1
|
Kong J, Qiu K, Zhou J, Li D, Lu L, Liu M, Zhu S, Ning Z, Sun Q. Drought-induced 19 gene FvDi19-3 from woodland strawberry enhances drought and salt tolerance in transgenic Arabidopsis. PLANT CELL REPORTS 2025; 44:94. [PMID: 40192848 DOI: 10.1007/s00299-025-03481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/17/2025] [Indexed: 05/11/2025]
Abstract
KEY MESSAGE FvDi19-3 enhances drought and salt tolerance in Arabidopsis by promoting stomatal closure, improving the ability to scavenge reactive oxygen species, and increasing the expression of drought- or salt-responsive genes. Di19 (drought-induced 19) proteins play a crucial role in regulating plant development and various stress responses. However, a systematic identification and functional analysis of the Di19 gene family members in woodland strawberry has not yet been conducted. In this study, we identified four Di19 genes in woodland strawberry, and analyzed the phylogenetic tree, conserved protein domains, and gene structure. Cis-elements suggested that FvDi19 genes may be involved in plant development and stress responses. Gene expression analysis revealed diverse expression patterns of FvDi19 genes under different stress conditions, and overexpression of FvDi19 genes enhanced drought and salt tolerance in yeast. Transgenic and stress tolerance assays indicated that FvDi19-3 overexpression in Arabidopsis enhanced plant drought and salt tolerance by promoting stomatal closure, improving the plant's ability to scavenge reactive oxygen species and the expression of drought or salt-responsive genes. Further experiments indicated that FvWRKY42 and FvMYB114 can activate the expression of FvDi19-3, and expression of these three genes is dependent on the ABA signaling pathway. In conclusion, our study characterized the Di19 gene family in woodland strawberry and investigated the biological functions of FvDi19-3 in drought and salt tolerance, providing a basis for further functional studies of FvDi19 genes in responses to abiotic stress.
Collapse
Affiliation(s)
- Jingjing Kong
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei, 230001, China
- Anhui Modern Agriculture Development Center, Hefei, 230011, China
| | - Keli Qiu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Junyong Zhou
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei, 230001, China
| | - Debao Li
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei, 230001, China
| | - Lijuan Lu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei, 230001, China
| | - Mao Liu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei, 230001, China
| | - Shufang Zhu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei, 230001, China
| | - Zhiyuan Ning
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei, 230001, China.
| | - Qibao Sun
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei, 230001, China.
| |
Collapse
|
2
|
Ganie SA, McMulkin N, Devoto A. The role of priming and memory in rice environmental stress adaptation: Current knowledge and perspectives. PLANT, CELL & ENVIRONMENT 2024; 47:1895-1915. [PMID: 38358119 DOI: 10.1111/pce.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Plant responses to abiotic stresses are dynamic, following the unpredictable changes of physical environmental parameters such as temperature, water and nutrients. Physiological and phenotypical responses to stress are intercalated by periods of recovery. An earlier stress can be remembered as 'stress memory' to mount a response within a generation or transgenerationally. The 'stress priming' phenomenon allows plants to respond quickly and more robustly to stressors to increase survival, and therefore has significant implications for agriculture. Although evidence for stress memory in various plant species is accumulating, understanding of the mechanisms implicated, especially for crops of agricultural interest, is in its infancy. Rice is a major food crop which is susceptible to abiotic stresses causing constraints on its cultivation and yield globally. Advancing the understanding of the stress response network will thus have a significant impact on rice sustainable production and global food security in the face of climate change. Therefore, this review highlights the effects of priming on rice abiotic stress tolerance and focuses on specific aspects of stress memory, its perpetuation and its regulation at epigenetic, transcriptional, metabolic as well as physiological levels. The open questions and future directions in this exciting research field are also laid out.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| | - Nancy McMulkin
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| | - Alessandra Devoto
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| |
Collapse
|
3
|
Nourbakhsh V, Majidi MM, Mirmohammady Maibody SAM, Abtahi M. Drought stress memory in orchard grass and the role of marker-based parental selection for physiological and antioxidant responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108061. [PMID: 37847971 DOI: 10.1016/j.plaphy.2023.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
Drought stress memory occurring in some plants plays a crucial role in their adaptation to unfavorable conditions. However, in open-pollinated plants, this phenomenon is assumed to be affected by population plasticity resulting from kind and level of diversity and inbreeding depression. Physiological perspectives of drought stress memory in four synthetic poly-crossed populations (groups) of orchard grass (Dactylis glomerata) constructed from parental genotypes with contrasting levels (narrow and wide) of molecular and morphological genetic variation were assessed. Populations of two generations (Syn1 and Syn2) were developed and were subjected to three moisture treatments, including normal irrigation (C), primary mild stress-secondary intense stress (D1D2), and secondary intense stress (D2). Pre-exposure to drought significantly improved the mean values of leaf water, chlorophyll, proline, and ascorbate peroxidase compared to intense stress, leading to more effective memory responses. Superiority of groups with high levels of molecular diversity for most traits, suggesting that the molecular genetic distance among parents is an effective predictor of progeny performance. The results indicated that the fitness of progenies of the four polycross groups declines significantly from Syn1 to Syn2, however the magnitude of observed inbreeding depends on the level of diversity and moisture conditions. We propose a hypothesis that underscores the interplay between genetic diversity among parents and drought stress memory providing valuable insights for developing new synthetic varieties in open-pollinated grasses. Specifically, we posit that higher molecular diversity among parental genotypes enhances the potential for robust drought stress memory, thereby contributing to improved progeny fitness under unfavorable conditions.
Collapse
Affiliation(s)
- Venus Nourbakhsh
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Mahdi Majidi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | | | - Mozhgan Abtahi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
4
|
Rehman S, Ahmad Z, Ramakrishnan M, Kalendar R, Zhuge Q. Regulation of plant epigenetic memory in response to cold and heat stress: towards climate resilient agriculture. Funct Integr Genomics 2023; 23:298. [PMID: 37700098 DOI: 10.1007/s10142-023-01219-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
Plants have evolved to adapt and grow in hot and cold climatic conditions. Some also adapt to daily and seasonal temperature changes. Epigenetic modifications play an important role in regulating plant tolerance under such conditions. DNA methylation and post-translational modifications of histone proteins influence gene expression during plant developmental stages and under stress conditions, including cold and heat stress. While short-term modifications are common, some modifications may persist and result in stress memory that can be inherited by subsequent generations. Understanding the mechanisms of epigenomes responding to stress and the factors that trigger stress memory is crucial for developing climate-resilient agriculture, but such an integrated view is currently limited. This review focuses on the plant epigenetic stress memory during cold and heat stress. It also discusses the potential of machine learning to modify stress memory through epigenetics to develop climate-resilient crops.
Collapse
Affiliation(s)
- Shamsur Rehman
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, Viikinkaari 1, FI-00014 University of Helsinki, Helsinki, Finland.
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan.
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China.
| |
Collapse
|
5
|
Zuo DD, Ahammed GJ, Guo DL. Plant transcriptional memory and associated mechanism of abiotic stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107917. [PMID: 37523825 DOI: 10.1016/j.plaphy.2023.107917] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/02/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Plants face various adverse environmental conditions, particularly with the ongoing changes in global climate, which drastically affect the growth, development and productivity of crops. To cope with these stresses, plants have evolved complex mechanisms, and one of the crucial ways is to develop transcriptional memories from stress exposure. This induced learning enables plants to better and more strongly restart the response and adaptation mechanism to stress when similar or dissimilar stresses reoccur. Understanding the molecular mechanism behind plant transcriptional memory of stress can provide a theoretical basis for breeding stress-tolerant crops with resilience to future climates. Here we review the recent research progress on the transcriptional memory of plants under various stresses and the applications of underlying mechanisms for sustainable agricultural production. We propose that a thorough understanding of plant transcriptional memory is crucial for both agronomic management and resistant breeding, and thus may help to improve agricultural yield and quality under changing climatic conditions.
Collapse
Affiliation(s)
- Ding-Ding Zuo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China.
| |
Collapse
|
6
|
Kambona CM, Koua PA, Léon J, Ballvora A. Stress memory and its regulation in plants experiencing recurrent drought conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:26. [PMID: 36788199 PMCID: PMC9928933 DOI: 10.1007/s00122-023-04313-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Developing stress-tolerant plants continues to be the goal of breeders due to their realized yields and stability. Plant responses to drought have been studied in many different plant species, but the occurrence of stress memory as well as the potential mechanisms for memory regulation is not yet well described. It has been observed that plants hold on to past events in a way that adjusts their response to new challenges without altering their genetic constitution. This ability could enable training of plants to face future challenges that increase in frequency and intensity. A better understanding of stress memory-associated mechanisms leading to alteration in gene expression and how they link to physiological, biochemical, metabolomic and morphological changes would initiate diverse opportunities to breed stress-tolerant genotypes through molecular breeding or biotechnological approaches. In this perspective, this review discusses different stress memory types and gives an overall view using general examples. Further, focusing on drought stress, we demonstrate coordinated changes in epigenetic and molecular gene expression control mechanisms, the associated transcription memory responses at the genome level and integrated biochemical and physiological responses at cellular level following recurrent drought stress exposures. Indeed, coordinated epigenetic and molecular alterations of expression of specific gene networks link to biochemical and physiological responses that facilitate acclimation and survival of an individual plant during repeated stress.
Collapse
Affiliation(s)
- Carolyn Mukiri Kambona
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
| | - Patrice Ahossi Koua
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
- Deutsche Saatveredelung AG, Thüler Str. 30, 33154, Salzkotten-Thüle, Germany
| | - Jens Léon
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
- Field Lab Campus Klein-Altendorf, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Agim Ballvora
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany.
| |
Collapse
|
7
|
Korwin Krukowski P, Visentin I, Russo G, Minerdi D, Bendahmane A, Schubert A, Cardinale F. Transcriptome Analysis Points to BES1 as a Transducer of Strigolactone Effects on Drought Memory in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 63:1873-1889. [PMID: 35489066 DOI: 10.1093/pcp/pcac058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/09/2022] [Accepted: 04/29/2022] [Indexed: 05/21/2023]
Abstract
Strigolactones (SLs) are carotenoid-derived phytohormones governing a wide range of physiological processes, including drought-associated stomatal closure. We have previously shown in tomato that SLs regulate the so-called after-effect of drought, whereby stomatal conductance is not completely restored for some time during recovery after a drought spell, irrespective of the water potential. To ease the elucidation of its molecular underpinnings, we investigated whether this SL effect is conserved in Arabidopsis thaliana by contrasting the physiological performances of the wild-type with SL-depleted (more axillary growth 4, max4) and insensitive (dwarf 14, d14) mutants in a drought and recovery protocol. Physiological analyses showed that SLs are important to achieve a complete after-effect in A. thaliana, while transcriptome results suggested that the SL-dependent modulation of drought responses extends to a large subset (about 4/5) of genes displaying memory transcription patterns. Among these, we show that the activation of over 30 genes related to abscisic acid metabolism and signaling strongly depends on SL signaling. Furthermore, by using promoter-enrichment tools, we identified putative cis- and trans-acting factors that may be important in the SL-dependent and SL-independent regulation of genes during drought and recovery. Finally, in order to test the accuracy of our bioinformatic prediction, we confirmed one of the most promising transcription factor candidates mediating SL signaling effects on transcriptional drought memory-BRI-EMS SUPPRESSOR1 (BES1). Our findings reveal that SLs are master regulators of Arabidopsis transcriptional memory upon drought and that this role is partially mediated by the BES1 transcription factor.
Collapse
Affiliation(s)
- Paolo Korwin Krukowski
- PlantStressLab, DISAFA-University of Turin, Largo Paolo Braccini 2, Grugliasco (TO) I-10095, Italy
| | - Ivan Visentin
- PlantStressLab, DISAFA-University of Turin, Largo Paolo Braccini 2, Grugliasco (TO) I-10095, Italy
| | - Giulia Russo
- PlantStressLab, DISAFA-University of Turin, Largo Paolo Braccini 2, Grugliasco (TO) I-10095, Italy
| | - Daniela Minerdi
- PlantStressLab, DISAFA-University of Turin, Largo Paolo Braccini 2, Grugliasco (TO) I-10095, Italy
| | - Abdelhafid Bendahmane
- Biology Department, Institute of Plant Sciences-Paris-Saclay, CS80004, Gif-sur-Yvette Cedex 91192, France
| | - Andrea Schubert
- PlantStressLab, DISAFA-University of Turin, Largo Paolo Braccini 2, Grugliasco (TO) I-10095, Italy
| | - Francesca Cardinale
- PlantStressLab, DISAFA-University of Turin, Largo Paolo Braccini 2, Grugliasco (TO) I-10095, Italy
| |
Collapse
|
8
|
Calone R, Mircea DM, González-Orenga S, Boscaiu M, Zuzunaga-Rosas J, Barbanti L, Vicente O. Effect of Recurrent Salt and Drought Stress Treatments on the Endangered Halophyte Limonium angustebracteatum Erben. PLANTS (BASEL, SWITZERLAND) 2023; 12:191. [PMID: 36616320 PMCID: PMC9823942 DOI: 10.3390/plants12010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Limonium angustebracteatum is an endemic halophyte from the Spanish Mediterranean coastal salt marshes. To investigate this species' ability to cope with recurrent drought and salt stress, one-year-old plants were subjected to two salt stress treatments (watering with 0.5 and 1 M NaCl solutions), one water stress treatment (complete irrigation withholding), or watered with non-saline water for the control, across three phases: first stress (30 days), recovery from both stresses (15 days), and second stress (15 days). Growth and biochemical parameters were determined after each period. The plants showed high salt tolerance but were sensitive to water deficit, as shown by the decrease in leaf fresh weight and water content, root water content, and photosynthetic pigments levels in response to the first water stress; then, they were restored to the respective control values upon recovery. Salt tolerance was partly based on the accumulation of Na+, Cl- and Ca2+ in the roots and predominantly in the leaves; ion levels also decreased to control values during recovery. Organic osmolytes (proline and total soluble sugars), oxidative stress markers (malondialdehyde and H2O2), and antioxidant compounds (total phenolic compounds and flavonoids) increased by various degrees under the first salt and water stress treatments, and declined after recovery. The analysed variables increased again, but generally to a lesser extent, during the second stress phase, suggesting the occurrence of stress acclimation acquired by the activation of defence mechanisms during the first stress period.
Collapse
Affiliation(s)
- Roberta Calone
- CREA—Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, I-40128 Bologna, I-00184 Rome, Italy
- Institute for Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Diana-Maria Mircea
- Institute for Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Manastur St., 400372 Cluj-Napoca, Romania
| | - Sara González-Orenga
- Institute for Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
- Department of Plant Biology and Soil Science, Universidad de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Javier Zuzunaga-Rosas
- Institute for Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Lorenzo Barbanti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Oscar Vicente
- Institute for Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| |
Collapse
|
9
|
Charng YY, Mitra S, Yu SJ. Maintenance of abiotic stress memory in plants: Lessons learned from heat acclimation. THE PLANT CELL 2023; 35:187-200. [PMID: 36271858 PMCID: PMC9806581 DOI: 10.1093/plcell/koac313] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/17/2022] [Indexed: 05/23/2023]
Abstract
Plants acquire enhanced tolerance to intermittent abiotic stress by employing information obtained during prior exposure to an environmental disturbance, a process known as acclimation or defense priming. The capacity for stress memory is a critical feature in this process. The number of reports related to plant stress memory (PSM) has recently increased, but few studies have focused on the mechanisms that maintain PSM. Identifying the components involved in maintaining PSM is difficult due in part to the lack of clear criteria to recognize these components. In this review, based on what has been learned from genetic studies on heat acclimation memory, we propose criteria for identifying components of the regulatory networks that maintain PSM. We provide examples of the regulatory circuits formed by effectors and regulators of PSM. We also highlight strategies for assessing PSMs, update the progress in understanding the mechanisms of PSM maintenance, and provide perspectives for the further development of this exciting research field.
Collapse
Affiliation(s)
| | - Suma Mitra
- Agricultural Biotechnology Research Center, Academia Sinica, Taiwan, ROC
- Molecular and Biological Agricultural Sciences Program, TIGP, Academia Sinica, Taiwan, ROC
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, ROC
| | - Shih-Jiun Yu
- Agricultural Biotechnology Research Center, Academia Sinica, Taiwan, ROC
- Department of Biochemical Sciences and Technology, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
10
|
Cui X, Zhang P, Chen C, Zhang J. VyUSPA3, a universal stress protein from the Chinese wild grape Vitis yeshanensis, confers drought tolerance to transgenic V. vinifera. PLANT CELL REPORTS 2023; 42:181-196. [PMID: 36318328 DOI: 10.1007/s00299-022-02943-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
VyUSPA3 from the Chinese wild grape Vitis yeshanensis interacts with ERF105, PUB24 and NF-YB3, and overexpression of the VyUSPA3 gene in V. vinifera cv. 'Thompson Seedless' confers drought tolerance. Drought is a major abiotic stress factor that seriously affects the growth and yield of grapevine. Although many drought-related genes have been identified in Arabidopsis and other plants, the functions of only a few of their counterparts have been revealed in grape. Here, a universal stress protein (USP) A from the Chinese wild grape Vitis yeshanensis, VyUSPA3, was identified and its function was subsequently characterized by overexpressing or silencing the VyUSPA3 gene in V. vinifera cv. 'Thompson Seedless' via Agrobacterium-mediated genetic transformation. After 21 d of the drought treatment, most leaves of the untransformed (UT) 'Thompson Seedless' lines wilted, yet UT lines were less damaged compared to the RNAi-VyUSPA3 lines, nonetheless, the OE-VyUSPA3 lines were mostly unaffected. Meanwhile, OE-VyUSPA3 lines showed smaller stomatal aperture, more developed roots, higher leaf relative water content, proline content, and antioxidant enzyme activities, as well as lower malondialdehyde, H2O2 and O2•- accumulation than UT lines, but this response pattern was reversed in the RNAi-VyUSPA3 lines. Besides, the transcript levels of four drought-related genes (RD22, RD29B, DREB2A, and NCED1) in OE-VyUSPA3 lines were greater than those in the RNAi-VyUSPA3 and UT lines. In addition, a yeast two-hybrid assay and a bimolecular fluorescence complementation assay confirmed that VyUSPA3 interacted with ERF105, PUB24, and NF-YB3, respectively. This study revealed that VyUSPA3 improved drought tolerance in transgenic grapevines possibly through interaction with the hormone signaling, ubiquitination system, ethylene-responsive element binding factor and nuclear factors.
Collapse
Affiliation(s)
- Xiaoyue Cui
- College of Horticulture, Northwest A&F University, Shaanxi, 712100, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Pingying Zhang
- College of Horticulture, Northwest A&F University, Shaanxi, 712100, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Chengcheng Chen
- College of Horticulture, Northwest A&F University, Shaanxi, 712100, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Shaanxi, 712100, Yangling, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Shaanxi, 712100, Yangling, China.
| |
Collapse
|
11
|
Liu Y, Wang J, Liu B, Xu ZY. Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2252-2274. [PMID: 36149776 DOI: 10.1111/jipb.13368] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation and histone modification are evolutionarily conserved epigenetic modifications that are crucial for the expression regulation of abiotic stress-responsive genes in plants. Dynamic changes in gene expression levels can result from changes in DNA methylation and histone modifications. In the last two decades, how epigenetic machinery regulates abiotic stress responses in plants has been extensively studied. Here, based on recent publications, we review how DNA methylation and histone modifications impact gene expression regulation in response to abiotic stresses such as drought, abscisic acid, high salt, extreme temperature, nutrient deficiency or toxicity, and ultraviolet B exposure. We also review the roles of epigenetic mechanisms in the formation of transgenerational stress memory. We posit that a better understanding of the epigenetic underpinnings of abiotic stress responses in plants may facilitate the design of more stress-resistant or -resilient crops, which is essential for coping with global warming and extreme environments.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
12
|
Sadhukhan A, Prasad SS, Mitra J, Siddiqui N, Sahoo L, Kobayashi Y, Koyama H. How do plants remember drought? PLANTA 2022; 256:7. [PMID: 35687165 DOI: 10.1007/s00425-022-03924-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Plants develop both short-term and transgenerational memory of drought stress through epigenetic regulation of transcription for a better response to subsequent exposure. Recurrent spells of droughts are more common than a single drought, with intermittent moist recovery intervals. While the detrimental effects of the first drought on plant structure and physiology are unavoidable, if survived, plants can memorize the first drought to present a more robust response to the following droughts. This includes a partial stomatal opening in the watered recovery interval, higher levels of osmoprotectants and ABA, and attenuation of photosynthesis in the subsequent exposure. Short-term drought memory is regulated by ABA and other phytohormone signaling with transcriptional memory behavior in various genes. High levels of methylated histones are deposited at the drought-tolerance genes. During the recovery interval, the RNA polymerase is stalled to be activated by a pause-breaking factor in the subsequent drought. Drought leads to DNA demethylation near drought-response genes, with genetic control of the process. Progenies of the drought-exposed plants can better adapt to drought owing to the inheritance of particular methylation patterns. However, a prolonged watered recovery interval leads to loss of drought memory, mediated by certain demethylases and chromatin accessibility factors. Small RNAs act as critical regulators of drought memory by altering transcript levels of drought-responsive target genes. Further studies in the future will throw more light on the genetic control of drought memory and the interplay of genetic and epigenetic factors in its inheritance. Plants from extreme environments can give queues to understanding robust memory responses at the ecosystem level.
Collapse
Affiliation(s)
- Ayan Sadhukhan
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, India.
| | - Shiva Sai Prasad
- Department of Agriculture, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522502, India
| | - Jayeeta Mitra
- Department of Botany, Arunachal University of Studies, Arunachal Pradesh, Namsai, 792103, India
| | - Nadeem Siddiqui
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522502, India
| | - Lingaraj Sahoo
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| |
Collapse
|
13
|
Integrate Small RNA and Degradome Sequencing to Reveal Drought Memory Response in Wheat ( Triticum aestivum L.). Int J Mol Sci 2022; 23:ijms23115917. [PMID: 35682597 PMCID: PMC9180835 DOI: 10.3390/ijms23115917] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/28/2022] Open
Abstract
Drought has gradually become one of the most severe abiotic stresses on plants. Plants that experience stress training can exhibit enhanced stress tolerance. According to MicroRNA (miRNA) sequencing data, this study identified 195 candidate drought memory-related miRNAs in wheat, and targets of 64 (32.8%) candidate miRNAs were validated by degradome sequencing. Several drought memory-related miRNAs such as tae-miR9676-5p, tae-MIR9676-p3_1ss21GA, tae-miR171a, tae-miR531_L-2, tae-miR408_L-1, PC-3p-5049_3565, tae-miR396c-5p, tae-miR9778, tae-miR164a-5p, and tae-miR9662a-3p were validated as having a strong response to drought memory by regulating the expression of their target genes. In addition, overexpression of drought memory-related miRNA, tae-miR531_L-2, can remarkably improve the drought tolerance of transgenic Arabidopsisthaliana. Drought memory can regulate plant cellular signal transduction, plant biosynthetic processes, and other biological processes to cope with drought via transcriptional memory. In addition, drought memory-related miRNAs can promote starch and sucrose catabolism and soluble sugar accumulation and regulate proline homeostasis to improve plant drought resistance. Our results could contribute to an understanding of drought memory in wheat seedlings and may provide a new strategy for drought-resistant breeding.
Collapse
|
14
|
Sharma M, Kumar P, Verma V, Sharma R, Bhargava B, Irfan M. Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:10-24. [PMID: 35305363 DOI: 10.1016/j.plaphy.2022.03.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/02/2022] [Accepted: 03/05/2022] [Indexed: 05/25/2023]
Abstract
As sessile species and without the possibility of escape, plants constantly face numerous environmental stresses. To adapt in the external environmental cues, plants adjust themselves against such stresses by regulating their physiological, metabolic and developmental responses to external environmental cues. Certain environmental stresses rarely occur during plant life, while others, such as heat, drought, salinity, and cold are repetitive. Abiotic stresses are among the foremost environmental variables that have hindered agricultural production globally. Through distinct mechanisms, these stresses induce various morphological, biochemical, physiological, and metabolic changes in plants, directly impacting their growth, development, and productivity. Subsequently, plant's physiological, metabolic, and genetic adjustments to the stress occurrence provide necessary competencies to adapt, survive and nurture a condition known as "memory." This review emphasizes the advancements in various epigenetic-related chromatin modifications, DNA methylation, histone modifications, chromatin remodeling, phytohormones, and microRNAs associated with abiotic stress memory. Plants have the ability to respond quickly to stressful situations and can also improve their defense systems by retaining and sustaining stressful memories, allowing for stronger or faster responses to repeated stressful situations. Although there are relatively few examples of such memories, and no clear understanding of their duration, taking into consideration plenty of stresses in nature. Understanding these mechanisms in depth could aid in the development of genetic tools to improve breeding techniques, resulting in higher agricultural yield and quality under changing environmental conditions.
Collapse
Affiliation(s)
- Megha Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Vipasha Verma
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Rajnish Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Bhavya Bhargava
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
15
|
Plants' Epigenetic Mechanisms and Abiotic Stress. Genes (Basel) 2021; 12:genes12081106. [PMID: 34440280 PMCID: PMC8394019 DOI: 10.3390/genes12081106] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/28/2022] Open
Abstract
Plants are sessile organisms that need to adapt to constantly changing environmental conditions. Unpredictable climate change places plants under a variety of abiotic stresses. Studying the regulation of stress-responsive genes can help to understand plants’ ability to adapt to fluctuating environmental conditions. Changes in epigenetic marks such as histone modifications and DNA methylation are known to regulate gene expression by their dynamic variation in response to stimuli. This can then affect their phenotypic plasticity, which helps with the adaptation of plants to adverse conditions. Epigenetic marks may also provide a mechanistic basis for stress memory, which enables plants to respond more effectively and efficiently to recurring stress and prepare offspring for potential future stresses. Studying epigenetic changes in addition to genetic factors is important to better understand the molecular mechanisms underlying plant stress responses. This review summarizes the epigenetic mechanisms behind plant responses to some main abiotic stresses.
Collapse
|
16
|
Li N, Euring D, Cha JY, Lin Z, Lu M, Huang LJ, Kim WY. Plant Hormone-Mediated Regulation of Heat Tolerance in Response to Global Climate Change. FRONTIERS IN PLANT SCIENCE 2021; 11:627969. [PMID: 33643337 DOI: 10.3389/fpls.2020.627969/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/30/2020] [Indexed: 05/28/2023]
Abstract
Agriculture is largely dependent on climate and is highly vulnerable to climate change. The global mean surface temperatures are increasing due to global climate change. Temperature beyond the physiological optimum for growth induces heat stress in plants causing detrimental and irreversible damage to plant development, growth, as well as productivity. Plants have evolved adaptive mechanisms in response to heat stress. The classical plant hormones, such as auxin, abscisic acid (ABA), brassinosteroids (BRs), cytokinin (CK), salicylic acid (SA), jasmonate (JA), and ethylene (ET), integrate environmental stimuli and endogenous signals to regulate plant defensive response to various abiotic stresses, including heat. Exogenous applications of those hormones prior or parallel to heat stress render plants more thermotolerant. In this review, we summarized the recent progress and current understanding of the roles of those phytohormones in defending plants against heat stress and the underlying signal transduction pathways. We also discussed the implication of the basic knowledge of hormone-regulated plant heat responsive mechanism to develop heat-resilient plants as an effective and efficient way to cope with global warming.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Dejuan Euring
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Joon Yung Cha
- Division of Applied Life Science (BK21PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Zeng Lin
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Mengzhu Lu
- Laboratory of Forest Genetics and Plant Breeding, College of Forestry, Central South University of Forestry and Technology, Hunan, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, China
| | - Li-Jun Huang
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
- Laboratory of Forest Genetics and Plant Breeding, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Woe Yeon Kim
- Division of Applied Life Science (BK21PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
17
|
Zhang X, Zhuang L, Liu Y, Yang Z, Huang B. Protein phosphorylation associated with drought priming-enhanced heat tolerance in a temperate grass species. HORTICULTURE RESEARCH 2020; 7:207. [PMID: 33328446 PMCID: PMC7705721 DOI: 10.1038/s41438-020-00440-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 05/24/2023]
Abstract
Protein phosphorylation is known to play crucial roles in plant tolerance to individual stresses, but how protein phosphorylation is associated with cross-stress tolerance, particularly drought priming-enhanced heat tolerance is largely unknown. The objectives of the present study were to identify phosphorylated proteins and phosphorylation sites that were responsive to drought priming and to determine whether drought priming-enhanced heat tolerance in temperate grass species involves changes in protein phosphorylation. Comparative analysis of phosphoproteomic profiles was performed on leaves of tall fescue (Festuca arundinacea) exposed to heat stress (38/33 °C, day/night) with or without drought priming. A total of 569 differentially regulated phosphoproteins (DRPs) with 1098 phosphorylation sites were identified in response to drought priming or heat stress individually or sequentially. Most DRPs were nuclear-localized and cytosolic proteins. Motif analysis detected [GS], [DSD], and [S..E] as major phosphorylation sites in casein kinase-II and mitogen-activated protein kinases regulated by drought priming and heat stress. Functional annotation and gene ontology analysis demonstrated that DRPs in response to drought priming and in drought-primed plants subsequently exposed to heat stress were mostly enriched in four major biological processes, including RNA splicing, transcription control, stress protection/defense, and stress perception/signaling. These results suggest the involvement of post-translational regulation of the aforementioned biological processes and signaling pathways in drought priming memory and cross-tolerance with heat stress in a temperate grass species.
Collapse
Affiliation(s)
- Xiaxiang Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, 210095, Nanjing, China
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Lili Zhuang
- College of Agro-grassland Science, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yu Liu
- College of Agro-grassland Science, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhimin Yang
- College of Agro-grassland Science, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Bingru Huang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
18
|
Korwin Krukowski P, Ellenberger J, Röhlen-Schmittgen S, Schubert A, Cardinale F. Phenotyping in Arabidopsis and Crops-Are We Addressing the Same Traits? A Case Study in Tomato. Genes (Basel) 2020; 11:E1011. [PMID: 32867311 PMCID: PMC7564427 DOI: 10.3390/genes11091011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 11/18/2022] Open
Abstract
The convenient model Arabidopsis thaliana has allowed tremendous advances in plant genetics and physiology, in spite of only being a weed. It has also unveiled the main molecular networks governing, among others, abiotic stress responses. Through the use of the latest genomic tools, Arabidopsis research is nowadays being translated to agronomically interesting crop models such as tomato, but at a lagging pace. Knowledge transfer has been hindered by invariable differences in plant architecture and behaviour, as well as the divergent direct objectives of research in Arabidopsis versus crops compromise transferability. In this sense, phenotype translation is still a very complex matter. Here, we point out the challenges of "translational phenotyping" in the case study of drought stress phenotyping in Arabidopsis and tomato. After briefly defining and describing drought stress and survival strategies, we compare drought stress protocols and phenotyping techniques most commonly used in the two species, and discuss their potential to gain insights, which are truly transferable between species. This review is intended to be a starting point for discussion about translational phenotyping approaches among plant scientists, and provides a useful compendium of methods and techniques used in modern phenotyping for this specific plant pair as a case study.
Collapse
Affiliation(s)
- Paolo Korwin Krukowski
- Plant Stress Lab, Department of Agriculture, Forestry and Food Sciences DISAFA-Turin University, 10095 Grugliasco, Italy; (A.S.); (F.C.)
| | - Jan Ellenberger
- INRES Horticultural Sciences, University of Bonn, 53121 Bonn, Germany;
| | | | - Andrea Schubert
- Plant Stress Lab, Department of Agriculture, Forestry and Food Sciences DISAFA-Turin University, 10095 Grugliasco, Italy; (A.S.); (F.C.)
| | - Francesca Cardinale
- Plant Stress Lab, Department of Agriculture, Forestry and Food Sciences DISAFA-Turin University, 10095 Grugliasco, Italy; (A.S.); (F.C.)
| |
Collapse
|
19
|
Xu J, Trainotti L, Li M, Varotto C. Overexpression of Isoprene Synthase Affects ABA- and Drought-Related Gene Expression and Enhances Tolerance to Abiotic Stress. Int J Mol Sci 2020; 21:E4276. [PMID: 32560078 PMCID: PMC7352718 DOI: 10.3390/ijms21124276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 01/08/2023] Open
Abstract
Isoprene is the most abundant single biogenic volatile compound emitted by plants. Despite the relevance of this molecule to plant abiotic resistance and its impact on global atmospheric chemistry, little is known about the details of its mechanism of action. Here, we characterized through both physiological and molecular methods the mechanisms of action of isoprene using model transgenic arabidopsis lines overexpressing a monocot isoprene synthase gene. Our results demonstrated the effect that isoprene had on ABA signaling at different tissue-specific, spatial, and temporal scales. In particular, we found that isoprene enhanced stomatal sensitivity to ABA through upregulation of RD29B signaling gene. By contrast, isoprene decreased sensitivity to ABA in germinating seeds and roots, suggesting tissue-specific mechanisms of action. In leaves, isoprene caused the downregulation of COR15A and P5CS genes, suggesting that the enhanced tolerance to water-deprivation stress observed in isoprene-emitting plants may be mediated chiefly by an enhanced membrane integrity and tolerance to osmotic stress.
Collapse
Affiliation(s)
- Jia Xu
- Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, Research and Innovation Centre, via Mach 1, 38010 San Michele all’Adige (TN), Italy;
- Dipartimento di Biologia, Università degli Studi di Padova, viale Giuseppe Colombo, 3, 35131 Padova, Italy;
| | - Livio Trainotti
- Dipartimento di Biologia, Università degli Studi di Padova, viale Giuseppe Colombo, 3, 35131 Padova, Italy;
| | - Mingai Li
- Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, Research and Innovation Centre, via Mach 1, 38010 San Michele all’Adige (TN), Italy;
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, Research and Innovation Centre, via Mach 1, 38010 San Michele all’Adige (TN), Italy;
| |
Collapse
|
20
|
Negin B, Moshelion M. Remember where you came from: ABA insensitivity is epigenetically inherited in mesophyll, but not seeds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 295:110455. [PMID: 32534619 DOI: 10.1016/j.plantsci.2020.110455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/10/2020] [Accepted: 02/16/2020] [Indexed: 05/11/2023]
Abstract
Plants transmit their experiences of environmental conditions to their progeny through epigenetic inheritance, improving their progeny's fitness under prevailing conditions. Though ABA is known to regulate epigenetic-modification genes, no strong phenotypic link between those genes and intergenerational "memory" has been shown. Previously, we demonstrated that mesophyll insensitivity to ABA (FBPase::abi1-1{fa} transgenic plants) results in a range of developmental phenotypes, including early growth vigor and early flowering (i.e., stress-escape behavior). Here, we show that null plants, used as controls (segregates of FBPase::abi1 that are homozygote descendants of a heterozygous transgenic plant, but do not contain the transformed abi1-1 gene) phenotypically resembled their FBPase::abi1-1 parents. However, in germination and early seedling development assays, null segregants resembled WT plants. These FBPase::abi1-1 null segregants mesophyll-related phenotypes were reproducible and stable for at least three generations. These results suggest that the heritability of stress response is linked to ABA's epigenetic regulatory effect through ABI1 and mesophyll-related traits. The discrepancy between the epigenetic heritability of seed and mesophyll-related traits is an example of the complexity of epigenetic regulation, which is both gene and process-specific, and may be attributed to the fine-tuning of tradeoffs between flowering time, growth rate and levels of risk that allow annual plants to optimize their fitness in uncertain environments.
Collapse
Affiliation(s)
- Boaz Negin
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Menachem Moshelion
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel.
| |
Collapse
|
21
|
Chang YN, Zhu C, Jiang J, Zhang H, Zhu JK, Duan CG. Epigenetic regulation in plant abiotic stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:563-580. [PMID: 31872527 DOI: 10.1111/jipb.12901] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/20/2020] [Indexed: 05/18/2023]
Abstract
In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA and histone tails and the accessibility of chromatin, create various chromatin states for stress-responsive gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed that many epigenetic factors participate in abiotic stress responses, and various chromatin modifications are changed when plants are exposed to stressful environments. In this review, we summarize recent progress on the cross-talk between abiotic stress response pathways and epigenetic regulatory pathways in plants. Our review focuses on epigenetic regulation of plant responses to extreme temperatures, drought, salinity, the stress hormone abscisic acid, nutrient limitations and ultraviolet stress, and on epigenetic mechanisms of stress memory.
Collapse
Affiliation(s)
- Ya-Nan Chang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jing Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
22
|
Yang Z, Chi X, Guo F, Jin X, Luo H, Hawar A, Chen Y, Feng K, Wang B, Qi J, Yang Y, Sun B. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum. JOURNAL OF PLANT PHYSIOLOGY 2020; 246-247:153142. [PMID: 33383401 DOI: 10.1016/j.jplph.2020.153142] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 05/10/2023]
Abstract
WRKY transcription factors have been suggested to play important roles in response and adaptation to drought stress. However, how sorghum WRKY transcription factors function in drought stress is still unclear. Here, we identify a WRKY transcription factor of sorghum, SbWRKY30, which is induced significantly by drought stress. SbWRKY30 is mainly expressed in sorghum taproot and leaf. SbWRKY30 has transcriptional activation activity and functions in the nucleus. Heterologous expression of SbWRKY30 confers tolerance to drought stress in Arabidopsis (Arabidopsis thaliana) and rice by affecting root architecture. In addition, SbWRKY30 transgenic Arabidopsis and rice plants have higher proline contents and SOD, POD, and CAT activities but lower MDA contents than wild-type plants after drought stress. As a homologous gene of the drought stress-responsive gene RD19 of Arabidopsis, SbRD19 overexpression in Arabidopsis improved the drought tolerance of plants relative to wild-type plants. Further analysis demonstrated that SbWRKY30 could induce SbRD19 expression through binding to the W-box element in the promoter of SbRD19. These results suggest that SbWRKY30 functions as a positive regulator in response to drought stress. Therefore, SbWRKY30 may serve as a promising candidate gene for molecular breeding to generate drought-tolerant crops.
Collapse
Affiliation(s)
- Zhen Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Xiaoyu Chi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Fengfei Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Xueying Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Huilian Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Amangul Hawar
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Yaxin Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Kangkang Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Bin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Bo Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
23
|
Cochetel N, Ghan R, Toups HS, Degu A, Tillett RL, Schlauch KA, Cramer GR. Drought tolerance of the grapevine, Vitis champinii cv. Ramsey, is associated with higher photosynthesis and greater transcriptomic responsiveness of abscisic acid biosynthesis and signaling. BMC PLANT BIOLOGY 2020; 20:55. [PMID: 32019503 PMCID: PMC7001288 DOI: 10.1186/s12870-019-2012-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/30/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Grapevine is an economically important crop for which yield and berry quality is strongly affected by climate change. Large variations in drought tolerance exist across Vitis species. Some of these species are used as rootstock to enhance abiotic and biotic stress tolerance. In this study, we investigated the physiological and transcriptomic responses to water deficit of four different genotypes that differ in drought tolerance: Ramsey (Vitis champinii), Riparia Gloire (Vitis riparia), Cabernet Sauvignon (Vitis vinifera), and SC2 (Vitis vinifera x Vitis girdiana). RESULTS Ramsey was particularly more drought tolerant than the other three genotypes. Ramsey maintained a higher stomatal conductance and photosynthesis at equivalent levels of moderate water deficit. We identified specific and common transcriptomic responses shared among the four different Vitis species using RNA sequencing analysis. A weighted gene co-expression analysis identified a water deficit core gene set with the ABA biosynthesis and signaling genes, NCED3, RD29B and ABI1 as potential hub genes. The transcript abundance of many abscisic acid metabolism and signaling genes was strongly increased by water deficit along with genes associated with lipid metabolism, galactinol synthases and MIP family proteins. This response occurred at smaller water deficits in Ramsey and with higher transcript abundance than the other genotypes. A number of aquaporin genes displayed differential and unique responses to water deficit in Ramsey leaves. Genes involved in cysteine biosynthesis and metabolism were constitutively higher in the roots of Ramsey; thus, linking the gene expression of a known factor that influences ABA biosynthesis to this genotype's increased NCED3 transcript abundance. CONCLUSION The drought tolerant Ramsey maintained higher photosynthesis at equivalent water deficit than the three other grapevine genotypes. Ramsey was more responsive to water deficit; its transcriptome responded at smaller water deficits, whereas the other genotypes did not respond until more severe water deficits were reached. There was a common core gene network responding to water deficit for all genotypes that included ABA metabolism and signaling. The gene clusters and sub-networks identified in this work represent interesting gene lists to explore and to better understand drought tolerance molecular mechanisms.
Collapse
Affiliation(s)
- Noé Cochetel
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Ryan Ghan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Haley S. Toups
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Asfaw Degu
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
- Present address: College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Richard L. Tillett
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Karen A. Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Grant R. Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| |
Collapse
|
24
|
Li N, Euring D, Cha JY, Lin Z, Lu M, Huang LJ, Kim WY. Plant Hormone-Mediated Regulation of Heat Tolerance in Response to Global Climate Change. FRONTIERS IN PLANT SCIENCE 2020; 11:627969. [PMID: 33643337 PMCID: PMC7905216 DOI: 10.3389/fpls.2020.627969] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/30/2020] [Indexed: 05/07/2023]
Abstract
Agriculture is largely dependent on climate and is highly vulnerable to climate change. The global mean surface temperatures are increasing due to global climate change. Temperature beyond the physiological optimum for growth induces heat stress in plants causing detrimental and irreversible damage to plant development, growth, as well as productivity. Plants have evolved adaptive mechanisms in response to heat stress. The classical plant hormones, such as auxin, abscisic acid (ABA), brassinosteroids (BRs), cytokinin (CK), salicylic acid (SA), jasmonate (JA), and ethylene (ET), integrate environmental stimuli and endogenous signals to regulate plant defensive response to various abiotic stresses, including heat. Exogenous applications of those hormones prior or parallel to heat stress render plants more thermotolerant. In this review, we summarized the recent progress and current understanding of the roles of those phytohormones in defending plants against heat stress and the underlying signal transduction pathways. We also discussed the implication of the basic knowledge of hormone-regulated plant heat responsive mechanism to develop heat-resilient plants as an effective and efficient way to cope with global warming.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Dejuan Euring
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Joon Yung Cha
- Division of Applied Life Science (BK21PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Zeng Lin
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Mengzhu Lu
- Laboratory of Forest Genetics and Plant Breeding, College of Forestry, Central South University of Forestry and Technology, Hunan, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, China
| | - Li-Jun Huang
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
- Laboratory of Forest Genetics and Plant Breeding, College of Forestry, Central South University of Forestry and Technology, Hunan, China
- *Correspondence: Li-Jun Huang, ; 0000-0001-8072-5180
| | - Woe Yeon Kim
- Division of Applied Life Science (BK21PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Woe Yeon Kim,
| |
Collapse
|
25
|
Godwin J, Farrona S. Plant Epigenetic Stress Memory Induced by Drought: A Physiological and Molecular Perspective. Methods Mol Biol 2020; 2093:243-259. [PMID: 32088901 DOI: 10.1007/978-1-0716-0179-2_17] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Drought stress is one of the most common stresses encountered by crops and other plants and leads to significant productivity losses. It commonly happens that drought stress occurs more than once during the plant's life cycle. Plants suffering from drought stress can adapt their life strategies to acclimate and survive in many different ways. Interestingly, some plants have evolved a stress response strategy referred to as stress memory which leads to an enhanced response the next time the stress is encountered. The acquisition of stress memory leads to a reprogrammed transcriptional response during subsequent stress and subsequent changes both at the physiological and molecular level. Recent advances in understanding chromatin dynamics have demonstrated the involvement of chromatin modifications, especially histone marks, associated with drought stress-responsive memory genes and subsequent enhanced transcriptional responses to repeated drought stress. In this chapter, we describe recent progress in this area and summarize techniques for the study of plant epigenetic responses to stress, including the roles of ABA and transcription factors in superinduced transcriptional activation during recurrent drought stress. We also review the possible use of seed priming to induce stress memory later in the plant life cycle. Finally, we discuss the potential implications of understanding the epigenetic mechanisms involved in plant stress memory for future applications in crop improvement and drought resistance.
Collapse
Affiliation(s)
- James Godwin
- Plant and AgriBiosciences Research Centre, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Sara Farrona
- Plant and AgriBiosciences Research Centre, Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
26
|
Liu JG, Han X, Yang T, Cui WH, Wu AM, Fu CX, Wang BC, Liu LJ. Genome-wide transcriptional adaptation to salt stress in Populus. BMC PLANT BIOLOGY 2019; 19:367. [PMID: 31429697 PMCID: PMC6701017 DOI: 10.1186/s12870-019-1952-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/29/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Adaptation to abiotic stresses is crucial for the survival of perennial plants in a natural environment. However, very little is known about the underlying mechanisms. Here, we adopted a liquid culture system to investigate plant adaptation to repeated salt stress in Populus trees. RESULTS We first evaluated phenotypic responses and found that plants exhibit better stress tolerance after pre-treatment of salt stress. Time-course RNA sequencing (RNA-seq) was then performed to profile changes in gene expression over 12 h of salt treatments. Analysis of differentially expressed genes (DEGs) indicated that significant transcriptional reprogramming and adaptation to repeated salt treatment occurred. Clustering analysis identified two modules of co-expressed genes that were potentially critical for repeated salt stress adaptation, and one key module for salt stress response in general. Gene Ontology (GO) enrichment analysis identified pathways including hormone signaling, cell wall biosynthesis and modification, negative regulation of growth, and epigenetic regulation to be highly enriched in these gene modules. CONCLUSIONS This study illustrates phenotypic and transcriptional adaptation of Populus trees to salt stress, revealing novel gene modules which are potentially critical for responding and adapting to salt stress.
Collapse
Affiliation(s)
- Jin-Gui Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018 Shandong China
| | - Xiao Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| | - Tong Yang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018 Shandong China
| | - Wen-Hui Cui
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018 Shandong China
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Chun-Xiang Fu
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 Shandong China
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Li-Jun Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018 Shandong China
| |
Collapse
|
27
|
Bulgakov VP, Wu HC, Jinn TL. Coordination of ABA and Chaperone Signaling in Plant Stress Responses. TRENDS IN PLANT SCIENCE 2019; 24:636-651. [PMID: 31085125 DOI: 10.1016/j.tplants.2019.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/09/2019] [Accepted: 04/13/2019] [Indexed: 05/14/2023]
Abstract
The abscisic acid (ABA) and chaperone signaling pathways are the central regulators of plant stress defense. Despite their significance and potential overlap, these systems have been described separately. In this review, we summarize information about mechanisms by which the ABA and chaperone signaling pathways might be coregulated. The central factors that join the ABA and chaperone signaling systems are the SWI/SNF chromatin-remodeling proteins, which are involved in stress memory. A benefit from coordination is that the signals sensed through both the ABA and chaperone signaling systems are perceived and stored via chromatin-remodeling factors. For improving plant stress resistance, we propose new bioengineering strategies, which we term 'bioengineering memory'.
Collapse
Affiliation(s)
- Victor P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity (Institute of Biology and Soil Science), Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia; Far Eastern Federal University, Sukhanova Str. 8, 690950, Vladivostok, Russia.
| | - Hui-Chen Wu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan
| | - Tsung-Luo Jinn
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
28
|
Avramova Z. Defence-related priming and responses to recurring drought: Two manifestations of plant transcriptional memory mediated by the ABA and JA signalling pathways. PLANT, CELL & ENVIRONMENT 2019; 42:983-997. [PMID: 30299553 DOI: 10.1111/pce.13458] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 05/20/2023]
Abstract
Collective evidence from agricultural practices and from scientific research has demonstrated that plants can alter their phenotypic responses to repeated biotic and abiotic stresses or their elicitors. A coordinated reaction at the organismal, cellular, and genome levels has suggested that plants can "remember" an earlier stress and modify their future responses, accordingly. Stress memory may increase a plant's survival chances by improving its tolerance/avoidance abilities and may provide a mechanism for acclimation and adaptation. Understanding the mechanisms that regulate plant stress memory is not only an intellectually challenging topic but has important implications for agricultural practices as well. Here, I focus exclusively on specific aspects of the transcription memory in response to recurring dehydration stresses and the memory-type responses to insect damage in a process known as "priming." The questions discussed are (a) whether/how the two memory phenomena are connected at the level of transcriptional regulation; (b) how differential transcription is achieved mechanistically under a repeated stress; and (c) whether similar molecular and/or epigenetic mechanisms are involved. Possible biological relevance of transcriptional stress memory and its preservation in plant evolution are also discussed.
Collapse
Affiliation(s)
- Zoya Avramova
- School of Biological Sciences, UNL, Lincoln, Nebraska
| |
Collapse
|
29
|
da Fonseca-Pereira P, Daloso DM, Gago J, de Oliveira Silva FM, Condori-Apfata JA, Florez-Sarasa I, Tohge T, Reichheld JP, Nunes-Nesi A, Fernie AR, Araújo WL. The Mitochondrial Thioredoxin System Contributes to the Metabolic Responses Under Drought Episodes in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:213-229. [PMID: 30329109 DOI: 10.1093/pcp/pcy194] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 05/04/2023]
Abstract
Thioredoxins (Trxs) modulate metabolic responses during stress conditions; however, the mechanisms governing the responses of plants subjected to multiple drought events and the role of Trxs under these conditions are not well understood. Here we explored the significance of the mitochondrial Trx system in Arabidopsis following exposure to single and repeated drought events. We analyzed the previously characterized NADPH-dependent Trx reductase A and B double mutant (ntra ntrb) and two independent mitochondrial thioredoxin o1 (trxo1) mutant lines. Following similar reductions in relative water content (∼50%), Trx mutants subjected to two drought cycles displayed a significantly higher maximum quantum efficiency (Fv/Fm) and were less sensitive to drought than their wild-type counterparts and than all genotypes subjected to a single drought event. Trx mutant plants displayed a faster recovery after two cycles of drought, as observed by the higher accumulation of secondary metabolites and higher stomatal conductance. Our results indicate that plants exposed to multiple drought cycles are able to modulate their subsequent metabolic and physiological response, suggesting the occurrence of an exquisite acclimation in stressed Arabidopsis plants. Moreover, this differential acclimation involves the participation of a set of metabolic changes as well as redox poise alteration following stress recovery.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, Germany
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Danilo M Daloso
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, Germany
| | - Jorge Gago
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, Germany
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
| | | | - Jorge A Condori-Apfata
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Igor Florez-Sarasa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, Germany
| | - Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, Germany
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Centre National de la Recherche Scientifique, Université de Perpignan Via Domitia, Perpignan, France
| | - Adriano Nunes-Nesi
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, Germany
| | - Wagner L Araújo
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
30
|
Bäurle I. Can’t remember to forget you: Chromatin-based priming of somatic stress responses. Semin Cell Dev Biol 2018; 83:133-139. [DOI: 10.1016/j.semcdb.2017.09.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 11/29/2022]
|
31
|
Liu HC, Lämke J, Lin SY, Hung MJ, Liu KM, Charng YY, Bäurle I. Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:401-413. [PMID: 29752744 DOI: 10.1111/tpj.13958] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/21/2018] [Accepted: 04/25/2018] [Indexed: 05/26/2023]
Abstract
Plants can be primed by a stress cue to mount a faster or stronger activation of defense mechanisms upon subsequent stress. A crucial component of such stress priming is the modified reactivation of genes upon recurring stress; however, the underlying mechanisms of this are poorly understood. Here, we report that dozens of Arabidopsis thaliana genes display transcriptional memory, i.e. stronger upregulation after a recurring heat stress, that lasts for at least 3 days. We define a set of transcription factors involved in this memory response and show that the transcriptional memory results in enhanced transcriptional activation within minutes of the onset of a heat stress cue. Further, we show that the transcriptional memory is active in all tissues. It may last for up to a week, and is associated during this time with histone H3 lysine 4 hypermethylation. This transcriptional memory is cis-encoded, as we identify a promoter fragment that confers memory onto a heterologous gene. In summary, heat-induced transcriptional memory is a widespread and sustained response, and our study provides a framework for future mechanistic studies of somatic stress memory in higher plants.
Collapse
Affiliation(s)
- Hsiang-Chin Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Jörn Lämke
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam, Germany
| | - Siou-Ying Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Department of Biochemical Sciences and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Meng-Ju Hung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuan-Ming Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yee-Yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Department of Biochemical Sciences and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Isabel Bäurle
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam, Germany
| |
Collapse
|
32
|
Virlouvet L, Avenson TJ, Du Q, Zhang C, Liu N, Fromm M, Avramova Z, Russo SE. Dehydration Stress Memory: Gene Networks Linked to Physiological Responses During Repeated Stresses of Zea mays. FRONTIERS IN PLANT SCIENCE 2018; 9:1058. [PMID: 30087686 PMCID: PMC6066539 DOI: 10.3389/fpls.2018.01058] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/28/2018] [Indexed: 05/19/2023]
Abstract
Stress memory refers to the observation that an initial, sub-lethal stress alters plants' responses to subsequent stresses. Previous transcriptome analyses of maize seedlings exposed to a repeated dehydration stress has revealed the existence of transcriptional stress memory in Zea mays. Whether drought-related physiological responses also display memory and how transcriptional memory translates into physiological memory are fundamental questions that are still unanswered. Using a systems-biology approach we investigate whether/how transcription memory responses established in the genome-wide analysis of Z. mays correlate with 14 physiological parameters measured during a repeated exposure of maize seedlings to dehydration stress. Co-expression network analysis revealed ten gene modules correlating strongly with particular physiological processes, and one module displaying strong, yet divergent, correlations with several processes suggesting involvement of these genes in coordinated responses across networks. Two processes key to the drought response, stomatal conductance and non-photochemical quenching, displayed contrasting memory patterns that may reflect trade-offs related to metabolic costs versus benefits of cellular protection. The main contribution of this study is the demonstration of coordinated changes in transcription memory responses at the genome level and integrated physiological responses at the cellular level upon repetitive stress exposures. The results obtained by the network-based systems analysis challenge the commonly held view that short-term physiological responses to stress are primarily mediated biochemically.
Collapse
Affiliation(s)
- Laetitia Virlouvet
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | | | - Qian Du
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| | - Ning Liu
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Michael Fromm
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| | - Zoya Avramova
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| | - Sabrina E. Russo
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
33
|
Ge H, Li X, Chen S, Zhang M, Liu Z, Wang J, Li X, Yang Y. The Expression of CARK1 or RCAR11 Driven by Synthetic Promoters Increases Drought Tolerance in Arabidopsis thaliana. Int J Mol Sci 2018; 19:ijms19071945. [PMID: 29970817 PMCID: PMC6073707 DOI: 10.3390/ijms19071945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/14/2022] Open
Abstract
Drought stress hinders plant growth and development, and abscisic acid (ABA) stimulates plants to respond to drought. Here, to increase plant tolerance to drought, we designed three synthetic promoters (Ap, Dp, ANDp) to determine transcription activity and drought stress resistance in plants resulting from combinations of (1) synthetic promoters and (2) the functional genes CARK1 (cytosolic ABA receptor kinase 1) and RCAR11 (regulatory components of ABA receptor 11). Transient expression of eGFP and the dual-luciferase assay demonstrated that the basal transcriptional activities of Ap and ANDp were present at low levels under normal conditions, while the synthetic promoters were apparently induced upon either treatment of exogenous ABA or co-transformation with effector DREB2A (dehydration-responsive element binding protein 2A). Analysis of the transgenic plants (Ap:CARK1, Dp:CARK1, ANDp:CARK1, and Dp:RCAR11-Ap:CARK1) showed that the synthetic promoters Ap, Dp, and ANDp increased the expression of exogenous genes in transgenic plants upon treatment of ABA or d-mannitol. ANDp:CARK1 and Dp:RCAR11-Ap:CARK1 transgenic plants were sensitive to ABA and d-mannitol during cotyledon greening and root growth. A drought tolerance assay revealed that ANDp:CARK1 and Dp:RCAR11-Ap:CARK1 exhibited a higher survival rate than others upon drought stress. These results indicate that the combinations ANDp:CARK1 and Dp:RCAR11-Ap:CARK1 can be used to generate drought stress resistance in plants.
Collapse
Affiliation(s)
- Hu Ge
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Shisi Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Mengru Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Xufeng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
34
|
Zhang C, Tang G, Peng X, Sun F, Liu S, Xi Y. Long non-coding RNAs of switchgrass (Panicum virgatum L.) in multiple dehydration stresses. BMC PLANT BIOLOGY 2018; 18:79. [PMID: 29728055 PMCID: PMC5936019 DOI: 10.1186/s12870-018-1288-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/22/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in plant growth and stress responses. Studies of lncRNAs in non-model plants are quite limited, especially those investigating multiple dehydration stresses. In this study, we identified novel lncRNAs and analyzed their functions in dehydration stress memory in switchgrass, an excellent biofuel feedstock and soil-conserving plant in the Gramineae family. RESULTS We analyzed genome-wide transcriptional profiles of leaves of 5-week-old switchgrass plantlets grown via tissue culture after primary and secondary dehydration stresses (D1 and D2) and identified 16,551 novel lncRNAs, including 4554 annotated lncRNAs (targeting 3574 genes), and 11,997 unknown lncRNAs. Gene ontology and pathway enrichment analysis of annotated genes showed that the differentially expressed lncRNAs were related to abscisic acid (ABA) and ethylene (ETH) biosynthesis and signal transduction, and to starch and sucrose metabolism. The upregulated lncRNAs and genes were related to ABA synthesis and its signal transduction, and to trehalose synthesis. Meanwhile, lncRNAs and genes related to ETH biosynthesis and signal transduction were suppressed. LncRNAs and genes involved in ABA metabolism were verified using quantitative real-time PCR, and the endogenous ABA content was determined via high performance liquid chromatography mass spectrometry (HPLC-MS). These results showed that ABA accumulated significantly during dehydration stress, especially in D2. Furthermore, we identified 307 dehydration stress memory lncRNAs, and the ratios of different memory types in switchgrass were similar to those in Arabidopsis and maize. CONCLUSIONS The molecular responses of switchgrass lncRNAs to multiple dehydration stresses were researched systematically, revealing novel information about their transcriptional regulatory behavior. This study provides new insights into the response mechanism to dehydration stress in plants. The lncRNAs and pathways identified in this study provide valuable information for genetic modification of switchgrass and other crops.
Collapse
Affiliation(s)
- Chao Zhang
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| | - Gaijuan Tang
- College of Plant Protection, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Xi Peng
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Fengli Sun
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| | - Shudong Liu
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| | - Yajun Xi
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| |
Collapse
|
35
|
A Novel G-Protein-Coupled Receptors Gene from Upland Cotton Enhances Salt Stress Tolerance in Transgenic Arabidopsis. Genes (Basel) 2018; 9:genes9040209. [PMID: 29649144 PMCID: PMC5924551 DOI: 10.3390/genes9040209] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 11/17/2022] Open
Abstract
Plants have developed a number of survival strategies which are significant for enhancing their adaptation to various biotic and abiotic stress factors. At the transcriptome level, G-protein-coupled receptors (GPCRs) are of great significance, enabling the plants to detect a wide range of endogenous and exogenous signals which are employed by the plants in regulating various responses in development and adaptation. In this research work, we carried out genome-wide analysis of target of Myb1 (TOM1), a member of the GPCR gene family. The functional role of TOM1 in salt stress tolerance was studied using a transgenic Arabidopsis plants over-expressing the gene. By the use of the functional domain PF06454, we obtained 16 TOM genes members in Gossypium hirsutum, 9 in Gossypium arboreum, and 11 in Gossypium raimondii. The genes had varying physiochemical properties, and it is significant to note that all the grand average of hydropathy (GRAVY) values were less than one, indicating that all are hydrophobic in nature. In all the genes analysed here, both the exonic and intronic regions were found. The expression level of Gh_A07G0747 (GhTOM) was significantly high in the transgenic lines as compared to the wild type; a similar trend in expression was observed in all the salt-related genes tested in this study. The study in epidermal cells confirmed the localization of the protein coded by the gene TOM1 in the plasma membrane. Analysis of anti-oxidant enzymes showed higher concentrations of antioxidants in transgenic lines and relatively lower levels of oxidant substances such as H₂O₂. The low malondialdehyde (MDA) level in transgenic lines indicated that the transgenic lines had relatively low level of oxidative damage compared to the wild types. The results obtained indicate that Gh_A07G0747 (GhTOM) can be a putative target gene for enhancing salt stress tolerance in plants and could be exploited in the future for the development of salt stress-tolerant cotton cultivars.
Collapse
|
36
|
Wang Y, Li T, John SJ, Chen M, Chang J, Yang G, He G. A CBL-interacting protein kinase TaCIPK27 confers drought tolerance and exogenous ABA sensitivity in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:103-113. [PMID: 29227949 DOI: 10.1016/j.plaphy.2017.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 05/22/2023]
Abstract
Drought is one of the major environmental stresses to plants. The calcium sensor, calcineurin B-like (CBL) proteins, and their interacting protein kinases (CIPK) play important roles in responding to abiotic stresses. In this study, we functionally characterized a CIPK gene from Triticum aestivum designated TaCIPK27. The transcriptional levels of TaCIPK27 were increased both in roots and leaves after treatment with polyethylene glycol 8000, abscisic acid and H2O2. Besides, TaCIPK27 interacted with AtCBL1, AtCBL3, AtCBL4, AtCBL5 and AtCBL9 in yeast two-hybrid assays. Ectopic overexpression of TaCIPK27 positively regulates drought tolerance in transgenic Arabidopsis compared with controls, which was demonstrated by seed germination and survival rates experiments, as well as the detection of physiological indices including ion leakage, malonic dialdehyde and H2O2 contents and antioxidant enzyme activities under normal and drought conditions. Moreover, higher concentration of endogenous abscisic acid was detected under drought in TaCIPK27 transgenic plants. In addition, TaCIPK27 transgenic plants were more sensitive to exogenous abscisic acid treatment at seed germination and seedling stage. The expression levels of somedrought stress and abscisic acid related genes were up-regulated in TaCIPK27 transgenic plants. The results suggest that TaCIPK27 functions as a positive regulator under drought partly in an ABA-dependent pathway.
Collapse
Affiliation(s)
- Yan Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tingting Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Shanita Judith John
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
37
|
Zhang C, Peng X, Guo X, Tang G, Sun F, Liu S, Xi Y. Transcriptional and physiological data reveal the dehydration memory behavior in switchgrass ( Panicum virgatum L.). BIOTECHNOLOGY FOR BIOFUELS 2018; 11:91. [PMID: 29619087 PMCID: PMC5879616 DOI: 10.1186/s13068-018-1088-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 03/21/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.) is a model biofuel plant because of its high biomass, cellulose-richness, easy degradation to ethanol, and the availability of extensive genomic information. However, a little is currently known about the molecular responses of switchgrass plants to dehydration stress, especially multiple dehydration stresses. RESULTS Studies on the transcriptional profiles of 35-day-old tissue culture plants revealed 741 dehydration memory genes. Gene Ontology and pathway analysis showed that these genes were enriched in phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant hormone signal transduction. Further analysis of specific pathways combined with physiological data suggested that switchgrass improved its dehydration resistance by changing various aspects of its responses to secondary dehydration stress (D2), including the regulation of abscisic acid (ABA) and jasmonic acid (JA) biosynthesis and signal transduction, the biosynthesis of osmolytes (l-proline, stachyose and trehalose), energy metabolism (i.e., metabolic process relating to photosynthetic systems, glycolysis, and the TCA cycle), and lignin biosynthesis. The transcriptional data and chemical substance assays showed that ABA was significantly accumulated during both primary (D1) and secondary (D2) dehydration stresses, whereas JA accumulated during D1 but became significantly less abundant during D2. This suggests the existence of a complicated signaling network of plant hormones in response to repeated dehydration stresses. A homology analysis focusing on switchgrass, maize, and Arabidopsis revealed the conservation and species-specific distribution of dehydration memory genes. CONCLUSIONS The molecular responses of switchgrass plants to successive dehydration stresses have been systematically characterized, revealing a previously unknown transcriptional memory behavior. These results provide new insights into the mechanisms of dehydration stress responses in plants. The genes and pathways identified in this study will be useful for the genetic improvement of switchgrass and other crops.
Collapse
Affiliation(s)
- Chao Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xi Peng
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiaofeng Guo
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Gaijuan Tang
- College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Shudong Liu
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
38
|
Buzas DM. Capturing Environmental Plant Memories in DNA, with a Little Help from Chromatin. PLANT & CELL PHYSIOLOGY 2017; 58:1302-1312. [PMID: 28961992 DOI: 10.1093/pcp/pcx092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/28/2017] [Indexed: 05/11/2023]
Abstract
Plants are eukaryotes living mostly immotile in harsh environments. On occasion, it is beneficial for their survival to maintain a transcriptional response to an environmental stress longer than the stress lasts (transcriptional memory) and even to reiterate such a response more quickly or more strongly when the same stress is re-encountered (priming memory). In eukaryotes, transcription takes place in the context of chromatin, the packaging material of DNA. Chromatin regulation is often invoked when it comes to environmental transcriptional and priming memory in plants, but rarely chromatin-based regulation can be accurately assigned to a given aspect of transcription in vivo. The conserved eukaryotic chromatin-modifying system Polycomb/Trithorax can support both long-term stability and flexibility of gene expression in Drosophila. The main principles of Polycomb/Trithorax regulation will be outlined and illustrated with the best-studied case of environmental memory from Arabidopsis. Despite being complex, the Polycomb/Trithorax system relies on experimentally tractable elements in the form of DNA, termed Polycomb/Trithorax Responsive Elements. PREs/TREs are essentially memory DNA elements. Here, relevant information to identify PRE/TRE-like elements in plants is highlighted. Examples of priming memory in plants are discussed in relation to the first two reported putative memory DNA elements. Arguably, similar cases from plants can be conducive in dissecting the contribution of DNA-based from chromatin-based regulation of transcription, when two types of DNA elements are defined: those representing binding sites for the transcription factors determining the environmental response and those controlling memory by regulating chromatin modification dynamics, ultimately maintaining the corresponding transcriptional state.
Collapse
Affiliation(s)
- Diana Mihaela Buzas
- Life and Environmental Sciences and Gene Research Centre, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
39
|
Lämke J, Bäurle I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol 2017; 18:124. [PMID: 28655328 PMCID: PMC5488299 DOI: 10.1186/s13059-017-1263-6] [Citation(s) in RCA: 386] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Plants frequently have to weather both biotic and abiotic stressors, and have evolved sophisticated adaptation and defense mechanisms. In recent years, chromatin modifications, nucleosome positioning, and DNA methylation have been recognized as important components in these adaptations. Given their potential epigenetic nature, such modifications may provide a mechanistic basis for a stress memory, enabling plants to respond more efficiently to recurring stress or even to prepare their offspring for potential future assaults. In this review, we discuss both the involvement of chromatin in stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.
Collapse
Affiliation(s)
- Jörn Lämke
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Isabel Bäurle
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany.
| |
Collapse
|
40
|
Huang F, Luo J, Ning T, Cao W, Jin X, Zhao H, Wang Y, Han S. Cytosolic and Nucleosolic Calcium Signaling in Response to Osmotic and Salt Stresses Are Independent of Each Other in Roots of Arabidopsis Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:1648. [PMID: 28983313 PMCID: PMC5613247 DOI: 10.3389/fpls.2017.01648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/07/2017] [Indexed: 05/02/2023]
Abstract
Calcium acts as a universal second messenger in both developmental processes and responses to environmental stresses. Previous research has shown that a number of stimuli can induce [Ca2+] increases in both the cytoplasm and nucleus in plants. However, the relationship between cytosolic and nucleosolic calcium signaling remains obscure. Here, we generated transgenic plants containing a fusion protein, comprising rat parvalbumin (PV) with either a nuclear export sequence (PV-NES) or a nuclear localization sequence (NLS-PV), to selectively buffer the cytosolic or nucleosolic calcium. Firstly, we found that the osmotic stress-induced cytosolic [Ca2+] increase (OICIcyt) and the salt stress-induced cytosolic [Ca2+] increase (SICIcyt) were impaired in the PV-NES lines compared with the Arabidopsis wildtype (WT). Similarly, the osmotic stress-induced nucleosolic [Ca2+] increase (OICInuc) and salt stress-induced nucleosolic [Ca2+] increase (SICInuc) were also disrupted in the NLS-PV lines. These results indicate that PV can effectively buffer the increase of [Ca2+] in response to various stimuli in Arabidopsis. However, the OICIcyt and SICIcyt in the NLS-PV plants were similar to those in the WT, and the OICInuc and SICInuc in the PV-NES plants were also same as those in the WT, suggesting that the cytosolic and nucleosolic calcium dynamics are mutually independent. Furthermore, we found that osmotic stress- and salt stress-inhibited root growth was reduced dramatically in the PV-NES and NLS-PV lines, while the osmotic stress-induced increase of the lateral root primordia was higher in the PV-NES plants than either the WT or NLS-PV plants. In addition, several stress-responsive genes, namely CML37, DREB2A, MYB2, RD29A, and RD29B, displayed diverse expression patterns in response to osmotic and salt stress in the PV-NES and NLS-PV lines when compared with the WT. Together, these results imply that the cytosolic and nucleosolic calcium signaling coexist to play the pivotal roles in the growth and development of plants and their responses to environment stresses.
Collapse
|
41
|
Wong MM, Chong GL, Verslues PE. Epigenetics and RNA Processing: Connections to Drought, Salt, and ABA? Methods Mol Biol 2017; 1631:3-21. [PMID: 28735388 DOI: 10.1007/978-1-4939-7136-7_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There have been great research advances in epigenetics, RNA splicing, and mRNA processing over recent years. In parallel, there have been many advances in abiotic stress and Abscisic Acid (ABA) signaling. Here we overview studies that have examined stress-induced changes in the epigenome and RNA processing as well as cases where disrupting these processes changes the plant response to abiotic stress. We also highlight some examples where specific connections of stress or ABA signaling to epigenetics or RNA processing have been found. By implication, this also points out cases where such mechanistic connections are likely to exist but are yet to be characterized. In the absence of such specific connections to stress signaling, it should be kept in mind that stress sensitivity phenotypes of some epigenetic or RNA processing mutants maybe the result of indirect, pleiotropic effects and thus may perhaps not indicate a direct function in stress acclimation.
Collapse
Affiliation(s)
- Min May Wong
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Geeng Loo Chong
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan. .,Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
42
|
Light affects salt stress-induced transcriptional memory of P5CS1 in Arabidopsis. Proc Natl Acad Sci U S A 2016; 113:E8335-E8343. [PMID: 27930298 DOI: 10.1073/pnas.1610670114] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To cope with environmental stresses, plants often adopt a memory response upon primary stress exposure to facilitate a quicker and stronger reaction to recurring stresses. However, it remains unknown whether light is involved in the manifestation of stress memory. Proline accumulation is a striking metabolic adaptation of higher plants during various environmental stresses. Here we show that salinity-induced proline accumulation is memorable and HY5-dependent light signaling is required for such a memory response. Primary salt stress induced the expression of Δ1-pyrroline-5-carboxylate synthetase 1 (P5CS1), encoding a proline biosynthetic enzyme and proline accumulation, which were reduced to basal level during the recovery stage. Reoccurring salt stress-induced stronger P5CS1 expression and proline accumulation were dependent upon light exposure during the recovery stage. Further studies demonstrated that salt-induced transcriptional memory of P5CS1 is associated with the retention of increased H3K4me3 level at P5CS1 during the recovery stage. HY5 binds directly to light-responsive element, C/A-box, in the P5CS1 promoter. Deletion of the C/A-box or hy5 hyh mutations caused rapid reduction of H3K4me3 level at P5CS1 during the recovery stage, resulting in impairment of the stress memory response. These results unveil a previously unrecognized mechanism whereby light regulates salt-induced transcriptional memory via the function of HY5 in maintaining H3K4me3 level at the memory gene.
Collapse
|
43
|
Liu N, Staswick PE, Avramova Z. Memory responses of jasmonic acid-associated Arabidopsis genes to a repeated dehydration stress. PLANT, CELL & ENVIRONMENT 2016; 39:2515-2529. [PMID: 27451106 DOI: 10.1111/pce.12806] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 05/22/2023]
Abstract
Dehydration stress activates numerous genes co-regulated by diverse signaling pathways. Upon repeated exposures, however, a subset of these genes does not respond maintaining instead transcription at their initial pre-stressed levels ('revised-response' genes). Most of these genes are involved in jasmonic acid (JA) biosynthesis, JA-signaling and JA-mediated stress responses. How these JA-associated genes are regulated to provide different responses to similar dehydration stresses is an enigma. Here, we investigate molecular mechanisms that contribute to this transcriptional behavior. The memory-mechanism is stress-specific: one exposure to dehydration stress or to abscisic acid (ABA) is required to prevent transcription in the second. Both ABA-mediated and JA-mediated pathways are critical for the activation of these genes, but the two signaling pathways interact differently during a single or multiple encounters with dehydration stress. Synthesis of JA during the first (S1) but not the second dehydration stress (S2) accounts for the altered transcriptional responses. We propose a model for these memory responses, wherein lack of MYC2 and of JA synthesis in S2 is responsible for the lack of expression of downstream genes. The similar length of the memory displayed by different memory-type genes suggests biological relevance for transcriptional memory as a gene-regulating mechanism during recurring bouts of drought.
Collapse
Affiliation(s)
- Ning Liu
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Paul E Staswick
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Zoya Avramova
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
44
|
Fan W, Zhao M, Li S, Bai X, Li J, Meng H, Mu Z. Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots. BMC PLANT BIOLOGY 2016; 16:99. [PMID: 27101806 PMCID: PMC4839062 DOI: 10.1186/s12870-016-0764-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/21/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND The different actions of abscisic acid (ABA) in the aboveground and belowground parts of plants suggest the existence of a distinct perception mechanism between these organs. Although characterization of the soluble ABA receptors PYR1/PYL/RCAR as well as core signaling components has greatly advanced our understanding of ABA perception, signal transduction, and responses, the environment-dependent organ-specific sensitivity of plants to ABA is less well understood. RESULTS By performing real-time quantitative PCR assays, we comprehensively compared transcriptional differences of core ABA signaling components in response to ABA or osmotic/dehydration stress between maize (Zea mays L.) roots and leaves. Our results demonstrated up-regulation of the transcript levels of ZmPYLs homologous to dimeric-type Arabidopsis ABA receptors by ABA in maize primary roots, whereas those of ZmPYLs homologous to monomeric-type Arabidopsis ABA receptors were down-regulated. However, this trend was reversed in the leaves of plants treated with ABA via the root medium. Although the mRNA levels of ZmPYL1-3 increased significantly in roots subjected to polyethylene glycol (PEG)-induced osmotic stress, ZmPYL4-11 transcripts were either maintained at a stable level or increased only slightly. In detached leaves subjected to dehydration, the transcripts of ZmPYL1-3 together with ZmPYL5, ZmPYL6, ZmPYL10 and ZmPYL11 were decreased, whereas those of ZmPYL4, ZmPYL7 and ZmPYL8 were significantly increased. Our results also showed that all of the evaluated transcripts of PP2Cs and SnRK2 were quickly up-regulated in roots by ABA or osmotic stress; conversely they were either up-regulated or maintained at a constant level in leaves, depending on the isoforms within each family. CONCLUSIONS There is a distinct profile of PYR/PYL/RCAR ABA receptor gene expression between maize roots and leaves, suggesting that monomeric-type ABA receptors are mainly involved in the transmission of ABA signals in roots but that dimeric-type ABA receptors primarily carry out this function in leaves. Given that ZmPYL1 and ZmPYL4 exhibit similar transcript abundance under normal conditions, our findings may represent a novel mechanism for species-specific regulation of PYR/PYL/RCAR ABA receptor gene expression. A difference in the preference for core signaling components in the presence of exogenous ABA versus stress-induced endogenous ABA was observed in both leaves and roots. It appears that core ABA signaling components perform their osmotic/dehydration stress response functions in a stress intensity-, duration-, species-, organ-, and isoform-specific manner, leading to plasticity in response to adverse conditions and, thus, acclimation to life on land. These results deepen our understanding of the diverse biological effects of ABA between plant leaves and roots in response to abiotic stress at the stimulus-perception level.
Collapse
Affiliation(s)
- Wenqiang Fan
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Mengyao Zhao
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Suxin Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xue Bai
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jia Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Haowei Meng
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zixin Mu
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
45
|
Liu N, Avramova Z. Molecular mechanism of the priming by jasmonic acid of specific dehydration stress response genes in Arabidopsis. Epigenetics Chromatin 2016; 9:8. [PMID: 26918031 PMCID: PMC4766709 DOI: 10.1186/s13072-016-0057-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant genes that provide a different response to a similar dehydration stress illustrate the concept of transcriptional 'dehydration stress memory'. Pre-exposing a plant to a biotic stress or a stress-signaling hormone may increase transcription from response genes in a future stress, a phenomenon known as 'gene priming'. Although known that primed transcription is preceded by accumulation of H3K4me3 marks at primed genes, what mechanism provides for their appearance before the transcription was unclear. How augmented transcription is achieved, whether/how the two memory phenomena are connected at the transcriptional level, and whether similar molecular and/or epigenetic mechanisms regulate them are fundamental questions about the molecular mechanisms regulating gene expression. RESULTS Although the stress hormone jasmonic acid (JA) was unable to induce transcription of tested dehydration stress response genes, it strongly potentiated transcription from specific ABA-dependent 'memory' genes. We elucidate the molecular mechanism causing their priming, demonstrate that stalled RNA polymerase II and H3K4me3 accumulate as epigenetic marks at the JA-primed ABA-dependent genes before actual transcription, and describe how these events occur mechanistically. The transcription factor MYC2 binds to the genes in response to both dehydration stress and to JA and determines the specificity of the priming. The MEDIATOR subunit MED25 links JA-priming with dehydration stress response pathways at the transcriptional level. Possible biological relevance of primed enhanced transcription from the specific memory genes is discussed. CONCLUSIONS The biotic stress hormone JA potentiated transcription from a specific subset of ABA-response genes, revealing a novel aspect of the JA- and ABA-signaling pathways' interactions. H3K4me3 functions as an epigenetic mark at JA-primed dehydration stress response genes before transcription. We emphasize that histone and epigenetic marks are not synonymous and argue that distinguishing between them is important for understanding the role of chromatin marks in genes' transcriptional performance. JA-priming, specifically of dehydration stress memory genes encoding cell/membrane protective functions, suggests it is an adaptational response to two different environmental stresses.
Collapse
Affiliation(s)
- Ning Liu
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Zoya Avramova
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| |
Collapse
|
46
|
Crisp PA, Ganguly D, Eichten SR, Borevitz JO, Pogson BJ. Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. SCIENCE ADVANCES 2016; 2:e1501340. [PMID: 26989783 PMCID: PMC4788475 DOI: 10.1126/sciadv.1501340] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/08/2015] [Indexed: 05/18/2023]
Abstract
Plants grow in dynamic environments where they can be exposed to a multitude of stressful factors, all of which affect their development, yield, and, ultimately, reproductive success. Plants are adept at rapidly acclimating to stressful conditions and are able to further fortify their defenses by retaining memories of stress to enable stronger or more rapid responses should an environmental perturbation recur. Indeed, one mechanism that is often evoked regarding environmental memories is epigenetics. Yet, there are relatively few examples of such memories; neither is there a clear understanding of their duration, considering the plethora of stresses in nature. We propose that this field would benefit from investigations into the processes and mechanisms enabling recovery from stress. An understanding of stress recovery could provide fresh insights into when, how, and why environmental memories are created and regulated. Stress memories may be maladaptive, hindering recovery and affecting development and potential yield. In some circumstances, it may be advantageous for plants to learn to forget. Accordingly, the recovery process entails a balancing act between resetting and memory formation. During recovery, RNA metabolism, posttranscriptional gene silencing, and RNA-directed DNA methylation have the potential to play key roles in resetting the epigenome and transcriptome and in altering memory. Exploration of this emerging area of research is becoming ever more tractable with advances in genomics, phenomics, and high-throughput sequencing methodology that will enable unprecedented profiling of high-resolution stress recovery time series experiments and sampling of large natural populations.
Collapse
|
47
|
Park C, Lim CW, Baek W, Lee SC. RING Type E3 Ligase CaAIR1 in Pepper Acts in the Regulation of ABA Signaling and Drought Stress Response. PLANT & CELL PHYSIOLOGY 2015; 56:1808-19. [PMID: 26169196 DOI: 10.1093/pcp/pcv103] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/03/2015] [Indexed: 05/08/2023]
Abstract
Several E3 ubiquitin ligases have been associated with the response to abiotic and biotic stresses in higher plants. Here, we report that the hot pepper (Capsicum annuum) ABA-Insensitive RING protein 1 gene (CaAIR1) is essential for a hypersensitive response to drought stress. CaAIR1 contains a C3HC4-type RING finger motif, which plays a role for attachment of ubiquitins to the target protein, and a putative transmembrane domain. The expression levels of CaAIR1 are up-regulated in pepper leaves by ABA treatments, drought and NaCl, suggesting its role in the response to abiotic stress. Our analysis showed that CaAIR1 displays self-ubiquitination and is localized in the nucleus. We generated CaAIR1-silenced peppers via virus-induced gene silencing (VIGS) and CaAIR1-overexpressing (OX) transgenic Arabidopsis plants to evaluate their responses to ABA and drought. VIGS of CaAIR1 in pepper plants conferred an enhanced tolerance to drought stress, which was accompanied by low levels of transpirational water loss in the drought-treated leaves. CaAIR1-OX plants displayed an impaired sensitivity to ABA during seed germination, seedling and adult stages. Moreover, these plants showed enhanced sensitivity to drought stress because of reduced stomatal closure and decreased expression of stress-responsive genes. Thus, our data indicate that CaAIR1 is a negative regulator of the ABA-mediated drought stress tolerance mechanism.
Collapse
Affiliation(s)
- Chanmi Park
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756 Republic of Korea These authors contributed equally to this work
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756 Republic of Korea These authors contributed equally to this work
| | - Woonhee Baek
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756 Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756 Republic of Korea
| |
Collapse
|
48
|
Fleta-Soriano E, Pintó-Marijuan M, Munné-Bosch S. Evidence of Drought Stress Memory in the Facultative CAM, Aptenia cordifolia: Possible Role of Phytohormones. PLoS One 2015; 10:e0135391. [PMID: 26274325 PMCID: PMC4537193 DOI: 10.1371/journal.pone.0135391] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/21/2015] [Indexed: 11/18/2022] Open
Abstract
Although plant responses to drought stress have been studied in detail in several plant species, including CAM plants, the occurrence of stress memory and possible mechanisms for its regulation are still very poorly understood. In an attempt to better understand the occurrence and possible mechanisms of regulation of stress memory in plants, we measured the concentrations of phytohormones in Aptenia cordifolia exposed to reiterated drought, together with various stress indicators, including leaf water contents, photosynthesis and mechanisms of photo- and antioxidant protection. Results showed that plants exposed to drought stress responded differently if previously challenged with a first drought. Gibberellin levels decreased upon exposure to the first drought and remained lower in double-stressed plants compared with those exposed to stress for the first time. In contrast, abscisic acid levels were higher in double- than single-stressed plants. This occurred in parallel with alterations in hydroperoxide levels, but not with malondialdehyde levels, thus suggesting an increased oxidation state that did not result in oxidative damage in double-stressed plants. It is concluded that (i) drought stress memory occurs in double-stressed A. cordifolia plants, (ii) both gibberellins and abscisic acid may play a role in plant response to repeated periods of drought, and (iii) changes in abscisic acid levels in double-stressed plants may have a positive effect by modulating changes in the cellular redox state with a role in signalling, rather than cause oxidative damage to the cell.
Collapse
Affiliation(s)
- Eva Fleta-Soriano
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, E-08028, Barcelona, Spain
| | - Marta Pintó-Marijuan
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, E-08028, Barcelona, Spain
| | - Sergi Munné-Bosch
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, E-08028, Barcelona, Spain
| |
Collapse
|
49
|
Avramova Z. Transcriptional 'memory' of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:149-59. [PMID: 25788029 DOI: 10.1111/tpj.12832] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 05/17/2023]
Abstract
Drought, salinity, extreme temperature variations, pathogen and herbivory attacks are recurring environmental stresses experienced by plants throughout their life. To survive repeated stresses, plants provide responses that may be different from their response during the first encounter with the stress. A different response to a similar stress represents the concept of 'stress memory'. A coordinated reaction at the organismal, cellular and gene/genome levels is thought to increase survival chances by improving the plant's tolerance/avoidance abilities. Ultimately, stress memory may provide a mechanism for acclimation and adaptation. At the molecular level, the concept of stress memory indicates that the mechanisms responsible for memory-type transcription during repeated stresses are not based on repetitive activation of the same response pathways activated by the first stress. Some recent advances in the search for transcription 'memory factors' are discussed with an emphasis on super-induced dehydration stress memory response genes in Arabidopsis.
Collapse
Affiliation(s)
- Zoya Avramova
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|