wetland Ecology (EBD-CSIC), Estación Biológica de Doñana, Avda. Américo Vespucio 26, E-41092 Sevilla, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Spain
| |
Collapse
|
4
|
García-Bocanegra I, Franco JJ, León CI, Barbero-Moyano J, García-Miña MV, Fernández-Molera V, Gómez MB, Cano-Terriza D, Gonzálvez M. High exposure of West Nile virus in equid and wild bird populations in Spain following the epidemic outbreak in 2020. Transbound Emerg Dis 2022; 69:3624-3636. [PMID: 36222172 PMCID: PMC10092718 DOI: 10.1111/tbed.14733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/07/2022] [Accepted: 10/04/2022] [Indexed: 02/07/2023]
Abstract
A cross-sectional study was conducted to assess the circulation and risk factors associated with West Nile virus (WNV) exposure in equine and wild bird populations following the largest epidemic outbreak ever reported in Spain. A total of 305 equids and 171 wild birds were sampled between November 2020 and June 2021. IgG antibodies against flaviviruses were detected by blocking enzyme-linked immunosorbent assay (bELISA) in 44.9% (109/243) and 87.1% (54/62) of unvaccinated and vaccinated equids, respectively. The individual seroprevalence in unvaccinated individuals (calculated on animals seropositive by both bELISA and virus microneutralization test [VNT]) was 38.3% (95%CI: 33.1-43.4). No IgM antibodies were detected in animals tested (0/243; 0.0%; 95%CI: 0.0-1.5) by capture-ELISA. The main risk factors associated with WNV exposure in equids were age (adult and geriatric), breed (crossbred) and the absence of a disinsection programme on the facilities. In wild birds, IgG antibodies against flaviviruses were found in 32.7% (56/171; 95%CI: 26.8-38.6) using bELISA, giving an individual WNV seroprevalence of 19.3% (95%CI: 14.3-24.3) after VNT. Seropositivity was found in 37.8% of the 37 species analysed. Species group (raptors), age (>1-year old) and size (large) were the main risk factors related to WNV seropositivity in wild birds. Our results indicate high exposure and widespread distribution of WNV in equid and wild bird populations in Spain after the epidemic outbreak in 2020. The present study highlights the need to continue and improve active surveillance programmes for the detection of WNV in Spain, particularly in those areas at greatest risk of virus circulation.
Collapse
Affiliation(s)
- Ignacio García-Bocanegra
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonosis and Emerging Diseases (ENZOEM), University of Cordoba, Cordoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan J Franco
- Immunology and Applied Genetics, S.A. (Eurofins-Ingenasa), Madrid, Spain
| | - Clara I León
- Agencia de Medio Ambiente y Agua de Andalucía (AMAYA), Junta de Andalucía, Sevilla, Spain
| | - Jesús Barbero-Moyano
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonosis and Emerging Diseases (ENZOEM), University of Cordoba, Cordoba, Spain
| | - María V García-Miña
- Consejería de Agricultura, Pesca, Agua y Desarrollo Rural, Junta de Andalucía, Sevilla, Spain
| | | | - María B Gómez
- Laboratorio Central de Veterinaria (LCV), Ministerio de Agricultura, Pesca y Alimentación, Algete, Madrid, Spain
| | - David Cano-Terriza
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonosis and Emerging Diseases (ENZOEM), University of Cordoba, Cordoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Moisés Gonzálvez
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonosis and Emerging Diseases (ENZOEM), University of Cordoba, Cordoba, Spain.,Department of Animal Health, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| |
Collapse
|
5
|
Aguilera-Sepúlveda P, Gómez-Martín B, Agüero M, Jiménez-Clavero MÁ, Fernández-Pinero J. A new cluster of West Nile virus lineage 1 isolated from a northern goshawk in Spain. Transbound Emerg Dis 2021; 69:3121-3127. [PMID: 34812592 DOI: 10.1111/tbed.14399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 12/21/2022]
Abstract
West Nile Virus (WNV; family Flaviviridae, genus flavivirus) is a zoonotic arbovirus worldwide spread. Its genetic diversity has allowed the definition of at least seven lineages, being lineages 1 and 2 the most widely distributed. Western Mediterranean region has been affected by WNV since decades. In Spain, WNV is actively circulating, provoking annual outbreaks in birds, horses and lately in humans. Lineage 1 is responsible for outbreaks that occurred in central and southern regions, while lineage 2 has been recently described in wild birds in north-eastern part of the country. During 2017 season, a disease outbreak in captive raptors was reported in southern Spain and WNV was isolated from a dead northern goshawk. Full genome sequencing was followed by phylogenetic analyses and analyses of the amino acidic substitutions. This strain, named Spain/2017/NG-b, highly differs from those which have been circulating both in Spain and in the neighbouring Mediterranean countries, constituting a new distinct group, tentatively classified in a newly defined cluster 7 within the WNV clade 1a, supporting a new, independent introduction of the virus in the Western Mediterranean region from an unknown origin. Besides, circumstantial evidence indicates that this emerging WNV strain could be behind the subsequent outbreak occurred nearby in horses. Overall, the reinforcement of surveillance programs, especially in wild birds, is essential to early detect the circulation of WNV and other related flaviviruses that could cause outbreaks in wild or domestic birds, equine and human populations.
Collapse
Affiliation(s)
- Pilar Aguilera-Sepúlveda
- Departamento de enfermedades infecciosas y salud global, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Valdeolmos, Madrid, Spain
| | | | | | - Miguel Ángel Jiménez-Clavero
- Departamento de enfermedades infecciosas y salud global, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Valdeolmos, Madrid, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Madrid, Spain
| | - Jovita Fernández-Pinero
- Departamento de enfermedades infecciosas y salud global, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Valdeolmos, Madrid, Spain
| |
Collapse
|
6
|
Bravo-Barriga D, Aguilera-Sepúlveda P, Guerrero-Carvajal F, Llorente F, Reina D, Pérez-Martín JE, Jiménez-Clavero MÁ, Frontera E. West Nile and Usutu virus infections in wild birds admitted to rehabilitation centres in Extremadura, western Spain, 2017-2019. Vet Microbiol 2021; 255:109020. [PMID: 33677369 DOI: 10.1016/j.vetmic.2021.109020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
West Nile virus (WNV) is an emerging flavivirus transmitted generally by mosquitoes of Culex genus. It is maintained in an enzootic life cycle where birds act as reservoir hosts. Humans and horses are also susceptible to infection, and occasionally, they suffer from neurological complications. However, they do not transmit the virus to other vectors, behaving as dead-end hosts. Sporadic WNV outbreaks observed in horses and wild birds from Extremadura (western Spain) during 2016 and 2017 seasons prompted to carry out this survey in wild birds, focused on specimens coming from two wildlife rehabilitation centres. Between October 2017 and December 2019, samples from 391 wild birds, belonging to 56 different species were collected and analysed in search of evidence of WNV infection. The analysis of serum samples for WNV-specific antibodies by ELISA, whose specificity was subsequently confirmed by virus-neutralisation test (VNT) showed positive results in 18.23 % birds belonging to 18 different species. Pelecaniformes (33.33 %), Accipitriformes (25.77 %) and Strigiformes (22.92 %) orders had the higher seroprevalences. Remarkably, WNV-specific antibodies were found in a black stork for the first time in Europe. Analysis by real time RT-PCR in symptomatic birds confirmed the presence of WNV lineage 1 RNA in griffon vulture and little owls. Specificity analysis of ELISA positive and doubtful sera was performed by differential VNT titration against WNV and two other cross-reacting avian flaviviruses found in Spain: Usutu virus (USUV) and Bagaza virus (BAGV). Only four samples showed USUV-specific antibodies (1.04 %) corresponding to three species: Eurasian eagle-owl, griffon vulture and great bustard (first detection in Europe) whereas no samples were found reactive to BAGV. Differential VNT yielded undetermined flavivirus result in 16 samples (4.17 %). This is the first study carried out on wild birds from Extremadura (western Spain). It highlights the widespread circulation of WNV in the region and its co-circulation with USUV.
Collapse
Affiliation(s)
- Daniel Bravo-Barriga
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - Pilar Aguilera-Sepúlveda
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain.
| | | | - Francisco Llorente
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain.
| | - David Reina
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - J Enrique Pérez-Martín
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - Miguel Ángel Jiménez-Clavero
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.
| | - Eva Frontera
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| |
Collapse
|
7
|
Metz MBC, Olufemi OT, Daly JM, Barba M. Systematic review and meta-analysis of seroprevalence studies of West Nile virus in equids in Europe between 2001 and 2018. Transbound Emerg Dis 2020; 68:1814-1823. [PMID: 33012076 DOI: 10.1111/tbed.13866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 01/10/2023]
Abstract
There is some evidence that West Nile virus (WNV), which causes encephalomyelitis in equids, is an emerging disease in Europe. The aim of this study was to perform a systematic review and meta-analysis to analyse seroprevalence studies of WNV in equids in European countries between 2001 and 2018. Two electronic databases, PubMed and Scopus, were searched for relevant publications published from 2001 to 2018 using predetermined keywords. A total of 1,484 papers were initially found. After applying the eligibility criteria, 39 papers were finally included in the systematic review. Analysis of 28,089 equids from 16 European countries revealed a pooled seroprevalence of 8% (95% CI 5%-12%, p < .001, I2 = 99.3%) in Europe. The pooled seroprevalence was slightly higher in Mediterranean basin countries than other countries and when calculated for samples collected between 2001 and 2009 compared to 2010 to 2018. Differences in study design (e.g. sampling associated with recent outbreaks of WNV) contributed to a high degree of variability among studies. Further studies with harmonized study design and reporting of the results are recommended to better estimate and monitor European seroprevalence of WNV in equids.
Collapse
Affiliation(s)
- Marine B C Metz
- Agentes Microbiológicos asociados a la Reproducción Animal (ProVaginBio), Veterinary Faculty, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Olaolu T Olufemi
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Janet M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Marta Barba
- Agentes Microbiológicos asociados a la Reproducción Animal (ProVaginBio), Veterinary Faculty, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|
8
|
Guerrero-Carvajal F, Bravo-Barriga D, Martín-Cuervo M, Aguilera-Sepúlveda P, Ferraguti M, Jiménez-Clavero MÁ, Llorente F, Alonso JM, Frontera E. Serological evidence of co-circulation of West Nile and Usutu viruses in equids from western Spain. Transbound Emerg Dis 2020; 68:1432-1444. [PMID: 32853452 DOI: 10.1111/tbed.13810] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022]
Abstract
West Nile virus (WNV) is a mosquito-borne emerging virus in Europe with capacity to cause neurological complications such as encephalitis or meningoencephalitis in humans, birds or equids. In Spain, WNV is actively circulating in mosquitoes, birds and horses in different regions, but never has been deeply studied in Extremadura. Therefore, the aim of this study was to evaluate the seroprevalence of WNV in equids of those areas and to analyse the risk factors associated with exposure to the virus. A total of 199 out of 725 equids presented antibodies against WNV by competition ELISA (27.45%), while 22 were doubtful (3.03%). Anti-WNV IgM antibodies were detected in 16 equids (2.21%), and 3 animals were doubtful (0.41%). All ELISA-reactive positive/doubtful sera (N = 226) were further tested by micro-virus neutralization test (VNT), and a total of 143 horses were confirmed as positive for WNV, obtaining a seroprevalence of 19.72% in equids of western Spain. In addition, specific antibodies against USUV were confirmed in 11 equids. In 24 equids, a specific flavivirus species (detected by ELISA test) could not be determined. The generalized linear mixed-effects models showed that the significant risk factors associated with individual WNV infection in equids were the age (adults) and hair coat colour (light), whereas in USUV infections, it was the breed (pure). Data demonstrated that WNV and USUV are circulating in regions of western Spain. Given the high WNV seroprevalence found in equids from the studied areas, it is important to improve the surveillance programmes of public health to detect undiagnosed human cases and to establish a vaccination programme in equid herds in these regions.
Collapse
Affiliation(s)
| | - Daniel Bravo-Barriga
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| | - María Martín-Cuervo
- Animal Medicine Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| | - Pilar Aguilera-Sepúlveda
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain
| | - Martina Ferraguti
- Anatomy, Cellular Biology and Zoology Department, Science Faculty, University of Extremadura (UEx), Badajoz, Spain
| | - Miguel Ángel Jiménez-Clavero
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain.,Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Francisco Llorente
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain
| | - Juan Manuel Alonso
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| | - Eva Frontera
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| |
Collapse
|
9
|
Vilibic-Cavlek T, Savic V, Petrovic T, Toplak I, Barbic L, Petric D, Tabain I, Hrnjakovic-Cvjetkovic I, Bogdanic M, Klobucar A, Mrzljak A, Stevanovic V, Dinjar-Kujundzic P, Radmanic L, Monaco F, Listes E, Savini G. Emerging Trends in the Epidemiology of West Nile and Usutu Virus Infections in Southern Europe. Front Vet Sci 2019; 6:437. [PMID: 31867347 PMCID: PMC6908483 DOI: 10.3389/fvets.2019.00437] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/19/2019] [Indexed: 02/05/2023] Open
Abstract
The epidemiology of West Nile (WNV) and Usutu virus (USUV) has changed dramatically over the past two decades. Since 1999, there have been regular reports of WNV outbreaks and the virus has expanded its area of circulation in many Southern European countries. After emerging in Italy in 1996, USUV has spread to other countries causing mortality in several bird species. In 2009, USUV seroconversion in horses was reported in Italy. Co-circulation of both viruses was detected in humans, horses and birds. The main vector of WNV and USUV in Europe is Culex pipiens, however, both viruses were found in native Culex mosquito species (Cx. modestus, Cx. perexiguus). Experimental competence to transmit the WNV was also proven for native and invasive mosquitoes of Aedes and Culex genera (Ae. albopictus, Ae. detritus, Cx. torrentium). Recently, Ae. albopictus and Ae. japonicus naturally-infected with USUV were reported. While neuroinvasive human WNV infections are well-documented, USUV infections are sporadically detected. However, there is increasing evidence of a role of USUV in human disease. Seroepidemiological studies showed that USUV circulation is more common than WNV in some endemic regions. Recent data showed that WNV strains detected in humans, horses, birds, and mosquitoes mainly belong to lineage 2. In addition to European USUV lineages, some reports indicate the presence of African USUV lineages as well. The trends in WNV/USUV range and vector expansion are likely to continue in future years. This mini-review provides an update on the epidemiology of WNV and USUV infections in Southern Europe within a multidisciplinary "One Health" context.
Collapse
Affiliation(s)
- Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, Zagreb, Croatia
| | - Tamas Petrovic
- Department for Virology, Scientific Veterinary Institute, Novi Sad, Serbia
| | - Ivan Toplak
- Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dusan Petric
- Laboratory for Medical and Veterinary Entomology, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Irena Tabain
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
| | - Ivana Hrnjakovic-Cvjetkovic
- Center for Microbiology, Institute of Public Health Vojvodina, Novi Sad, Serbia
- Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
| | - Ana Klobucar
- Division of Disinfection, Disinfestation and Pest Control, Andrija Stampar Teaching Institute of Public Health, Zagreb, Croatia
| | - Anna Mrzljak
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Medicine, Merkur University Hospital, Zagreb, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Luka Radmanic
- Department of Microbiology and Infectious Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Federica Monaco
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, Teramo, Italy
| | - Eddy Listes
- Laboratory for Diagnostics, Croatian Veterinary Institute, Regional Institute Split, Split, Croatia
| | - Giovanni Savini
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, Teramo, Italy
| |
Collapse
|