1
|
Sun HY, Zhang JY, Zhang HX, Xu Q, Lu DB. Genetic difference between two Schistosoma japonicum isolates with contrasting cercarial shedding patterns revealed by whole genome sequencing. Parasite 2023; 30:59. [PMID: 38084940 PMCID: PMC10714679 DOI: 10.1051/parasite/2023061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Schistosoma japonicum is one of the major infectious agents of human schistosomiasis, mainly endemic in China and the Philippines. We have previously reported the finding of two schistosome isolates, each with a different cercarial emergence pattern adapted to their different hosts. However, there are currently no whole-genome sequencing studies to investigate the underlining genetics of the adaptive traits. We sampled schistosomes in 2013 and 2020 from a hilly area Shitai (ST) and a marshland area Hexian (HX) of Anhui, China. Ten to 15 male or female adult worms from each site/year were sent for whole genome sequencing. Genetics were analyzed, and selection signals along genomes were detected. Gene enrichment analysis was performed for the genome regions under selection. The results revealed considerable genetic differentiation between the two isolates. The genome "windows" affected by natural selection were fewer in ST (64 windows containing 78 genes) than in HX (318 windows containing 276 genes). Twelve significantly enriched genes were identified in ST, but none in HX. These genes were mainly related to specific DNA binding and intercellular signaling transduction. Some functional region changes identified along the genome of the hilly schistosome may be related to its unique late afternoon cercarial emergence.
Collapse
Affiliation(s)
- Hui-Ying Sun
-
Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University 199 RenAi Road, Industrial Park Avenue Suzhou Jiangsu 215123 PR China
| | - Jie-Ying Zhang
-
Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University 199 RenAi Road, Industrial Park Avenue Suzhou Jiangsu 215123 PR China
| | - Han-Xiang Zhang
-
Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University 199 RenAi Road, Industrial Park Avenue Suzhou Jiangsu 215123 PR China
| | - Qing Xu
-
Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University 199 RenAi Road, Industrial Park Avenue Suzhou Jiangsu 215123 PR China
| | - Da-Bing Lu
-
Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University 199 RenAi Road, Industrial Park Avenue Suzhou Jiangsu 215123 PR China
| |
Collapse
|
2
|
Cercariae of a Bird Schistosome Follow a Similar Emergence Pattern under Different Subarctic Conditions: First Experimental Study. Pathogens 2022; 11:pathogens11060647. [PMID: 35745501 PMCID: PMC9227376 DOI: 10.3390/pathogens11060647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
The emergence of cercariae from infected mollusks is considered one of the most important adaptive strategies for maintaining the trematode life cycle. Short transmission opportunities of cercariae are often compensated by periodic daily rhythms in the cercarial release. However, there are virtually no data on the cercarial emergence of bird schistosomes from freshwater ecosystems in northern latitudes. We investigated the daily cercarial emergence rhythms of the bird schistosome Trichobilharzia sp. “peregra” from the snail host Radix balthica in a subarctic lake under both natural and laboratory seasonal conditions. We demonstrated a circadian rhythm with the highest emergence during the morning hours, being seasonally independent of the photo- and thermo-period regimes of subarctic summer and autumn, as well as relatively high production of cercariae at low temperatures typical of northern environments. These patterns were consistent under both field and laboratory conditions. While light intensity triggered and prolonged cercarial emergence, the temperature had little effect on cercarial rhythms but regulated seasonal output rates. This suggests an adaptive strategy of bird schistosomes to compensate for the narrow transmission window. Our results fill a gap in our knowledge of the transmission dynamics and success of bird schistosomes under high latitude conditions that may serve as a basis for elucidating future potential risks and implementing control measures related to the spread of cercarial dermatitis due to global warming.
Collapse
|
3
|
Rijo-Ferreira F, Takahashi JS. Circadian rhythms in infectious diseases and symbiosis. Semin Cell Dev Biol 2022; 126:37-44. [PMID: 34625370 PMCID: PMC9183220 DOI: 10.1016/j.semcdb.2021.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Timing is everything. Many organisms across the tree of life have evolved timekeeping mechanisms that regulate numerous of their cellular functions to optimize timing by anticipating changes in the environment. The specific environmental changes that are sensed depends on the organism. For animals, plants, and free-living microbes, environmental cues include light/dark cycles, daily temperature fluctuations, among others. In contrast, for a microbe that is never free-living, its rhythmic environment is its host's rhythmic biology. Here, we describe recent research on the interactions between hosts and microbes, from the perspective both of symbiosis as well as infections. In addition to describing the biology of the microbes, we focus specifically on how circadian clocks modulate these host-microbe interactions.
Collapse
Affiliation(s)
- Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
4
|
Ismail HAHA, Ahmed AEAAERM, Cha S, Jin Y. The Life Histories of Intermediate Hosts and Parasites of Schistosoma haematobium and Schistosoma mansoni in the White Nile River, Sudan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031508. [PMID: 35162527 PMCID: PMC8835159 DOI: 10.3390/ijerph19031508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023]
Abstract
Background: The epidemiology of schistosomiasis transmission varies depending on the circumstances of the surrounding water bodies and human behaviors. We aimed to explore cercarial emergence patterns from snails that are naturally affected by human schistosomiasis and non-human trematodes. In addition, this study aimed to explore how schistosomiasis infection affects snail survival, reproduction, and growth. Methods: We measured the survival rate, fecundity, and size of Biomphalaria pfeifferi snails and the cercarial rhythmicity of S. haematobium and S. mansoni. The number of egg masses, eggs per egg mass, and snail deaths were counted for 7 weeks. The survival rate and cumulative hazard were assessed for infected and non-infected snails. Results: S. haematobium and S. mansoni cercariae peaked at 9:00–11:00 a.m. Infection significantly reduced the survival rate of B. pfeifferi, which was 35% and 51% for infected and non-infected snails, respectively (p = 0.02), at 7 weeks after infection. The hazard ratio of death for infected snails compared to non-infected snails was 1.65 (95% confidence interval: 1.35–1.99; p = 0.01). Conclusions: An understanding of the dynamics of schistosomiasis transmission will be helpful for formulating schistosomiasis control and elimination strategies. Cercarial rhythmicity can be reflected in health education, and the reproduction and survival rate of infected snails can be used as parameters for developing disease modeling.
Collapse
Affiliation(s)
| | | | - Seungman Cha
- Department of Global Development and Entrepreneurship, Graduate School of Global Development and Entrepreneurship, Handong Global University, Pohang 37554, Korea;
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Yan Jin
- Department of Microbiology, College of Medicine, Dongguk University, Gyeongju 38066, Korea
- Correspondence: ; Tel.: +82-10-3375-3118
| |
Collapse
|
5
|
Laidemitt MR, Buddenborg SK, Lewis LL, Michael LE, Sanchez MJ, Hewitt R, Loker ES. Schistosoma mansoni Vector Snails in Antigua and Montserrat, with Snail-Related Considerations Pertinent to a Declaration of Elimination of Human Schistosomiasis. Am J Trop Med Hyg 2020; 103:2268-2277. [PMID: 32901608 PMCID: PMC7695099 DOI: 10.4269/ajtmh.20-0588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Investigations leading to a WHO-validated declaration of elimination of schistosomiasis transmission are contemplated for several countries, including Caribbean island nations. With assistance from the Pan American Health Organization, we undertook freshwater snail surveys in two such nations, Antigua and Barbuda, and Montserrat in September and October 2017. Historically, the transmission of Schistosoma mansoni supported by the Neotropical vector snail Biomphalaria glabrata occurred in both countries. Transmission on the islands is thought to have been interrupted by the treatment of infected people, improved sanitation, introduction of competitor snails, and on Montserrat with the eruption of the Soufrière volcano which decimated known B. glabrata habitats. Guided by the available literature and local expertise, we found Biomphalaria snails in seven of 15 and one of 14 localities on Antigua and Montserrat, respectively, most of which were identified anatomically and molecularly as Biomphalaria kuhniana. Two localities on Antigua harbored B. glabrata, but no schistosome infections in snails were found. For snail-related aspects of validation of elimination, there are needs to undertake basic local training in medical malacology, be guided by historical literature and recent human schistosomiasis surveys, improve and validate sampling protocols for aquatic habitats, enlist local expertise to efficiently find potential transmission sites, use both anatomical and molecular identifications of schistosomes or putative vector snail species found, if possible determine the susceptibility of recovered Biomphalaria spp. to S. mansoni, publish survey results, and provide museum vouchers of collected snails and parasites as part of the historical record.
Collapse
Affiliation(s)
- Martina R Laidemitt
- Center for Evolutionary and Theoretical Immunology, Parasite Division, Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, New Mexico
| | | | | | - Lionel E Michael
- Environmental Health Division, Ministry of Health and Social Development, Road Town, Tortola, British Virgin Islands
| | - Maria J Sanchez
- Pan American Health Organization, Washington, District of Columbia
| | - Reynold Hewitt
- One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Eric S Loker
- Center for Evolutionary and Theoretical Immunology, Parasite Division, Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
6
|
Chevalier FD, Le Clec’h W, McDew-White M, Menon V, Guzman MA, Holloway SP, Cao X, Taylor AB, Kinung'hi S, Gouvras AN, Webster BL, Webster JP, Emery AM, Rollinson D, Garba Djirmay A, Al Mashikhi KM, Al Yafae S, Idris MA, Moné H, Mouahid G, Hart PJ, LoVerde PT, Anderson TJC. Oxamniquine resistance alleles are widespread in Old World Schistosoma mansoni and predate drug deployment. PLoS Pathog 2019; 15:e1007881. [PMID: 31652296 PMCID: PMC6834289 DOI: 10.1371/journal.ppat.1007881] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/06/2019] [Accepted: 09/16/2019] [Indexed: 01/10/2023] Open
Abstract
Do mutations required for adaptation occur de novo, or are they segregating within populations as standing genetic variation? This question is key to understanding adaptive change in nature, and has important practical consequences for the evolution of drug resistance. We provide evidence that alleles conferring resistance to oxamniquine (OXA), an antischistosomal drug, are widespread in natural parasite populations under minimal drug pressure and predate OXA deployment. OXA has been used since the 1970s to treat Schistosoma mansoni infections in the New World where S. mansoni established during the slave trade. Recessive loss-of-function mutations within a parasite sulfotransferase (SmSULT-OR) underlie resistance, and several verified resistance mutations, including a deletion (p.E142del), have been identified in the New World. Here we investigate sequence variation in SmSULT-OR in S. mansoni from the Old World, where OXA has seen minimal usage. We sequenced exomes of 204 S. mansoni parasites from West Africa, East Africa and the Middle East, and scored variants in SmSULT-OR and flanking regions. We identified 39 non-synonymous SNPs, 4 deletions, 1 duplication and 1 premature stop codon in the SmSULT-OR coding sequence, including one confirmed resistance deletion (p.E142del). We expressed recombinant proteins and used an in vitro OXA activation assay to functionally validate the OXA-resistance phenotype for four predicted OXA-resistance mutations. Three aspects of the data are of particular interest: (i) segregating OXA-resistance alleles are widespread in Old World populations (4.29–14.91% frequency), despite minimal OXA usage, (ii) two OXA-resistance mutations (p.W120R, p.N171IfsX28) are particularly common (>5%) in East African and Middle-Eastern populations, (iii) the p.E142del allele has identical flanking SNPs in both West Africa and Puerto Rico, suggesting that parasites bearing this allele colonized the New World during the slave trade and therefore predate OXA deployment. We conclude that standing variation for OXA resistance is widespread in S. mansoni. It has been argued that drug resistance is unlikely to spread rapidly in helminth parasites infecting humans. This is based, at least in part, on the premise that resistance mutations are rare or absent within populations prior to treatment, and take a long time to reach appreciable frequencies because helminth parasite generation time is long. This argument is critically dependent on the starting frequency of resistance alleles–if high levels of “standing variation” for resistance are present prior to deployment of treatment, resistance may spread rapidly. We examined frequencies of oxamniquine resistance alleles present in Schistosoma mansoni from Africa and the Middle East where oxamniquine has seen minimal use. We found that oxamniquine resistance alleles are widespread in the Old World, ranging from 4.29% in the Middle East to 14.91% in East African parasite populations. Furthermore, we show that resistance alleles from West African and the Caribbean schistosomes share a common origin, suggesting that these alleles travelled to the New World with S. mansoni during the transatlantic slave trade. Together, these results demonstrate extensive standing variation for oxamniquine resistance. Our results have important implications for both drug treatment policies and drug development efforts, and demonstrate the power of molecular surveillance approaches for guiding helminth control.
Collapse
Affiliation(s)
- Frédéric D. Chevalier
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- * E-mail: (FDC); (TJCA)
| | - Winka Le Clec’h
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Marina McDew-White
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Vinay Menon
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Meghan A. Guzman
- Departments of Pathology and University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Stephen P. Holloway
- Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Xiaohang Cao
- Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Alexander B. Taylor
- Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- X-ray Crystallography Core Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Safari Kinung'hi
- National Institute for Medical Research, Mwanza, United Republic of Tanzania
| | - Anouk N. Gouvras
- London Centre for Neglected Tropical Disease Research (LCNDTR), Imperial Collge, London, United Kingdom
- Wolfson Wellcome Biomedical Laboratories, Natural History Museum, London, United Kingdom
| | - Bonnie L. Webster
- London Centre for Neglected Tropical Disease Research (LCNDTR), Imperial Collge, London, United Kingdom
- Wolfson Wellcome Biomedical Laboratories, Natural History Museum, London, United Kingdom
| | - Joanne P. Webster
- London Centre for Neglected Tropical Disease Research (LCNDTR), Imperial Collge, London, United Kingdom
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Royal Veterinary College, University of London, United Kingdom
| | - Aidan M. Emery
- London Centre for Neglected Tropical Disease Research (LCNDTR), Imperial Collge, London, United Kingdom
- Wolfson Wellcome Biomedical Laboratories, Natural History Museum, London, United Kingdom
| | - David Rollinson
- London Centre for Neglected Tropical Disease Research (LCNDTR), Imperial Collge, London, United Kingdom
- Wolfson Wellcome Biomedical Laboratories, Natural History Museum, London, United Kingdom
| | - Amadou Garba Djirmay
- Réseau International Schistosomiases Environnemental Aménagement et Lutte (RISEAL), Niamey, Niger
- World Health Organization, Geneva, Switzerland
| | - Khalid M. Al Mashikhi
- Directorate General of Health Services, Dhofar Governorate, Salalah, Sultanate of Oman
| | - Salem Al Yafae
- Directorate General of Health Services, Dhofar Governorate, Salalah, Sultanate of Oman
| | | | - Hélène Moné
- Host-Pathogen-Environment Interactions laboratory, University of Perpignan, Perpignan, France
| | - Gabriel Mouahid
- Host-Pathogen-Environment Interactions laboratory, University of Perpignan, Perpignan, France
| | - P. John Hart
- Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- X-ray Crystallography Core Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Philip T. LoVerde
- Departments of Pathology and University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Timothy J. C. Anderson
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- * E-mail: (FDC); (TJCA)
| |
Collapse
|