1
|
de Sousa DER, de Macêdo IL, de Albuquerque Cerqueira L, Melanie L, Dos Santos Pessoa VF, da Silva Rocha AS, de Alcantara Brito Junior P, de Oliveira Passos PH, Ramos DG, Romano APM, de Toledo Costa GR, de Lima EMM, de Melo CB, Hagström L, de Castro MB. Insights into the threats of toxoplasmosis for free-ranging black-tufted marmosets living in our neighborhood. Sci Rep 2025; 15:16047. [PMID: 40341697 PMCID: PMC12062313 DOI: 10.1038/s41598-025-00495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/28/2025] [Indexed: 05/10/2025] Open
Abstract
Toxoplasmosis is a globally significant zoonotic disease with the potential to severely impact wild animal populations. Neotropical non-human primates (NHPs), particularly callitrichids, are highly susceptible, often experiencing fatal outcomes. This study examines toxoplasmosis in free-ranging black-tufted marmosets (Callithrix penicillata) in anthropogenic environments of Central Brazil, analyzing epidemiological and pathological data from 2017 to 2022. A retrospective review of 1095 NHP deaths identified a 9.2% prevalence (101/1,095) of acute fatal toxoplasmosis (AFT) in black-tufted marmosets across Central Brazil and 10.3% (53/515) within the federal district (FD). Necropsied marmosets from the FD showed an estimated AFT prevalence of 50.7% and a lethality rate of 20.3%. AFT cases were linked to outbreaks and isolated incidents, with a likely seasonal peak during the dry season. Pathological findings included severe hepatic damage, splenitis, interstitial pneumonia, and myocarditis. Immunohistochemistry and qPCR confirmed Toxoplasma gondii infection, with the highest parasite loads in the spleen and liver. Given the anthropogenic pressures of habitat fragmentation, urbanization, and T. gondii exposure, this study advances the understanding of toxoplasmosis as an emerging disease in wild marmosets. Findings of this study establish a critical foundation for conservation strategies and insights into toxoplasmosis dynamics in free-ranging NHPs living in our neighborhood.
Collapse
Affiliation(s)
- Davi Emanuel Ribeiro de Sousa
- Graduate Program in Animal Sciences, University of Brasília, Federal District, Brasília, Brazil
- Veterinary Pathology and Forensics Laboratory, University of Brasília, Federal District, Brasília, Brazil
| | - Isabel Luana de Macêdo
- Graduate Program in Animal Sciences, University of Brasília, Federal District, Brasília, Brazil
- Veterinary Pathology and Forensics Laboratory, University of Brasília, Federal District, Brasília, Brazil
| | - Liz de Albuquerque Cerqueira
- Graduate Program in Animal Sciences, University of Brasília, Federal District, Brasília, Brazil
- Veterinary Pathology and Forensics Laboratory, University of Brasília, Federal District, Brasília, Brazil
| | - Ludmilla Melanie
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | | | | | | | | | | | | | | | | | | | - Luciana Hagström
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | - Marcio Botelho de Castro
- Graduate Program in Animal Sciences, University of Brasília, Federal District, Brasília, Brazil.
- Veterinary Pathology and Forensics Laboratory, University of Brasília, Federal District, Brasília, Brazil.
| |
Collapse
|
2
|
Beato-Benítez A, Cano-Terriza D, Gonzálvez M, Pérez-Cobo I, Martínez-Valverde R, Martínez J, Carretero A, Ferreiro-Prado A, Guerra R, Quevedo-Muñoz MÁ, García-Bocanegra I. Serosurvey of Leptospira spp. in captive non-human primates in Spain. Prev Vet Med 2024; 233:106355. [PMID: 39405617 DOI: 10.1016/j.prevetmed.2024.106355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 11/13/2024]
Abstract
Leptospirosis is a worldwide zoonotic disease caused by serovars of Leptospira spp. that can infect a wide range of wild and domestic species, highlighting non-human primates (NHPs) as one of the most susceptible taxonomic groups. The aim of the present study was to determine the seroprevalence and potential risk factors associated with exposure to Leptospira spp. in captive NHPs in Spain. Between 2007 and 2021, sera were collected from 258 NHPs in 16 zoos and wildlife rescue centers (WRCs), and tested for antibodies to Leptospira spp. using the modified microagglutination test (MAT). Anti-Leptospira spp. antibodies were detected in 73 (28.3 %) of the 258 NHPs evaluated. Seropositivity was found in 61.0 % (25/41) of the species analyzed and in 87.5 % (14/16) of the sampled centers. Sera seropositive for six different serovars of Leptospira spp. were detected, with L. Grippotyphosa being the most prevalent. Seroprevalence was found to be significantly higher in Hominidae (61.8 %; P < 0.001) compared to other NHP families tested. To the author's knowledge, the present study is the largest serosurvey of Leptospira spp. conducted in NHPs in Europe and also reports for the first time exposure to Leptospira spp. in nine NHP species, expanding the host range for this zoonotic bacterium. Our results indicate high and widespread seropositivity of Leptospira spp. in NHPs kept in captivity in Spain, which may be of conservation and animal health concern. This study supports the need to include captive NHPs in monitoring programs to evaluate the exposure of these species to Leptospira spp. in captive centers.
Collapse
Affiliation(s)
- Adrián Beato-Benítez
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014 Córdoba, Spain
| | - David Cano-Terriza
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014 Córdoba, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Moisés Gonzálvez
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014 Córdoba, Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain.
| | - Iratxe Pérez-Cobo
- Laboratorio Central de Veterinaria (LCV), Ministerio de Agricultura, Pesca y Alimentación, 28110 Algete, Madrid, Spain
| | | | | | | | | | - Rafael Guerra
- Centro de Conservación Zoo Córdoba, 14071 Córdoba, Spain
| | - Miguel Ángel Quevedo-Muñoz
- Centro de Conservación de la Biodiversidad Zoobotánico Jerez-Alberto Durán, 11408, Jerez de la Frontera, Cádiz, Spain
| | - Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014 Córdoba, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Beato-Benítez A, Cano-Terriza D, Gonzálvez M, Martínez R, Pérez-Cobo I, Ruano MJ, Guerra R, Mozos-Mora E, García-Bocanegra I. Fatal leptospirosis in endangered Barbary macaques (Macaca sylvanus) kept in captivity: Assessing the role of sympatric rodents. Vet Microbiol 2024; 291:110028. [PMID: 38367538 DOI: 10.1016/j.vetmic.2024.110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Between December 2020 and January 2021, an outbreak of acute mortality in endangered Barbary macaques (Macaca sylvanus) kept in captivity was detected in a zoo in Spain. The main findings observed in the two fatally affected animals at post-mortem evaluation were jaundice, renal tubular necrosis and interstitial nephritis. Leptospira spp. infection was confirmed by real time PCR (qPCR) in different tissues in both individuals. Analyses of secY gene from a positive individual showed 100% homology with a previously published sequence corresponding to Leptospira interrogans serovar Copenhageni. Free-living sympatric brown rats (Rattus norvegicus) from the affected zoo were also analyzed, and showed a prevalence and seroprevalence of Leptospira spp. of 18.2% (4/22; 95% CI: 2.1-34.3) and 41.9% (26/62; 95% CI: 29.7-54.2), respectively. We detected seropositive sera to five different serovars of Leptospira spp. (Copenhageni, Grippotyphosa, Pomona, Canicola and Hardjo) in the rodent population, with L. Copenhageni being the predominant one. This study describes for first time an outbreak of fatal leptospirosis in captive non-human primates in Europe. Our results show that Barbary macaques, an endangered species, are highly susceptible to Leptospira spp. infection, with sympatric wild rodents being the most likely reservoir animals involved in transmission in this outbreak. Our results suggest that rodent control could be an effective measure for minimizing exposure to Leptospira spp. in zoological collections. Given the potential implications for conservation, animal and public health, non-human primates and rodents should be included in surveillance programs for Leptospira spp. in zoos.
Collapse
Affiliation(s)
- Adrián Beato-Benítez
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba 14014, Spain
| | - David Cano-Terriza
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba 14014, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid 28029, Spain.
| | - Moisés Gonzálvez
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba 14014, Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Universidad de Murcia, Murcia 30100, Spain
| | - Remigio Martínez
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba 14014, Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres 10003, Spain
| | - Iratxe Pérez-Cobo
- Laboratorio Central de Veterinaria (LCV), Ministerio de Agricultura, Pesca y Alimentación, 28110 Algete, Madrid, Spain
| | - María José Ruano
- Laboratorio Central de Veterinaria (LCV), Ministerio de Agricultura, Pesca y Alimentación, 28110 Algete, Madrid, Spain
| | - Rafael Guerra
- Centro de Conservación Zoo Córdoba, Córdoba 14071, Spain
| | - Elena Mozos-Mora
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Universidad de Córdoba, Córdoba 14014, Spain
| | - Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba 14014, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
4
|
Suwannin P, Jangpatarapongsa K, Polpanich D, Alhibshi A, Errachid A, Elaissari A. Enhancing leptospirosis control with nanosensing technology: A critical analysis. Comp Immunol Microbiol Infect Dis 2024; 104:102092. [PMID: 37992537 DOI: 10.1016/j.cimid.2023.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Leptospirosis is a serious health problem in tropical areas; thus, animals shed leptospires in the environment. Humans are accidental hosts infected through exposure to contaminating bacteria in the environment. One health strategy can be applied to protect and eliminate leptospirosis because this cooperates and coordinates activities between doctors, veterinarians, and ecologists. However, conventional methods still have limitations. Therefore, the main challenges of leptospirosis control are the high sensing of detection methods to screen and control the pathogens. Interestingly, nano sensing combined with a leptospirosis detection approach can increase the sensitivity and eliminate some limitations. This article reviews nanomaterial development for an advanced leptospirosis detection method, e.g., latex beads-based agglutination test, magnetic nanoparticles enrichment, and gold-nanoparticles-based immunochromatographic assay. Thus, nanomaterials can be functionalized with biomolecules or sensing molecules utilized in various mechanisms such as biosensors. Over the last decade, many biosensors have been developed for Leptospira spp. pathogen and others. The evolution of biosensors for leptospirosis detection was designed for high efficiency and might be an alternative tool. In addition, the high-sensing fabrications are useful for leptospires screening in very low levels, for example, soil or water from the environment.
Collapse
Affiliation(s)
- Patcharapan Suwannin
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne 69622, France
| | - Kulachart Jangpatarapongsa
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Duangporn Polpanich
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Amani Alhibshi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne 69622, France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne 69622, France.
| |
Collapse
|
5
|
Dos Santos EO, Klain VF, B Manrique S, Rodrigues RO, Dos Santos HF, Sangioni LA, Dasso MG, de Almeida MAB, Dos Santos E, Born LC, Reck J, Botton SDA. Influence of landscape structure on previous exposure to Leptospira spp. and Brucella abortus in free-living neotropical primates from southern Brazil. Am J Primatol 2023; 85:e23472. [PMID: 36814095 DOI: 10.1002/ajp.23472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 02/24/2023]
Abstract
The environments in which neotropical primates live have been undergoing an intense fragmentation process, constituting a major threat to the species' survival and causing resource scarcity, social isolation, and difficulty in dispersal, leaving populations increasingly vulnerable. Moreover, the proximity of wild environments to anthropized landscapes can change the dynamics of pathogens and the parasite-host-environment relationship, creating conditions that favor exposure to different pathogens. To investigate the previous exposure of free-living primates in Rio Grande do Sul State (RS), southern Brazil, to the bacterial agents Leptospira spp. and Brucella abortus, we investigated agglutinating antibodies against 23 serovars of Leptospira spp. using the microscopic agglutination test and B. abortus acidified antigen test in primate serum samples; 101 samples from primates captured between 2002 and 2016 in different forest fragments were used: 63 Alouatta caraya, 36 Alouatta guariba clamitans, and 02 Sapajus nigritus cucullatus. In addition, the forest remnants where the primates were sampled were characterized in a multiscale approach in radii ranging from 200 to 1400 m to investigate the potential relationship of previous exposure to the agent with the elements that make up the landscape structure. The serological investigation indicated the presence of antibodies for at least one of the 23 serovars of Leptospira spp. in 36.6% (37/101) of the samples analyzed, with titers ranging from 100 to 1600. The most observed serovars were Panama (17.8%), Ballum (5.9%), Butembo (5.9%), Canicola (5.9%), Hardjo (4.9%), and Tarassovi (3.9%); no samples were seropositive for Brucella abortus. Decreased forest cover and edge density were the landscape factors that had a significant relationship with Leptospira spp. exposure, indicating that habitat fragmentation may influence contact with the pathogen. The data generated in this study demonstrate the importance of understanding how changes in landscape structure affect exposure to pathogenic microorganisms of zoonotic relevance. Hence, improving epidemiological research and understanding primates' ecological role in these settings can help improve environmental surveillance and conservation strategies for primate populations in different landscapes.
Collapse
Affiliation(s)
- Elisandro O Dos Santos
- Laboratório de Saúde Única, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais da Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - Vinícius F Klain
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Sebastián B Manrique
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rogério O Rodrigues
- Laboratório de Leptospirose do Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Brazil
| | - Helton F Dos Santos
- Núcleo de Estudos e Pesquisas em Animais Silvestres, Laboratório Central de Diagnóstico de Patologias Aviárias, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - Luís A Sangioni
- Laboratório de Saúde Única, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais da Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - Maurício G Dasso
- Laboratório de Leptospirose do Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Brazil
| | - Marco A B de Almeida
- Divisão de Vigilância Ambiental em Saúde, Centro Estadual de Vigilância em Saúde, Secretaria de Estado da Saúde, Porto Alegre, Brazil
| | - Edmilson Dos Santos
- Divisão de Vigilância Ambiental em Saúde, Centro Estadual de Vigilância em Saúde, Secretaria de Estado da Saúde, Porto Alegre, Brazil
| | - Lucas C Born
- Divisão de Vigilância Ambiental em Saúde, Centro Estadual de Vigilância em Saúde, Secretaria de Estado da Saúde, Porto Alegre, Brazil
| | - José Reck
- Laboratório de Parasitologia do Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Brazil
| | - Sônia de Avila Botton
- Laboratório de Saúde Única, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais da Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| |
Collapse
|
6
|
Sykes JE, Haake DA, Gamage CD, Mills WZ, Nally JE. A global one health perspective on leptospirosis in humans and animals. J Am Vet Med Assoc 2022; 260:1589-1596. [PMID: 35895801 DOI: 10.2460/javma.22.06.0258] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Leptospirosis is a quintessential one health disease of humans and animals caused by pathogenic spirochetes of the genus Leptospira. Intra- and interspecies transmission is dependent on 1) reservoir host animals in which organisms replicate and are shed in urine over long periods of time, 2) the persistence of spirochetes in the environment, and 3) subsequent human-animal-environmental interactions. The combination of increased flooding events due to climate change, changes in human-animal-environmental interactions as a result of the pandemic that favor a rise in the incidence of leptospirosis, and under-recognition of leptospirosis because of nonspecific clinical signs and severe signs that resemble COVID-19 represents a "perfect storm" for resurgence of leptospirosis in people and domestic animals. Although often considered a disease that occurs in warm, humid climates with high annual rainfall, pathogenic Leptospira spp have recently been associated with disease in animals and humans that reside in semiarid regions like the southwestern US and have impacted humans that have a wide spectrum of socioeconomic backgrounds. Therefore, it is critical that physicians, veterinarians, and public health experts maintain a high index of suspicion for the disease regardless of geographic and socioeconomic circumstances and work together to understand outbreaks and implement appropriate control measures. Over the last decade, major strides have been made in our understanding of the disease because of improvements in diagnostic tests, molecular epidemiologic tools, educational efforts on preventive measures, and vaccines. These novel approaches are highlighted in the companion Currents in One Health by Sykes et al, AJVR, September 2022.
Collapse
Affiliation(s)
- Jane E Sykes
- 1Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - David A Haake
- 2VA Greater Los Angeles Healthcare System, Los Angeles, CA.,3David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA
| | - Chandika D Gamage
- 4Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - Jarlath E Nally
- 6National Animal Disease Center, Agriculture Research Service, USDA, Ames, IA
| |
Collapse
|
7
|
Wilson TM, Ritter JM, Martines RB, Bullock HA, Fair P, Radford KW, Macêdo IL, Sousa DER, Gonçalves AAB, Romano AP, Passsos PHO, Ramos DG, Costa GRT, Cavalcante KRLJ, de Melo CB, Zaki SR, Castro MB. Fatal Human Alphaherpesvirus 1 Infection in Free-Ranging Black-Tufted Marmosets in Anthropized Environments, Brazil, 2012–2019. Emerg Infect Dis 2022; 28:802-811. [PMID: 35318916 PMCID: PMC8962904 DOI: 10.3201/eid2804.212334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human alphaherpesvirus 1 (HuAHV1) causes fatal neurologic infections in captive New World primates. To determine risks for interspecies transmission, we examined data for 13 free-ranging, black-tufted marmosets (Callithrix penicillata) that died of HuAHV1 infection and had been in close contact with humans in anthropized areas in Brazil during 2012–2019. We evaluated pathologic changes in the marmosets, localized virus and antigen, and assessed epidemiologic features. The main clinical findings were neurologic signs, necrotizing meningoencephalitis, and ulcerative glossitis; 1 animal had necrotizing hepatitis. Transmission electron microscopy revealed intranuclear herpetic inclusions, and immunostaining revealed HuAHV1 and herpesvirus particles in neurons, glial cells, tongue mucosal epithelium, and hepatocytes. PCR confirmed HuAHV1 infection. These findings illustrate how disruption of the One Health equilibrium in anthropized environments poses risks for interspecies virus transmission with potential spillover not only from animals to humans but also from humans to free-ranging nonhuman primates or other animals.
Collapse
|