1
|
Yang J, Li J, Zhang L, Shen Z, Xiao Y, Zhang G, Chen M, Chen F, Liu L, Wang Y, Chen L, Wang X, Zhang L, Wang L, Wang Z, Wang J, Li M, Ren L. Highly diverse sputum microbiota correlates with the disease severity in patients with community-acquired pneumonia: a longitudinal cohort study. Respir Res 2024; 25:223. [PMID: 38811936 PMCID: PMC11137881 DOI: 10.1186/s12931-024-02821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/24/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Community-acquired pneumonia (CAP) is a common and serious condition that can be caused by a variety of pathogens. However, much remains unknown about how these pathogens interact with the lower respiratory commensals, and whether any correlation exists between the dysbiosis of the lower respiratory microbiota and disease severity and prognosis. METHODS We conducted a retrospective cohort study to investigate the composition and dynamics of sputum microbiota in patients diagnosed with CAP. In total, 917 sputum specimens were collected consecutively from 350 CAP inpatients enrolled in six hospitals following admission. The V3-V4 region of the 16 S rRNA gene was then sequenced. RESULTS The sputum microbiota in 71% of the samples were predominately composed of respiratory commensals. Conversely, 15% of the samples demonstrated dominance by five opportunistic pathogens. Additionally, 5% of the samples exhibited sterility, resembling the composition of negative controls. Compared to non-severe CAP patients, severe cases exhibited a more disrupted sputum microbiota, characterized by the highly dominant presence of potential pathogens, greater deviation from a healthy state, more significant alterations during hospitalization, and sparser bacterial interactions. The sputum microbiota on admission demonstrated a moderate prediction of disease severity (AUC = 0.74). Furthermore, different pathogenic infections were associated with specific microbiota alterations. Acinetobacter and Pseudomonas were more abundant in influenza A infections, with Acinetobacter was also enriched in Klebsiella pneumoniae infections. CONCLUSION Collectively, our study demonstrated that pneumonia may not consistently correlate with severe dysbiosis of the respiratory microbiota. Instead, the degree of microbiota dysbiosis was correlated with disease severity in CAP patients.
Collapse
Affiliation(s)
- Jing Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Changping Laboratory, Beijing, 102206, China
| | - Jinman Li
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Linfeng Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zijie Shen
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Xiao
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Guoliang Zhang
- Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Mingwei Chen
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fuhui Chen
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Ying Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lan Chen
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xinming Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Li Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
| | - Lu Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
| | - Zhang Wang
- Institute of Ecological Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Mingkun Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
2
|
Castejon-Ramirez S, Chaisavaneeyakorn S, Ferrolino JA, Allison KJ, Peterson M, Dallas RH, Suliman A, Hayden RT, Maron G, Hijano DR. Clinical Outcomes of Human Rhinovirus/Enterovirus Infection in Pediatric Hemopoietic Cell Transplant Patients. J Pediatric Infect Dis Soc 2024; 13:75-83. [PMID: 38019957 PMCID: PMC10824257 DOI: 10.1093/jpids/piad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Respiratory viral infections are common among pediatric transplant patients, with human rhinovirus (HRV) being the most frequent. In pediatric patients undergoing hemopoietic cell transplant (HCT), infection with HRV has been associated with progression to lower respiratory tract infection (LRTI) and adverse outcomes. We describe the clinical presentation and outcomes of HRV infection in children undergoing HCT. METHODS Single-center retrospective study. HCT recipients who were positive for HRV/EV (HRV+) or negative for any respiratory virus (VN) by BioFire® FilmArray® panel between October 2014 and December 2017, were included. Primary outcomes were progression to LRTI, ICU admission, all-cause mortality at 3 and 6 months, and respiratory event-related mortality at 6 months. RESULTS 227 patients (160 allogeneic HCT) were included. Of all patients, 108/227 (47.6%) were HRV+. From all HRV+, 95/108 (88%) were symptomatic and 68/107 (63.6%) of the diagnosis were made pretransplant. The median age of HRV+ was significantly lower than VN patients (5 vs 10 years). Cough and rhinorrhea were more frequently observed in HRV+ (53.7 and 60% vs 19.8 and 22.8%, respectively). No differences were found between both groups pretransplant and overall in rates progression to LRTI, ICU admission, mechanical ventilation, all-cause within 3 and 6 months, and mortality related with respiratory failure. No significant association was found between the severity of respiratory disease and the type of conditioning, type of transplant, or absolute lymphocyte count. CONCLUSIONS HRV infection is frequently detected in HCT recipients but is not associated with severity of respiratory disease, need for intensive care unit or mortality, including those diagnosed before transplant, suggesting that delaying HCT in this scenario may not be needed. Multicenter larger studies are required to confirm these findings.
Collapse
Affiliation(s)
- Sandra Castejon-Ramirez
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Pediatrics, University of Tennessee Health Science Center College of Medicine, USA
| | | | - Jose A Ferrolino
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Kim J Allison
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Megan Peterson
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ronald H Dallas
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ali Suliman
- Department of Transplant Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Randall T Hayden
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Gabriela Maron
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Pediatrics, University of Tennessee Health Science Center College of Medicine, USA
| | - Diego R Hijano
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Pediatrics, University of Tennessee Health Science Center College of Medicine, USA
| |
Collapse
|
3
|
Makhsous N, Goya S, Avendaño C, Rupp J, Kuypers J, Jerome KR, Boeckh M, Waghmare A, Greninger AL. Within-host rhinovirus evolution in upper and lower respiratory tract highlights capsid variability and mutation-independent compartmentalization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540440. [PMID: 37214809 PMCID: PMC10197658 DOI: 10.1101/2023.05.11.540440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Human rhinovirus (HRV) infections can progress from the upper (URT) to lower (LRT) respiratory tract in immunocompromised individuals, causing high rates of fatal pneumonia. Little is known about how HRV evolves within hosts during infection. Methods We sequenced HRV complete genomes from 12 hematopoietic cell transplant patients with prolonged infection for up to 190 days from both URT (nasal wash, NW) and LRT (bronchoalveolar lavage, BAL) specimens. Metagenomic (mNGS) and amplicon-based NGS were used to study the emergence and evolution of intra-host single nucleotide variants (iSNVs). Results Identical HRV intra-host populations in matched NW and BAL specimens indicated no genetic adaptation is required for HRV to progress from URT to LRT. Microbial composition between matched NW and BAL confirmed no cross-contamination during sampling procedure. Coding iSNVs were 2.3-fold more prevalent in capsid over non-structural genes, adjusted for length. iSNVs modeled onto HRV capsid structures were significantly more likely to be found in surface residues, but were not preferentially located in known HRV neutralizing antibody epitopes. Newly emergent, serotype-matched iSNV haplotypes from immunocompromised individuals from 2008-2010 could be detected in Seattle-area community HRV sequences from 2020-2021. Conclusion HRV infections in immunocompromised hosts can progress from URT to LRT with no specific evolutionary requirement. Capsid proteins carry the highest variability and emergent mutations can be detected in other, including future, HRV sequences.
Collapse
Affiliation(s)
- Negar Makhsous
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, 98102, USA
| | - Stephanie Goya
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, 98102, USA
| | - Carlos Avendaño
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, 98102, USA
| | - Jason Rupp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, 98102, USA
| | - Jane Kuypers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, 98102, USA
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, 98102, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, 98109, USA
| | - Michael Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, 98109, USA
- Department of Medicine, University of Washington, Seattle, 98102, USA
| | - Alpana Waghmare
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, 98109, USA
- Department of Pediatrics, University of Washington, Seattle, 98105, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, 98102, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, 98109, USA
| |
Collapse
|
4
|
Guerra-de-Blas PDC, Ortega-Villa AM, Ortiz-Hernández AA, Ramírez-Venegas A, Moreno-Espinosa S, Llamosas-Gallardo B, Pérez-Patrigeon S, Hunsberger S, Magaña M, Valdez-Vázquez R, Freimanis L, Galán-Herrera JF, Guerrero-Almeida ML, Powers JH, Ruiz-Palacios GM, Beigel J, Galindo-Fraga A. Etiology, clinical characteristics, and risk factors associated with severe influenza-like illnesses in Mexican adults. IJID REGIONS 2023; 6:152-158. [PMID: 36865993 PMCID: PMC9972394 DOI: 10.1016/j.ijregi.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Objective The aim of this study was to determine the risk factors associated with severe influenza-like illness (ILI) in Mexican adults that could be useful to clinicians when assessing patients with ILI. Methods Data from adult patients enrolled from 2010 through 2014 in ILI002 - a prospective hospital-based observational cohort study - were analyzed. Etiology and clinical characteristics were compared between cases of severe ILI (defined as hospitalization and/or death) and cases of non-severe ILI. Results Overall, 1428 (39.0%) out of a total 3664 cases of ILI were classified as severe. Adjusted analyses showed a higher risk of severe ILI associated with signs and symptoms related to lower tract infection, i.e. cough with sputum (odds ratio (OR) 2.037, 95% confidence interval (CI) 1.206-3.477; P = 0.008), dyspnea (OR 5.044, 95% CI 2.99-8.631; and shortness of breath (OR 5.24, 95% CI 3.0839.124; P < 0.001), and with increases in lactate dehydrogenase (OR 4.426, 95% CI 2.321-8.881; P < 0.001) and C-reactive protein (OR 3.618, 95% CI 2.5955.196; P < 0.001). Further, there was an increased risk of severe ILI with a longer time between symptom onset and inclusion (OR 1.108, 95% CI 1.049-1.172; P < 0.001) and with chronic steroid use (OR 14.324, 95% CI 8.059-26.216; P < 0.001). Conclusions Respiratory viruses can cause severe ILI. The results of this study highlight the importance of evaluating data compatible with lower tract involvement and previous use of immunosuppressants at baseline, because patients meeting these conditions may develop severe illness.
Collapse
Affiliation(s)
| | - Ana M. Ortega-Villa
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | | | | | | | | | | - Sally Hunsberger
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Martín Magaña
- Hospital Regional Dr. Ignacio Morones Prieto, San Luis Potosí, Mexico
| | | | | | - Juan Francisco Galán-Herrera
- The Mexican Emerging Infectious Diseases Clinical Research Network (LaRed), Mexico City, Mexico,Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - John H. Powers
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - John Beigel
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Arturo Galindo-Fraga
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico,Corresponding author: Arturo Galindo-Fraga, Hospital Epidemiology and Medical Attention Quality Control, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Mexico City, Mexico 14080.
| | | |
Collapse
|
5
|
Gabutti G, De Motoli F, Sandri F, Toffoletto MV, Stefanati A. Viral Respiratory Infections in Hematological Patients. Infect Dis Ther 2020; 9:495-510. [PMID: 32638228 PMCID: PMC7339094 DOI: 10.1007/s40121-020-00313-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Viral infections of the respiratory system represent one of the most important complications in hematological patients in terms of both the severity of the clinical picture and its related impact on the duration of hospitalization, and of mortality. The most implicated viruses are those that commonly cause community-based respiratory diseases: respiratory syncytial virus, Influenza virus and rhinovirus. However, in some cases the clinical picture may be triggered by first infection with or reactivation of pathogens normally not responsible for clinically relevant diseases in immunocompetent subjects. This issue is currently being taken into greater consideration within the scientific community. However, the strong heterogeneity in the epidemiology and clinical expression of these infections and the lack of adequate therapeutic options imply that there is currently no uniform consensus on the best management of these patients. The main purpose of this review is to highlight which viruses are currently most implicated in the onset of these infections, what is their incidence in so heterogeneous and fragile patients and the factors that lead to disease's onset and evolution. Possible or available clinical management options, diagnostic and therapeutic tools, and preventive and prophylaxis measures are also discussed.
Collapse
Affiliation(s)
- Giovanni Gabutti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
| | - Francesco De Motoli
- Post-Graduate School of Hygiene and Preventive Medicine, University of Ferrara, Ferrara, Italy
| | - Federica Sandri
- Post-Graduate School of Hygiene and Preventive Medicine, University of Ferrara, Ferrara, Italy
| | | | - Armando Stefanati
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
6
|
Pérez A, Montoro J, Hernani R, Lorenzo I, Hernández‐Boluda JC, Giménez E, Gómez MD, Balaguer‐Roselló A, Gonzalez‐Barberá E, Guerreiro M, Aguilar C, Navarro D, Solano C, Sanz J, Piñana JL. Assessment of immunodeficiency scoring index performance in enterovirus/rhinovirus respiratory infection after allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis 2020; 22:e13301. [DOI: 10.1111/tid.13301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Ariadna Pérez
- Department of Hematology Hospital Clínico Universitario Fundación INCLIVA Valencia Spain
| | - Juan Montoro
- Department of Hematology Hospital Universitari I Politècnic la Fe Valencia Spain
| | - Rafael Hernani
- Department of Hematology Hospital Clínico Universitario Fundación INCLIVA Valencia Spain
| | - Ignacio Lorenzo
- Department of Hematology Hospital Universitari I Politècnic la Fe Valencia Spain
| | - Juan Carlos Hernández‐Boluda
- Department of Hematology Hospital Clínico Universitario Fundación INCLIVA Valencia Spain
- Department of Medicine School of Medicine University of Valencia Valencia Spain
| | - Estela Giménez
- Microbiology Service Hospital Clínico Universitario Valencia Spain
| | - María Dolores Gómez
- Department of Microbiology School of Medicine University of Valencia Valencia Spain
| | | | - Eva Gonzalez‐Barberá
- Department of Microbiology School of Medicine University of Valencia Valencia Spain
| | - Manuel Guerreiro
- Department of Hematology Hospital Universitari I Politècnic la Fe Valencia Spain
| | - Cristóbal Aguilar
- Department of Hematology Hospital Universitari I Politècnic la Fe Valencia Spain
| | - David Navarro
- Department of Medicine School of Medicine University of Valencia Valencia Spain
- Microbiology Service Hospital Clínico Universitario Valencia Spain
| | - Carlos Solano
- Department of Hematology Hospital Clínico Universitario Fundación INCLIVA Valencia Spain
- Department of Medicine School of Medicine University of Valencia Valencia Spain
| | - Jaime Sanz
- Department of Hematology Hospital Universitari I Politècnic la Fe Valencia Spain
- Department of Medicine School of Medicine University of Valencia Valencia Spain
- CIBERONC Instituto Carlos III Madrid Spain
| | - José Luis Piñana
- Department of Hematology Hospital Universitari I Politècnic la Fe Valencia Spain
- CIBERONC Instituto Carlos III Madrid Spain
| |
Collapse
|
7
|
Piñana J, Montoro J, Aznar C, Lorenzo I, Gómez MD, Guerreiro M, Carretero C, González-Barberá EM, Balaguer-Roselló A, Sanz R, Salavert M, Navarro D, Sanz MA, Sanz G, Sanz J. The clinical benefit of instituting a prospective clinical community-acquired respiratory virus surveillance program in allogeneic hematopoietic stem cell transplantation. J Infect 2020; 80:333-341. [PMID: 31972212 PMCID: PMC7112613 DOI: 10.1016/j.jinf.2019.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/11/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023]
Abstract
Rapid detection methods used as first diagnostic test for CARVs may delayed the start of antiviral therapy in a significant number of influenza and RSV cases. Syndromic multiplex RT-PCR-based prospective clinical CARV survey in allo-HCT recipients translates into a lower mortality rate as compared to standard clinical practice based on RSV and influenza virus rapid detection test. We found that donor/recipient HLA mismatch, CARV LRTD and high-risk ISI were also associated with higher mortality.
Background There is a lack of studies comparing clinical outcomes among retrospective versus prospective cohorts of allogeneic stem cell transplant (allo-HCT) recipients with community acquired respiratory virus (CARV) infections. Methods We compare outcomes in two consecutive cohorts of allo-HCT recipients with CARV infections. The retrospective cohort included 63 allo-HCT recipients with 108 CARV infections from January 2013 to April 2016 who were screened and managed following standard clinical practice based on influenza and respiratory syncytial virus rapid antigen detection methods. The prospective cohort was comprised of 144 consecutive recipients with 297 CARV episodes included in a prospective interventional clinical surveillance program (ProClinCarvSur-P) based on syndromic multiplex PCR as first-line test from May 2016 to December 2018 at a single transplant center. Results CARV infections in the retrospective cohort showed more severe clinical features at the time of diagnosis compared to the prospective cohort (fever 83% vs. 57%, hospital admission 69% vs. 28% and lower respiratory tract 58% vs. 31%, respectively, p ≤ 0.002 for all comparisons). Antiviral therapy was more commonly prescribed in the prospective cohort (69 vs. 43 treated CARV episodes), particularly at the upper respiratory tract disease stage (34 vs. 12 treated CARV episodes). Three-month all-cause mortality was significantly higher in the retrospective cohort (n = 23, 37% vs. n = 10, 7%, p < 0.0001). Multivariate logistic regression analysis showed that recipients included in ProClinCarvSur-P had lower mortality rate [odds ratio 0.31, 95% confidence interval 0.12–0.7, p = 0.01]. Conclusion This study report on outcome differences when reporting retrospective vs. prospective CARV infections after allo-HCT. Recipients included in a ProClinCarvSur-P had lower mortality.
Collapse
Affiliation(s)
- JoséLuis Piñana
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain; CIBERONC, Instituto Carlos III, Madrid, Spain.
| | - Juan Montoro
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Carla Aznar
- Outpatient hematology/Oncology nursing unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Ignacio Lorenzo
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - María Dolores Gómez
- Microbiology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Manuel Guerreiro
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Carlos Carretero
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | | | | | - Rosa Sanz
- Outpatient hematology/Oncology nursing unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Miguel Salavert
- Department of Infectious Diseases, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - David Navarro
- Microbiology Department, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain; Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - Miguel A Sanz
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain; CIBERONC, Instituto Carlos III, Madrid, Spain; Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - Guillermo Sanz
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain; CIBERONC, Instituto Carlos III, Madrid, Spain; Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - Jaime Sanz
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain; CIBERONC, Instituto Carlos III, Madrid, Spain; Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
8
|
Bronchoalveolar lavage to evaluate new pulmonary infiltrates in allogeneic hematopoietic stem cell transplant recipients: impact on antimicrobial optimization. Infect Prev Pract 2019; 1:100029. [PMID: 34316554 PMCID: PMC7148605 DOI: 10.1016/j.infpip.2019.100029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/26/2019] [Indexed: 12/01/2022] Open
Abstract
Background Pulmonary complications cause significant morbidity and mortality after allogeneic hematopoietic stem cell transplant (AHSCT). Bronchoscopy with targeted bronchoalveolar lavage (BAL) is often used in AHSCT patients with suspected lower respiratory tract infection (LRTI) to help guide management. Aim To evaluate how positive BAL results change antimicrobial management of AHSCT recipients with suspected LRTI. Methods We performed a retrospective review of BAL results from January 2014 to July 2016 for 54 AHSCT recipients. A positive BAL was determined by culture, multiplex polymerase chain reaction (PCR), Aspergillus galactomannan antigen (AGA), and cytology. Findings BAL was positive for infectious etiologies in 63%, and antimicrobials were adjusted in 48/54 (89%) of patients. Antibacterial escalation was predicted by a positive BAL bacterial culture (OR 7.61, P=0.017). Antibiotic de-escalation was more likely with an elevated AGA (OR 3.86, P=0.035). Antiviral initiation was more likely with positive BAL multiplex PCR (OR 17.33, P=0.010). Antifungals were more likely to be escalated or changed with an elevated AGA (OR 4.33, P=0.020). The patients with a negative BAL were more likely to be started on steroids (OR 0.19, P= 0.043). Conclusions BAL was helpful to determine the etiology of pulmonary complications and optimize antimicrobials. The addition of AGA and multiplex PCR to standard BAL significantly impacted de-escalating antibiotics and adjusting antifungals to provide adequate coverage. The association with an elevated AGA with antibacterial de-escalation highlights a new role for BAL in antimicrobial optimization.
Collapse
|
9
|
Are Community Acquired Respiratory Viral Infections an Underestimated Burden in Hematology Patients? Microorganisms 2019; 7:microorganisms7110521. [PMID: 31684063 PMCID: PMC6920795 DOI: 10.3390/microorganisms7110521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022] Open
Abstract
Despite a plethora of studies demonstrating significant morbidity and mortality due to community-acquired respiratory viral (CRV) infections in intensively treated hematology patients, and despite the availability of evidence-based guidelines for the diagnosis and management of respiratory viral infections in this setting, there is no uniform inclusion of respiratory viral infection management in the clinical hematology routine. Nevertheless, timely diagnosis and systematic management of CRV infections in intensively treated hematology patients has a demonstrated potential to significantly improve outcome. We have briefly summarized the recently published data on CRV infection epidemiology, as well as guidelines on the diagnosis and management of CRV infections in patients intensively treated for hematological malignancies. We have also assessed available treatment options, as well as mentioned novel agents currently in development.
Collapse
|
10
|
The effect of timing on community acquired respiratory virus infection mortality during the first year after allogeneic hematopoietic stem cell transplantation: a prospective epidemiological survey. Bone Marrow Transplant 2019; 55:431-440. [PMID: 31551521 PMCID: PMC7091566 DOI: 10.1038/s41409-019-0698-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/10/2019] [Accepted: 07/27/2019] [Indexed: 11/08/2022]
Abstract
The effect of timing of community acquired respiratory virus (CARV) infection after allogeneic hematopoietic stem cell transplant (allo-HCT) is an as yet unsettled issue. We evaluate this issue by including all consecutive allo-HCT recipients with molecularly-documented CARV infection during the first year after transplant. The study cohort was drawn from a prospective longitudinal survey of CARV in allo-HCT recipient having respiratory symptoms conducted from December 2013 to December 2018 at two Spanish transplant centers. Respiratory viruses in upper and/or lower respiratory specimens were tested using multiplex PCR panel assays. The study cohort comprised 233 allo-HCT recipients with 376 CARV infection episodes diagnosed during the first year after allo-HCT. Overall, 60% of CARV episodes occurred within the first 6 months (227 out of 376). Thirty patients (13%) had died at 3 months after CARV detection, of which 25 (83%) were recipients developing CARV within the first 6 months after transplant. Multivariate analysis identified four risk factors for mortality: ATG used as part of conditioning regimen [odds ratio (OR) 2.8, 95% confidence interval (C.I.) 1.21-6.4, p = 0.01], CARV lower respiratory tract disease (OR 3.4, 95% C.I. 1.4-8.4, p = 0.007), CARV infection within the first 6 months of transplant (OR 3.04, 95% C.I. 1.1-8.7, p = 0.03), and absolute lymphocyte count <0.2 × 109/L (OR 2.4, 95% C.I. 1-5.3, p = 0.04). Developing CARV infection within the first 6 months was associated with higher mortality. Our data supports that the timing of CARV development after allo-HCT could be of major interest.
Collapse
|
11
|
Pochon C, Voigt S. Respiratory Virus Infections in Hematopoietic Cell Transplant Recipients. Front Microbiol 2019; 9:3294. [PMID: 30687278 PMCID: PMC6333648 DOI: 10.3389/fmicb.2018.03294] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022] Open
Abstract
Highly immunocompromised pediatric and adult hematopoietic cell transplant (HCT) recipients frequently experience respiratory infections caused by viruses that are less virulent in immunocompetent individuals. Most of these infections, with the exception of rhinovirus as well as adenovirus and parainfluenza virus in tropical areas, are seasonal variable and occur before and after HCT. Infectious disease management includes sampling of respiratory specimens from nasopharyngeal washes or swabs as well as sputum and tracheal or tracheobronchial lavages. These are subjected to improved diagnostic tools including multiplex PCR assays that are routinely used allowing for expedient detection of all respiratory viruses. Disease progression along with high mortality is frequently associated with respiratory syncytial virus, parainfluenza virus, influenza virus, and metapneumovirus infections. In this review, we discuss clinical findings and the appropriate use of diagnostic measures. Additionally, we also discuss treatment options and suggest new drug formulations that might prove useful in treating respiratory viral infections. Finally, we shed light on the role of the state of immune reconstitution and on the use of immunosuppressive drugs on the outcome of infection.
Collapse
Affiliation(s)
- Cécile Pochon
- Allogeneic Hematopoietic Stem Cell Transplantation Unit, Department of Pediatric Oncohematology, Nancy University Hospital, Vandœuvre-lès-Nancy, France
| | - Sebastian Voigt
- Department of Pediatric Oncology/Hematology/Stem Cell Transplantation, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
12
|
Hurst BL, Evans WJ, Smee DF, Van Wettere AJ, Tarbet EB. Evaluation of antiviral therapies in respiratory and neurological disease models of Enterovirus D68 infection in mice. Virology 2019; 526:146-154. [PMID: 30390563 PMCID: PMC6309259 DOI: 10.1016/j.virol.2018.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 01/19/2023]
Abstract
Enterovirus D68 (EV-D68) is unique among enteroviruses because of the ability to cause severe respiratory disease as well as neurological disease. We developed separate models of respiratory and neurological disease following EV-D68 infection in AG129 mice that respond to antiviral treatment with guanidine. In four-week-old mice infected intranasally, EV-D68 replicates to high titers in lung tissue increasing the proinflammatory cytokines MCP-1 and IL-6. The respiratory infection also produces an acute viremia. In 10-day-old mice infected intraperitoneally, EV-D68 causes a neurological disease with weight-loss, paralysis, and mortality. In our respiratory model, treatment with guanidine provides a two-log reduction in lung virus titers, reduces MCP-1 and IL-6, and prevents histological lesions in the lungs. Importantly, viremia is prevented by early treatment with guanidine. In our neurological model, guanidine treatment protects mice from weight-loss, paralysis, and mortality. These results demonstrate the utility of these models for evaluation of antiviral therapies for EV-D68 infection.
Collapse
Affiliation(s)
- Brett L Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT, United States; Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - W Joseph Evans
- Institute for Antiviral Research, Utah State University, Logan, UT, United States; Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Donald F Smee
- Institute for Antiviral Research, Utah State University, Logan, UT, United States; Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Arnaud J Van Wettere
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States; Utah Veterinary Diagnostic Laboratory, Logan, UT, United States
| | - E Bart Tarbet
- Institute for Antiviral Research, Utah State University, Logan, UT, United States; Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States; Utah Veterinary Diagnostic Laboratory, Logan, UT, United States.
| |
Collapse
|
13
|
Waghmare A, Xie H, Kuypers J, Sorror ML, Jerome KR, Englund JA, Boeckh M, Leisenring WM. Human Rhinovirus Infections in Hematopoietic Cell Transplant Recipients: Risk Score for Progression to Lower Respiratory Tract Infection. Biol Blood Marrow Transplant 2018; 25:1011-1021. [PMID: 30537551 PMCID: PMC6511300 DOI: 10.1016/j.bbmt.2018.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022]
Abstract
Risk factors for rhinovirus lower respiratory tract infection are not well characterized. Several risk factors in hematopoietic cell transplant recipients were identified. A risk score for progression to lower respiratory tract infection was developed.
Human rhinovirus lower respiratory tract infection (LRTI) is associated with mortality after hematopoietic cell transplantation (HCT); however, risk factors for LRTI are not well characterized. We sought to develop a risk score for progression to LRTI from upper respiratory tract infection (URTI) in HCT recipients. Risk factors for LRTI within 90 days were analyzed using Cox regression among HCT recipients with rhinovirus URTI between January 2009 and March 2016. The final multivariable model included factors with a meaningful effect on the bootstrapped optimism corrected concordance statistic. Weighted score contributions based on hazard ratios were determined. Cumulative incidence curves estimated the probability of LRTI at various score cut-offs. Of 588 rhinovirus URTI events, 100 (17%) progressed to LRTI. In a final multivariable model allogeneic grafts, prior rhinovirus URTI, low lymphocyte count, low albumin, positive cytomegalovirus serostatus, recipient statin use, and steroid use ≥2 mg/kg/day were associated with progression to LRTI. A weighted risk score cut-off with the highest sensitivity and specificity was determined. Risk scores above this cut-off were associated with progression to LRTI (cumulative incidence 28% versus 11% below cut-off; P < .001). The weighted risk score for progression to rhinovirus LRTI can help identify and stratify patients for clinical management and for future clinical trials of therapeutics in HCT recipients.
Collapse
Affiliation(s)
- Alpana Waghmare
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA; Department of Pediatrics, University of Washington, Seattle, WA; Department of Pediatrics, Seattle Children's Hospital, Seattle, WA.
| | - Hu Xie
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jane Kuypers
- Department of Laboratory Medicine, University of Washington, Seattle, WA
| | - Mohamed L Sorror
- Department of Medicine, University of Washington, Seattle, WA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Keith R Jerome
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA; Department of Laboratory Medicine, University of Washington, Seattle, WA
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle, WA; Department of Pediatrics, Seattle Children's Hospital, Seattle, WA
| | - Michael Boeckh
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA; Department of Medicine, University of Washington, Seattle, WA
| | - Wendy M Leisenring
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
14
|
Ogimi C, Xie H, Leisenring WM, Kuypers JM, Jerome KR, Campbell AP, Englund JA, Boeckh M, Waghmare A. Initial High Viral Load Is Associated with Prolonged Shedding of Human Rhinovirus in Allogeneic Hematopoietic Cell Transplant Recipients. Biol Blood Marrow Transplant 2018; 24:2160-2163. [PMID: 30009982 PMCID: PMC6239940 DOI: 10.1016/j.bbmt.2018.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/05/2018] [Indexed: 02/05/2023]
Abstract
We examined prolonged shedding of rhinovirus after stem cell transplantation. The median shedding duration of rhinovirus was similar between species. Initial high viral load was a risk factor for prolonged shedding of rhinovirus.
Recent data suggest human rhinovirus (HRV) is associated with lower respiratory tract infection and mortality in hematopoietic cell transplant (HCT) recipients. Examining risk factors for prolonged viral shedding may provide critical insight for the development of novel therapeutics and help inform infection prevention practices. Our objective was to identify risk factors for prolonged shedding of HRV post-HCT. We prospectively collected weekly nasal samples from allogeneic HCT recipients from day 0 to day 100 post-transplant, and performed real-time reverse transcriptase PCR (December 2005 to February 2010). Subjects with symptomatic HRV infection and a negative test within 2 weeks of the last positive were included. Duration of shedding was defined as time between the first positive and first negative samples. Cycle threshold (Ct) values were used as a proxy for viral load. HRV species were identified by sequencing the 5′ noncoding region. Logistic regression analyses were performed to evaluate factors associated with prolonged shedding (≥21 days). We identified 38 HCT recipients with HRV infection fulfilling study criteria (32 adults, 6 children). Median duration of shedding was 9.5 days (range, 2 to 89 days); 18 patients had prolonged shedding. Among 26 samples sequenced, 69% were species A, and species B and C accounted for 15% each; the median shedding duration of HRV did not differ among species (P = .17). Bivariable logistic regression analyses suggest that initial high viral load (low Ct value) is associated with prolonged shedding. HCT recipients with initial high viral loads are at risk for prolonged HRV viral shedding.
Collapse
Affiliation(s)
- Chikara Ogimi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Pediatrics, University of Washington, Seattle, Washington; Pediatric Infectious Diseases Division, Seattle Children's Hospital, Seattle, Washington
| | - Hu Xie
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Wendy M Leisenring
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jane M Kuypers
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Angela P Campbell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Pediatrics, University of Washington, Seattle, Washington; Pediatric Infectious Diseases Division, Seattle Children's Hospital, Seattle, Washington
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle, Washington; Pediatric Infectious Diseases Division, Seattle Children's Hospital, Seattle, Washington
| | - Michael Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Alpana Waghmare
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Pediatrics, University of Washington, Seattle, Washington; Pediatric Infectious Diseases Division, Seattle Children's Hospital, Seattle, Washington
| |
Collapse
|
15
|
Law N, Kumar D. Post-transplant Viral Respiratory Infections in the Older Patient: Epidemiology, Diagnosis, and Management. Drugs Aging 2018; 34:743-754. [PMID: 28965331 PMCID: PMC7100819 DOI: 10.1007/s40266-017-0491-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Organ and stem cell transplantation has been one of the greatest advances in modern medicine, and is the primary treatment modality for many end-stage diseases. As our population ages, so do the transplant recipients, and with that comes many new challenges. Respiratory viruses have been a large contributor to the mortality and morbidity of solid organ transplant (SOT) and hematopoietic stem cell transplant (HSCT) recipients. Respiratory viruses are generally a long-term complication of transplantation and primarily acquired in the community. With the emergence of molecular methods, newer respiratory viruses are being detected. Respiratory viruses appear to cause severe disease in the older transplant population. Influenza vaccine remains the mainstay of prevention in transplant recipients, although immunogenicity of current vaccines is suboptimal. Limited therapies are available for other respiratory viruses. The next decade will likely bring newer antivirals and vaccines to the forefront. Our goal is to provide the most up to date knowledge of respiratory viral infections in our aging transplant population.
Collapse
Affiliation(s)
- Nancy Law
- Transplant Infectious Diseases and Multi-Organ Transplant Program, University Health Network, PMB 11-174, 585 University Avenue, Toronto, ON, M5G 2N2, Canada
| | - Deepali Kumar
- Transplant Infectious Diseases and Multi-Organ Transplant Program, University Health Network, PMB 11-174, 585 University Avenue, Toronto, ON, M5G 2N2, Canada.
| |
Collapse
|
16
|
Multicenter Evaluation of the ePlex Respiratory Pathogen Panel for the Detection of Viral and Bacterial Respiratory Tract Pathogens in Nasopharyngeal Swabs. J Clin Microbiol 2018; 56:JCM.01658-17. [PMID: 29212701 PMCID: PMC5786739 DOI: 10.1128/jcm.01658-17] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022] Open
Abstract
The performance of the new ePlex Respiratory Pathogen (RP) panel (GenMark Diagnostics) for the simultaneous detection of 19 viruses (influenza A virus; influenza A H1 virus; influenza A 2009 H1 virus; influenza A H3 virus; influenza B virus; adenovirus; coronaviruses [HKU1, OC43, NL63, and 229E]; human rhinovirus/enterovirus; human metapneumovirus; parainfluenza viruses 1, 2, 3, and 4; and respiratory syncytial virus [RSV] [RSV subtype A and RSV subtype B]) and 2 bacteria (Mycoplasma pneumoniae and Chlamydia pneumoniae) was evaluated. Prospectively and retrospectively collected nasopharyngeal swab (NPS) specimens (n = 2,908) were evaluated by using the ePlex RP panel, with the bioMérieux/BioFire FilmArray Respiratory Panel (BioFire RP) as the comparator method. Discordance analysis was performed by using target-specific PCRs and bidirectional sequencing. The reproducibility of the assay was evaluated by using reproducibility panels comprised of 6 pathogens. The overall agreement between the ePlex RP and BioFire RP results was >95% for all targets. Positive percent agreement with the BioFire RP result for viruses ranged from 85.1% (95% confidence interval [CI], 80.2% to 88.9%) to 95.1% (95% CI, 89.0% to 97.9%), while negative percent agreement values ranged from 99.5% (95% CI, 99.1% to 99.7%) to 99.8% (95% CI, 99.5% to 99.9%). Additional testing of discordant targets (12%; 349/2,908) confirmed the results of ePlex RP for 38% (131/349) of samples tested. Reproducibility was 100% for all targets tested, with the exception of adenovirus, for which reproducibilities were 91.6% at low virus concentrations and 100% at moderate virus concentrations. The ePlex RP panel offers a new, rapid, and sensitive “sample-to-answer” multiplex panel for the detection of the most common viral and bacterial respiratory pathogens.
Collapse
|
17
|
Kakiuchi S, Tsuji M, Nishimura H, Wang L, Takayama-Ito M, Kinoshita H, Lim CK, Taniguchi S, Oka A, Mizuguchi M, Saijo M. Human Parainfluenza Virus Type 3 Infections in Patients with Hematopoietic Stem Cell Transplants: the Mode of Nosocomial Infections and Prognosis. Jpn J Infect Dis 2017; 71:109-115. [PMID: 29279454 DOI: 10.7883/yoken.jjid.2017.424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There have been a few prospective and comprehensive surveillance studies on the respiratory viral infections (RVIs) among patients undergoing hematopoietic stem cell transplantation (HSCT). A 2-year prospective cohort surveillance study of symptomatic and asymptomatic RVIs was performed in hospitalized HSCT patients. Oropharyngeal (OP) swab samples were serially collected each week from 1 week before and up to 100 days after HSCT and were tested for virus isolation with cell culture-based viral isolation (CC-based VI) and a multiplex PCR (MPCR). A total of 2,747 OP swab samples were collected from 250 HSCT patients (268 HSCT procedures). Among these patients, 79 had RVIs (CC-based VI, n = 63; MPCR, n = 17). The parainfluenza virus type 3 (PIV3) accounted for 71% (57/80) of the cases of RVIs. Some PIV3 infections were asymptomatic and involved a longer virus-shedding period. The PIV3 was often cultured from samples taken before the onset of a respiratory disease. The PIV3 infections were attributed to the transmission of nosocomial infections. PIV3 infections before engraftment will more likely result in the development of lower respiratory tract infections and worse outcomes. A real-time monitoring of respiratory viral infections in the HSCT ward among patients with or without respiratory symptoms is required for the prevention of nosocomial RVIs, especially of PIV3 infections.
Collapse
Affiliation(s)
- Satsuki Kakiuchi
- Department of Virology 1, National Institute of Infectious Diseases.,Department of Developmental Medical Sciences, The University of Tokyo
| | | | | | - Lixing Wang
- Department of Virology 1, National Institute of Infectious Diseases
| | | | - Hitomi Kinoshita
- Department of Virology 1, National Institute of Infectious Diseases
| | - Chang-Kweng Lim
- Department of Virology 1, National Institute of Infectious Diseases
| | | | - Akira Oka
- Department of Developmental Medical Sciences, The University of Tokyo
| | - Masashi Mizuguchi
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases.,Department of Pediatrics, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
18
|
Lin TH, Su HH, Kang HY, Chang TH. The Interactive Roles of Lipopolysaccharides and dsRNA/Viruses on Respiratory Epithelial Cells and Dendritic Cells in Allergic Respiratory Disorders: The Hygiene Hypothesis. Int J Mol Sci 2017; 18:ijms18102219. [PMID: 29065558 PMCID: PMC5666898 DOI: 10.3390/ijms18102219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/15/2022] Open
Abstract
The original hygiene hypothesis declares "more infections in early childhood protect against later atopy". According to the hygiene hypothesis, the increased incidence of allergic disorders in developed countries is explained by the decrease of infections. Epithelial cells and dendritic cells play key roles in bridging the innate and adaptive immune systems. Among the various pattern-recognition receptor systems of epithelial cells and dendritic cells, including toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and others, TLRs are the key systems of immune response regulation. In humans, TLRs consist of TLR1 to TLR10. They regulate cellular responses through engagement with TLR ligands, e.g., lipopolysaccharides (LPS) acts through TLR4 and dsRNA acts through TLR3, but there are certain common components between these two TLR pathways. dsRNA activates epithelial cells and dendritic cells in different directions, resulting in allergy-related Th2-skewing tendency in epithelial cells, and Th1-skewing tendency in dendritic cells. The Th2-skewing effect by stimulation of dsRNA on epithelial cells could be suppressed by the presence of LPS above some threshold. When LPS level decreases, the Th2-skewing effect increases. It may be via these interrelated networks and related factors that LPS modifies the allergic responses and provides a plausible mechanism of the hygiene hypothesis. Several hygiene hypothesis-related phenomena, seemingly conflicting, are also discussed in this review, along with their proposed mechanisms.
Collapse
Affiliation(s)
- Tsang-Hsiung Lin
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung 81362, Taiwan.
| | - Hsing-Hao Su
- Department of Otorhinolaryngology-Head & Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung 81362, Taiwan.
- Hormone Research Center and Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
| | - Tsung-Hsien Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan.
| |
Collapse
|
19
|
Walter JM, Wunderink RG. Severe Respiratory Viral Infections: New Evidence and Changing Paradigms. Infect Dis Clin North Am 2017; 31:455-474. [PMID: 28687214 PMCID: PMC7347414 DOI: 10.1016/j.idc.2017.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lower respiratory tract infection is a leading cause of death in the United States. Advances in diagnostic testing have improved our ability to detect pathogens. Viral pathogens are important causal pathogens in immunocompetent patients. As the number of elderly adults and those with chronic medical conditions increases, the burden of viral respiratory infections will increase. Clinicians must be familiar with the characteristics of rhinovirus, human adenoviruses, respiratory syncytial virus, and human metapneumovirus. Major challenges include distinguishing true infection from asymptomatic carriage and characterizing patients admitted with severe lower respiratory tract infection who do not have a causative pathogen identified.
Collapse
Affiliation(s)
- James M Walter
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 North St Clair Street, Arkes 14-000, Chicago, IL 60611, USA
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 North St Clair Street, Arkes 14-000, Chicago, IL 60611, USA.
| |
Collapse
|
20
|
Studies on Trans-Resveratrol/Carboxymethylated (1,3/1,6)-β-d-Glucan Association for Aerosol Pharmaceutical Applications. Int J Mol Sci 2017; 18:ijms18050967. [PMID: 28467361 PMCID: PMC5454880 DOI: 10.3390/ijms18050967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/20/2017] [Accepted: 04/30/2017] [Indexed: 01/05/2023] Open
Abstract
A resveratrol/carboxymethylated glucan (CM-glucan) combination is known to inhibit rhinovirus replication and expression of inflammatory mediators in nasal epithelia. The aim of this study was to develop an aerosol formulation containing an association of the two molecules which could reach the lower respiratory tract. Mass median aerodynamic diameter (MMAD) of a resveratrol/CM-glucan combination was lower than that shown by resveratrol or CM-glucan alone (2.83 versus 3.28 and 2.96 µm, respectively). The resveratrol/CM-glucan association results in the finest and most monodispersed particles in comparison to the two single components. The association also evidenced lower values for all particle size distribution parameters, suggesting that the pharmacological synergy observed in previous studies may be accompanied by a pharmaceutical one. Moreover, we showed that the CM-glucan matrix did not exert an inhibitory effect on resveratrol nebulization, demonstrating the good suitability of these two molecules in association for simultaneous aerosol volatilization.
Collapse
|
21
|
Shahani L, Ariza-Heredia EJ, Chemaly RF. Antiviral therapy for respiratory viral infections in immunocompromised patients. Expert Rev Anti Infect Ther 2017; 15:401-415. [PMID: 28067078 PMCID: PMC7103713 DOI: 10.1080/14787210.2017.1279970] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/05/2017] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Respiratory viruses (influenza, parainfluenza, respiratory syncytial virus, coronavirus, human metapneumovirus, and rhinovirus) represent the most common causes of respiratory viral infections in immunocompromised patients. Also, these infections may be more severe in immunocompromised patients than in the general population. Early diagnosis and treatment of viral infections continue to be of paramount importance in immunocompromised patients; because once viral replication and invasive infections are evident, prognosis can be grave. Areas covered: The purpose of this review is to provide an overview of the main antiviral agents used for the treatment of respiratory viral infections in immunocompromised patients and review of the new agents in the pipeline. Expert commentary: Over the past decade, important diagnostic advances, specifically, the use of rapid molecular testing has helped close the gap between clinical scenarios and pathogen identification and enhanced early diagnosis of viral infections and understanding of the role of prolonged shedding and viral loads. Advancements in novel antiviral therapeutics with high resistance thresholds and effective immunization for preventable infections in immunocompromised patients are needed.
Collapse
Affiliation(s)
- Lokesh Shahani
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ella J. Ariza-Heredia
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roy F. Chemaly
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Seo S, Waghmare A, Scott EM, Xie H, Kuypers JM, Hackman RC, Campbell AP, Choi SM, Leisenring WM, Jerome KR, Englund JA, Boeckh M. Human rhinovirus detection in the lower respiratory tract of hematopoietic cell transplant recipients: association with mortality. Haematologica 2017; 102:1120-1130. [PMID: 28183847 PMCID: PMC5451345 DOI: 10.3324/haematol.2016.153767] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/31/2017] [Indexed: 11/20/2022] Open
Abstract
Human rhinoviruses are the most common respiratory viruses detected in patients after hematopoietic cell transplantation. Although rhinovirus appears to occasionally cause severe lower respiratory tract infection in immunocompromised patients, the clinical significance of rhinovirus detection in the lower respiratory tract remains unknown. We evaluated 697 recipients transplanted between 1993 and 2015 with rhinovirus in respiratory samples. As comparative cohorts, 273 recipients with lower respiratory tract infection caused by respiratory syncytial virus (N=117), parainfluenza virus (N=120), or influenza (N=36) were analyzed. Factors associated with mortality were analyzed using Cox proportional hazard models. Among 569 subjects with rhinovirus upper respiratory tract infection and 128 subjects with rhinovirus lower respiratory tract infection, probabilities of overall mortality at 90 days were 6% and 41%, respectively (P<0.001). The survival rate after lower respiratory tract infection was not affected by the presence of co-pathogens (55% in patients with co-pathogens, 64% in patients without, P=0.34). Low monocyte count (P=0.027), oxygen use (P=0.015), and steroid dose greater than 1 mg/kg/day (P=0.003) before diagnosis were significantly associated with mortality among patients with lower respiratory tract infection in multivariable analysis. Mortality after rhinovirus lower respiratory tract infection was similar to that after lower respiratory tract infection by respiratory syncytial virus, parainfluenza virus or influenza in an adjusted model. In summary, transplant recipients with rhinovirus detection in the lower respiratory tract had high mortality rates comparable to viral pneumonia associated with other well-established respiratory viruses. Our data suggest rhinovirus can contribute to severe pulmonary disease in immunocompromised hosts.
Collapse
Affiliation(s)
- Sachiko Seo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Hematology and Oncology, National Cancer Research Center East, Chiba, Japan
| | - Alpana Waghmare
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA.,Pediatric Infectious Disease Division, Seattle Children's Hospital, WA, USA
| | - Emily M Scott
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Hu Xie
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jane M Kuypers
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Robert C Hackman
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Angela P Campbell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA.,Pediatric Infectious Disease Division, Seattle Children's Hospital, WA, USA
| | - Su-Mi Choi
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Wendy M Leisenring
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Janet A Englund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA.,Pediatric Infectious Disease Division, Seattle Children's Hospital, WA, USA
| | - Michael Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA .,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
23
|
Abstract
Viral pneumonias in patients with hematologic malignancies and recipients of hematopoietic stem cell transplantation cause significant morbidity and mortality. Advances in diagnostic techniques have enabled rapid identification of respiratory viral pathogens from upper and lower respiratory tract samples. Lymphopenia, myeloablative and T-cell depleting chemotherapy, graft-versus-host disease, and other factors increase the risk of developing life-threatening viral pneumonia. Chest imaging is often nonspecific but may aid in diagnoses. Bronchoscopy with bronchoalveolar lavage is recommended in those at high risk for viral pneumonia who have new infiltrates on chest imaging.
Collapse
|
24
|
Dignan FL, Clark A, Aitken C, Gilleece M, Jayakar V, Krishnamurthy P, Pagliuca A, Potter MN, Shaw B, Skinner R, Turner A, Wynn RF, Coyle P. BCSH/BSBMT/UK clinical virology network guideline: diagnosis and management of common respiratory viral infections in patients undergoing treatment for haematological malignancies or stem cell transplantation. Br J Haematol 2016; 173:380-93. [PMID: 27060988 PMCID: PMC7161808 DOI: 10.1111/bjh.14027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/30/2015] [Accepted: 01/03/2016] [Indexed: 12/21/2022]
Abstract
A joint working group established by the Haemato-oncology subgroup of the British Committee for Standards in Haematology, the British Society for Bone Marrow Transplantation and the UK Clinical Virology Network has reviewed the available literature and made recommendations for the diagnosis and management of respiratory viral infections in patients with haematological malignancies or those undergoing haematopoietic stem cell transplantation. This guideline includes recommendations for the diagnosis, prevention and treatment of respiratory viral infections in adults and children. The suggestions and recommendations are primarily intended for physicians practising in the United Kingdom.
Collapse
Affiliation(s)
- Fiona L Dignan
- Department of Haematology, Central Manchester NHS Foundation Trust, Manchester, UK
| | - Andrew Clark
- Bone Marrow Transplant Unit, Beatson Oncology Centre, Gartnavel Hospital, Glasgow, UK
| | - Celia Aitken
- West of Scotland Specialist Virology Centre, Glasgow Royal Infirmary, Glasgow, UK
| | - Maria Gilleece
- Department of Haematology, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Vishal Jayakar
- Department of Haematology, Kingston Hospital NHS Trust, Kingston upon Thames, London, UK
| | | | - Antonio Pagliuca
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Michael N Potter
- Section of Haemato-oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Bronwen Shaw
- Section of Haemato-oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Roderick Skinner
- Department of Paediatric and Adolescent Haematology/Oncology, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Andrew Turner
- Department of Virology, Central Manchester NHS Foundation Trust, Manchester, UK
| | - Robert F Wynn
- Royal Manchester Children's Hospital, Manchester, UK
| | - Peter Coyle
- Regional Virus Laboratory, Department of Microbiology, Belfast Health and Social Care Trust, Belfast, UK
| |
Collapse
|
25
|
Jacobs SE, Lamson DM, Soave R, Guzman BH, Shore TB, Ritchie EK, Zappetti D, Satlin MJ, Leonard JP, van Besien K, Schuetz AN, Jenkins SG, George KS, Walsh TJ. Clinical and molecular epidemiology of human rhinovirus infections in patients with hematologic malignancy. J Clin Virol 2015; 71:51-8. [PMID: 26370315 PMCID: PMC4750469 DOI: 10.1016/j.jcv.2015.07.309] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/22/2015] [Accepted: 07/25/2015] [Indexed: 10/26/2022]
Abstract
BACKGROUND Human rhinoviruses (HRVs) are common causes of upper respiratory tract infection (URTI) in hematologic malignancy (HM) patients. Predictors of lower respiratory tract infection (LRTI) including the impact of HRV species and types are poorly understood. OBJECTIVES This study aims to describe the clinical and molecular epidemiology of HRV infections among HM patients. STUDY DESIGN From April 2012-March 2013, HRV-positive respiratory specimens from symptomatic HM patients were molecularly characterized by analysis of partial viral protein 1 (VP1) or VP4 gene sequence. HRV LRTI risk-factors and outcomes were analyzed using multivariable logistic regression. RESULTS One hundred and ten HM patients presented with HRV URTI (n=78) and HRV LRTI (n=32). Hypoalbuminemia (OR 3.0; 95% CI, 1.0-9.2; p=0.05) was independently associated with LRTI, but other clinical and laboratory markers of host immunity did not differ between patients with URTI versus LRTI. Detection of bacterial co-pathogens was common in LRTI cases (25%). Among 92 typeable respiratory specimens, there were 58 (64%) HRV-As, 12 (13%) HRV-Bs, and 21 (23%) HRV-Cs, and one Enterovirus 68. LRTI rates among HRV-A (29%), HRV-B (17%), and HRV-C (29%) were similar. HRV-A infections occurred year-round while HRV-B and HRV-C infections clustered in the late fall and winter. CONCLUSIONS HRVs are associated with LRTI in HM patients. Illness severity is not attributable to specific HRV species or types. The frequent detection of bacterial co-pathogens in HRV LRTIs further substantiates the hypothesis that HRVs predispose to bacterial superinfection of the lower airways, similar to that of other community-acquired respiratory viruses.
Collapse
Affiliation(s)
- Samantha E Jacobs
- Division of Infectious Diseases, Weill Cornell Medical Center, New York, NY, USA.
| | - Daryl M Lamson
- Virology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Rosemary Soave
- Division of Infectious Diseases, Weill Cornell Medical Center, New York, NY, USA
| | | | - Tsiporah B Shore
- Division of Hematology and Medical Oncology, Weill Cornell Medical Center, New York, NY, USA
| | - Ellen K Ritchie
- Division of Hematology and Medical Oncology, Weill Cornell Medical Center, New York, NY, USA
| | - Dana Zappetti
- Division of Pulmonary and Critical Care Medicine, New York Presbyterian Hospital/ Weill Cornell Medical College, New York, NY, USA
| | - Michael J Satlin
- Division of Infectious Diseases, Weill Cornell Medical Center, New York, NY, USA
| | - John P Leonard
- Division of Hematology and Medical Oncology, Weill Cornell Medical Center, New York, NY, USA
| | - Koen van Besien
- Division of Hematology and Medical Oncology, Weill Cornell Medical Center, New York, NY, USA
| | - Audrey N Schuetz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical Center, New York, NY, USA
| | - Stephen G Jenkins
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical Center, New York, NY, USA
| | - Kirsten St George
- Virology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Thomas J Walsh
- Division of Infectious Diseases, Weill Cornell Medical Center, New York, NY, USA
| |
Collapse
|
26
|
Piralla A, Zecca M, Comoli P, Girello A, Maccario R, Baldanti F. Persistent rhinovirus infection in pediatric hematopoietic stem cell transplant recipients with impaired cellular immunity. J Clin Virol 2015; 67:38-42. [PMID: 25959156 PMCID: PMC7172262 DOI: 10.1016/j.jcv.2015.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/27/2015] [Accepted: 03/28/2015] [Indexed: 12/24/2022]
Abstract
Persistent rhinovirus infections are associated with impaired cellular immunity. The persistence of HRV infection is due to unrestricted replication of single virus strains rather than reinfections by different strains. The reconstitution of cell-mediated immunity might be crucial for complete virus clearance.
Background HRV infections are generally self-limiting in healthy subjects, whereas in immunocompromised hosts HRV infections can lead to severe complications and persistent infections. The persistence of HRV shedding could be due to the inefficient immunological control of a single infectious episode. Objectives To investigate the clinical, virologic and immunologic characteristics of pediatric HSCT recipients with HRV-PI infection. Study design During the period 2006–2012, eight hematopoietic stem cell transplant (HSCT) recipients presented with persistent rhinovirus infection (HRV-PI, ≥30 days). Viral load and T-CD4+, T-CD8+, B and NK lymphocyte counts at the onset of infection were compared with those of fourteen HSCT recipients with acute HRV infection (HRV-AI, ≤15 days). Results The median duration of HRV positivity in patients with HRV-PI was 61 days (range 30–174 days) and phylogenetic analysis showed the persistence of a single HRV type in all patients (100%). In HSCT recipients with HRV-PI, T-CD4+, T-CD8+ and NK cell counts at the onset of infection were significantly lower than those observed in recipients with HRV-AI (p < 0.01), while B cell counts were similar in the two groups (p = 0.25). A decrease in HRV load was associated with a significant increase in T-CD4+, T-CD8+and NK lymphocyte counts in HRV-PI patients (p < 0.01). Conclusions This study suggests a role for cellular immunity in HRV clearance and highlights the importance of its recovery for the control of HRV infection in HSCT recipients.
Collapse
Affiliation(s)
- Antonio Piralla
- Molecular Virology Unit, Microbiology and Virology Department, Pavia, Italy
| | - Marco Zecca
- Pediatric Hematology-Oncology and Research Laboratories, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Patrizia Comoli
- Pediatric Hematology-Oncology and Research Laboratories, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessia Girello
- Molecular Virology Unit, Microbiology and Virology Department, Pavia, Italy
| | - Rita Maccario
- Pediatric Hematology-Oncology and Research Laboratories, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Pavia, Italy; Section of Microbiology, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| |
Collapse
|
27
|
Del Vecchio AM, Branigan PJ, Barnathan ES, Flavin SK, Silkoff PE, Turner RB. Utility of animal and in vivo experimental infection of humans with rhinoviruses in the development of therapeutic agents for viral exacerbations of asthma and chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2015; 30:32-43. [PMID: 25445932 PMCID: PMC7110859 DOI: 10.1016/j.pupt.2014.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 12/16/2022]
Abstract
There is an association with acute viral infection of the respiratory tract and exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Although these exacerbations are associated with several types of viruses, human rhinoviruses (HRVs) are associated with the vast majority of disease exacerbations. Due to the lack of an animal species that is naturally permissive for HRVs to use as a facile model system, and the limitations associated with animal models of asthma and COPD, studies of controlled experimental infection of humans with HRVs have been used and conducted safely for decades. This review discusses how these experimental infection studies with HRVs have provided a means of understanding the pathophysiology underlying virus-induced exacerbations of asthma and COPD with the goal of developing agents for their prevention and treatment.
Collapse
Affiliation(s)
- Alfred M Del Vecchio
- Janssen Research and Development, Immunology Clinical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Patrick J Branigan
- Janssen Research and Development, Immunology Clinical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Elliot S Barnathan
- Janssen Research and Development, Immunology Clinical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Susan K Flavin
- Janssen Research and Development, Immunology Clinical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Philip E Silkoff
- Janssen Research and Development, Immunology Clinical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA.
| | - Ronald B Turner
- University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
28
|
Jacques J, Carrier P, Legros R, Loustaud-Ratti V. Human rhinovirus infection and cirrhosis: a potential fatal complication. Dig Liver Dis 2015; 47:175-6. [PMID: 25455152 PMCID: PMC7129527 DOI: 10.1016/j.dld.2014.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 12/11/2022]
Affiliation(s)
| | - Paul Carrier
- Corresponding author at: Fédération d’Hépatologie, Service d’Hépato-gastroentérologie, CHU Limoges, 2, avenue Martin Luther King, 87042 Limoges, France. Tel.: +33 555056687; fax: +33 555056767
| | | | | |
Collapse
|
29
|
Haranaga S, Kinjo T, Tateyama M, Fujita J. Rhinovirus pneumonia in a patient infected with HIV. Intern Med 2014; 53:2027-8. [PMID: 25175146 DOI: 10.2169/internalmedicine.53.2827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Shusaku Haranaga
- Department of Infectious, Respiratory, and Digestive Medicine, Control and Prevention of Infectious Diseases (The First Department of Internal Medicine), Faculty of Medicine, University of the Ryukyus, Japan
| | | | | | | |
Collapse
|
30
|
Jacobs SE, Soave R, Shore TB, Satlin MJ, Schuetz AN, Magro C, Jenkins SG, Walsh TJ. Human rhinovirus infections of the lower respiratory tract in hematopoietic stem cell transplant recipients. Transpl Infect Dis 2013; 15:474-86. [PMID: 23890179 PMCID: PMC3962254 DOI: 10.1111/tid.12111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/19/2012] [Accepted: 01/16/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Human rhinoviruses (HRVs) are a common cause of upper respiratory infection (URI) in hematopoietic stem cell transplant (HSCT) recipients; yet, their role in lower respiratory illness is not well understood. METHODS We performed a retrospective chart review of HSCT recipients with HRV infection from the time molecular detection methods were implemented at our institution in 2008. Factors associated with proven or possible HRV pneumonia at the first HRV detection were evaluated by univariate and multivariate analysis. We then characterized all episodes of proven and possible HRV pneumonia from the initial HRV infection through a 1-year follow-up period. RESULTS Between 2008 and 2011, 63 HSCT recipients had ≥1 documented HRV infections. At first HRV detection, 36 (57%) patients had HRV URI and 27 (43%) had proven or possible HRV pneumonia; in multivariate analysis, hypoalbuminemia (odds ratio [OR] 9.5, 95% confidence interval [CI] 1.3-71.7; P = 0.03) and isolation of respiratory co-pathogen(s) (OR 24.2, 95% CI 2.0-288.4; P = 0.01) were independently associated with pneumonia. During the study period, 22 patients had 25 episodes of proven HRV pneumonia. Fever (60%), cough (92%), sputum production (61%), and dyspnea (60%) were common symptoms. Fifteen (60%) episodes demonstrated bacterial (n = 7), fungal (n = 5), or viral (n = 3) co-infection. Among the remaining 10 (40%) cases of HRV monoinfection, patients' oxygen saturations ranged from 80% to 97% on ambient air, and computed tomography scans showed peribronchiolar, patchy, ground glass infiltrates. CONCLUSIONS HRV pneumonia is relatively common after HSCT and frequently accompanied by bacterial co-infection. As use of molecular assays for respiratory viral diagnosis becomes widespread, HRV will be increasingly recognized as a significant cause of pneumonia in immunocompromised hosts.
Collapse
Affiliation(s)
- S E Jacobs
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|