1
|
Vázquez-Salgado L, Olveira JG, Dopazo CP, Bandín I. Detection of different Betanodavirus genotypes in wild fish from Spanish Atlantic coastal waters (Galicia, northwestern Spain). JOURNAL OF AQUATIC ANIMAL HEALTH 2024; 36:57-69. [PMID: 37787030 DOI: 10.1002/aah.10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
OBJECTIVE The nervous necrosis virus (NNV; genus Betanodavirus) is an aquatic pathogen that is responsible for a neurological disease affecting marine fish. Despite its almost worldwide distribution, global warming could favor the spread of NNV to new areas, highlighting the importance of conducting epidemiological surveys on both wild and farmed marine fish species. In this study, we assessed NNV prevalence in wild fish caught along the Galician Atlantic coast. METHODS In total, 1277 fish were analyzed by reverse transcription real-time polymerase chain reaction. RESULT Twenty two (1.72%) of those fish tested positive for NNV, including two species in which the pathogen had not yet been reported. CONCLUSION The reassortant RGNNV/SJNNV (red-spotted grouper NNV/striped jack NNV) was detected in 55% of NNV-positive individuals, while the remaining 45% harbored the SJNNV-type genome. Moreover, from European Pilchard Sardina pilchardus and Atlantic Mackerel Scomber scombrus, we isolated four reassortant strains that carried amino acid mutations at key sites related to NNV-host interaction.
Collapse
Affiliation(s)
- Lucía Vázquez-Salgado
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José G Olveira
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos P Dopazo
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Bandín
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Vázquez-Salgado L, Pascoli F, Marsella A, Biasini L, Buratin A, Pretto T, Abbadi M, Melchiotti E, Bandín I, Toffan A. Role of Rotifers in Betanodavirus Transmission to European Sea Bass Larvae. Front Vet Sci 2022; 9:932327. [PMID: 35990261 PMCID: PMC9383259 DOI: 10.3389/fvets.2022.932327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Marine invertebrates such as rotifers or Artemia, frequently used for fish larvae feeding, can be a potential source of pathogens. It has been demonstrated that Artemia can act as a nervous necrosis virus (NNV)-vector to Senegalese sole larvae. Therefore, in this study, we aimed to clarify the role of rotifers in NNV transmission to sea bass larvae following an oral challenge. Our results showed that sea bass larvae fed on a single dose of rotifers retaining NNV displayed clinical signs, mortality, and viral replication similar to the immersion challenge, although the course of the infection was slightly different between the two infection routes. Furthermore, we also demonstrated that rotifers can internalize NNV particles due to their filtering nature and maintain virus viability since viral particles were detected by immunohistochemistry, immunofluorescence, and cell culture within the rotifer body. However, viral quantification data suggested that rotifers are not permissive to NNV replication. In conclusion, this research demonstrated NNV horizontal transmission through rotifers to sea bass larvae, highlighting the importance of establishing strict routine controls on live food to prevent the introduction of potential pathogens to hatcheries.
Collapse
Affiliation(s)
- Lucia Vázquez-Salgado
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francesco Pascoli
- Istituto Zooprofilattico Sperimentale delle Venezie, OIE Reference Laboratory for Viral Encephalo-Retinopathy, National Reference Laboratory for Fish Diseases Legnaro, Padova, Italy
| | - Andrea Marsella
- Istituto Zooprofilattico Sperimentale delle Venezie, OIE Reference Laboratory for Viral Encephalo-Retinopathy, National Reference Laboratory for Fish Diseases Legnaro, Padova, Italy
| | - Lorena Biasini
- Istituto Zooprofilattico Sperimentale delle Venezie, OIE Reference Laboratory for Viral Encephalo-Retinopathy, National Reference Laboratory for Fish Diseases Legnaro, Padova, Italy
| | - Alessandra Buratin
- Istituto Zooprofilattico Sperimentale delle Venezie, OIE Reference Laboratory for Viral Encephalo-Retinopathy, National Reference Laboratory for Fish Diseases Legnaro, Padova, Italy
| | - Tobia Pretto
- Istituto Zooprofilattico Sperimentale delle Venezie, OIE Reference Laboratory for Viral Encephalo-Retinopathy, National Reference Laboratory for Fish Diseases Legnaro, Padova, Italy
| | - Miriam Abbadi
- Istituto Zooprofilattico Sperimentale delle Venezie, OIE Reference Laboratory for Viral Encephalo-Retinopathy, National Reference Laboratory for Fish Diseases Legnaro, Padova, Italy
| | - Erica Melchiotti
- Department of Histopathology, Istituto Zooprofilattico Sperimentale delle Venezie Legnaro, Padova, Italy
| | - Isabel Bandín
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Anna Toffan
- Istituto Zooprofilattico Sperimentale delle Venezie, OIE Reference Laboratory for Viral Encephalo-Retinopathy, National Reference Laboratory for Fish Diseases Legnaro, Padova, Italy
- *Correspondence: Anna Toffan
| |
Collapse
|
3
|
Emergence of Reassortment between a New and Reported Types of Betanodavirus in Shellfish. Pathogens 2021; 10:pathogens10101232. [PMID: 34684181 PMCID: PMC8540928 DOI: 10.3390/pathogens10101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Recently, three types of betanodavirus including red spotted grouper nervous necrosis virus (RGNNV), barfin flounder nervous necrosis virus (BFNNV), and Korean shellfish nervous necrosis virus (KSNNV) (proposed as a new fifth type) have been detected in shellfish in the marine environment around Korea. To investigate the presence of reassortment between betanodavirus types, the type based on the RNA2 segment of betanodaviruses carried in 420 domestic shellfish (n = 306) and finfish (n = 35), as well as imported shellfish (n = 79), was compared with the type identified by reverse-transcriptase polymerase chain reaction (RT-PCR) for RNA1 segment. Only five samples carrying reassortant betanodaviruses were found, appearing as RG/KSNNV (n = 2), KS/RGNNV (n = 1), and SJ/RGNNV (n = 2) types. From these samples, we successfully isolated two reassortant strains from Korean and Chinese shellfish in E-11 cells and called them KG1-reKS/RG and CM1-reRG/KS, respectively. In the full genome sequences, each RNA segment of the reassortant strains exhibited the same gene length and high sequence homology (≥98%) with the reference strains corresponding to the type of each segment. Both these reassortant strains induced high mortality to sevenband grouper (Epinephelus septemfasciatus) larvae with high viral concentrations in the body (109 viral particles/mg) and severe vacuolation in the retina and brain. These are the first results showing the involvement of the KSNNV type in the reassortment of RNA segments in the reported types of betanodavirus, which could represent a new potential risk in fish.
Collapse
|
4
|
Vázquez-Salgado L, Olveira JG, Dopazo CP, Bandín I. Role of rotifer ( Brachionus plicatilis) and Artemia ( Artemia salina) nauplii in the horizontal transmission of a natural nervous necrosis virus (NNV) reassortant strain to Senegalese sole ( Solea senegalensis) larvae. Vet Q 2021; 40:205-214. [PMID: 32813983 PMCID: PMC7734120 DOI: 10.1080/01652176.2020.1810357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Marine invertebrates are provided as a first feed for marine fish larvae because of their strict nutritional requirements, despite also being a potential source of infectious agents. AIM To assess horizontal transmission of a nervous necrosis virus reassortant strain (NNV) to sole larvae via Artemia and rotifers. MATERIALS AND METHODS Rotifer (Brachionus plicatilis) and Artemia (Artemia salina) nauplii cultures were bath infected with a reassortant (RGNNV/SJNNV) NNV strain isolated from gilthead sea bream and viral internalisation was confirmed by IFA. Senegalese sole (Solea senegalensis) larvae were fed on infected Artemia and disease signs and mortality were recorded. In addition, NNV viability was checked in cultures of either unfed invertebrates or invertebrates fed on phytoplankton and in the supernatant of microalgae cultures. All samples were tested by RT-qPCR and inoculation in cell culture. RESULTS Both rotifers and Artemia internalised NNV. Experimental transmission to sole larvae was achieved using infected Artemia and subsequently 60% mortality was recorded. At 24 h post-infection, orally infected individuals contained 9.34 × 104 copies of viral RNA, whereas the bath infection yielded 2.05 × 106 RNA copies larvae-1. Viral presence in both invertebrates was detected up to 8 days post infection but viral load decreased over time. Feeding with microalgae decreased viral detection even more and microalgae supernatants were demonstrated to significantly affect NNV viability. CONCLUSIONS Our results demonstrate that both invertebrates can bioaccumulate NNV and that Senegalese sole larvae fed on infected Artemia might develop viral encephalopathy and retinopathy and high mortality.
Collapse
Affiliation(s)
- L Vázquez-Salgado
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - J G Olveira
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - C P Dopazo
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - I Bandín
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
5
|
Betanodavirus and VER Disease: A 30-year Research Review. Pathogens 2020; 9:pathogens9020106. [PMID: 32050492 PMCID: PMC7168202 DOI: 10.3390/pathogens9020106] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The outbreaks of viral encephalopathy and retinopathy (VER), caused by nervous necrosis virus (NNV), represent one of the main infectious threats for marine aquaculture worldwide. Since the first description of the disease at the end of the 1980s, a considerable amount of research has gone into understanding the mechanisms involved in fish infection, developing reliable diagnostic methods, and control measures, and several comprehensive reviews have been published to date. This review focuses on host–virus interaction and epidemiological aspects, comprising viral distribution and transmission as well as the continuously increasing host range (177 susceptible marine species and epizootic outbreaks reported in 62 of them), with special emphasis on genotypes and the effect of global warming on NNV infection, but also including the latest findings in the NNV life cycle and virulence as well as diagnostic methods and VER disease control.
Collapse
|
6
|
Kim YC, Kwon WJ, Min JG, Kim KI, Jeong HD. Complete genome sequence and pathogenic analysis of a new betanodavirus isolated from shellfish. JOURNAL OF FISH DISEASES 2019; 42:519-531. [PMID: 30694526 DOI: 10.1111/jfd.12950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
We determined the complete genomic RNA sequence of a new type of betanodavirus Korea shellfish nervous necrosis virus (KSNNV) isolated from shellfish. Compared with other isolates representing four genotypes of betanodaviruses, the identity of the whole nucleotide sequence of the virus was in the range of 76%-83% with the presence of specific genetic motifs and formed a separate new branch in the phylogenetic analysis. In pathogenic analysis by immersion method, KSNNV-KOR1 shows 100% cumulative mortality like SFRG10/2012BGGa1 (RGNNV) in newly hatched sevenband grouper and mandarin fish, which is clearly different from those found in negative control groups. There were no significant differences in increasing rates of mortality and viral intra-tissue concentration of larval fishes infected with KSNNV-KOR1 at both 20 and 25°C water temperature. Histopathological examination of each fish species in the moribund stage revealed the presence of clear vacuoles in both brain and retinal tissues similar to typical histopathology features of RGNNV. In the present study, we first report a new betanodavirus from shellfish as the aetiological agent of viral nervous necrosis disease in fish with complete genomic nucleotide sequence and pathogenic analysis.
Collapse
Affiliation(s)
- Young Chul Kim
- Aquatic Disease Control Division, National Institute of Fisheries Science, Busan, Korea
| | - Woo Ju Kwon
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
| | - Joon Gyu Min
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
| | - Kwang Il Kim
- Pathology Research Division, Aquaculture Research Department, National Institute of Fisheries Science, Busan, Korea
| | - Hyun Do Jeong
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
| |
Collapse
|