1
|
Lv C, Guan B, Pang J, Kong W, Wang R, Wang L, Zhao M, Zhang H. Recombination and Genetic Diversity Analysis of Porcine Reproductive and Respiratory Syndrome 1 Nonstructural Protein 2 Genes in China. Genes (Basel) 2025; 16:507. [PMID: 40428330 PMCID: PMC12111547 DOI: 10.3390/genes16050507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) has been present in China for about 30 years, and because of the high mutability of PRRSV, it causes huge economic losses to pig enterprises every year. PRRSV-2 is widely prevalent in China, and the detection rate of PRRSV-1 is also on the rise. Nonstructural protein 2 (NSP2) is a highly variable protein with multiple biological functions, such as PRRSV replication, which plays an important role in understanding PRRSV variation and epidemic alerts. OBJECTIVES The epidemic characteristics and recombination of PRRSV-1 NSP2 are still unknown. The purpose of this study is to study the epidemic characteristics of PRRSV-1 NSP2 and lay a foundation for the prevention and control of PRRSV-1. METHODS In this study, we collected several PRRSV-1 and PRRSV-2 NSP2 gene sequences for gene sequence and recombination analyses, aiming to analyze the recombination pattern and genetic variation in the PRRSV-1 NSP2 genes in China. RESULTS The genetic similarity results showed that the 69 PRRSV-1 NSP2 gene sequences collected in this study showed nucleotide similarity ranging from 67.3% to 100.0% and amino acid similarity ranging from 64.3% to 100.0%. Amino acid sequence comparison showed that PRRSV-1 had more amino acid deletion or substitution sites than PRRSV-2. NSP2 also contains special amino acid regions such as the highly immunogenic region. PRRSV-1 can be categorized into four strains, NMEU09-1-like, BJEU06-1-like, HKEU-16-like and Amervac-like isolates, and are at different positions in the ML and NJ phylogenetic trees. In the ninety selected PRRSVs, six recombination events were detected using recombination analysis, two of which occurred in Chinese PRRSV-1 strains. Therefore, sequence analysis of NSP2 helps us to understand the prevalence and variation in PRRSV-1 in China over the past two decades and provides a theoretical basis for studying the epidemiology and evolution of NSP2.
Collapse
Affiliation(s)
- Chen Lv
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (B.G.); (J.P.)
| | - Baoyi Guan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (B.G.); (J.P.)
| | - Jiankun Pang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (B.G.); (J.P.)
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, CA 94158, USA;
| | - Ruining Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Lin Wang
- Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Mengmeng Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (B.G.); (J.P.)
| | - Hang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (B.G.); (J.P.)
| |
Collapse
|
2
|
Yim-Im W, Anderson TK, Böhmer J, Baliellas J, Stadejek T, Gauger PC, Krueger KM, Vermeulen CJ, Buter R, Kazlouski A, An T, Zhang J. Refining genetic classification of global porcine reproductive and respiratory syndrome virus type 1 (PRRSV-1) and investigating their geographic and temporal distributions. Vet Microbiol 2025; 302:110413. [PMID: 39904077 DOI: 10.1016/j.vetmic.2025.110413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
Porcine reproductive and respiratory syndrome virus type 1 (PRRSV-1) primarily circulates in Europe but is also detected in North America and Asia. Based on ORF5 sequences, previous studies classified PRRSV-1 into four subtypes. Subtype 1 was further classified into 12 clades (A-L) or into three lineages with lineage 1 including clades 1A-1G and lineage 3 including clades 3A-3G, but the systems are inconsistent and have not been adopted. In this study, we proposed a statistically supported PRRSV-1 genetic classification system based on 10,446 global PRRSV-1 ORF5 sequences spanning 1991-2023. We replaced the colloquial "subtype" designation with "lineage" to reflect evolutionary history and, subsequently, PRRSV-1 was classified into four lineages (L1-L4) with L1 including 18 sublineages (L1.1 to L1.18). The proposed classification system is flexible and may be amended if additional lineages, sublineages, or more granular classifications are needed to reflect contemporary PRRSV-1 detections and evolution. Geographic distributions of PRRSV-1 at lineage and sublineage levels were distinct, with L1 globally distributed and L2, L3 and L4 more restricted. Temporal dynamic changes in some countries were quantified. Classification and ORF5 nucleotide identity of six commercial PRRSV-1 vaccines to each lineage and sublineage and detection frequency of vaccine-like viruses were determined. The phylogenies based on whole-genome and ORF5 sequences demonstrated slightly different tree topologies. Recombination of PRRSV-1 was observed at within-sublineage and between-sublineage levels. A set of ORF5 reference sequences representing the refined classification is available for future diagnostic and epidemiological applications. This study provides a benchmark delineating the current genetic diversity of PRRSV-1 and introduces a refined classification system to support the global standardization and application of ORF5-based genetic classification for PRRSV-1.
Collapse
Affiliation(s)
- Wannarat Yim-Im
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Jan Böhmer
- IVD Gesellschaft für Innovative Veterinaerdiagnostik mbH, Seelzer-Letter, Germany
| | | | - Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Phillip C Gauger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Karen M Krueger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | | | - Rianne Buter
- Royal GD (GD Animal Health), P.O. Box 9, Deventer 7400 AA, the Netherlands
| | | | - Tongqing An
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, China
| | - Jianqiang Zhang
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.
| |
Collapse
|
3
|
Lebret A, Renson P, Brissonnier M, Chevance C, Normand V, Favrel J, Da-Costa JF, Jeusselin J, Nicolazo T, Blanchard Y, Bourry O, Boulbria G. PRRSV-1 outbreak in a farrowing farm caused by a vaccine derived strain: a case report. Porcine Health Manag 2025; 11:9. [PMID: 39962624 PMCID: PMC11834303 DOI: 10.1186/s40813-025-00425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/09/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The benefits of porcine reproductive and respiratory syndrome (PRRS) modified live virus vaccines (MLV) have been largely proven, however, the safety of these vaccines is questioned since vaccine strains can revert to virulence due to random mutations or recombination events. Reversion to virulence has been previously described for PRRSV-2 MLVs and recently for PRRSV-1 MLV after recombination. This case report describes the introduction of a PRRSV-1 strain derived from a MLV associated with an outbreak of reproductive disorder in a 1000-sow farrow-to-wean farm in France. CASE PRESENTATION In January 2023, unusual fever and lethargy in sows, and premature farrowings were reported in a farm that was regularly controlled as PRRS stable, through mass vaccination of the sows. PRRSV-1 was detected by PCR in sows and suckling piglet samples. Sequencing of ORF5, ORF7, and whole genome (WGS) was performed. Time-to-baseline production and total production losses were calculated using statistical process control methods. ORF5 and ORF7 nucleotide sequences indicated that the strain isolated from the clinical samples was differentiable from the DV MLV strain used in the farm (94.1% and 95.9% respectively) but closely related to the VP-046 Bis MLV strain which was never used (99.0% and 99.2% respectively). WGS of the farm PRRSV strain confirmed the high nucleotide identity percentage with the VP-046 Bis MLV strain (98.6%) over the entire genome and no recombination events was detected with MLV strains authorized in France. After different investigations aiming to identify the source of contamination, we were able to detect a closely related strain (99.46% of identity with the case farm strain across the entire genome) in a wean-to-finish farm located 400 m further. It took 17 batches (34 weeks) to recover the baseline production of piglets after implementation of a PRRSV stabilization protocol, which represented a total loss of 812 weaned piglets. CONCLUSION This is the first case report of a PRRSV-1 MLV which might have reverted to virulence in France and has caused substantial economic losses.
Collapse
Affiliation(s)
- Arnaud Lebret
- PORC.SPECTIVE, ZA de Gohélève, Noyal-Pontivy, 56920, France.
- REZOOLUTION, ZA de Gohélève, Noyal-Pontivy, 56920, France.
| | - Patricia Renson
- ANSES, Ploufragan-Plouzané Niort Laboratory, Zoopôle, BP53, Ploufragan, 22440, France
| | | | - Céline Chevance
- PORC.SPECTIVE, ZA de Gohélève, Noyal-Pontivy, 56920, France
- REZOOLUTION, ZA de Gohélève, Noyal-Pontivy, 56920, France
| | - Valérie Normand
- PORC.SPECTIVE, ZA de Gohélève, Noyal-Pontivy, 56920, France
- REZOOLUTION, ZA de Gohélève, Noyal-Pontivy, 56920, France
| | - Justine Favrel
- PORC.SPECTIVE, ZA de Gohélève, Noyal-Pontivy, 56920, France
| | | | - Justine Jeusselin
- PORC.SPECTIVE, ZA de Gohélève, Noyal-Pontivy, 56920, France
- REZOOLUTION, ZA de Gohélève, Noyal-Pontivy, 56920, France
| | - Théo Nicolazo
- REZOOLUTION, ZA de Gohélève, Noyal-Pontivy, 56920, France
| | - Yannick Blanchard
- ANSES, Ploufragan-Plouzané Niort Laboratory, Zoopôle, BP53, Ploufragan, 22440, France
| | - Olivier Bourry
- ANSES, Ploufragan-Plouzané Niort Laboratory, Zoopôle, BP53, Ploufragan, 22440, France
| | - Gwenaël Boulbria
- PORC.SPECTIVE, ZA de Gohélève, Noyal-Pontivy, 56920, France
- REZOOLUTION, ZA de Gohélève, Noyal-Pontivy, 56920, France
| |
Collapse
|
4
|
Mebumroong S, Lin H, Jermsutjarit P, Tantituvanont A, Nilubol D. Field Investigation Evaluating the Efficacy of Porcine Reproductive and Respiratory Syndrome Virus Type 2 (PRRSV-2) Modified Live Vaccines in Nursery Pigs Exposed to Multiple Heterologous PRRSV Strains. Animals (Basel) 2025; 15:428. [PMID: 39943198 PMCID: PMC11815747 DOI: 10.3390/ani15030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
This study was conducted to evaluate the protective efficacy of modified live vaccines (MLVs) against porcine reproductive and respiratory syndrome (PRRS) in nursery pigs in a worst case scenario where MLV does not match the genetic profile of the field isolate, different MLVs are used for sows and piglets, and piglets are naturally exposed to genetically distinct heterologous PRRS virus (PRRSV) isolates. We divided 76,075, 2-week-old piglets from a seropositive sow herd vaccinated with US1-MLV into four groups. US1-MLV, US2-MLV, and US3-MLV groups were vaccinated with PRRSV-2 MLV including Ingelvac® PRRS MLV (Boehringer Ingelheim, Ingelheim am Rhein, Germany), HP-PRRSV-2 based MLV (Harbin Veterinary Research Institute, CAAS, Harbin, China), and Prime Pac® PRRS (MSD Animal Health, Rahway, NJ, USA), respectively. The NonVac group was left unvaccinated. At 0, 14, 28, and 56 days post-vaccination (DPV), sera were assayed for the presence of PRRSV-specific antibodies using ELISA and serum neutralization (SN), and PRRSV RNA using PCR. Average daily gain (ADG) and survival rates were compared between treatment groups. The results demonstrated vaccinated groups significantly improved in ADG compared to the non-vaccinated control group. Only US1-MLV and US3-MLV were able to significantly reduce mortality associated with field PRRSV infection in nursery pigs. Pigs vaccinated with US3-MLV displayed significantly lower mortality and higher ADG compared to all other groups. Field isolates were isolated and genetically compared to all three MLV vaccines at the start of the trial. The MLV with closest genetic similarity to the field isolate was US2-MLV by ORF5 gene comparison. This provided the lowest protection judging by ADG improvement and mortality reduction, as compared to US1-MLV and US3-MLV. Separately, strains of Thai PRRSV-2 isolates collected in 2017, 2019, and 2020 in the study area were investigated for evolutionary changes. Over time, we observed a shift in PRRSV-2 isolates from lineage 8.7 to lineage 1. The field isolates found shared 82.59-84.42%, 83.75-85.74%, and 84.25-85.90% nucleotide identity with the US1-MLV, US3-MLV and US2-MLV based vaccine, respectively. Our findings suggest genetic similarity between field viruses and vaccine strains should not be used as a predictor of field performance. We found that zootechnical performance of piglets was best in US3-MLV, despite sows being treated with a different vaccine The results also support that different MLVs can be used at different stages of production. Finally, we concluded that the shift from lineage 8.7 to lineage 1 was due to shifts in the worldwide prevalence of PRRSV isolates during that period of time and not due to vaccine recombination between isolates. Overall, MLV vaccine selection should be based on production performance and safety profile.
Collapse
Affiliation(s)
- Sunit Mebumroong
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.M.); (P.J.)
| | - Hongyao Lin
- MSD Animal Health Innovation Pte Ltd., Perahu Road, Singapore 718847, Singapore;
| | - Patumporn Jermsutjarit
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.M.); (P.J.)
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Dachrit Nilubol
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.M.); (P.J.)
| |
Collapse
|
5
|
Meurens F, Renois F, Karniychuk U. Elegant and Innovative Recoding Strategies for Advancing Vaccine Development. Vaccines (Basel) 2025; 13:78. [PMID: 39852857 PMCID: PMC11768987 DOI: 10.3390/vaccines13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Recoding strategies have emerged as a promising approach for developing safer and more effective vaccines by altering the genetic structure of microorganisms, such as viruses, without changing their proteins. This method enhances vaccine safety and efficacy while minimizing the risk of reversion to virulence. Recoding enhances the frequency of CpG dinucleotides, which in turn activates immune responses and ensures a strong attenuation of the pathogens. Recent advancements highlight synonymous recoding's potential, offering improved genetic stability and immunogenicity compared to traditional methods. Live vaccines attenuated using classical methods pose a risk of reversion to virulence and can be time-consuming to produce. Synonymous recoding, involving numerous codon alterations, boosts safety and vaccine stability. One challenge is balancing attenuation with yield; however, innovations like Zinc-finger antiviral protein (ZAP) knockout cell lines can enhance vaccine production. Beyond viral vaccines, recoding can apply to bacterial vaccines, as exemplified by modified Escherichia coli and Streptococcus pneumoniae strains, which show reduced virulence. Despite promising results, challenges like ensuring genetic stability, high yield, and regulatory approval remain. Briefly, ongoing research aims to harness these innovations for comprehensive improvements in vaccine design and deployment. In this commentary, we sought to further engage the community's interest in this elegant approach by briefly highlighting its main advantages, disadvantages, and future prospects.
Collapse
Affiliation(s)
- François Meurens
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada;
| | - Fanny Renois
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Uladzimir Karniychuk
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada;
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Tang J, Hung YF, Yoo D. Genomic RNA recombination of porcine reproductive and respiratory syndrome virus and other arteriviruses. Virology 2025; 601:110284. [PMID: 39531889 DOI: 10.1016/j.virol.2024.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Arteriviruses in the Nidovirales order are single-stranded positive-sense RNA viruses infecting mammals. Arteriviruses are recognized for causing various clinical diseases, ranging from asymptomatic infections to severe conditions like respiratory syndromes and viral hemorrhagic fever. Notably, arteriviruses exhibit a high frequency of RNA recombination, and their robust recombination rates are a crucial factor in recurrent outbreaks. The recombination events also shape the countermeasures employed by arteriviruses during virus-host co-evolution and confer specific evolutionary benefits to viruses, implicating a role as a selective advantage in viral adaptation. This review delves into the molecular basis of RNA recombination in arteriviruses, the bioinformatics tools and methodologies used to visualize evolutionary relationships, and the identification of recombination breakpoints. Significant recombination events are highlighted for PRRSV and other arteriviruses, illustrating the profound implications of recombination for viral evolution and pathogenesis. Recombination between field viruses and between field viruses and vaccine strains can generate new variants with altered antigenic profiles and virulence, leading to diagnostic failure, severe clinical outcomes, and reduced vaccine efficacy. Despite the advances, further research is needed to understand recombination rates and hotspots, as well as to develop potential antiviral strategies and diagnostic approaches for arteriviruses.
Collapse
Affiliation(s)
- Junyu Tang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Yu Fan Hung
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
7
|
Parisio G, Franzo G, Barbieri I, Carta V, Stadejek T, Manenti S, Campagna D, Faccini S, Vignola G, Alborali GL, Boniotti MB. Evolutionary dynamics of PRRS virus in Italian Pig farms: a retrospective study. Virol J 2024; 21:326. [PMID: 39707392 PMCID: PMC11662469 DOI: 10.1186/s12985-024-02569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/03/2024] [Indexed: 12/23/2024] Open
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) causes huge economic losses to pig farms worldwide. Currently available vaccines do not always offer complete protection, due to the extreme variability of the virus. Therefore, good farming practices must be improved to prevent the disease from spreading across the pig production system. In this study, we inferred the dynamics of PRRSV population in Italy by applying bayesian methods on our ORF7 sequence dataset collected during a 15-years period. Random subsets from the overall dataset were built to reduce analysis runtime. Calculated evolutionary rate was consistent between subsets and with other findings on PRRSV and other RNA viruses (4-7 × 10- 3 substitution/site/year) while Time to the Most Recent Common Ancestor was less consistent (from 1980 to 1990). Despite this, in all population dynamic reconstructions, a massive increase in size calculated in early 2000s lasting until around 2010 was inferred. This spike is followed by very heterogeneous dynamics with some differences between subsets, probably due to the random sampling. Geographical origin was inferred in Emilia-Romagna region despite Lombardy being the region with the highest number of farmed animals and farm size. These findings reflect the choices regarding farm management and biosecurity taken in the last two decades, and not strictly related to PRRS. Phylogeny and phylogeography are powerful tools to better understand microorganisms population dynamics and make appropriate choices for disease control.
Collapse
Affiliation(s)
- Giovanni Parisio
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, 25124, Italy.
| | - Giovanni Franzo
- Department fo Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, 35020, PD, Italy
| | - Ilaria Barbieri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, 25124, Italy
| | - Valentina Carta
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, 25124, Italy
| | - Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, 02-776, Poland
| | - Sonia Manenti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, 25124, Italy
| | - Debora Campagna
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, 25124, Italy
| | - Silvia Faccini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, 25124, Italy
| | - Greta Vignola
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, 25124, Italy
| | - Giovanni L Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, 25124, Italy
| | - Maria B Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, 25124, Italy
| |
Collapse
|
8
|
Wang H, Feng W. Current Status of Porcine Reproductive and Respiratory Syndrome Vaccines. Vaccines (Basel) 2024; 12:1387. [PMID: 39772049 PMCID: PMC11679953 DOI: 10.3390/vaccines12121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 01/05/2025] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), characterized by reproductive failures in breeding pigs and respiratory diseases in growing pigs, is a widespread and challenging disease. The agent, PRRSV, is a single-strand RNA virus that is undergoing continuous mutation and evolution, resulting in the global spread of multiple strains with different genetic characteristics and variable antigens. There are currently no effective measures to eradicate PRRS, and vaccination is crucial for controlling the disease. At present, various types of vaccine are available or being studied, including inactivated vaccines, modified live virus (MLV) vaccines, vector vaccines, subunit vaccines, DNA vaccines, RNA vaccines, etc. MLV vaccines have been widely used to control PRRSV infection for more than 30 years since they were first introduced in North America in 1994, and have shown a certain efficacy. However, there are safety and efficacy issues such as virulence reversion, recombination with field strains, and a lack of protection against heterologous strains, while other types of vaccine have their own advantages and disadvantages, making the eradication of PRRS a challenge. This article reviews the latest progress of these vaccines in the prevention and control of PRRS and provides scientific inspiration for developing new strategies for the next generation of PRRS vaccines.
Collapse
Affiliation(s)
- Honglei Wang
- Department of Clinical Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Wenhai Feng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Xu H, Xie Y, Deng K, He D. Isolation and identification, genome-wide analysis and pathogenicity study of a novel PRRSV-1 in southern China. Front Microbiol 2024; 15:1465449. [PMID: 39323887 PMCID: PMC11422217 DOI: 10.3389/fmicb.2024.1465449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused severe economic losses to the global swine industry. In recent years, the incidence of PRRSV-1 has been gradually increasing in China, but there are still few studies on it. In this study, clinical samples for PRRS virus isolation were collected from a pig farm in South China in 2022. We effectively isolated a strain of PRRSV utilizing PAM cells and demonstrated its consistent transmission capability on Marc-145 cells. The isolated strain was confirmed as PRRSV-1 by RT-qPCR, IFA, electron microscopy, etiolated spot purification and whole genome sequencing, the strain was named GD2022. The length of GD2022 genome is 15058nt; Based on the genome-wide genetic evolutionary analysis of GD2022, the strain was classified as PRRSV-1. Further genetic evolutionary analysis of its ORF5 gene showed that GD2022 belonged to PRRSV-1 subtype 1 and formed an independent branch in the evolutionary tree. Compared with the sequence of the classical PRRSV-1 strain (LV strain), GD2022 has several amino acid site mutations in the antigenic region from GP3 to GP5, these mutations are different from those of other PRRSV-1 strains in China. Recombination analysis showed no recombination events with GD2022. In addition, piglets infected with GD2022 displayed clinical respiratory symptoms and typical pathological changes. In this study, a strain of the PRRSV-1 virus was isolated using both PAM cells and Marc-145 and proved to be pathogenic to piglets, providing an important reference for the identification, prevention, and control of PRRSV-1.
Collapse
Affiliation(s)
- Huirui Xu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Yongsheng Xie
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- College of Life Science and Resources and Environment, Yichun University, Yichun, Jiangxi, China
| | - Kehui Deng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Dongsheng He
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| |
Collapse
|
10
|
Cui XY, Xia DS, Luo LZ, An TQ. Recombination of Porcine Reproductive and Respiratory Syndrome Virus: Features, Possible Mechanisms, and Future Directions. Viruses 2024; 16:929. [PMID: 38932221 PMCID: PMC11209122 DOI: 10.3390/v16060929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Recombination is a pervasive phenomenon in RNA viruses and an important strategy for accelerating the evolution of RNA virus populations. Recombination in the porcine reproductive and respiratory syndrome virus (PRRSV) was first reported in 1999, and many case reports have been published in recent years. In this review, all the existing reports on PRRSV recombination events were collected, and the genotypes, parental strains, and locations of the recombination breakpoints have been summarized and analyzed. The results showed that the recombination pattern constantly changes; whether inter- or intra-lineage recombination, the recombination hotspots vary in different recombination patterns. The virulence of recombinant PRRSVs was higher than that of the parental strains, and the emergence of virulence reversion was caused by recombination after using MLV vaccines. This could be attributed to the enhanced adaptability of recombinant PRRSV for entry and replication, facilitating their rapid propagation. The aim of this paper was to identify common features of recombinant PRRSV strains, reduce the recombination risk, and provide a foundation for future research into the mechanism of PRRSV recombination.
Collapse
Affiliation(s)
- Xing-Yang Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Da-Song Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ling-Zhi Luo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tong-Qing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
11
|
Li J, Miller LC, Sang Y. Current Status of Vaccines for Porcine Reproductive and Respiratory Syndrome: Interferon Response, Immunological Overview, and Future Prospects. Vaccines (Basel) 2024; 12:606. [PMID: 38932335 PMCID: PMC11209547 DOI: 10.3390/vaccines12060606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) remains a formidable challenge for the global pig industry. Caused by PRRS virus (PRRSV), this disease primarily affects porcine reproductive and respiratory systems, undermining effective host interferon and other immune responses, resulting in vaccine ineffectiveness. In the absence of specific antiviral treatments for PRRSV, vaccines play a crucial role in managing the disease. The current market features a range of vaccine technologies, including live, inactivated, subunit, DNA, and vector vaccines, but only modified live virus (MLV) and killed virus (KV) vaccines are commercially available for PRRS control. Live vaccines are promoted for their enhanced protective effectiveness, although their ability to provide cross-protection is modest. On the other hand, inactivated vaccines are emphasized for their safety profile but are limited in their protective efficacy. This review updates the current knowledge on PRRS vaccines' interactions with the host interferon system, and other immunological aspects, to assess their current status and evaluate advents in PRRSV vaccine development. It presents the strengths and weaknesses of both live attenuated and inactivated vaccines in the prevention and management of PRRS, aiming to inspire the development of innovative strategies and technologies for the next generation of PRRS vaccines.
Collapse
Affiliation(s)
- Jiuyi Li
- Department of Food and Animal Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA;
| | - Laura C. Miller
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA;
| | - Yongming Sang
- Department of Food and Animal Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA;
| |
Collapse
|
12
|
Kamboj A, Dumka S, Saxena MK, Singh Y, Kaur BP, da Silva SJR, Kumar S. A Comprehensive Review of Our Understanding and Challenges of Viral Vaccines against Swine Pathogens. Viruses 2024; 16:833. [PMID: 38932126 PMCID: PMC11209531 DOI: 10.3390/v16060833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Pig farming has become a strategically significant and economically important industry across the globe. It is also a potentially vulnerable sector due to challenges posed by transboundary diseases in which viral infections are at the forefront. Among the porcine viral diseases, African swine fever, classical swine fever, foot and mouth disease, porcine reproductive and respiratory syndrome, pseudorabies, swine influenza, and transmissible gastroenteritis are some of the diseases that cause substantial economic losses in the pig industry. It is a well-established fact that vaccination is undoubtedly the most effective strategy to control viral infections in animals. From the period of Jenner and Pasteur to the recent new-generation technology era, the development of vaccines has contributed significantly to reducing the burden of viral infections on animals and humans. Inactivated and modified live viral vaccines provide partial protection against key pathogens. However, there is a need to improve these vaccines to address emerging infections more comprehensively and ensure their safety. The recent reports on new-generation vaccines against swine viruses like DNA, viral-vector-based replicon, chimeric, peptide, plant-made, virus-like particle, and nanoparticle-based vaccines are very encouraging. The current review gathers comprehensive information on the available vaccines and the future perspectives on porcine viral vaccines.
Collapse
Affiliation(s)
- Aman Kamboj
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Shaurya Dumka
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | - Mumtesh Kumar Saxena
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Yashpal Singh
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Bani Preet Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | | | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| |
Collapse
|
13
|
Calderon-Rico F, Bravo-Patiño A, Mendieta I, Perez-Duran F, Zamora-Aviles AG, Franco-Correa LE, Ortega-Flores R, Hernandez-Morales I, Nuñez-Anita RE. Glycoprotein 5-Derived Peptides Induce a Protective T-Cell Response in Swine against the Porcine Reproductive and Respiratory Syndrome Virus. Viruses 2023; 16:14. [PMID: 38275949 PMCID: PMC10819526 DOI: 10.3390/v16010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
We analyzed the T-cell responses induced by lineal epitopes of glycoprotein 5 (GP5) from PRRSV to explore the role of this protein in the immunological protection mediated by T-cells. The GP5 peptides were conjugated with a carrier protein for primary immunization and booster doses. Twenty-one-day-old pigs were allocated into four groups (seven pigs per group): control (PBS), vehicle (carrier), PTC1, and PTC2. Cytokine levels were measured at 2 days post-immunization (DPI) from serum samples. Cytotoxic T-lymphocytes (CTLs, CD8+) from peripheral blood were quantified via flow cytometry at 42 DPI. The cytotoxicity was evaluated by co-culturing primed lymphocytes with PRRSV derived from an infectious clone. The PTC2 peptide increased the serum concentrations of pro-inflammatory cytokines (i.e., TNF-α, IL-1β, IL-8) and cytokines that activate the adaptive cellular immunity associated with T-lymphocytes (i.e., IL-4, IL-6, IL-10, and IL-12). The concentration of CTLs (CD8+) was significantly higher in groups immunized with the peptides, which suggests a proliferative response in this cell population. Primed CTLs from immunized pigs showed cytolytic activity in PRRSV-infected cells in vitro. PTC1 and PTC2 peptides induced a protective T-cell-mediated response in pigs immunized against PRRSV, due to the presence of T epitopes in their sequences.
Collapse
Affiliation(s)
- Fernando Calderon-Rico
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Alejandro Bravo-Patiño
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Irasema Mendieta
- Posgrado en Ciencias Quimico-Biológicas, Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Querétaro PC 76010, Mexico;
| | - Francisco Perez-Duran
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Alicia Gabriela Zamora-Aviles
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Luis Enrique Franco-Correa
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Roberto Ortega-Flores
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Ilane Hernandez-Morales
- Escuela Nacional de Estudios Superiores Unidad Leon, Universidad Nacional Autonoma de Mexico, Blv. UNAM No. 2011, Leon PC 37684, Guanajuato, Mexico;
| | - Rosa Elvira Nuñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| |
Collapse
|
14
|
Yim-im W, Anderson TK, Paploski IAD, VanderWaal K, Gauger P, Krueger K, Shi M, Main R, Zhang J. Refining PRRSV-2 genetic classification based on global ORF5 sequences and investigation of their geographic distributions and temporal changes. Microbiol Spectr 2023; 11:e0291623. [PMID: 37933982 PMCID: PMC10848785 DOI: 10.1128/spectrum.02916-23] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/01/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE In this study, comprehensive analysis of 82,237 global porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2) open reading frame 5 sequences spanning from 1989 to 2021 refined PRRSV-2 genetic classification system, which defines 11 lineages and 21 sublineages and provides flexibility for growth if additional lineages, sublineages, or more granular classifications are needed in the future. Geographic distribution and temporal changes of PRRSV-2 were investigated in detail. This is a thorough study describing the molecular epidemiology of global PRRSV-2. In addition, the reference sequences based on the refined genetic classification system are made available to the public for future epidemiological and diagnostic applications worldwide. The data from this study will facilitate global standardization and application of PRRSV-2 genetic classification.
Collapse
Affiliation(s)
- Wannarat Yim-im
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | - Igor A. D. Paploski
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Phillip Gauger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Karen Krueger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Mang Shi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Rodger Main
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Jianqiang Zhang
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
15
|
Rawal G, Krueger KM, Yim-im W, Li G, Gauger PC, Almeida MN, Aljets EK, Zhang J. Development, Evaluation, and Clinical Application of PRRSV-2 Vaccine-like Real-Time RT-PCR Assays. Viruses 2023; 15:2240. [PMID: 38005917 PMCID: PMC10675446 DOI: 10.3390/v15112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
In this study, we developed and validated (1) singleplex real-time RT-PCR assays for specific detection of five PRRSV-2 MLV vaccine viruses (Ingelvac MLV, Ingelvac ATP, Fostera, Prime Pac, and Prevacent) and (2) a four-plex real-time RT-PCR assay (IngelvacMLV/Fostera/Prevacent/XIPC) including the internal positive control XIPC for detecting and distinguishing the three most commonly used vaccines in the USA (Prevacent, Ingelvac MLV, and Fostera). The singleplex and 4-plex vaccine-like PCRs and the reference PCR (VetMAXTM PRRSV NA&EU, Thermo Fisher Scientific, Waltham, MA, USA) did not cross-react with non-PRRSV swine viral and bacterial pathogens. The limits of detection of vaccine-like PCRs ranged from 25 to 50 genomic copies/reactions. The vaccine-like PCRs all had excellent intra-assay and inter-assay repeatability. Based on the testing of 531 clinical samples and in comparison to the reference PCR, the diagnostic sensitivity, specificity, and agreement were in the respective range of 94.67-100%, 100%, and 97.78-100% for singleplex PCRs and 94.94-100%, 100%, and 97.78-100% for the 4-plex PCR, with a CT cutoff of 37. In addition, 45 PRRSV-2 isolates representing different genetic lineages/sublineages were tested with the vaccine-like PCRs and the results were verified with sequencing. In summary, the vaccine-like PCRs specifically detect the respective vaccine-like viruses with comparable performances to the reference PCR, and the 4-plex PCR allows to simultaneously detect and differentiate the three most commonly used vaccine viruses in the same sample. PRRSV-2 vaccine-like PCRs provide an additional tool for detecting and characterizing PRRSV-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (K.M.K.); (W.Y.-i.); (G.L.); (P.C.G.); (M.N.A.); (E.K.A.)
| |
Collapse
|
16
|
Zhang H, Luo Q, He Y, Zheng Y, Sha H, Li G, Kong W, Liao J, Zhao M. Research Progress on the Development of Porcine Reproductive and Respiratory Syndrome Vaccines. Vet Sci 2023; 10:491. [PMID: 37624278 PMCID: PMC10459618 DOI: 10.3390/vetsci10080491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease in the pig industry, but its pathogenesis is not yet fully understood. The disease is caused by the PRRS virus (PRRSV), which primarily infects porcine alveolar macrophages and disrupts the immune system. Unfortunately, there is no specific drug to cure PRRS, so vaccination is crucial for controlling the disease. There are various types of single and combined vaccines available, including live, inactivated, subunit, DNA, and vector vaccines. Among them, live vaccines provide better protection, but cross-protection is weak. Inactivated vaccines are safe but have poor immune efficacy. Subunit vaccines can be used in the third trimester of pregnancy, and DNA vaccines can enhance the protective effect of live vaccines. However, vector vaccines only confer partial protection and have not been widely used in practice. A PRRS vaccine that meets new-generation international standards is still needed. This manuscript provides a comprehensive review of the advantages, disadvantages, and applicability of live-attenuated, inactivated, subunit, live vector, DNA, gene-deletion, synthetic peptide, virus-like particle, and other types of vaccines for the prevention and control of PRRS. The aim is to provide a theoretical basis for vaccine research and development.
Collapse
Affiliation(s)
- Hang Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.Z.); (Q.L.); (Y.H.); (Y.Z.); (H.S.); (G.L.)
| | - Qin Luo
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.Z.); (Q.L.); (Y.H.); (Y.Z.); (H.S.); (G.L.)
| | - Yingxin He
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.Z.); (Q.L.); (Y.H.); (Y.Z.); (H.S.); (G.L.)
| | - Yajie Zheng
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.Z.); (Q.L.); (Y.H.); (Y.Z.); (H.S.); (G.L.)
| | - Huiyang Sha
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.Z.); (Q.L.); (Y.H.); (Y.Z.); (H.S.); (G.L.)
| | - Gan Li
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.Z.); (Q.L.); (Y.H.); (Y.Z.); (H.S.); (G.L.)
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, CA 94158, USA;
| | - Jiedan Liao
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.Z.); (Q.L.); (Y.H.); (Y.Z.); (H.S.); (G.L.)
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.Z.); (Q.L.); (Y.H.); (Y.Z.); (H.S.); (G.L.)
| |
Collapse
|
17
|
Sun Q, Xu H, An T, Cai X, Tian Z, Zhang H. Recent Progress in Studies of Porcine Reproductive and Respiratory Syndrome Virus 1 in China. Viruses 2023; 15:1528. [PMID: 37515213 PMCID: PMC10384046 DOI: 10.3390/v15071528] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Due to the high incidence of PRRSV mutation and recombination, PRRSV infection is difficult to prevent and control in China and worldwide. Two species of PRRSV, Betaarterivirus suid 1 (PRRSV-1) and Betaarterivirus suid 2 (PRRSV-2), exist in China, and PRRSV-1 has always received less attention in China. However, the number of PRRSV-1 strains detected in China has increased recently. To date, PRRSV-1 has spread to more than 23 regions in China. Based on the phylogenetic analysis of ORF5 and the whole genome of PRRSV-1, Chinese PRRSV-1 can be divided into at least seven independent subgroups. Among them, BJEU06-1-like has become the mainstream subgroup in some regions of China. This subgroup of strains has a 5-aa (4 + 1) characteristic discontinuous deletion pattern at aa 357~aa 360 and aa 411 in Nsp2. Previous studies have indicated that the pathogenicity of PRRSV-1 in China is mild, but recent studies found that the pathogenicity of PRRSV-1 was enhanced in China. Therefore, the emergence of PRRSV-1 deserves attention, and the prevention and control of PRRSV-1 infection in China should be strengthened. PRRSV infection is usually prevented and controlled by a combination of virus monitoring, biosafety restrictions, herd management measures and vaccination. However, the use of PRRSV-1 vaccines is currently banned in China. Thus, we should strengthen the monitoring of PRRSV-1 and the biosafety management of pig herds in China. In this review, we summarize the prevalence of PRRSV-1 in China and clarify the genomic characteristics, pathogenicity, vaccine status, and prevention and control management system of PRRSV-1 in China. Consequently, the purpose of this review is to provide a basis for further development of prevention and control measures for PRRSV-1.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Hu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| |
Collapse
|
18
|
Lebret A, Normand V, Teixeira Costa C, Messager I, Berton P, Brissonnier M, Nicolazo T, Boulbria G. PRRSV Detection by qPCR on Serum Samples Collected in Due-to-Wean Piglets in Five Positive Stable Breeding Herds Following a Sow Mass Vaccination with a Modified Live Vaccine: A Descriptive Study. Vet Sci 2023; 10:vetsci10040294. [PMID: 37104449 PMCID: PMC10145457 DOI: 10.3390/vetsci10040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Data concerning PRRSV-1 vaccine virus strains dissemination within vaccinated sow herds are scarce. However, it is a big concern for swine practitioners when designing the PRRSV diagnostics strategy in vaccinated farms. At the same time, the possibility of vaccine virus transmission from sows to their offspring is important to have in mind in order to limit the risk of recombination between different PPRSV-1 modified live virus vaccine (MLV1) when both sows and piglets have to be vaccinated. This study was conducted in five PRRSV-stable breeding herds. The selected farms presented different characteristics regarding production parameters and biosecurity management practices in order to be, as much as possible, representative of French swine production herds. In four different batches following a sow mass vaccination with a PRRSV-1 modified live virus vaccine (ReproCyc® PRRS EU, Boehringer Ingelheim, Ingelheim, Germany), we failed to detect the vaccine virus in due-to-wean piglets in all of the herds. This should mean that the dissemination of the vaccinal strain is a rare event, even just after a sow vaccination, at least for the vaccine tested in our study.
Collapse
Affiliation(s)
- Arnaud Lebret
- Porc.Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
- Rezoolution Pig Consulting Services, ZA de Gohélève, 56920 Noyal-Pontivy, France
| | - Valérie Normand
- Porc.Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
- Rezoolution Pig Consulting Services, ZA de Gohélève, 56920 Noyal-Pontivy, France
| | | | - Ingrid Messager
- Boehringer Ingelheim Animal Health France, Swine Bussiness Unit, 16, rue Louis Pasteur, 44119 Treillères, France
| | - Pauline Berton
- Porc.Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
| | - Mathieu Brissonnier
- Porc.Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
| | - Théo Nicolazo
- Rezoolution Pig Consulting Services, ZA de Gohélève, 56920 Noyal-Pontivy, France
| | - Gwenaël Boulbria
- Porc.Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
- Rezoolution Pig Consulting Services, ZA de Gohélève, 56920 Noyal-Pontivy, France
| |
Collapse
|
19
|
Trevisan G, Magstadt D, Woods A, Sparks J, Zeller M, Li G, Krueger KM, Saxena A, Zhang J, Gauger PC. A recombinant porcine reproductive and respiratory syndrome virus type 2 field strain derived from two PRRSV-2-modified live virus vaccines. Front Vet Sci 2023; 10:1149293. [PMID: 37056231 PMCID: PMC10086154 DOI: 10.3389/fvets.2023.1149293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
A porcine reproductive and respiratory syndrome virus (PRRSV) type 2 (PRRSV-2) isolate was obtained from lung samples collected from a 4.5-month-old pig at a wean-to-finish site in Indiana, USA, although no gross or microscopic lesions suggestive of PRRSV infection were observed in the lung tissue. Phylogenetic and molecular evolutionary analyses based on the obtained virus sequences indicated that PRRSV USA/IN105404/2021 was a natural recombinant isolate from Ingelvac PRRS® MLV and Prevacent® PRRS, which are PRRSV-2-modified live virus vaccines commercially available in the United States. This study is the first to report the detection of a PRRSV-2 recombinant strain consisting entirely of two modified live virus vaccine strains under field conditions. Based on clinical data and the absence of lung lesions, this PRRSV-2 recombinant strain was not virulent in swine, although its pathogenicity needs to be confirmed by clinical trials.
Collapse
Affiliation(s)
- Giovani Trevisan
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Giovani Trevisan
| | - Drew Magstadt
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | | | | | - Michael Zeller
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Ganwu Li
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Karen M. Krueger
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Anugrah Saxena
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Jianqiang Zhang
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Phillip C. Gauger
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
20
|
Desrosiers R, Miclette J, Choinière M, Brochu J, Lasalle C. An investigation of porcine reproductive and respiratory syndrome outbreaks. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2023; 64:127-131. [PMID: 36733644 PMCID: PMC9847429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Within 16 d, a small farrow-to-finish operation and 2 sow herds broke with the same strain of porcine reproductive and respiratory syndrome (PRRS) virus. Although no certainty could be obtained, based on the epidemiological investigation that was undertaken, we inferred that the most plausible source of contamination was aerosol, over a distance of at least 6.1 km.
Collapse
|
21
|
Mötz M, Stadler J, Kreutzmann H, Ladinig A, Lamp B, Auer A, Riedel C, Rümenapf T. A Conserved Stem-Loop Structure within ORF5 Is a Frequent Recombination Hotspot for Porcine Reproductive and Respiratory Syndrome Virus 1 (PRRSV-1) with a Particular Modified Live Virus (MLV) Strain. Viruses 2023; 15:258. [PMID: 36680298 PMCID: PMC9867337 DOI: 10.3390/v15010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The emergence of recombinant PRRSV strains has been observed for more than a decade. These recombinant viruses are characterized by a genome that contains genetic material from at least two different parental strains. Due to the advanced sequencing techniques and a growing number of data bank entries, the role of PRRSV recombinants has become increasingly important since they are sometimes associated with clinical outbreaks. Chimeric viruses observed more recently are products of PRRSV wild-type and vaccine strains. Here, we report on three PRRSV-1 isolates from geographically distant farms with differing clinical manifestations. A sequencing and recombination analysis revealed that these strains are crossovers between different wild-type strains and the same modified live virus vaccine strain. Interestingly, the recombination breakpoint of all analyzed isolates appears at the beginning of open reading frame 5 (ORF5). RNA structure predictions indicate a conserved stem loop in close proximity to the recombination hotspot, which is a plausible cause of a polymerase template switch during RNA replication. Further research into the mechanisms of the stem loop is needed to help understand the PRRSV recombination process and the role of MLVs as parental strains.
Collapse
Affiliation(s)
- Marlene Mötz
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Julia Stadler
- Clinic for Swine, Center for Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, 85764 Oberschleissenheim, Germany
| | - Heinrich Kreutzmann
- Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Andrea Ladinig
- Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Benjamin Lamp
- Institute of Virology, Department of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstraße 81, 35392 Giessen, Germany
| | - Angelika Auer
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Christiane Riedel
- Département de Biologie, École Nationale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), 46 Allée d’Italie, 69364 Lyon, France
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
22
|
Kim JH, Kim SC, Kim HJ, Jeong CG, Park GS, Choi JS, Kim WI. Insight into the Economic Effects of a Severe Korean PRRSV1 Outbreak in a Farrow-to-Nursery Farm. Animals (Basel) 2022; 12:ani12213024. [PMID: 36359148 PMCID: PMC9656131 DOI: 10.3390/ani12213024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a disease that has inflicted economic losses in the swine industry. The causative agent, porcine reproductive and respiratory syndrome virus (PRRSV), is known to have a high genetic diversity which leads to heterogeneous pathogenicity. To date, the impact of PRRS outbreaks on swine production and the economy of the swine industry in South Korea has been rarely reported. In this study, we compare the reproductive performance in the breeding-farrowing phase and growth performance in the nursery phase, in two 27-week periods, one before and one after a PRRSV1 outbreak on a 650-sow farrow-to-nursery farm caused by a Korean PRRSV1 isolate which was genetically distinct from vaccine strains or other global strains. The reproductive performance of sows and the growth performance of nursery pigs were compared using row data consisting of 1907 mating records, 1648 farrowing records, and 17,129 weaning records from 32 breeding batches. The following variables were significantly different between the pre-PRRS outbreak period and the post-PRRS outbreak period: the farrowing rate (−7.1%, p < 0.0001), the abortion rate (+3.9%, p < 0.0001), the return rate (+2.9%, p = 0.0250), weaning to estrus interval days (+1.9 days, p < 0.0001), total piglets born (−1.2 pigs/litter, p < 0.0001), piglets born alive (−2.2 pigs/litter, p < 0.0001), weaned piglets (−2.7 pigs/litter, p < 0.0001), pre-weaning mortality (+7.4%, p < 0.0001), weaning weight (−0.9 kg/pig, p = 0.0015), the mortality rate (+2.8%, p < 0.0001), average daily gain (−69.8 g/d, p < 0.0001), and the feed conversion ratio (+0.26, p = 0.0036). Economic losses for a period of 27 weeks after a PRRS outbreak were calculated at KRW 99,378 (USD 82.8) per mated female for the breeding-farrowing phase, KRW 8,968 (USD 7.5) per pig for the nursery growth phase, and KRW 245,174 (USD 204.3) per sow in the post-outbreak period. In conclusion, the farrow-to-nursery farm in our study suffered extensive production and economic losses as a result of a PRRSV1 outbreak.
Collapse
Affiliation(s)
- Jung-Hee Kim
- Department of Veterinary Clinic, Dodram Pig Farmers Cooperative, Daejeon 35377, Korea
- Department of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Seung-Chai Kim
- Department of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Hwan-Ju Kim
- Department of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Chang-Gi Jeong
- Department of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Gyeong-Seo Park
- Department of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Jong-San Choi
- Department of Agri-Food Marketing, Jeonbuk National Univeristy, Jeonju 54896, Korea
| | - Won-Il Kim
- Department of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
- Correspondence: ; Tel.: +82-63-270-3981
| |
Collapse
|
23
|
Sun Q, Xu H, Li C, Gong B, Li Z, Tian ZJ, Zhang H. Emergence of a novel PRRSV-1 strain in mainland China: A recombinant strain derived from the two commercial modified live viruses Amervac and DV. Front Vet Sci 2022; 9:974743. [PMID: 36157177 PMCID: PMC9505512 DOI: 10.3389/fvets.2022.974743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/04/2022] [Indexed: 11/27/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) is one of the main pathogens causing porcine reproductive and respiratory syndrome (PRRS). In recent years, the rate of PRRSV-1 detection in China has gradually increased, and the PRRSV-1 strains reported in China belong to subtype I (Global; Clade A-L). In the present study, a novel PRRSV-1 strain, TZJ2134, was found during epidemiological surveillance of PRRSV-1 in Shandong Province in China. We obtained two fragments of the TZJ2134 genome: TZJ2134-L12 (located at nt 1672-nt 2112 in the partial Nsp2 gene) and TZJ2134-(A+B) (located at nt 7463-nt 11272 in the partial Nsp9, complete Nsp10 and partial Nsp11 genes). Phylogenetic and recombination analyses based on the two sequences showed that TZJ2134 is a recombinant strain derived from two commercial PRRSV-1 modified live vaccine (MLV) strains (the Amervac vaccine and DV vaccine strains) that formed a new recombinant subgroup of DV+Amervac-like isolates with other strains. However, PRRSV-1 MLV is not currently allowed for use in China. This study is the first to detected recombinant PRRSV-1 MLV strain in China and provides new data for the epidemiological study of PRRSV-1 in China. The existence of the TZJ2134 strain is a reminder that the swine surveillance at the Chinese customs should be strengthened.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hu Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bangjun Gong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhen Li
- Pingdingshan Center for Animal Disease Control and Prevention, Pingdingshan, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- *Correspondence: Hongliang Zhang
| |
Collapse
|
24
|
Fornyos K, Szabó I, Lebhardt K, Bálint Á. Development of a farm-specific real-time quantitative RT-PCR assay for the detection and discrimination of wild-type porcine reproductive respiratory syndrome virus and the vaccine strain in a farm under eradication. Acta Vet Hung 2022; 70:254-261. [PMID: 36053720 DOI: 10.1556/004.2022.00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most important diseases of swine causing severe economic losses worldwide, therefore intensive efforts are taken to eliminate PRRS virus (PRRSV) from infected herds for complete eradication. The most efficient, fastest but at the same time the most expensive eradication method is depopulation-repopulation. In order to reduce costs, a number of farms prefer to perform their eradication process with continuous production using modified live vaccine (MLV) immunisation. However, the commercial PRRSV RT-PCR kits do not have the capacity to discriminate infected from vaccinated animals. In this paper, we describe a simple discriminatory duplex TaqMan RT-PCR assay based on common forward and reverse primers, as well as two differently labelled MLV- and wild-type PRRSV-specific probes. The discriminatory PCR test we designed is a fast and efficacious method for processing large quantities of samples. The assay is cheap, flexible, easy to apply in different herds using different MLVs, but should be checked, and can be modified based on the sequence data obtained during the permanent monitoring examinations. Owing to its simplicity the test can serve as a significant complementary assay for PRRS control and elimination/eradication.
Collapse
Affiliation(s)
| | - István Szabó
- 2 National PRRS Eradication Committee, Budapest, Hungary
| | | | - Ádám Bálint
- 3 Department of Virology, National Food Chain Safety Office Veterinary Diagnostic Directorate, Tábornok u. 2, H-1143, Budapest, Hungary
| |
Collapse
|
25
|
Genomic Analysis of Porcine Reproductive and Respiratory Syndrome Virus 1 Revealed Extensive Recombination and Potential Introduction Events in China. Vet Sci 2022; 9:vetsci9090450. [PMID: 36136666 PMCID: PMC9505194 DOI: 10.3390/vetsci9090450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Porcine reproductive and respiratory syndrome, caused by the porcine reproductive and respiratory syndrome virus, is considered one of the most devastating swine diseases worldwide. Porcine reproductive and respiratory syndrome virus 1 was first isolated in China in 2006, and there have been few reports concerning its genetic characteristics in China. We hope to find out the regularity of genetic diversity, recombination, and evolution of the virus by analyzing all available genomic sequences during 1991–2018. We found that high-frequency recombination regions were concentrated in non-structural protein 2 and structural proteins 2 to 4 and extensive deletions in non-structural protein 2; phylogenetic analysis revealed four independent introductions in China. Our results suggest that attention should be paid to the prevention and control of porcine reproductive and respiratory syndrome virus 1 and the rational use of vaccine strains. These results will help us to understand the recombination of porcine reproductive and respiratory syndrome virus and strengthen viral inspection before mixing herds of swine to reduce the probability of novel recombinant variants. Moreover, our study might form the basis of monitoring and control measures to prevent the spread of this economically important virus. Abstract Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is considered one of the most devastating swine diseases worldwide. PRRSV-1 was first isolated in China in 2006. However, there were few reports concerning the genetic characteristics of PRRSV-1 in China. In this study, three PRRSV-1 strains (HL85, HeB3, and HeB47) were detected by a general RT-qPCR method from clinical samples in 2018. HeB47 was identified as a recombinant between the BJEU06-1 and CReSA228-like strains. To further analyze the recombination and deletion features of PRRSV-1, all the available 88 complete genome sequences (isolated in 19 countries) from 1991 to 2018 in GenBank were analyzed. The high-frequency recombination regions were concentrated in NSP2 and GP2 to GP4. More importantly, phylogenetic analysis of PRRSV-1 revealed four independent introductions in China. Therefore, it is necessary to strengthen the important monitoring of breeding pigs and pork products and epidemiological surveys on pig farms to prevent the further spread of PRRSV-1.
Collapse
|
26
|
Cui XY, Xia DS, Huang XY, Tian XX, Wang T, Yang YB, Wang G, Wang HW, Sun Y, Xiao YH, Tian ZJ, Cai XH, An TQ. Recombinant characteristics, pathogenicity, and viral shedding of a novel PRRSV variant derived from twice inter-lineage recombination. Vet Microbiol 2022; 271:109476. [PMID: 35679815 DOI: 10.1016/j.vetmic.2022.109476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
|
27
|
Pedersen K, Blirup-Plum SA, Kristensen CS, Kvisgaard LK, Skade L, Jensen HE, Larsen LE. Virological and Histopathological Findings in Boars Naturally Infected With Porcine Reproductive and Respiratory Syndrome Virus Type 1. Front Microbiol 2022; 13:874498. [PMID: 35633676 PMCID: PMC9130840 DOI: 10.3389/fmicb.2022.874498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Major geographical transmission of porcine reproductive and respiratory syndrome virus (PRRSV) occurs via semen when a boar stud is infected. This happened in Denmark in 2019, providing an opportunity to compare previous experimental PRRSV boar studies with natural PRRSV-1 infection in boars. The aim of this study was to investigate the association between the presence of PRRSV RNA in serum, semen, testicles, and epididymis of boars naturally infected with PRRSV and to describe the histological lesions in the testes and epididymis combined with direct visualisation of PRRSV-infected cells by immunohistochemical staining (IHC). The exact timing of infection of each boar was not determined, but based on serology the boars were divided into two groups: acute and late infections. All boars included were sampled the same day. In this study, 35 boars and 10 healthy boars from another PRRSV-negative boar stud were included as histological controls. PRRSV RNA was found most often in serum (51%) and least frequently in semen (22%) and was more often detected in the reproductive tract in the acute phase of infection (p < 0.0001; RR: 2.58). Mononuclear cells and multinuclear giant cells were present in the adluminal compartment of the testis and epididymis in PRRSV-infected boars, but not in control boars (p < 0.05), which supports the hypothesis that macrophages are involved in the venereal spread of the virus.
Collapse
Affiliation(s)
- Kasper Pedersen
- SEGES Danish Pig Research Centre, Aarhus, Denmark.,Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Lise Kirstine Kvisgaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lotte Skade
- SEGES Danish Pig Research Centre, Aarhus, Denmark
| | - Henrik Elvang Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
28
|
Wang H, Cui X, Cai X, An T. Recombination in Positive-Strand RNA Viruses. Front Microbiol 2022; 13:870759. [PMID: 35663855 PMCID: PMC9158499 DOI: 10.3389/fmicb.2022.870759] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/21/2022] [Indexed: 12/28/2022] Open
Abstract
RNA recombination is a major driver of genetic shifts tightly linked to the evolution of RNA viruses. Genomic recombination contributes substantially to the emergence of new viral lineages, expansion in host tropism, adaptations to new environments, and virulence and pathogenesis. Here, we review some of the recent progress that has advanced our understanding of recombination in positive-strand RNA viruses, including recombination triggers and the mechanisms behind them. The study of RNA recombination aids in predicting the probability and outcome of viral recombination events, and in the design of viruses with reduced recombination frequency as candidates for the development of live attenuated vaccines. Surveillance of viral recombination should remain a priority in the detection of emergent viral strains, a goal that can only be accomplished by expanding our understanding of how these events are triggered and regulated.
Collapse
Affiliation(s)
| | | | | | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
29
|
Pertich A, Barna Z, Makai O, Farkas J, Molnár T, Bálint Á, Szabó I, Albert M. Elimination of porcine reproductive and respiratory syndrome virus infection using an inactivated vaccine in combination with a roll-over method in a Hungarian large-scale pig herd. Acta Vet Scand 2022; 64:12. [PMID: 35525978 PMCID: PMC9077950 DOI: 10.1186/s13028-022-00630-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/19/2022] [Indexed: 11/11/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe economic losses worldwide and only four countries in Europe are free from PRRSV. Complete depopulation–repopulation is the safest and fastest, but also the most expensive method for eradicating PRRSV from a population. Another possible way to eliminate an endemic PRRSV infection is to replace the infected breeding stock by gilts reared isolated and protected from PRRSV on an infected farm. With this method it is possible to maintain continuous production on the farm. The authors report the first successful elimination of PRRSV in a Hungarian large-scale pig farm by using an inactivated vaccine and performing segregated rearing of the offspring. Case presentation The study was performed on a PRRSV infected farm (Farm A) with 1475 sows. The clinical signs of reproductive failure had been eliminated previously by using an inactivated vaccine (Progressis®, Ceva). At the beginning of the elimination programme, gilts intended for breeding were vaccinated at 60 and 90–100 days of age. After that, gilts selected for breeding were vaccinated at 6 months of age, on the 60–70th day of pregnancy and at weaning. Approximately 1200 piglets from vaccinated sows were transported at 7 weeks of age to a closed, empty farm (Farm B) after being tested negative for PRRSV by a polymerase chain reaction (PCR) method, and then were reared here until 14 weeks of age. At this age, all pigs were tested by PRRS ELISA. Seronegative gilts (n = 901) were subsequently transported from Farm B to a third, closed and empty farm (Farm C), and (having reached the breeding age) they were inseminated here after a second negative serological test (ELISA). At the same time, Farm A was depopulated, cleaned and disinfected. All pregnant gilts were transported from Farm C to Farm A after being re-tested negative for antibodies against PRRSV. Follow-up serology tests were performed after farrowing and results yielded only seronegative animals. Based on the subsequent negative test results, the herd was declared PRRSV free by the competent authority. Conclusions The presented farm was the first during the National PRRS Eradication Programme of Hungary to eradicate PRRSV successfully by vaccinating the sows with an inactivated vaccine and performing segregated rearing of the offspring. Production was almost continuous during the whole process of population replacement.
Collapse
|
30
|
WGS- versus ORF5-Based Typing of PRRSV: A Belgian Case Study. Viruses 2021; 13:v13122419. [PMID: 34960688 PMCID: PMC8707199 DOI: 10.3390/v13122419] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of one of the most widespread and economically devastating diseases in the swine industry. Typing circulating PRRSV strains by means of sequencing is crucial for developing adequate control strategies. Most genetic studies only target the highly variable open reading frame (ORF) 5, for which an extensive database is available. In this study, we performed whole-genome sequencing (WGS) on a collection of 124 PRRSV-1 positive serum samples that were collected over a 5-year period (2015–2019) in Belgium. Our results show that (nearly) complete PRRSV genomes can be obtained directly from serum samples with a high success rate. Analysis of the coding regions confirmed the exceptionally high genetic diversity, even among Belgian PRRSV-1 strains. To gain more insight into the added value of WGS, we performed phylogenetic cluster analyses on separate ORF datasets as well as on a single, concatenated dataset (CDS) containing all ORFs. A comparison between the CDS and ORF clustering schemes revealed numerous discrepancies. To explain these differences, we performed a large-scale recombination analysis, which allowed us to identify a large number of potential recombination events that were scattered across the genome. As PRRSV does not contain typical recombination hot-spots, typing PRRSV strains based on a single ORF is not recommended. Although the typing accuracy can be improved by including multiple regions, our results show that the full genetic diversity among PRRSV strains can only be captured by analysing (nearly) complete genomes. Finally, we also identified several vaccine-derived recombinant strains, which once more raises the question of the safety of these vaccines.
Collapse
|
31
|
Risser J, Ackerman M, Evelsizer R, Wu S, Kwon B, Hammer JM. Porcine reproductive and respiratory syndrome virus genetic variability a management and diagnostic dilemma. Virol J 2021; 18:206. [PMID: 34663367 PMCID: PMC8522131 DOI: 10.1186/s12985-021-01675-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
As genetic analysis becomes less expensive, more comprehensive diagnostics such as whole genome sequencing (WGS) will become available to the veterinary practitioner. The WGS elucidates more about porcine reproductive and respiratory syndrome virus (PRRSV) beyond the traditional analysis of open reading frame (ORF) 5 Sanger sequencing. The veterinary practitioner will require a more complete understanding of the mechanics and consequences of PRRSV genetic variability to interpret the WGS results. More recently, PRRSV recombination events have been described in the literature. The objective of this review is to provide a comprehensive outlook for swine practitioners that PRRSV mutates and recombines naturally causing genetic variability, review the diagnostic cadence when suspecting recombination has occurred, and present theory on how, why, and where industry accepted management practices may influence recombination. As practitioners, it is imperative to remember that PRRS viral recombination is occurring continuously in swine populations. Finding a recombinant by diagnostic analysis does not ultimately declare its significance. The error prone replication, mutation, and recombination of PRRSV means exact clones may exist; but a quasispecies swarm of variable strains also exist adding to the genetic diversity. PRRSV nonstructural proteins (nsps) are translated from ORF1a and ORF1b. The arterivirus nsps modulate the hosts' immune response and are involved in viral pathogenesis. The strains that contribute the PRRSV replicase and transcription complex is driving replication and possibly recombination in the quasispecies swarm. Furthermore, mutations favoring the virus to evade the immune system may result in the emergence of a more fit virus. More fit viruses tend to become the dominant strains in the quasispecies swarm. In theory, the swine management practices that may exacerbate or mitigate recombination include immunization strategies, swine movements, regional swine density, and topography. Controlling PRRSV equates to managing the quasispecies swarm and its interaction with the host. Further research is warranted on the frequency of recombination and the genome characteristics impacting the recombination rate. With a well-defined understanding of these characteristics, the clinical implications from recombination can be detected and potentially reduced; thus, minimizing recombination and perhaps the emergence of epidemic strains.
Collapse
|
32
|
Chang YH, Lin MW, Chien MC, Ke GM, Wu IE, Lin RL, Lin CY, Hu YC. Polyplex nanomicelle delivery of self-amplifying RNA vaccine. J Control Release 2021; 338:694-704. [PMID: 34509585 DOI: 10.1016/j.jconrel.2021.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
Self-amplifying RNA (SaRNA) is a burgeoning platform that exploits the replication machinery of alphaviruses such as Venezuelan equine encephalitis (VEE) virus or Sindbis virus (SIN). SaRNA has been used for development of human vaccines, but has not been evaluated for porcine vaccine development. Porcine reproductive and respiratory syndrome virus (PRRSV) causes tremendous economic losses to the worldwide pork industry, but current vaccines trigger delayed neutralizing antibody response and confer only partial protection. Here we first compared two SaRNA systems based on VEE and SIN, and demonstrated that in vitro transcribed VEE-based SaRNA conferred prolonged reporter gene expression and RNA amplification in pig cells with low cytotoxicity, but SIN-based SaRNA imparted evident cytotoxicity and limited gene expression in pig cells. Transfection of VEE-based SaRNA that encodes the major PRRSV antigen dNGP5 (SaRNA-dNGP5) conferred persistent expression for at least 28 days in pig cells. We next complexed SaRNA-dNGP5 with the polyaspartamide block copolymer PEG-PAsp(TEP) to form polyplex nanomicelle with high packaging efficiency and narrow size distribution. The polyplex nanomicelle enabled sustained dNGP5 expression and secretion in vitro. Compared with the commercial PRRS vaccine, nanomicelle delivery of SaRNA-dNGP5 into animal models accelerated the induction of potent neutralizing antibodies with minimal side effects, and elicited stronger IL-4 and IFN-γ responses against homologous and heterologous PRRSV. These properties tackle the problems of current vaccines and implicate the potential of SaRNA-dNGP5 nanomicelle as an effective PRRS vaccine.
Collapse
Affiliation(s)
- Yi-Hao Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Mei-Wei Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan
| | - Ming-Chen Chien
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Guan-Ming Ke
- Graduate Institute of Animal Vaccine Technology, National Ping Tung University of Science and Technology, Pingtung, Taiwan 912
| | - I-En Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ren-Li Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chin-Yu Lin
- Institute of New Drug Development, China Medical University, Taichung 404, Taiwan.
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
33
|
Pedersen K, Kristensen CS, Kvisgaard LK, Larsen LE. Impacts of Quarterly Sow Mass Vaccination with a Porcine Reproductive and Respiratory Syndrome Virus Type 1 (PRRSV-1) Modified Live Vaccine in Two Herds. Vaccines (Basel) 2021; 9:vaccines9101057. [PMID: 34696165 PMCID: PMC8537578 DOI: 10.3390/vaccines9101057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, there has been a considerable increase in the use of Modified Live PRRSV Vaccines (MLV) for mass vaccination in Denmark. The potential risks and negative impact of this strategy have been sparsely studied. The aim of this study was to investigate the impact of quarterly sow mass vaccination in two Danish sow herds. The study was performed as an observational prospective cohort of 120 sows in each of two commercial breeding herds in a paired design. Blood samples were taken from sows and oral fluid samples from nursery pigs (four to ten weeks old) before and after vaccination. The presence of PRRSV-1 RNA was measured by real time quantitative reverse transcription-polymerase chain reaction (RT-qPCR), and the level of PRRSV-1 specific antibodies was measured by two different serological assays. PRRS virus was not detected in the sow herds two days before and two weeks after vaccination, but the vaccine strain virus was detected in the nursery pigs. The prevalence of sows without antibodies towards PRRSV-1 went from 6-15% before vaccination to 1-4% after vaccination depending on the serological assay used, despite the fact that they had previously been repeatedly vaccinated. Four sows tested negative for antibodies in both assays after vaccination.
Collapse
Affiliation(s)
- Kasper Pedersen
- SEGES Danish Pig Research Centre, Agro Food Park 15V, 8200 Aarhus N, Denmark; (K.P.); (C.S.K.)
| | | | - Lise Kirstine Kvisgaard
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark;
| | - Lars Erik Larsen
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark;
- Correspondence:
| |
Collapse
|
34
|
Kim SC, Jeong CG, Park GS, Park JY, Jeoung HY, Shin GE, Ko MK, Kim SH, Lee KK, Kim WI. Temporal lineage dynamics of the ORF5 gene of porcine reproductive and respiratory syndrome virus in Korea in 2014-2019. Arch Virol 2021; 166:2803-2815. [PMID: 34374840 DOI: 10.1007/s00705-021-05169-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/05/2021] [Indexed: 11/24/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the most important pathogen in the Korean swine industry. Despite efforts including improved biosecurity and vaccination protocols, the virus continues to circulate and evolve. Based on phylogenetic analysis of open reading frame 5 (ORF5), Korean PRRSVs are known to form not only globally circulating lineages but also country-specific lineages (Lin Kor A, B, and C). To understand the recent epidemiological status of PRRSV in Korea, a total of 1349 ORF5 sequences of Korean PRRSV isolates from 2014 to 2019 were analyzed. Phylogenetic analysis was conducted using the maximum-likelihood method, and temporal changes in the relative prevalence of lineages were investigated. The analysis showed that PRRSV1 and PRRSV2 were both highly prevalent throughout the years examined. Among the PRRSV1 isolates, subgroup A (90.1%) and vaccine-like subgroup C (9.0%) composed most of the population. For PRRSV2 isolates, vaccine-like lineage 5 (36.3%) was dominant, followed by Lin Kor B (25.9%), Kor C (16.6%), lineage 1 (11.6%), and Kor A (9.1%). The PRRSV2 lineage 1 population increased from 2014 (1.8%) to 2019 (29.6%) in Korea due to the continual spread of sublineage 1.8 (NADC30-like) and introduction of sublineage 1.6 into the country. Additional genetic analysis, including analysis of non synonymous and synonymous mutations, revealed evidence of diversification and positive selection in immunologically important regions of the genome, suggesting that current vaccination is failing and promoting immune-mediated selection. Overall, these findings provide insights into the epidemiological and evolutionary dynamics of cocirculating viral lineages, and constant surveillance of PRRSV occurrence is needed.
Collapse
Affiliation(s)
- Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Gyeong-Seo Park
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Ji-Young Park
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, 39660, Korea
| | - Hye-Young Jeoung
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, 39660, Korea
| | - Go-Eun Shin
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, 39660, Korea
| | - Mi-Kyeong Ko
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, 39660, Korea
| | - Seoung-Hee Kim
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, 39660, Korea
| | - Kyoung-Ki Lee
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, 39660, Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, 54596, Republic of Korea.
| |
Collapse
|
35
|
Kvisgaard LK, Larsen LE, Kristensen CS, Paboeuf F, Renson P, Bourry O. Challenge of Naïve and Vaccinated Pigs with a Vaccine-Derived Recombinant Porcine Reproductive and Respiratory Syndrome Virus 1 Strain (Horsens Strain). Vaccines (Basel) 2021; 9:vaccines9050417. [PMID: 33921958 PMCID: PMC8143564 DOI: 10.3390/vaccines9050417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
In July 2019, a vaccine-derived recombinant Porcine reproductive and respiratory syndrome virus 1 strain (PRRSV-1) (Horsens strain) infected more than 40 Danish sow herds, resulting in severe losses. In the present study, the pathogenicity of the recombinant Horsens strain was assessed and compared to a reference PRRSV-1 strain using a well-characterized experimental model in young SPF pigs. Furthermore, the efficacies of three different PRRSV-1 MLV vaccines to protect pigs against challenge with the recombinant strain were assessed. Following challenge, the unvaccinated pigs challenged with the Horsens strain had significant increased viral load in serum compared to all other groups. No macroscopic changes were observed at necropsy, but tissue from the lungs and tonsils from almost all pigs were PRRSV-positive. The viral load in serum was lower in all vaccinated groups compared to the unvaccinated group challenged with the Horsens strain, and only small differences were seen among the vaccinated groups. The findings in the present study, combined with two other recent reports, indicate that this recombinant “Horsens” strain indeed is capable of inducing infection in growing pigs as well as in pregnant sows that is comparable to or even exceeding those induced by typical PRRSV-1, subtype 1 strains. However, absence of notable clinical signs and lack of significant macroscopic changes indicate that this strain is less virulent than previously characterized highly virulent PRRSV-1 strains.
Collapse
Affiliation(s)
- Lise K. Kvisgaard
- Institute for Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, 1870 Frederiksberg C, Denmark;
- Correspondence: author:
| | - Lars E. Larsen
- Institute for Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, 1870 Frederiksberg C, Denmark;
| | | | - Frédéric Paboeuf
- Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (Anses), 22440 Ploufragan, France; (F.P.); (P.R.); (O.B.)
| | - Patricia Renson
- Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (Anses), 22440 Ploufragan, France; (F.P.); (P.R.); (O.B.)
| | - Olivier Bourry
- Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (Anses), 22440 Ploufragan, France; (F.P.); (P.R.); (O.B.)
| |
Collapse
|
36
|
Eclercy J, Renson P, Hirchaud E, Andraud M, Beven V, Paboeuf F, Rose N, Blanchard Y, Bourry O. Phenotypic and Genetic Evolutions of a Porcine Reproductive and Respiratory Syndrome Modified Live Vaccine after Limited Passages in Pigs. Vaccines (Basel) 2021; 9:vaccines9040392. [PMID: 33923464 PMCID: PMC8073166 DOI: 10.3390/vaccines9040392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022] Open
Abstract
Modified live vaccines (MLVs) against the porcine reproductive and respiratory syndrome virus (PRRSV) have been regularly associated with safety issues, such as reversion to virulence. In order to characterize the phenotypic and genetic evolution of the PRRSV-1 DV strain from the Porcilis® PRRS MLV after limited passages in pigs, three in vivo experiments were performed. Trial#1 aimed (i) at studying transmission of the vaccine strain from vaccinated to unvaccinated contact pigs. Trial#2 and Trial#3 were designed (ii) to assess the reproducibility of Trial#1, using another vaccine batch, and (iii) to compare the virulence levels of two DV strains isolated from vaccinated (passage one) and diseased contact pigs (passage two) from Trial#1. DV strain isolates from vaccinated and contact pigs from Trial#1 and Trial#2 were submitted to Next-Generation Sequencing (NGS) full-genome sequencing. All contact animals from Trial#1 were infected and showed significantly increased viremia compared to vaccinated pigs, whereas no such change was observed during Trial#2. In Trial#3, viremia and transmission were higher for inoculated pigs with passage two of the DV strain, compared with passage one. In this study, we showed that the re-adaptation of the DV strain to pigs is associated with faster replication and increased transmission of the vaccine strain. Punctually, a decrease of attenuation of the DV vaccine strain associated with clinical signs and increased viremia may occur after limited passages in pigs. Furthermore, we identified three mutations linked to pig re-adaptation and five other mutations as potential virulence determinants.
Collapse
|
37
|
Zhou L, Ge X, Yang H. Porcine Reproductive and Respiratory Syndrome Modified Live Virus Vaccine: A "Leaky" Vaccine with Debatable Efficacy and Safety. Vaccines (Basel) 2021; 9:vaccines9040362. [PMID: 33918580 PMCID: PMC8069561 DOI: 10.3390/vaccines9040362] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) is one of the most economically important diseases, that has significantly impacted the global pork industry for over three decades, since it was first recognized in the United States in the late 1980s. Attributed to the PRRSV extensive genetic and antigenic variation and rapid mutability and evolution, nearly worldwide epidemics have been sustained by a set of emerging and re-emerging virus strains. Since the first modified live virus (MLV) vaccine was commercially available, it has been widely used for more than 20 years, for preventing and controlling PRRS. On the one hand, MLV can induce a protective immune response against homologous viruses by lightening the clinical signs of pigs and reducing the virus transmission in the affected herd, as well as helping to cost-effectively increase the production performance on pig farms affected by heterologous viruses. On the other hand, MLV can still replicate in the host, inducing viremia and virus shedding, and it fails to confer sterilizing immunity against PRRSV infection, that may accelerate viral mutation or recombination to adapt the host and to escape from the immune response, raising the risk of reversion to virulence. The unsatisfied heterologous cross-protection and safety issue of MLV are two debatable characterizations, which raise the concerns that whether it is necessary or valuable to use this leaky vaccine to protect the field viruses with a high probability of being heterologous. To provide better insights into the immune protection and safety related to MLV, recent advances and opinions on PRRSV attenuation, protection efficacy, immunosuppression, recombination, and reversion to virulence are reviewed here, hoping to give a more comprehensive recognition on MLV and to motivate scientific inspiration on novel strategies and approaches of developing the next generation of PRRS vaccine.
Collapse
|
38
|
Welner S, Ruggli N, Liniger M, Summerfield A, Larsen LE, Jungersen G. Reduced Virus Load in Lungs of Pigs Challenged with Porcine Reproductive and Respiratory Syndrome Virus after Vaccination with Virus Replicon Particles Encoding Conserved PRRSV Cytotoxic T-Cell Epitopes. Vaccines (Basel) 2021; 9:vaccines9030208. [PMID: 33801369 PMCID: PMC8000205 DOI: 10.3390/vaccines9030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe respiratory distress and reproductive failure in swine. Modified live virus (MLV) vaccines provide the highest degree of protection and are most often the preferred choice. While somewhat protective, the use of MLVs is accompanied by multiple safety issues, why safer alternatives are urgently needed. Here, we describe the generation of virus replicon particles (VRPs) based on a classical swine fever virus genome incapable of producing infectious progeny and designed to express conserved PRRSV-2 cytotoxic T-cell epitopes. Eighteen pigs matched with the epitopes by their swine leucocyte antigen-profiles were vaccinated (N = 11, test group) or sham-vaccinated (N = 7, control group) with the VRPs and subsequently challenged with PRRSV-2. The responses to vaccination and challenge were monitored using serological, immunological, and virological analyses. Challenge virus load in serum did not differ significantly between the groups, whereas the virus load in the caudal part of the lung was significantly lower in the test group compared to the control group. The number of peptide-induced interferon-γ secreting cells after challenge was higher and more frequent in the test group than in the control group. Together, our results provide indications of a shapeable PRRSV-specific cell-mediated immune response that may inspire future development of effective PRRSV vaccines.
Collapse
Affiliation(s)
- Simon Welner
- Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 88, 1870 Frederiksberg C, Denmark;
- Correspondence:
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland; (N.R.); (M.L.); (A.S.)
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland
| | - Matthias Liniger
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland; (N.R.); (M.L.); (A.S.)
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland; (N.R.); (M.L.); (A.S.)
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland
| | - Lars Erik Larsen
- Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 88, 1870 Frederiksberg C, Denmark;
| | - Gregers Jungersen
- Center for Vaccine Research, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark;
| |
Collapse
|
39
|
Small molecule screening identified cepharanthine as an inhibitor of porcine reproductive and respiratory syndrome virus infection in vitro by suppressing integrins/ILK/RACK1/PKCα/NF-κB signalling axis. Vet Microbiol 2021; 255:109016. [PMID: 33677370 DOI: 10.1016/j.vetmic.2021.109016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) is a devastating disease among the most notorious threats to the swine industry worldwide and is characterized by respiratory distress and reproductive failure. Highly evolving porcine reproductive and respiratory syndrome virus (PRRSV) strains with complicated genetic diversity make the current vaccination strategy far from cost-effective and thus urge identification of potent lead candidates to provide prevention and treatment approaches. From an in vitro small molecule screening with the TargetMol Natural Compound Library comprising 623 small molecules, cytopathic effect (CPE) observations and RT-qPCR analysis of viral ORF7 gene expression identified cepharanthine (CEP) to be one of the most protent inhibitors of PRRSV infection in Marc-145 cells. When compared with tilmicosin, which is one of the most commonly used antibiotics in swine industry to inhibit infections, CEP more prominently inhibited PRRSV infection represented by both RNA and protein levels, further reduced the TCID50 by 5.6 times, and thus more remarkably protected Marc-145 cells against PRRSV infection. Mechanistically, western blot analyses of the Marc-145 cells and the porcine alveolar macrophages (PAMs) with or without CEP treatment and PRRSV infection at various time points revealed that CEP can inhibit the expression of integrins β1 and β3, integrin-linked kinase (ILK), RACK1 and PKCα, leading to NF-κB suppression and consequent alleviation of PRRSV infection. Collectively, our small molecule screening identified cepharanthine as an inhibitor of PRRSV infection in vitro by suppressing Integrins/ILK/RACK1/PKCα/NF-κB signalling axis, which may enlighten the deeper understanding of the molecular pathogenesis of PRRSV infection and more importantly, suggested CEP as a potential promising drug for PRRS control in veterinary clinics.
Collapse
|
40
|
Lebret A, Berton P, Normand V, Messager I, Robert N, Bouchet F, Brissonnier M, Boulbria G. PRRSV detection by qPCR in processing fluids and serum samples collected in a positive stable breeding herd following mass vaccination of sows with a modified live vaccine. Porcine Health Manag 2021; 7:6. [PMID: 33397484 PMCID: PMC7783972 DOI: 10.1186/s40813-020-00186-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
In the last two decades, in France, Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) stabilization protocols have been implemented using mass vaccination with a modified live vaccine (MLV), herd closure and biosecurity measures. Efficient surveillance for PRRSV is essential for generating evidence of absence of viral replication and transmission in pigs. The use of processing fluid (PF) was first described in 2018 in the United States and was demonstrated to provide a higher herd-level sensitivity compared with blood samples (BS) for PRRSV monitoring. In the meantime, data on vertical transmission of MLV viruses are rare even as it is a major concern. Therefore, veterinarians usually wait for several weeks after a sow mass vaccination before starting a stability monitoring. This clinical study was conducted in a PRRSV-stable commercial 1000-sow breed-to-wean farm. This farm suffered from a PRRS outbreak in January 2018. After implementing a stabilisation protocol, this farm was controlled as stable for more than 9 months before the beginning of the study. PF and BS at weaning were collected in four consecutive batches born after a booster sow mass MLV vaccination. We failed to detect PRRSV by qPCR on PF and BS collected in a positive-stable breeding herd after vaccination with ReproCyc® PRRS EU (Boehringer Ingelheim, Ingelheim, Germany).
Collapse
Affiliation(s)
- A. Lebret
- Porc. Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
- rezoolution Pig Consulting Services, ZA de Gohélève, 56920 Noyal-Pontivy, France
| | - P. Berton
- Porc. Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
| | - V. Normand
- Porc. Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
- rezoolution Pig Consulting Services, ZA de Gohélève, 56920 Noyal-Pontivy, France
| | - I. Messager
- Boehringer Ingelheim Animal Health France, Swine Bussiness Unit, 16, rue Louis Pasteur, 44119 Treillères, France
| | - N. Robert
- Boehringer Ingelheim Animal Health France, Swine Bussiness Unit, 16, rue Louis Pasteur, 44119 Treillères, France
| | - F. Bouchet
- Porc. Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
- rezoolution Pig Consulting Services, ZA de Gohélève, 56920 Noyal-Pontivy, France
| | - M. Brissonnier
- Porc. Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
| | - G. Boulbria
- Porc. Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
- rezoolution Pig Consulting Services, ZA de Gohélève, 56920 Noyal-Pontivy, France
| |
Collapse
|
41
|
Future perspectives on swine viral vaccines: where are we headed? Porcine Health Manag 2021; 7:1. [PMID: 33397477 PMCID: PMC7780603 DOI: 10.1186/s40813-020-00179-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Deliberate infection of humans with smallpox, also known as variolation, was a common practice in Asia and dates back to the fifteenth century. The world's first human vaccination was administered in 1796 by Edward Jenner, a British physician. One of the first pig vaccines, which targeted the bacterium Erysipelothrix rhusiopathiae, was introduced in 1883 in France by Louis Pasteur. Since then vaccination has become an essential part of pig production, and viral vaccines in particular are essential tools for pig producers and veterinarians to manage pig herd health. Traditionally, viral vaccines for pigs are either based on attenuated-live virus strains or inactivated viral antigens. With the advent of genomic sequencing and molecular engineering, novel vaccine strategies and tools, including subunit and nucleic acid vaccines, became available and are being increasingly used in pigs. This review aims to summarize recent trends and technologies available for the production and use of vaccines targeting pig viruses.
Collapse
|
42
|
Soetens E, Ballegeer M, Saelens X. An Inside Job: Applications of Intracellular Single Domain Antibodies. Biomolecules 2020; 10:biom10121663. [PMID: 33322697 PMCID: PMC7764588 DOI: 10.3390/biom10121663] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Sera of camelid species contain a special kind of antibody that consists only of heavy chains. The variable antigen binding domain of these heavy chain antibodies can be expressed as a separate entity, called a single domain antibody that is characterized by its small size, high solubility and oftentimes exceptional stability. Because of this, most single domain antibodies fold correctly when expressed in the reducing environment of the cytoplasm, and thereby retain their antigen binding specificity. Single domain antibodies can thus be used to target a broad range of intracellular proteins. Such intracellular single domain antibodies are also known as intrabodies, and have proven to be highly useful tools for basic research by allowing visualization, disruption and even targeted degradation of intracellular proteins. Furthermore, intrabodies can be used to uncover prospective new therapeutic targets and have the potential to be applied in therapeutic settings in the future. In this review we provide a brief overview of recent advances in the field of intracellular single domain antibodies, focusing on their use as research tools and potential therapeutic applications. Special attention is given to the available methods that allow delivery of single domain antibodies into cells.
Collapse
Affiliation(s)
- Eline Soetens
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium; (E.S.); (M.B.)
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Marlies Ballegeer
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium; (E.S.); (M.B.)
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium; (E.S.); (M.B.)
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
43
|
Kristensen CS, Christiansen MG, Pedersen K, Larsen LE. Production losses five months after outbreak with a recombinant of two PRRSV vaccine strains in 13 Danish sow herds. Porcine Health Manag 2020; 6:26. [PMID: 33042567 PMCID: PMC7537099 DOI: 10.1186/s40813-020-00165-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/07/2020] [Indexed: 11/10/2022] Open
Abstract
Background In July 2019, a PRRSV-negative boar station was infected with a recombinant of two PRRSV vaccine strains, which subsequently spread to at least 36 herds that had received semen from the boar station. In the following months, all the infected herds reported reduced productivity. The aim of the present study was to evaluate the impact of the PRRS outbreak. Results Production data were collected from 13 of the herds. The average levels of farrowings/week, liveborns/litter, stillborns/litter, pre-weaning mortality and weaned pigs/litter were compared for the five-month period after infection and the preceding 7 months before infection with the new variant of PRRSV-1. Twelve herds experienced a decrease in farrowings/week (0.1-10.8% fewer farrowings/week), and all herds experienced fewer liveborns (0.8-4.8 fewer liveborns/litter) and more stillborns (0.6-2.6 more stillborns/litter). Pre-weaning mortality nearly doubled in half of the herds. Overall, the 13 herds were missing 2.4-6.5 pigs/litter at weaning during the 5 months after infection compared to the seven preceding months before infection. Conclusion In this study, the impact of this new PRRSV-1 variant on productivity exceeded that typically seen in Danish herds infected with PRRSV-1.
Collapse
Affiliation(s)
| | | | - K Pedersen
- SEGES Danish Pig Research Centre, Copenhagen, Denmark
| | - L E Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
44
|
Assessment of the Impact of the Recombinant Porcine Reproductive and Respiratory Syndrome Virus Horsens Strain on the Reproductive Performance in Pregnant Sows. Pathogens 2020; 9:pathogens9090772. [PMID: 32967283 PMCID: PMC7559163 DOI: 10.3390/pathogens9090772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022] Open
Abstract
This study assessed the impact of a PRRSV (porcine reproductive and respiratory syndrome virus) recombinant strain (Horsens strain) on the reproductive performance of naïve pregnant sows in the last third of gestation. Fifteen sows were included: four negative reproductive controls (NTX), five infected with a PRRSV-1 field strain (Olot/91, T01), and six infected with the recombinant PRRSV-1 strain (Horsens strain, T02). Piglets were monitored until weaning. Reproductive performance was the primary variable. In sows, viremia and nasal shedding (T01 and T02 groups), and, in piglets, viral load in blood and in lungs, as well as macroscopic lung lesions (T01 and T02 groups), were the secondary variables. The reproductive performance results were numerically different between the two challenged groups. Moreover, viral loads in blood were 1.83 × 106 ± 9.05 × 106 copies/mL at farrowing, 1.05 × 107 ± 2.21 × 107 copies/mL at weaning from piglets born from T01 animals and 1.64 × 103 ± 7.62 × 103 copies/mL at farrowing, 1.95 × 103 ± 1.17 × 104 copies/mL at weaning from piglets born from T02 sows. Overall, 68.8% of T01 piglets and 38.1% of T02 piglets presented mild lung lesions. In conclusion, the results suggest that Horsens strain is less virulent than the field strain Olot/91 under these experimental conditions.
Collapse
|
45
|
Kvisgaard LK, Kristensen CS, Ryt‐Hansen P, Pedersen K, Stadejek T, Trebbien R, Andresen LO, Larsen LE. A recombination between two Type 1 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV-1) vaccine strains has caused severe outbreaks in Danish pigs. Transbound Emerg Dis 2020; 67:1786-1796. [PMID: 32219985 PMCID: PMC7540543 DOI: 10.1111/tbed.13555] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/08/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is prevalent in Danish swine herds. In July 2019, PRRSV-1 was detected in a PRRSV-negative boar station and subsequently spread to more than 38 herds that had received semen from the boar station. Full genome sequencing revealed a sequence of 15.098 nucleotides. Phylogenetic analyses showed that the strain was a recombination between the Amervac strain (Unistrain PRRS vaccine; Hipra) and the 96V198 strain (Suvaxyn PRRS; Zoetis AH). The major parent was the 96V198 strain that spanned ORFs 1-2 and part of ORF 3 and the minor parent was the Amervac strain, which constituted the remaining part of the genome. The virus seems to be highly transmissible and has caused severe disease in infected herds despite a high level of genetic identity to the attenuated parent strains. The source of infection was presumable a neighbouring farm situated 5.8 km from the boar station.
Collapse
Affiliation(s)
| | | | - Pia Ryt‐Hansen
- National Veterinary InstituteTechnical University of DenmarkLyngbyDenmark
| | | | - Tomasz Stadejek
- Faculty of Veterinary MedicineWarsaw University of Life SciencesWarsawPoland
| | | | - Lars Ole Andresen
- National Veterinary InstituteTechnical University of DenmarkLyngbyDenmark
| | - Lars Erik Larsen
- National Veterinary InstituteTechnical University of DenmarkLyngbyDenmark
- Department of Health and Medical SciencesInstitute for Veterinary and Animal SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|