1
|
Ge X, Li Y, Zhao F, Ma X, Li J, Jiang Y, Cui W, Wang X, Tang L. Global prevalence of Porcine Astrovirus: A systematic review and meta-analysis. Prev Vet Med 2025; 238:106465. [PMID: 39954603 DOI: 10.1016/j.prevetmed.2025.106465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/17/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Porcine astrovirus (PAstV) is a widespread enteric virus in pigs, often co-infecting with other enteric viruses and contributing to diarrhea, leading to significant economic losses in the global swine industry. This study aims to identify the factors influencing PAstV prevalence by conducting a statistical meta-analysis of global data and evaluating heterogeneity across various subgroups. A systematic literature search was performed across PubMed, Web of Science, CNKI, Wanfang, and VIP databases, covering studies from the inception of the databases up to December 2023. A random-effects model was employed to estimate the global pooled prevalence of PAstV infection, and subgroup analyses were performed to evaluate the impact of different continents, years, detection methods, and sample types on the prevalence. Publication bias was assessed using a funnel plot and Egger's test. A total of 45 studies from 10 countries across three continents, involving 376 articles, were included in the meta-analysis. The global pooled prevalence of PAstV infection was found to be 28.19 % (95 % CI, 21.94 %-34.89 %). Subgroup analysis indicated significant differences in PAstV prevalence across continents, with Asia at 26.25 % (95 % CI, 25.41 %-27.09 %), Europe at 36.19 % (95 % CI, 34.09 %-38.33 %), and North America at 63.24 %. The prevalence of PAstV was highest between 2012 and 2014 (49.86 %, 95 % CI, 47.21 %-52.51 %), followed by a decreasing trend that stabilized below 30 % from 2015 to 2023. The analysis showed no significant influence of detection methods on PAstV prevalence. However, the prevalence in non-fecal samples (43.09 %, 95 % CI: 41.05 %-45.15 %) was significantly higher than in fecal samples (22.92 %, 95 % CI: 21.87 %-23.99 %). Additionally, the prevalence of PAstV in asymptomatic pigs (36.71 %, 95 % CI, 34.97 %-38.48 %) exceeded that in diarrheic pigs (28.18 %, 95 % CI, 26.94 %-29.44 %). Among different age groups, nursery pigs(6-10 weeks) exhibited the highest infection rate (63.19 %, 95 % CI, 58.45 %-67.75 %), followed by weaning pigs(3-6 weeks) (60.00 %, 95 % CI, 56.48 %-63.45 %), finisher pigs(>10 weeks) (49.89 %, 95 % CI, 46.59 %-53.19 %), sows (35.33 %, 95 % CI, 31.45 %-39.37 %), with suckling pigs(0-3 weeks) showing the lowest rate (31.93 %, 95 % CI, 30.23 %-33.68 %). This study highlights the widespread nature of PAstV infection in pig populations globally, with notable variations in prevalence across regions, years, and sample types. The high prevalence of asymptomatic infections underscores the need for enhanced PAstV surveillance and control measures.
Collapse
Affiliation(s)
- Xiaoyu Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yize Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Feipeng Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xin'ao Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| |
Collapse
|
2
|
He J, Shi K, Shi Y, Yin Y, Feng S, Long F, Qu S, Song X. Development of a Quadruplex RT-qPCR for the Detection of Porcine Astrovirus, Porcine Sapovirus, Porcine Norovirus, and Porcine Rotavirus A. Pathogens 2024; 13:1052. [PMID: 39770312 PMCID: PMC11728830 DOI: 10.3390/pathogens13121052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/05/2025] Open
Abstract
Porcine astrovirus (PoAstV), porcine sapovirus (PoSaV), porcine norovirus (PoNoV), and porcine rotavirus A (PoRVA) are newly discovered important porcine diarrhea viruses with a wide range of hosts and zoonotic potential, and their co-infections are often found in pig herds. In this study, the specific primers and probes were designed targeting the ORF1 gene of PoAstV, PoSaV, and PoNoV, and the VP6 gene of PoRVA. The recombinant standard plasmids were constructed, the reaction conditions (concentration of primers and probes, annealing temperature, and reaction cycle) were optimized, and the specificity, sensitivity, and reproducibility were analyzed to establish a quadruplex real-time quantitative RT-PCR (RT-qPCR) assay for the detection of these four diarrheal viruses. The results demonstrated that the assay effectively tested PoAstV, PoSaV, PoNoV, and PoRVA without cross-reactivity with other swine viruses, and had limits of detection (LODs) of 138.001, 135.167, 140.732, and 132.199 (copies/reaction) for PoAstV, PoSaV, PoNoV, and PoRVA, respectively, exhibiting high specificity and sensitivity. Additionally, it displayed good reproducibility, with coefficients of variation (CVs) of 0.09-1.24% for intra-assay and 0.08-1.03% for inter-assay. The 1578 clinical fecal samples from 14 cities in Guangxi Province, China, were analyzed via the developed assay. The results indicated that the clinical samples from Guangxi Province exhibited the prevalence of PoAstV (35.93%, 567/1578), PoSaV (8.37%, 132/1578), PoNoV (2.98%, 47/1578), and PoRVA (14.32%, 226/1578), and had a notable incidence of mixed infections of 18.31% (289/1578). Simultaneously, the 1578 clinical samples were analyzed with the previously established assays, and the coincidence rates of these two approaches exceeded 99.43%. This study developed an efficient and precise diagnostic method for the detection and differentiation of PoAstV, PoSaV, PoNoV, and PoRVA, enabling the successful diagnosis of these four diseases.
Collapse
Affiliation(s)
- Junxian He
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (Y.S.)
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (Y.S.)
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Y.Y.); (S.F.); (F.L.); (S.Q.)
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (Y.S.)
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Y.Y.); (S.F.); (F.L.); (S.Q.)
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Y.Y.); (S.F.); (F.L.); (S.Q.)
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Y.Y.); (S.F.); (F.L.); (S.Q.)
| | - Sujie Qu
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Y.Y.); (S.F.); (F.L.); (S.Q.)
| | - Xingju Song
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (Y.S.)
| |
Collapse
|
3
|
Haley DJ, Lanning S, Henricson KE, Mardirossian AA, Cirillo I, Rahe MC, DuBois RM. Structure and Antigenicity of the Porcine Astrovirus 4 Capsid Spike. Viruses 2024; 16:1596. [PMID: 39459929 PMCID: PMC11512355 DOI: 10.3390/v16101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Porcine astrovirus 4 (PoAstV4) has been recently associated with respiratory disease in pigs. In order to understand the scope of PoAstV4 infections and to support the development of a vaccine to combat PoAstV4 disease in pigs, we designed and produced a recombinant PoAstV4 capsid spike protein for use as an antigen in serological assays and for potential future use as a vaccine antigen. Structural prediction of the full-length PoAstV4 capsid protein guided the design of the recombinant PoAstV4 capsid spike domain expression plasmid. The recombinant PoAstV4 capsid spike was expressed in Escherichia coli, purified by affinity and size-exclusion chromatography, and its crystal structure was determined at 1.85 Å resolution, enabling structural comparisons to other animal and human astrovirus capsid spike structures. The recombinant PoAstV4 capsid spike protein was also used as an antigen for the successful development of a serological assay to detect PoAstV4 antibodies, demonstrating that the recombinant PoAstV4 capsid spike retains antigenic epitopes found on the native PoAstV4 capsid. These studies lay a foundation for seroprevalence studies and the development of a PoAstV4 vaccine for swine.
Collapse
Affiliation(s)
- Danielle J. Haley
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (D.J.H.); (K.E.H.); (A.A.M.); (I.C.)
| | - Sarah Lanning
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Kyle E. Henricson
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (D.J.H.); (K.E.H.); (A.A.M.); (I.C.)
| | - Andre A. Mardirossian
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (D.J.H.); (K.E.H.); (A.A.M.); (I.C.)
| | - Iyan Cirillo
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (D.J.H.); (K.E.H.); (A.A.M.); (I.C.)
| | - Michael C. Rahe
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA;
| | - Rebecca M. DuBois
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (D.J.H.); (K.E.H.); (A.A.M.); (I.C.)
| |
Collapse
|
4
|
Tao J, Cheng J, Shi Y, Li B, Tang P, Jiao J, Liu H. NLRX1 Mediates the Disruption of Intestinal Mucosal Function Caused by Porcine Astrovirus Infection via the Extracellular Regulated Protein Kinases/Myosin Light-Chain Kinase (ERK/MLCK) Pathway. Cells 2024; 13:913. [PMID: 38891045 PMCID: PMC11171766 DOI: 10.3390/cells13110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Porcine astrovirus (PAstV) has a potential zoonotic risk, with a high proportion of co-infection occurring with porcine epidemic diarrhea virus (PEDV) and other diarrheal pathogens. Despite its high prevalence, the cellular mechanism of PAstV pathogenesis is ill-defined. Previous proteomics analyses have revealed that the differentially expressed protein NOD-like receptor X1 (NLRX1) located in the mitochondria participates in several important antiviral signaling pathways in PAstV-4 infection, which are closely related to mitophagy. In this study, we confirmed that PAstV-4 infection significantly up-regulated NLRX1 and mitophagy in Caco-2 cells, while the silencing of NLRX1 or the treatment of mitophagy inhibitor 3-MA inhibited PAstV-4 replication. Additionally, PAstV-4 infection triggered the activation of the extracellular regulated protein kinases/ myosin light-chain kinase (ERK/MLCK) pathway, followed by the down-regulation of tight-junction proteins (occludin and ZO-1) as well as MUC-2 expression. The silencing of NLRX1 or the treatment of 3-MA inhibited myosin light-chain (MLC) phosphorylation and up-regulated occludin and ZO-1 proteins. Treatment of the ERK inhibitor PD98059 also inhibited MLC phosphorylation, while MLCK inhibitor ML-7 mitigated the down-regulation of mucosa-related protein expression induced by PAstV-4 infection. Yet, adding PD98059 or ML-7 did not affect NLRX1 expression. In summary, this study preliminarily explains that NLRX1 plays an important role in the disruption of intestinal mucosal function triggered by PAstV-4 infection via the ERK/MLC pathway. It will be helpful for further antiviral drug target screening and disease therapy.
Collapse
Affiliation(s)
- Jie Tao
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Jinghua Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Ying Shi
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Benqiang Li
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Pan Tang
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Jiajie Jiao
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| |
Collapse
|
5
|
Sawant PM, Waghchaure RB, Shinde PA, Palikondawar AP, Lavania M. Detection and Molecular Characterization of Animal Adenovirus and Astrovirus from Western Maharashtra, India. Viruses 2023; 15:1679. [PMID: 37632021 PMCID: PMC10458059 DOI: 10.3390/v15081679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Astroviruses (AstV) and adenoviruses (AdV) are associated with diarrhoea in young animals. However, the epidemiology and genetic diversity of AstVs and AdVs in animals is not well studied. Hence, the present study was conducted to detect and characterize AstVs and AdVs in calves, piglets and puppies from Western Maharashtra, India. Out of the processed porcine (48), canine (80), and bovine (65) faecal samples, the porcine AstV (PAstV), bovine AstV (BAstV), canine AstV (CAstV), and porcine AdV (PAdV) were detected in 12.5%, 7.69%, 3.75% and 4.1% of samples, respectively. In the RNA-dependent RNA polymerase region-based phylogenetic analysis, the detected BAstV strains grouped with MAstV-28, MAstV-33, and MAstV-35, CAstV strains belonged to MAstV-5; PAstV strains belonged to MAstV-24, MAstV-26, and MAstV-31. However, in hexon gene-based phylogeny, both the detected PAdV were of genotype 3, exhibiting 91.9-92.5% nucleotide identity with Ivoirian and Chinese strains. The study reports first-time BAstVs from calves and PAdV-3 from piglets in India. The study revealed diversity in the circulation of AstVs in tested animals and AdVs in pigs, and suggested that they alone might be associated with other diarrhoea or in combination with other enteric pathogens, thus highlighting the necessity of extensive epidemiological investigations to develop diagnostic tools and control measures.
Collapse
Affiliation(s)
- Pradeep M. Sawant
- Enteric Viruses Group, ICMR—National Institute of Virology, 20-A, Ambedkar Road, Pune 411 001, India; (R.B.W.); (P.A.S.); (A.P.P.); (M.L.)
| | | | | | | | | |
Collapse
|
6
|
Puente H, Arguello H, Cortey M, Gómez-García M, Mencía-Ares O, Pérez-Perez L, Díaz I, Carvajal A. Detection and genetic characterization of enteric viruses in diarrhoea outbreaks from swine farms in Spain. Porcine Health Manag 2023; 9:29. [PMID: 37349807 DOI: 10.1186/s40813-023-00326-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND The aim of this work was to study the prevalence and distribution of Porcine astrovirus (PAstV), Porcine kobuvirus (PKoV), Porcine torovirus (PToV), Mammalian orthoreovirus (MRV) and Porcine mastadenovirus (PAdV) as well as their association with widely recognized virus that cause diarrhoea in swine such as coronavirus (CoVs) and rotavirus (RVs) in diarrhoea outbreaks from Spanish swine farms. Furthermore, a selection of the viral strains was genetically characterized. RESULTS PAstV, PKoV, PToV, MRV and PAdV were frequently detected. Particularly, PAstV and PKoV were detected in almost 50% and 30% of the investigated farms, respectively, with an age-dependent distribution; PAstV was mainly detected in postweaning and fattening pigs, while PKoV was more frequent in sucking piglets. Viral co-infections were detected in almost half of the outbreaks, combining CoVs, RVs and the viruses studied, with a maximum of 5 different viral species reported in three investigated farms. Using a next generation sequencing approach, we obtained a total of 24 ARN viral genomes (> 90% genome sequence), characterizing for first time the full genome of circulating strains of PAstV2, PAstV4, PAstV5 and PToV on Spanish farms. Phylogenetic analyses showed that PAstV, PKoV and PToV from Spanish swine farms clustered together with isolates of the same viral species from neighboring pig producing countries. CONCLUSIONS Although further studies to evaluate the role of these enteric viruses in diarrhoea outbreaks are required, their wide distribution and frequent association in co-infections cannot be disregard. Hence, their inclusion into routine diagnostic panels for diarrhoea in swine should be considered.
Collapse
Affiliation(s)
- Héctor Puente
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain.
| | - Héctor Arguello
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- INDEGSAL, Universidad de León, León, Spain
| | - Martí Cortey
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Manuel Gómez-García
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Oscar Mencía-Ares
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Lucía Pérez-Perez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Ivan Díaz
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- Unitat Mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Bellaterra, Spain
| | - Ana Carvajal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- INDEGSAL, Universidad de León, León, Spain
| |
Collapse
|
7
|
Rahe MC, Michael A, Piñeyro PE, Groeltz-Thrush J, Derscheid RJ. Porcine Astrovirus 4 Detection in Lesions of Epitheliotropic Viral Infection in the Porcine Respiratory Tract. Transbound Emerg Dis 2023; 2023:9113355. [PMID: 40303813 PMCID: PMC12017072 DOI: 10.1155/2023/9113355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2025]
Abstract
Astroviruses infect mammals and birds resulting in either gastroenteritis, neurologic disease, or asymptomatic infection. Porcine astrovirus 4 (PoAstV4) has previously been detected in the upper respiratory tract of pigs with clinical respiratory disease; however, proof of respiratory tract infection and association of the virus with respiratory pathology have not been shown. In this retrospective study of young pigs with clinical respiratory disease of unknown etiology, PoAstV4 was detected with RNA in situ hybridization in lesions consistent with epitheliotropic viral infection in 85 of 117 pigs. This is the first report associating an astrovirus with respiratory pathology.
Collapse
|
8
|
Virome Analysis for Identification of a Novel Porcine Sapelovirus Isolated in Western China. Microbiol Spectr 2022; 10:e0180122. [PMID: 35938790 PMCID: PMC9430179 DOI: 10.1128/spectrum.01801-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diarrhea is one of the most important problems associated with the production of piglets, which have a wide range of possible pathogens. This study identified a strain of porcine sapelovirus (PSV) by using next-generation sequencing (NGS) technologies as the pathogen among fecal samples in a pig herd. Phylogenetic analysis showed that the PSV isolates shared a unique polyprotein and clustered with Chinese isolates identified before 2013. The PSV strain was then isolated and named GS01. The in vitro and in vivo biological characteristics of this virus were then described. Our pathogenicity investigation showed that GS01 could cause an inflammatory reaction and induce serious diarrhea in neonatal piglets. To our knowledge, this is the first isolation and characterization of PSV in western China. Our results demonstrate that the PSV GS01 strain is destructive to neonatal piglets and might show an expanded role for sapeloviruses. IMPORTANCE Porcine sapelovirus (PSV) infection leads to severe polioencephalomyelitis with high morbidity and mortality, resulting in significant economic losses. In previous studies, PSV infections were always subclinical or only involved a series of mild symptoms, including spinal cord damage, inappetence, diarrhea, and breathless. However, in our study, we isolated a novel PSV by virome analysis. We also determined the biological characteristics of this virus in vitro and in vivo. Our study showed that this novel PSV could cause an inflammatory response and induce serious diarrhea in neonatal piglets. To our knowledge, this is the first isolation and characterization of PSV in western China. These findings highlight the importance of prevention for the potential threats of PSV.
Collapse
|
9
|
Stamelou E, Giantsis IA, Papageorgiou KV, Petridou E, Davidson I, Polizopοulou ZS, Papa A, Kritas SK. Epidemiology of Astrovirus, Norovirus and Sapovirus in Greek pig farms indicates high prevalence of Mamastrovirus suggesting the potential need for systematic surveillance. Porcine Health Manag 2022; 8:5. [PMID: 35000615 PMCID: PMC8744241 DOI: 10.1186/s40813-021-00245-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
Backround Astrovirus, Norovirus and Sapovirus exhibit a wide distribution in swine pig herds worldwide. However, the association of porcine Astrovirus (PAstV), porcine Norovirus (PoNoV) and porcine Sapovirus (PoSaV) with disease in pigs remains uncertain. In this study, we investigated the prevalence of PAstV, PoNoV and PoSaV in Greek pig farms using both conventional RT-PCR and SYBR-Green Real-time RT-PCR in an effort to compare the sensitivity of the two methods. We examined 1400 stool samples of asymptomatic pigs originating from 28 swine farms throughout Greece in pools of five. Results PAstV was detected in all 28 swine farms examined, with an overall prevalence of 267/280 positive pools (95.4%). Porcine Caliciviruses prevalence was found at 36 and 57 out of the 280 examined samples, by the conventional and SYBR-Green Real time RT-PCR, respectively. Sequencing and phylogenetic analysis of the positive samples revealed that the detected PAstV sequences are clustered within PAstV1, 3 and 4 lineages, with PAstV3 being the predominant haplotype (91.2%). Interestingly, sequencing of the Calicivirus positive samples demonstrated the presence of non-target viruses, i.e. Sapovirus, Kobuvirus and Sapelovirus sequences and one sequence highly similar to bat Astrovirus, while no Norovirus sequence was detected. Conclusions The high prevalence of PAstV in Greek pig farms poses a necessity for further investigation of the pathogenicity of this virus and its inclusion in surveillance programs in case that it proves to be important. To our knowledge, this is the first epidemiological study of these viruses in pig farms in Greece. Supplementary Information The online version contains supplementary material available at 10.1186/s40813-021-00245-8.
Collapse
Affiliation(s)
- Efthymia Stamelou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100, Florina, Greece.
| | - Konstantinos V Papageorgiou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Evanthia Petridou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Irit Davidson
- Kimron Veterinary Institute, 50250, Bet Dagan, Israel
| | - Zoe S Polizopοulou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anna Papa
- Laboratory of Microbiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Spyridon K Kritas
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|