1
|
Li H, Hu Z, Wang G, Wang Y, Wang S, Tian M, Bao Y, Qi J, Yu S. Development of an indirect ELISA based on a new specific lipoprotein LP53 for the detection of antibodies against Mycoplasma synoviae. BMC Vet Res 2025; 21:393. [PMID: 40450297 DOI: 10.1186/s12917-025-04827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 05/09/2025] [Indexed: 06/03/2025] Open
Affiliation(s)
- Haoran Li
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, P. R. China
- College of Animal Science and Technology, Anhui Agricultural University, No. 130, Changjiangxilu, Hefei, Anhui, 230061, PR China
| | - Zengjin Hu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, P. R. China
- College of Animal Science and Technology, Anhui Agricultural University, No. 130, Changjiangxilu, Hefei, Anhui, 230061, PR China
| | - Guijun Wang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130, Changjiangxilu, Hefei, Anhui, 230061, PR China
| | - Yu Wang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, P. R. China
- College of Veterinary Medicine, Yangzhou University, No. 88 University South Road, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, P. R. China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, P. R. China
| | - Yanqing Bao
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, P. R. China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, P. R. China.
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, P. R. China.
| |
Collapse
|
2
|
Zhao L, Tang X, Guo W, Zhang B, Peng H, Ye L, Liu Y, Liang J, Tian M, Bao Y, Qi J, Wang S. Using a novel gene site to develop a duplex real-time TaqMan MGB probe PCR method for the SNP detection and differentiation between the MS-H live vaccine strain and wild-type Mycoplasma synoviae strains. Poult Sci 2025; 104:105011. [PMID: 40080948 PMCID: PMC11953997 DOI: 10.1016/j.psj.2025.105011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025] Open
Abstract
Mycoplasma synoviae (MS) is a globally prevalent avian pathogen responsible for airsacculitis and synovitis. The temperature-sensitive (ts)+ vaccine strain MS-H, a live attenuated variant, is the most effective and widely used vaccine for controlling infections in the poultry industry. Consequently, accurate detection is essential for a strategy known as differentiating infected from vaccinated animals (DIVA). In this study, we developed a duplex real-time TaqMan minor groove binder (MGB) probe PCR (The DRTM-probe PCR) method to differentiate the MS-H live vaccine strain from wild-type strains by targeting a single nucleotide polymorphism (SNP) in the ktrB gene. This gene overcomes the restoration of the genotype of wild-type 86079/7NS in specific regions. With a detection limit of 6.25 copies/μL, the DRTM-probes PCR method demonstrates a good specificity in distinguishing in one hour. For simulated clinical samples, the method achieved over 95 % sequence identity with reference fragments, confirming its accuracy. The established DRTM-probe PCR method offers a specific, rapid, and reliable approach for SNP detection with significant application potential.
Collapse
Affiliation(s)
- Luru Zhao
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China; College of Animal Science and Technology, Guangxi University, 100 East University Road, Nanning 530004, PR China
| | - Xiaochuan Tang
- College of Animal Science and Technology, Guangxi University, 100 East University Road, Nanning 530004, PR China
| | - Weiqi Guo
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | - Bin Zhang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | - Haoheng Peng
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | - Lijun Ye
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | - Yinan Liu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | - Jingyi Liang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | - Yanqing Bao
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China.
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China.
| |
Collapse
|
3
|
Zhao Y, Ma H, Wang Q, He X, Xing X, Wu X, Quan G, Bao S. Mycoplasma synoviae elongation factor thermo stable is an adhesion-associated protein that enters cells by endocytosis and stimulates DF-1 cell proliferation. BMC Vet Res 2024; 20:522. [PMID: 39558348 PMCID: PMC11575130 DOI: 10.1186/s12917-024-04374-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
Mycoplasma synoviae is an important avian pathogen that causes respiratory infections and arthritis symptoms in chickens and turkeys, resulting in significant economic damage to the poultry farming industry worldwide. Cell adhesion is a vital stage of Mycoplasma infection, and the proteins associated with this process play an important role in its pathogenesis. Elongation factor thermo stable (EF-Ts) is an important factor in prokaryotic biosynthesis that serves as a guanosine exchange factor for elongation factor thermo unstable (EF-Tu). To date, little is known about the role of EF-Ts in Mycoplasma infection. In this study, we identified EF-Ts as an immunogenic protein in M. synoviae through liquid chromatography with tandem mass spectrometry (LC-MS/MS) screening. We constructed an E. coli recombinant expression vector and prepared a highly efficient rabbit antiserum. Immunoblot analysis and suspension immunofluorescence revealed that the EF-Ts is located in both the cell membrane and cytoplasm. The prepared rabbit EF-Ts antiserum exhibited complement-dependent Mycoplasma-killing activity and inhibited the adhesion of rEF-Ts and M. synoviae to DF-1 cells. An in-vitro binding assay showed that EF-Ts could bind to fibronectin (Fn) and chicken plasminogen (cPlg) in a dose-dependent manner. In addition, EF-Ts could internalize into cells through lipid rafts and clathrin-dependent endocytosis and induce DF-1 cell proliferation. In conclusion, our studies demonstrated that MS EF-Ts is a potentially immunogenic, novel adhesion protein that acts as a critical virulence factor in M. synoviae adhesion to host cells during infection. These studies further deepen our understanding of the pathogenic mechanism of M. synoviae.
Collapse
Affiliation(s)
- Yunhai Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Haiyun Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Qing Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Xiaoxiao He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Xiaoyong Xing
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Xiaochun Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Guomei Quan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Shijun Bao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
4
|
Sabri S, Khannous L, Ferré S, Souissi A, Gdoura R, Gautier-Bouchardon AV. First molecular investigation to detect avian Mycoplasma species in clinical samples from laying-hen farms in Tunisia. BMC Vet Res 2024; 20:459. [PMID: 39390571 PMCID: PMC11465938 DOI: 10.1186/s12917-024-04311-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Avian mycoplasmas are known pathogens, which cause severe economic losses in poultry flocks. PCR is a rapid, sensitive, and less expensive diagnostic tool than culture for the identification of mycoplasmas in poultry farms. The objective of this study was to determine by PCR the presence of Mycoplasma spp., Mycoplasma gallisepticum (MG), Mycoplasma synoviae (MS), and Mycoplasma pullorum (MP) in laying hens located in the Sfax region, in the South of Tunisia. RESULTS A total of 781 tracheal swabs were collected from 13 laying-hen farms without clinical signs at the date of sampling. MP was detected by a newly described specific PCR assay. The prevalence calculated from PCR results at the flock level was 100% for Mycoplasma spp., 0% for MG, 84.6% for MS and 61.5% for MP. The overall prevalence at the animal level was 38.7% for Mycoplasma spp., 0% for MG, 25% for MS and 6.4% for MP. The overall prevalence of 100% of avian mycoplasmas in laying-hen farms (38.7% prevalence at the animal level) shows an alarming situation. CONCLUSIONS These results underline the importance of monitoring the emergence and spread of Mycoplasma strains in farms in order to decrease economic losses due to mycoplasmoses.
Collapse
Affiliation(s)
- Soumaya Sabri
- Laboratory Research of Toxicology Microbiology Environmental and Health, Faculty of Sciences of Sfax, Sfax University, BP 1171, 3000, Sfax, Tunisia
- Mycoplasmology, Bacteriology and Antimicrobial Resistance Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), BP53, 22440, Ploufragan, France
| | - Lamia Khannous
- Laboratory Research of Toxicology Microbiology Environmental and Health, Faculty of Sciences of Sfax, Sfax University, BP 1171, 3000, Sfax, Tunisia
| | - Séverine Ferré
- Mycoplasmology, Bacteriology and Antimicrobial Resistance Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), BP53, 22440, Ploufragan, France
| | - Adel Souissi
- Veterinary Services, Regional Agricultural Development Commission, Sfax, Tunisia
| | - Radhouane Gdoura
- Laboratory Research of Toxicology Microbiology Environmental and Health, Faculty of Sciences of Sfax, Sfax University, BP 1171, 3000, Sfax, Tunisia
| | - Anne V Gautier-Bouchardon
- Mycoplasmology, Bacteriology and Antimicrobial Resistance Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), BP53, 22440, Ploufragan, France.
| |
Collapse
|
5
|
Guo Y, Miao Y, Chen H, Wang K, Wang S, Wang R, Wu Z, Li J. Revealing the mechanism: the influence of Baicalin on M1/M2 and Th1/Th2 imbalances in mycoplasma gallisepticum infection. Poult Sci 2024; 103:104145. [PMID: 39127004 PMCID: PMC11367134 DOI: 10.1016/j.psj.2024.104145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Mycoplasma gallisepticum (MG) is a pathogen that induces chronic respiratory illnesses in chickens, leading to tracheal and lung injury, and eliciting immune reactions that support sustained colonization. Baicalin, a compound found in scutellaria baicalensis, exhibits anti-inflammatory, antioxidant, and antibacterial properties. This study aimed to investigate the potential of baicalin in alleviating lung and cell damage caused by MG by restoring imbalances in M1/M2 and Th1/Th2 differentiation and to explore its underlying mechanism. In this research, a model for M1/M2 polarization induced by MG was initially developed. Specifically, infection with MG at a multiplicity of infection (MOI) of 400 for 6 h represented the M1 model, while infection for 10 h represented the M2 model. The polarization markers were subsequently validated using qRT-PCR, ELISA, and Western blot analysis. Baicalin disrupts the activation of M1 cells induced by MG and has the potential to restore the balance between M1 and M2 cells, thereby mitigating the inflammatory damage resulting from MG. Subsequent studies on MG-infected chickens detected imbalances in M1/M2 and Th1/Th2 differentiation in alveolar lavage fluid, as well as imbalances in macrophages and Th cells in the lung. The M1/Th1 model was exposed to MG for 5 d, while the M2/Th2 model was infected with MG for 7 d. The utilization of both light and electron transmission microscopes revealed that the administration of baicalin resulted in a reduction in the number of M1 cells, a decrease in cytoplasmic vacuoles, restoration of mitochondrial swelling and chromatin agglutination, as well as alleviation of alveolar rupture and inflammatory cell infiltration. Furthermore, baicalin restored MG-induced M1/M2 and Th1/Th2 imbalances and inhibited the phosphorylation of p38 and p65 proteins, thereby hindering the activation of the TLR4-p38 MAPK/NF-κB pathway. This study provides insights into the potential long-term effects of baicalin in MG infection and offers a theoretical basis for practical applications.
Collapse
Affiliation(s)
- Yuquan Guo
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yusong Miao
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, PR China
| | - Hao Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kexin Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shun Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Rui Wang
- Shandong Tianmu Technology Co. LTD, Dongying, 257500, PR China
| | - Zhiyong Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jichang Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
6
|
Wang S, Guo L, Gu F, Bao J, Guo Y, Zhang Y, Wang Z, Li R, Wu Z, Li J. Quercetin restores respiratory mucosal barrier dysfunction in Mycoplasma gallisepticum-infected chicks by enhancing Th2 immune response. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155953. [PMID: 39154527 DOI: 10.1016/j.phymed.2024.155953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Mycoplasma gallisepticum (MG) has long been a pathogenic microorganism threatening the global poultry industry. Previous studies have demonstrated that the mechanism by which quercetin (QUE) inhibits the colonization of MG in chicks differs from that of antibiotics. However, the molecular mechanism by which QUE facilitates the clearance of MG remains unclear. PURPOSE The aim of this study was to investigate the molecular mechanism of MG clearance by QUE, with the expectation of providing new options for the treatment of MG. METHODS A model of MG infection in chicks and MG-induced M1 polarization in HD-11 cells were established. The mechanism of QUE clearance of MG was investigated by evaluating the relationship between tracheal mucosal barrier integrity, antibody levels, Th1/Th2 immune balance and macrophage metabolism and M1/M2 polarization balance. Furthermore, network pharmacology and molecular docking techniques were employed to explore the potential molecular pathways connecting QUE, M2 polarization, and fatty acid oxidation (FAO). RESULTS The findings indicate that QUE remodels tracheal mucosal barrier function by regulating tight junctions and secretory immunoglobulin A (sIgA) expression levels. This process entails the regulatory function of QUE on the Th1/Th2 immune imbalance that is induced by MG infection in the tracheal mucosa. Moreover, QUE intervention impeded the M1 polarization of HD-11 cells induced by MG infection, while simultaneously promoting M2 polarization through the induction of FAO. Conversely, inhibitors of the FAO pathway impede this effect. The results of computer network analysis suggest that QUE may induce FAO via the PI3K/AKT pathway to promote M2 polarization. Notably, inhibition of the PI3K/AKT pathway was found to effectively inhibit M2 polarization in HD-11 cells, while having a limited effect on FAO. CONCLUSIONS QUE promotes M2 polarization of HD-11 cells to enhance Th2 immune response through FAO and PI3K/AKT pathways, thereby restoring tracheal mucosal barrier function and ultimately inhibiting MG colonization.
Collapse
Affiliation(s)
- Shun Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Liyang Guo
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Fuhua Gu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Jiaxin Bao
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Yuquan Guo
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Yongjie Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Ze Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China.
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China.
| |
Collapse
|
7
|
Catania S, Bottinelli M, Fincato A, Tondo A, Matucci A, Nai G, Righetti V, Abbate F, Ramírez AS, Gobbo F, Merenda M. Pathogenic avian mycoplasmas show phenotypic differences in their biofilm forming ability compared to non-pathogenic species in vitro. Biofilm 2024; 7:100190. [PMID: 38515541 PMCID: PMC10955283 DOI: 10.1016/j.bioflm.2024.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Mycoplasmas are known as the minimalist microorganisms in the microbes' world. Their minimalist nature makes them highly sensitive to the environmental conditions and limits their ability to survive for extended periods outside their animal host. Nevertheless, there are documented instances of mycoplasma transmission over significant distances and this phenomenon may be linked to relatively unexplored abilities of mycoplasmas, such as their capacity to synthesize biofilm-the predominant mode of bacterial growth in nature. The authors decided to establish a method aimed at inducing the clustering of mycoplasma planktonic cells within a biofilm in vitro and subsequently assess the capacity of certain avian mycoplasmas to synthesize a biofilm. A total of 299 avian mycoplasma isolates were included in the study, encompassing both pathogenic (Mycoplasma gallisepticum, M. synoviae, M. meleagridis, M. iowae) and non-pathogenic species (M. gallinaceum, M. gallinarum, M. iners and M. pullorum). The authors successfully demonstrated the feasibility of inducing avian mycoplasmas to synthetize in vitro a biofilm, which can be visually quantified. The only species that did not produce any biofilm was M. iowae. In general, the pathogenic mycoplasmas produced greater quantities of biofilm compared to the non-pathogenic ones. Furthermore, it was observed that the ability to produce biofilm appeared to vary, both qualitatively and quantitatively, not only among different species but also among isolates of a single species. Future studies will be necessary to determine whether biofilm production plays a pivotal epidemiological role for the pathogenic avian mycoplasmas.
Collapse
Affiliation(s)
- Salvatore Catania
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Marco Bottinelli
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Alice Fincato
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Annalucia Tondo
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Andrea Matucci
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Giorgia Nai
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Verdiana Righetti
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Francesco Abbate
- Dipartimento di Scienze Veterinarie, Università di Messina, 98168, Messina, ME, Italy
| | - Ana S. Ramírez
- Unidad de Epidemiología y Medicina Preventiva, Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Universidad de Las Palmas de Gran Canaria, 35413, Arucas, Spain
| | - Federica Gobbo
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Marianna Merenda
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| |
Collapse
|
8
|
Zhang G, Han L, Zhao Y, Li Q, Wang S, Shi H. Development and evaluation of a multi-epitope subunit vaccine against Mycoplasma synoviae infection. Int J Biol Macromol 2023; 253:126685. [PMID: 37666406 DOI: 10.1016/j.ijbiomac.2023.126685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Mycoplasma synoviae is an extremely significant avian pathogen, causing substantial financial harm to poultry farmers worldwide, and impacting both chicken and turkey production. Multi-epitope vaccines offer higher immunity and lower allergenicity compared to conventional vaccines. In this study, our objective is to develop a multi-epitope vaccine for M. synoviae (MSMV) and to evaluate the immune responses and protective efficacy of MSMV in chickens. We successfully identified a total of 14 B-cell, 5 MHC-I, and 16 MHC-II binding epitopes from the immunodominant proteins RS01790, BMP, GrpE, RS00900, and RS00275. Subsequently, we synthesized the multi-epitope vaccine by connecting all conserved epitopes using appropriate linkers. The resulting MSMV demonstrated notable antigenicity, non-allergenic properties, and stability. Notably, the MSMV effectively stimulated high levels of antibody production in chickens. Furthermore, MSMV the vaccine elicited a robust cellular immune response in chickens, characterized by a well-balanced Th1/Th2-type cytokine profile and enhanced lymphocyte proliferation. In immune protection experiments, the vaccinated chickens exhibited reduced air sac lesion scores and tracheal mucosal thickness compared to their non-vaccinated chickens. Additionally, vaccinated chickens displayed lower M. synoviae loads in throat swabs. These findings collectively suggested that the MSMV holds significant potential as a promising vaccine candidate for managing M. synoviae infections.
Collapse
Affiliation(s)
- Guihua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Lejiabao Han
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuying Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA.
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
9
|
Jbenyeni A, Croville G, Cazaban C, Guérin JL. Predominance of low pathogenic avian influenza virus H9N2 in the respiratory co-infections in broilers in Tunisia: a longitudinal field study, 2018-2020. Vet Res 2023; 54:88. [PMID: 37789451 PMCID: PMC10548753 DOI: 10.1186/s13567-023-01204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/07/2023] [Indexed: 10/05/2023] Open
Abstract
Respiratory diseases are a health and economic concern for poultry production worldwide. Given global economic exchanges and migratory bird flyways, respiratory viruses are likely to emerge continuously in new territories. The primary aim of this study was to investigate the major pathogens involved in respiratory disease in Tunisian broiler poultry and their epidemiology. Between 2018 and 2020, broilers farms in northeastern Tunisia were monitored, and 39 clinically diseased flocks were sampled. Samples were screened for five viral and three bacterial respiratory pathogens using a panel of real-time PCR assays. The reemergence of H9N2 low pathogenic avian influenza virus (LPAIV) in commercial poultry was reported, and the Northern and Western African GI lineage strain was typed. The infectious bronchitis virus (IBV) GI-23 lineage and the avian metapneumovirus (aMPV) subtype B also were detected for the first time in broilers in Tunisia. H9N2 LPAIV was the most detected pathogen in the flocks tested, but rarely alone, as 15 of the 16 H9N2 positive flocks were co-infected. Except for infectious laryngotracheitis virus (ILTV), all of the targeted pathogens were detected, and in 61% of the respiratory disease cases, a combination of pathogens was identified. The major combinations were H9N2 + aMPV (8/39) and H9N2 + IBV (6/39), showing the high contribution of H9N2 LPAIV to the multifactorial respiratory diseases. This field survey provided evidence of the emergence of new respiratory viruses and the complexity of respiratory disease in Tunisia. A comprehensive and continuous surveillance strategy therefore is needed to better control respiratory pathogens in Tunisia.
Collapse
Affiliation(s)
- Adam Jbenyeni
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
- Ceva Santé Animale S.A., Libourne, France
| | | | | | - Jean-Luc Guérin
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| |
Collapse
|
10
|
Zhang G, Han L, Li Z, Chen Y, Li Q, Wang S, Shi H. Screening of immunogenic proteins and evaluation of vaccine candidates against Mycoplasma synoviae. NPJ Vaccines 2023; 8:121. [PMID: 37582795 PMCID: PMC10427712 DOI: 10.1038/s41541-023-00721-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
Mycoplasma synoviae (M. synoviae) is a serious avian pathogen that causes significant economic losses to chicken and turkey producers worldwide. The currently available live attenuated and inactivated vaccines provide limited protection. The objective of this study was to identify potential subunit vaccine candidates using immunoproteomics and reverse vaccinology analyses and to evaluate their preliminary protection. Twenty-four candidate antigens were identified, and five of them, namely RS01790 (a putative sugar ABC transporter lipoprotein), BMP (a substrate-binding protein of the BMP family ABC transporter), GrpE (a nucleotide exchange factor), RS00900 (a putative nuclease), and RS00275 (an uncharacterized protein), were selected to evaluate their immunogenicity and preliminary protection. The results showed that all five antigens had good immunogenicity, and they were localized on the M. synoviae cell membrane. The antigens induced specific humoral and cellular immune responses, and the vaccinated chickens exhibited significantly greater body weight gain and lower air sac lesion scores and tracheal mucosal thicknesses. Additionally, the vaccinated chickens had lower M. synoviae loads in throat swabs than non-vaccinated chickens. The protective effect of the RS01790, BMP, GrpE, and RS00900 vaccines was better than that of the RS00275 vaccine. In conclusion, our study demonstrates the potential of subunit vaccines as a new approach to developing M. synoviae vaccines, providing new ideas for controlling the spread of M. synoviae worldwide.
Collapse
Affiliation(s)
- Guihua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Lejiabao Han
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zewei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yifei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
11
|
Wang S, Jin X, Chen H, Han M, Bao J, Niu D, Wang Y, Li R, Wu Z, Li J. Quercetin alleviates Mycoplasma gallisepticum-induced inflammatory damage and oxidative stress through inhibition of TLR2/MyD88/NF-κB pathway in vivo and in vitro. Microb Pathog 2023; 176:106006. [PMID: 36746315 DOI: 10.1016/j.micpath.2023.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/25/2023] [Indexed: 02/07/2023]
Abstract
Chronic respiratory disease (CRD) caused by Mycoplasma gallisepticum (MG) in chickens leads to enormous economic damage to the poultry industry yearly. The active components and mechanism of action of the traditional herbal remedy Ephedra houttuynia powder (EHP), which had been approved for clinical treatment against MG infection in China, remain unknown. In this study, the active components of EHP against MG were screened using a network pharmacological method, additionally, we studied the mechanism of action of the screened results (quercetin (QUE)). The findings demonstrated that QUE was an essential element of EHP against MG infection, effectively attenuating MG-induced oxidative stress and activation of the TLR2/MyD88/NF-κB pathway. Following QUE therapy, IL-1, IL-6, and TNF-α content and expression were downregulated, whereas IL-4 and IL-10 expression were upregulated, eventually suppressing the inflammatory response both in vitro and in vivo. Together, this study presents a strong rationale for using QUE as a therapeutic strategy to inhibit MG infection-induced inflammatory damage and oxidative stress.
Collapse
Affiliation(s)
- Shun Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Xiaodi Jin
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Mingdong Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Jiaxin Bao
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Dong Niu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Yikang Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China; Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150036, PR China.
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China.
| |
Collapse
|
12
|
Effects of the In Ovo Vaccination of the ts-11 Strain of Mycoplasma gallisepticum in Layer Embryos and Posthatch Chicks. Animals (Basel) 2022; 12:ani12091120. [PMID: 35565547 PMCID: PMC9105791 DOI: 10.3390/ani12091120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Mycoplasma gallisepticum (MG) is responsible for reductions in egg production and other economic losses in the poultry industry. In this study, the potential application of in ovo vaccination of the ts-11of MG vaccine (ts-11MGV) in layer embryos for the subsequent early protection as well as live performance of pullets were investigated. The use of various dosages of live attenuated ts-11MGV ranging from 3.63 × 101 to 3.63 × 104 cfu that were delivered in ovo at 18 days of incubation were evaluated. The results of current study revealed that the in ovo injection of various dosage of ts-11MGV had no negative impacts on any hatch variables. Additionally, the higher dosage of ts-11MGV (3.63 × 104) resulted in a reduction in body weight gain in three-week-old pullets in comparison to all other treatments. Furthermore, MG DNA remained undetectable for hatchling and three-week-old pullets and no serological response was observed at 3 weeks posthatch. Total flock protection from field-strain MG infections is facilitated by the prior systemic establishment of vaccine strains in pullets. Therefore, it is concluded that the ts-11MGV may not be an appropriate candidate for in ovo injection due to the lack of its presence in hatchlings and posthatch chicks subsequent to its in ovo administration. Abstract The transmission of the ts-11 strain of Mycoplasma gallisepticum (MG) vaccine (ts-11MGV) between incubated eggs and between hatchlings that was administrated via in ovo injection, and its subsequent effects on their posthatch performance were evaluated. Marek’s disease diluent alone (sham-injected) or containing either 3.63 × 101, 102, 103, or 104 cfu of ts-11MGV was manually in ovo-injected into the amnion on 18 days of incubation. Egg residue analysis, percentage incubational egg weight loss, hatchability of viable injected eggs, and hatchling body weight (BW) were assessed. Selected hatchlings from each treatment replicate group were swabbed in the choanal cleft for MG DNA detection. Female chick live performance was also assessed through 21 days of posthatch age. Unexposed control sentinel chicks were allocated to each treatment replicate group to assess horizontal transmission. Birds were later swabbed and bled respectively, for detection of MG DNA and IgM production at 21 days posthatch. In all birds, no MG DNA was detected and SPA tests for IgM were negative. Among all variables, only 0 to 21 day BW gain was significantly affected by treatment and was lower in the 3.63 × 104 ts-11 MGV treatment in comparison to all the other treatments. Because ts-11MGV does not exhibit vertical or horizontal transmission capabilities under commercial conditions, it may not be a good candidate for in ovo injection.
Collapse
|
13
|
First Molecular Survey to Detect Mycoplasma gallisepticum and Mycoplasma synoviae in Poultry Farms in a Strategic Production District of Sicily (South-Italy). Animals (Basel) 2022; 12:ani12080962. [PMID: 35454208 PMCID: PMC9028770 DOI: 10.3390/ani12080962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 01/23/2023] Open
Abstract
Simple Summary Avian mycoplasmosis is caused by several pathogenic mycoplasmas of which Mycoplasma gallisepticum (MG) and M. synoviae (MS) are the most important. These bacteria may cause both respiratory disease and synovial infections in poultry, resulting in severe economic losses. The aim of this work was to determine the occurrence of MG and MS among commercial and rural laying hens located in Ragusa province (South Italy), using a duplex real time PCR. Four hundred tracheal swabs were collected from seven commercial and 25 rural farms without any clinical disease history. The prevalence in the studied flocks was 28.6% (commercial) and 40% (rural) for MG, and 42.8% (commercial) and 44% (rural) for MS. The overall prevalence at animal level was 12.5% for MG and 23.25% for MS. Data obtained show a lower prevalence of MG than MS in the studied farms. Moreover, both pathogens were spread in rural and commercial farms underlining the importance of surveillance and control of these infections. Abstract Mycoplasmas are recognized as avian pathogens, which may cause both respiratory disease and synovial infections in poultry, resulting in severe economic losses. Our study aims to determine the occurrence of Mycoplasma gallisepticum (MG) and Mycoplasma synoviae (MS) among commercial and rural laying hens located in Ragusa province (South Italy), using a duplex real time PCR. Four hundred tracheal swabs were collected from seven commercial (200 swabs) and 25 rural (200 swabs) farms without any clinical disease history. Out of 400 swabs collected, 50 (12.5%) and 93 (23.25%) were positive for MG and MS, respectively. In particular, 9 (18%) and 22 (23.65%) positive swabs for MG and MS, respectively, originated from commercial farms, compared to 41 (82%) and 71 (76.34%) obtained from rural farms. Data obtained show a lower prevalence of MG than MS in the studied farms. Moreover, both pathogens were spread in rural and commercial farms. PCR could be concluded as a rapid and sensitive method for the identification of MG and MS in areas where commercial farms that are declared Mycoplasma-free and rural flocks coexist. These data highlight the importance of surveillance also in rural poultry to monitoring the occurrence of mycoplasmas strains in strategic productive districts.
Collapse
|
14
|
Sui C, Cui H, Ji J, Xu X, Kan Y, Yao L, Bi Y, Zhang X, Xie Q. Epidemiological investigations and locally determined genotype diversity of Mycoplasma synoviae in Central China from 2017 to 2019. Poult Sci 2021; 101:101522. [PMID: 34818613 PMCID: PMC8626675 DOI: 10.1016/j.psj.2021.101522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Mycoplasma synoviae (M. synoviae) has been identified worldwide to cause respiratory diseases, infectious synovitis, airsacculitis, and eggshell apex abnormalities (EAA) in commercial chickens, which results in substantial economic losses to the poultry industry. Therefore, in this study, 258 flocks were investigated between 2017 and 2019 for M. synoviae by screening samples from Central China. Subsequently, 129 M. synoviae strains were isolated, with a positive rate of 50%. Moreover, a higher incidence of M. Synoviae infections was in layers (74.1%) than in broilers (20%) in this study. The 5′-end conserved segment of the variable lipoprotein hemagglutinin A (vlhA) gene of these isolates was then cloned and sequenced because it is a common genomic target identified so far for M. synoviae genotyping. Genotyping of all isolates was based on the phylogenetic analysis and length analysis of the proline-rich-repeat (PRR) regions, respectively. Phylogenetic analysis based on 5′-end conserved segment of the vlhA gene (76–421 nt) assigned the majority of the occurring strains as being from group 6, and others from groups 2 and 3. Results identified that these isolates were of 6 types: A (38aa), D (23aa), E (19aa), I (28aa), J (20aa), and L (35aa), based on the size of the PRR region analysis. Furthermore, most of the isolates (81.4% were identified as type L. Additionally, the epidemic types included only I and L in 2017; however, the types rose to 5 (A, D, E, I, L) in 2018 and rose to 6 (A, D, E, I, J, L) in 2019. These data showed the genotype diversity of M. synoviae in Central China. The high rate of positive flocks suggests the urgent need to take real-time supervisory controls of this Mycoplasma species in avian flocks.
Collapse
Affiliation(s)
- Chaoge Sui
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, 473061, PR China
| | - Hao Cui
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, 473061, PR China
| | - Jun Ji
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, 473061, PR China.
| | - Xin Xu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, 473061, PR China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, 473061, PR China
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, 473061, PR China
| | - Yingzuo Bi
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Xinheng Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
15
|
Diaz D, Hernandez-Carreño PE, Velazquez DZ, Chaidez-Ibarra MA, Montero-Pardo A, Martinez-Villa FA, Canizalez-Roman A, Ortiz-Navarrete VF, Rosiles R, Gaxiola SM, Jimenez-Trejo F. Prevalence, main serovars and anti-microbial resistance profiles of non-typhoidal Salmonella in poultry samples from the Americas: A systematic review and meta-analysis. Transbound Emerg Dis 2021; 69:2544-2558. [PMID: 34724337 DOI: 10.1111/tbed.14362] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/26/2021] [Accepted: 10/03/2021] [Indexed: 01/14/2023]
Abstract
Poultry and poultry-derived products such as meat and eggs are among the main sources of non-typhoidal Salmonella (NTS) transmission to humans. Therefore, we performed a systematic review and used random-effects meta-analyses to (1) estimate the prevalence of NTS in poultry samples from birds, products and subproducts and environmental samples, (2) examine the diversity and frequency of their serovars and (3) estimate the prevalence and profiles of anti-microbial resistance (AMR) in NTS isolates reported in studies from the Americas. We included 157 studies from 15 countries comprising 261,408 poultry samples and estimated an overall pooled prevalence of 17.9% (95% Confidence Interval: 10.8-26.3) in birds, 21.8% (17.7-26.1) in products and subproducts and 29.5% (24.2-35.1) in environmental samples. At the national level, the prevalence of NTS was heterogeneous across countries with the highest values in Mexico, the United States and Canada. In total, 131 serovars were identified from 13,388 isolates; Heidelberg, Kentucky, Enteritidis and Typhimurium were the most prevalent in the overall top 10 ranking (range 6.5%-20.8%). At the national level, Enteritidis and Typhimurium were identified in most of the countries, though with national differences in their ranks. The prevalence of AMR increased from 24.1% for 1 antibiotic to 36.2% for 2-3 antibiotics and 49.6% for ≥ 4 antibiotics. Kentucky, Heidelberg, Typhimurium and Enteritidis were the serovars with the highest prevalence of AMR. Besides, tetracycline, ampicillin, streptomycin, ceftiofur and amoxicillin-clavulanic acid were the most frequent antibiotics to which NTS showed resistance. In conclusion, NTS was distributed through the avian production chain with high and heterogeneous values of prevalence in poultry samples. Besides, there were distinctive patterns of serovars distribution across countries and an alarming prevalence of AMR among zoonotic serovars.
Collapse
Affiliation(s)
- Daniel Diaz
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, México.,Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán Rosales, Sinaloa, México
| | | | - Diana Zuleika Velazquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán Rosales, Sinaloa, México
| | - Miguel Angel Chaidez-Ibarra
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán Rosales, Sinaloa, México
| | - Arnulfo Montero-Pardo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán Rosales, Sinaloa, México
| | | | - Adrian Canizalez-Roman
- Centro de Investigación Aplicada a la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales, Sinaloa, México
| | | | - Rene Rosiles
- Departamento de Nutrición Animal y Bioquímica, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Soila Maribel Gaxiola
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán Rosales, Sinaloa, México
| | - Francisco Jimenez-Trejo
- Laboratorio de Morfología Celular y Tisular, Instituto Nacional de Pediatría, Ciudad de México, México
| |
Collapse
|