1
|
Luo X, Ye X, Chen M, Zhao D, Li F. Comprehensive transcriptome analysis reveals StMAPK7 regulate cold response in potato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109743. [PMID: 40222245 DOI: 10.1016/j.plaphy.2025.109743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025]
Abstract
Cultivated potato (Solanum tuberosum L.) is an important tuber crop in the world. Cold stress adversely affects productivity and quality of potato. However, the molecular mechanism underlying the cold stress responses remains unclear in potato. The chloroplast ultrastructure of S. cardiophyllum in non-acclimated and cold acclimation plants under -2 °C for 6 h contained fewer thylakoid membranes, more spherical than those in 0 h (control, non-acclimated). The chloroplast ultrastructure of S. commersonii in non-acclimated and cold acclimation plants under -2 °C 6 h were similar to the non-cold stress. RNA sequencing (RNA-seq) analysis showed that 3,623 DEGs (differentially expressed genes) were detected in the S. commersonii and S. cardiophyllum with or without cold acclimation. GO analysis revealed that the membrane protein complex, photosynthesis and molecular function regulator were enriched terms in three category of S. commersonii and S. cardiophyllum. KEGG analysis found that genes were enriched to photosynthesis and chlorophyll metabolism. A total of 27 distinct modules were identified by weighted gene co-expression network analysis, four regulatory networks contained cold related genes were constructed. The StMAPK7 were differently expressed in S. cardiophyllum. Subcellular location studies showed that the StMAPK7 protein is mainly localized to the nucleus in tobacco. Overexpression of StMAPK7 exhibited lower electrolyte leakage and less leaves injury area than that of wild type, indicating StMAPK7 positively regulates cold stress in potato. These findings would provide fundamental insight into the cold stress response regulatory networks and supply a theoretical basis for breeding cold-resistant potato cultivars.
Collapse
Affiliation(s)
- Xiaobo Luo
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China; Guizhou Institute of Biotechnology, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 550009, China; Guizhou Key Laboratory of Agriculture Biotechnology, Guiyang, 550009, China
| | - Ximiao Ye
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Mingjun Chen
- Guizhou Institute of Biotechnology, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 550009, China
| | - Degang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Fei Li
- Guizhou Institute of Biotechnology, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 550009, China.
| |
Collapse
|
2
|
Wei H, Wang Z, Wang J, Mao X, He W, Hu W, Tang M, Chen H. Mycorrhizal and non-mycorrhizal perennial ryegrass roots exhibit differential regulation of lipid and Ca 2+ signaling pathways in response to low and high temperature stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109099. [PMID: 39260265 DOI: 10.1016/j.plaphy.2024.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Lipids and Ca2+ are involved as intermediate messengers in temperature-sensing signaling pathways. Arbuscular mycorrhizal (AM) symbiosis is a mutualistic symbiosis between fungi and terrestrial plants that helps host plants cope with adverse environmental conditions. Nonetheless, the regulatory mechanisms of lipid- and Ca2+-mediated signaling pathways in mycorrhizal plants under cold and heat stress have not been determined. The present work focused on investigating the lipid- and Ca2+-mediated signaling pathways in arbuscular mycorrhizal (AM) and non-mycorrhizal (NM) roots under temperature stress and determining the role of Ca2+ levels in AM symbiosis and temperature stress tolerance in perennial ryegrass (Lolium perenne L.) Compared with NM plants, AM symbiosis increased phosphatidic acid (PA) and Ca2+ signaling in the roots of perennial ryegrass, increasing the expression of genes associated with low temperature (LT) stress, including LpICE1, LpCBF3, LpCOR27, LpCOR47, LpIRI, and LpAFP, and high temperature (HT) stress, including LpHSFC1b, LpHSFC2b, LpsHSP17.8, LpHSP22, LpHSP70, and LpHSP90, under LT and HT conditions. These effects result in modulated antioxidant enzyme activities, reduced lipid peroxidation, and suppressed growth inhibition caused by LT and HT stresses. Furthermore, exogenous Ca2+ application enhanced AM symbiosis, leading to the upregulation of Ca2+ signaling pathway genes in roots and ultimately promoting the growth of perennial ryegrass under LT and HT stresses. These findings shed light on lipid and Ca2+ signal transduction in AM-associated plants under LT and HT stresses, emphasizing that Ca2+ enhances cold and heat tolerance in mycorrhizal plants.
Collapse
Affiliation(s)
- Hongjian Wei
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihao Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiajin Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xinjie Mao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyuan He
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Jaillais Y, Bayer E, Bergmann DC, Botella MA, Boutté Y, Bozkurt TO, Caillaud MC, Germain V, Grossmann G, Heilmann I, Hemsley PA, Kirchhelle C, Martinière A, Miao Y, Mongrand S, Müller S, Noack LC, Oda Y, Ott T, Pan X, Pleskot R, Potocky M, Robert S, Rodriguez CS, Simon-Plas F, Russinova E, Van Damme D, Van Norman JM, Weijers D, Yalovsky S, Yang Z, Zelazny E, Gronnier J. Guidelines for naming and studying plasma membrane domains in plants. NATURE PLANTS 2024; 10:1172-1183. [PMID: 39134664 DOI: 10.1038/s41477-024-01742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/14/2024] [Indexed: 08/22/2024]
Abstract
Biological membranes play a crucial role in actively hosting, modulating and coordinating a wide range of molecular events essential for cellular function. Membranes are organized into diverse domains giving rise to dynamic molecular patchworks. However, the very definition of membrane domains has been the subject of continuous debate. For example, in the plant field, membrane domains are often referred to as nanodomains, nanoclusters, microdomains, lipid rafts, membrane rafts, signalling platforms, foci or liquid-ordered membranes without any clear rationale. In the context of plant-microbe interactions, microdomains have sometimes been used to refer to the large area at the plant-microbe interface. Some of these terms have partially overlapping meanings at best, but they are often used interchangeably in the literature. This situation generates much confusion and limits conceptual progress. There is thus an urgent need for us as a scientific community to resolve these semantic and conceptual controversies by defining an unambiguous nomenclature of membrane domains. In this Review, experts in the field get together to provide explicit definitions of plasma membrane domains in plant systems and experimental guidelines for their study. We propose that plasma membrane domains should not be considered on the basis of their size alone but rather according to the biological system being considered, such as the local membrane environment or the entire cell.
Collapse
Affiliation(s)
- Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
| | - Emmanuelle Bayer
- Laboratoire de Biogénèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Yohann Boutté
- Laboratoire de Biogénèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | | | - Marie-Cecile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Véronique Germain
- Laboratoire de Biogénèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, CEPLAS Cluster of Excellence on Plant Sciences, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Ingo Heilmann
- Institute of Biochemistry and Biotechnology, Department of Plant Biochemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Piers A Hemsley
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Dundee, UK
| | - Charlotte Kirchhelle
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Alexandre Martinière
- IPSiM, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sebastien Mongrand
- Laboratoire de Biogénèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Sabine Müller
- Department of Biology, Friedrich Alexander Universität Erlangen Nuremberg, Erlangen, Germany
| | - Lise C Noack
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yoshihisa Oda
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Thomas Ott
- Cell Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre of Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Xue Pan
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Roman Pleskot
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Potocky
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Clara Sanchez Rodriguez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo UPM, Pozuelo de Alarcón, Spain
| | | | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jaimie M Van Norman
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands
| | - Shaul Yalovsky
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Zhenbiao Yang
- Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Enric Zelazny
- IPSiM, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Julien Gronnier
- NanoSignaling Lab, Zentrum für Molekularbiologie der Pflanzen, Eberhard Karls Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Sato A, Inayoshi S, Kitawaki K, Mihara R, Yoneda K, Ito-Inaba Y, Inaba T. Autophagy is suppressed by low temperatures and is dispensable for cold acclimation in Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14409. [PMID: 38973450 DOI: 10.1111/ppl.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
Plants have evolved various mechanisms to adapt to the ever-changing external environment. Autophagy is one such mechanism and has been suggested to play a key role in responding to and adapting to abiotic stresses in plants. However, the role of autophagy in adaptation to cold and freezing stresses remains to be characterized in detail. Here, we investigated the role of autophagy in the low-temperature response of Arabidopsis using atg mutants. Both the atg5-1 and atg10-1 mutants exhibited normal freezing tolerance, regardless of cold acclimation. A comparison of fresh weights indicated that the difference in growth between the wild-type and atg plants under cold conditions was rather small compared with that under normal conditions. Analysis of COLD-REGULATED gene expression showed no significant differences between the atg mutants and wild type. Treatment with 3-methyladenine, an inhibitor of autophagy, did not impair the induction of COR15Apro::LUC expression upon exposure to low temperature. Evaluation of autophagic activity using transgenic plants expressing RBCS-mRFP demonstrated that autophagy was rarely induced by cold exposure, even in the dark. Taken together, these data suggest that autophagy is suppressed by low temperatures and is dispensable for cold acclimation and freezing tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Akito Sato
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Sena Inayoshi
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Kohei Kitawaki
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Ryota Mihara
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Kosei Yoneda
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yasuko Ito-Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
5
|
Shomo ZD, Mahboub S, Vanviratikul H, McCormick M, Tulyananda T, Roston RL, Warakanont J. All members of the Arabidopsis DGAT and PDAT acyltransferase families operate during high and low temperatures. PLANT PHYSIOLOGY 2024; 195:685-697. [PMID: 38386316 DOI: 10.1093/plphys/kiae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
The accumulation of triacylglycerol (TAG) in vegetative tissues is necessary to adapt to changing temperatures. It has been hypothesized that TAG accumulation is required as a storage location for maladaptive membrane lipids. The TAG acyltransferase family has five members (DIACYLGLYCEROL ACYLTRANSFERSE1/2/3 and PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1/2), and their individual roles during temperature challenges have either been described conflictingly or not at all. Therefore, we used Arabidopsis (Arabidopsis thaliana) loss of function mutants in each acyltransferase to investigate the effects of temperature challenge on TAG accumulation, plasma membrane integrity, and temperature tolerance. All mutants were tested under one high- and two low-temperature regimens, during which we quantified lipids, assessed temperature sensitivity, and measured plasma membrane electrolyte leakage. Our findings revealed reduced effectiveness in TAG production during at least one temperature regimen for all acyltransferase mutants compared to the wild type, resolved conflicting roles of pdat1 and dgat1 by demonstrating their distinct temperature-specific actions, and uncovered that plasma membrane integrity and TAG accumulation do not always coincide, suggesting a multifaceted role of TAG beyond its conventional lipid reservoir function during temperature stress.
Collapse
Affiliation(s)
- Zachery D Shomo
- Center for Plant Science Innovation, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Samira Mahboub
- Center for Plant Science Innovation, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | | - Mason McCormick
- Center for Plant Science Innovation, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Tatpong Tulyananda
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Rebecca L Roston
- Center for Plant Science Innovation, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jaruswan Warakanont
- Department of Botany, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
6
|
Kitawaki K, Mihara R, Kamimura S, Sato A, Ushiyama M, Ito-Inaba Y, Inaba T. Chemical screening approach using single leaves identifies compounds that affect cold signaling in Arabidopsis. PLANT PHYSIOLOGY 2023; 193:234-245. [PMID: 37177986 PMCID: PMC10469520 DOI: 10.1093/plphys/kiad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
The identification of chemical compounds that affect intracellular processes has greatly contributed to our understanding of plant growth and development. In most cases, these compounds have been identified in germinated seedlings. However, chemical screening using mature plants would benefit and advance our understanding of environmental responses. In this study, we developed a high-throughput screening method using single leaves of mature plants to identify small molecules that affect cold-regulated gene expression. A single excised leaf of Arabidopsis (Arabidopsis thaliana) grown in submerged cultures responded to low temperatures in terms of COLD-REGULATED (COR) gene expression. We used transgenic Arabidopsis harboring a COLD-REGULATED 15A (COR15A) promoter::luciferase (COR15Apro::LUC) construct to screen natural compounds that affect the cold induction of COR15Apro::LUC. This approach allowed us to identify derivatives of 1,4-naphthoquinone as specific inhibitors of COR gene expression. Moreover, 1,4-naphthoquinones appeared to inhibit the rapid induction of upstream C-REPEAT BINDING FACTOR (CBF) transcription factors upon exposure to low temperature, suggesting that 1,4-naphthoquinones alter upstream signaling processes. Our study offers a chemical screening scheme for identifying compounds that affect environmental responses in mature plants. This type of analysis is likely to reveal an unprecedented link between certain compounds and plant environmental responses.
Collapse
Affiliation(s)
- Kohei Kitawaki
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Ryota Mihara
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Saori Kamimura
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Akito Sato
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Mari Ushiyama
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yasuko Ito-Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | | |
Collapse
|
7
|
Charrier G, Willick IR, Takahashi D. Cross-disciplinary insights into the mechanisms of plant cold hardiness: From molecules to ecosystems. PHYSIOLOGIA PLANTARUM 2023; 175:e13901. [PMID: 37096430 DOI: 10.1111/ppl.13901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Affiliation(s)
| | - Ian R Willick
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, Nova Scotia, Canada
| | - Daisuke Takahashi
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
8
|
Ahres M, Pálmai T, Kovács T, Kovács L, Lacek J, Vankova R, Galiba G, Borbély P. The Effect of White Light Spectrum Modifications by Excess of Blue Light on the Frost Tolerance, Lipid- and Hormone Composition of Barley in the Early Pre-Hardening Phase. PLANTS (BASEL, SWITZERLAND) 2022; 12:40. [PMID: 36616169 PMCID: PMC9823678 DOI: 10.3390/plants12010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
It is well established that cold acclimation processes are highly influenced, apart from cold ambient temperatures, by light-dependent environmental factors. In this study we investigated whether an extra blue (B) light supplementation would be able to further improve the well-documented freezing tolerance enhancing effect of far-red (FR) enriched white (W) light. The impact of B and FR light supplementation to white light (WFRB) on hormone levels and lipid contents were determined in winter barley at moderate (15 °C) and low (5 °C) temperatures. Low R:FR ratio effectively induced frost tolerance in barley plantlets, but additional B light further enhanced frost hardiness at both temperatures. Supplementation of WFR (white light enriched with FR light) with B had a strong positive effect on abscisic acid accumulation while the suppression of salicylic acid and jasmonic acid levels were observed at low temperature which resembles the shade avoidance syndrome. We also observed clear lipidomic differences between the individual light and temperature treatments. WFRB light changed the total lipid content negatively, but monogalactosyldiacylglycerol (MGDG) content was increased, nonetheless. Our results prove that WFRB light can greatly influence phytohormone dynamics and lipid contents, which eventually leads to more efficient pre-hardening to avoid frost damage.
Collapse
Affiliation(s)
- Mohamed Ahres
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
| | - Tamás Pálmai
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
| | - Terézia Kovács
- Biological Research Centre, Institute of Plant Biology, H-6701 Szeged, Hungary
| | - László Kovács
- Biological Research Centre, Institute of Plant Biology, H-6701 Szeged, Hungary
| | - Jozef Lacek
- Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Radomira Vankova
- Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague, Czech Republic
| | - Gábor Galiba
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
- Department of Agronomy, GEORGIKON Campus, Hungarian University of Agricultural and Life Sciences, 8360 Keszthely, Hungary
| | - Péter Borbély
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
| |
Collapse
|
9
|
Watanabe E, Kondo M, Kamal MM, Uemura M, Takahashi D, Kawamura Y. Plasma membrane proteomic changes of Arabidopsis DRP1E during cold acclimation in association with the enhancement of freezing tolerance. PHYSIOLOGIA PLANTARUM 2022; 174:e13820. [PMID: 36335535 DOI: 10.1111/ppl.13820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The freezing tolerance of plants that live in cold regions increases after exposure to low temperature, a process termed cold acclimation (CA). During CA, restructuring of the plasma membrane (PM) is important to enhance freezing tolerance. We have previously shown that the function of DYNAMIN-RELATED PROTEIN 1 E (DRP1E), which regulates endocytosis by pinching vesicles from the PM, is associated with the enhancement of freezing tolerance during CA in Arabidopsis. DRP1E is predicted to play a role in reconstituting the PM composition during CA. In this study, to test the validity of this hypothesis, we studied the changes in PM proteome patterns induced by drp1e mutation. In a detailed physiological analysis, after 3 days of CA, only young leaves showed significantly less increase in freezing tolerance in the mutant than in the wild type (WT). Using nano-liquid chromatography-tandem mass spectrometry, 496 PM proteins were identified. Among these proteins, 81 or 71 proteins were specifically altered in the WT or the mutant, respectively, in response to CA. Principal component analysis showed that the proteomic pattern differed between the WT and the mutant upon cold acclimation (CA), suggesting that DRP1E contributes to reconstruction of the PM during CA. Cluster analysis revealed that proteins that were significantly increased in the mutant after CA were biased toward glycosylphosphatidylinositol-anchored proteins, such as fasciclin-like arabinogalactan proteins. Thus, a primary target of DRP1E-associated PM reconstruction during CA is considered to be glycosylphosphatidylinositol-anchored proteins, which may be removed from the PM by DRP1E in young leaves after 3 days of CA.
Collapse
Affiliation(s)
| | - Mariko Kondo
- Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Md Mostafa Kamal
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| | - Matsuo Uemura
- Faculty of Agriculture, Iwate University, Morioka, Japan
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| | - Daisuke Takahashi
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Yukio Kawamura
- Faculty of Agriculture, Iwate University, Morioka, Japan
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| |
Collapse
|
10
|
Marković V, Jaillais Y. Phosphatidylinositol 4-phosphate: a key determinant of plasma membrane identity and function in plants. THE NEW PHYTOLOGIST 2022; 235:867-874. [PMID: 35586972 DOI: 10.1111/nph.18258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is an anionic phospholipid which has been described as a master regulator of the Golgi apparatus in eukaryotic cells. However, recent evidence suggests that PI4P mainly accumulates at the plasma membrane in all plant cells analyzed so far. In addition, many functions that are typically attributed to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) in animal and yeast cells are also supported by PI4P in plants. For example, PI4P is the key anionic lipid that powers the strong electrostatic properties of the plasma membrane. Phosphatidylinositol 4-phosphate is also required for the establishment of stable membrane contacts between the endoplasmic reticulum and the plasma membrane, for exocytosis and to support signaling pathways. Thus, we propose that PI4P has a prominent role in specifying the identity of the plasma membrane and in supporting some of its key functions and should be considered a hallmark lipid of this compartment.
Collapse
Affiliation(s)
- Vedrana Marković
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| |
Collapse
|
11
|
Kurotani KI, Notaguchi M. Cell-to-Cell Connection in Plant Grafting-Molecular Insights into Symplasmic Reconstruction. PLANT & CELL PHYSIOLOGY 2021; 62:1362-1371. [PMID: 34252186 DOI: 10.1093/pcp/pcab109] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 05/06/2023]
Abstract
Grafting is a means to connect tissues from two individual plants and grow a single chimeric plant through the establishment of both apoplasmic and symplasmic connections. Recent molecular studies using RNA-sequencing data have provided genetic information on the processes involved in tissue reunion, including wound response, cell division, cell-cell adhesion, cell differentiation and vascular formation. Thus, studies on grafting increase our understanding of various aspects of plant biology. Grafting has also been used to study systemic signaling and transport of micromolecules and macromolecules in the plant body. Given that graft viability and molecular transport across graft junctions largely depend on vascular formation, a major focus in grafting biology has been the mechanism of vascular development. In addition, it has been thought that symplasmic connections via plasmodesmata are fundamentally important to share cellular information among newly proliferated cells at the graft interface and to accomplish tissue differentiation correctly. Therefore, this review focuses on plasmodesmata formation during grafting. We take advantage of interfamily grafts for unambiguous identification of the graft interface and summarize morphological aspects of de novo formation of plasmodesmata. Important molecular events are addressed by re-examining the time-course transcriptome of interfamily grafts, from which we recently identified the cell-cell adhesion mechanism. Plasmodesmata-associated genes upregulated during graft healing that may provide a link to symplasm establishment are described. We also discuss future research directions.
Collapse
Affiliation(s)
- Ken-Ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
12
|
Rahman A, Kawamura Y, Maeshima M, Rahman A, Uemura M. Plasma Membrane Aquaporin Members PIPs Act in Concert to Regulate Cold Acclimation and Freezing Tolerance Responses in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2020; 61:787-802. [PMID: 31999343 DOI: 10.1093/pcp/pcaa005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Aquaporins play a major role in plant water uptake at both optimal and environmentally stressed conditions. However, the functional specificity of aquaporins under cold remains obscure. To get a better insight to the role of aquaporins in cold acclimation and freezing tolerance, we took an integrated approach of physiology, transcript profiling and cell biology in Arabidopsis thaliana. Cold acclimation resulted in specific upregulation of PIP1;4 and PIP2;5 aquaporin (plasma membrane intrinsic proteins) expression, and immunoblotting analysis confirmed the increase in amount of PIP2;5 protein and total amount of PIPs during cold acclimation, suggesting that PIP2;5 plays a major role in tackling the cold milieu. Although single mutants of pip1;4 and pip2;5 or their double mutant showed no phenotypic changes in freezing tolerance, they were more sensitive in root elongation and cell survival response under freezing stress conditions compared with the wild type. Consistently, a single mutation in either PIP1;4 or PIP2;5 altered the expression of a number of aquaporins both at the transcriptional and translational levels. Collectively, our results suggest that aquaporin members including PIP1;4 and PIP2;5 function in concert to regulate cold acclimation and freezing tolerance responses.
Collapse
Affiliation(s)
- Arifa Rahman
- The United Graduate School of Agricultural Sciences, Iwate University, Ueda 3-18-8, Morioka, 020-8550 Japan
| | - Yukio Kawamura
- The United Graduate School of Agricultural Sciences, Iwate University, Ueda 3-18-8, Morioka, 020-8550 Japan
- Department of Plant Bioscience, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, 020-8550 Japan
| | - Masayoshi Maeshima
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501 Japan
| | - Abidur Rahman
- The United Graduate School of Agricultural Sciences, Iwate University, Ueda 3-18-8, Morioka, 020-8550 Japan
- Department of Plant Bioscience, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, 020-8550 Japan
- Agri-Innovation Center, Iwate University, Ueda 3-18-8, Morioka, 020-8550 Japan
| | - Matsuo Uemura
- The United Graduate School of Agricultural Sciences, Iwate University, Ueda 3-18-8, Morioka, 020-8550 Japan
- Department of Plant Bioscience, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, 020-8550 Japan
| |
Collapse
|
13
|
Hiraki H, Watanabe M, Uemura M, Kawamura Y. Season specificity in the cold-induced calcium signal and the volatile chemicals in the atmosphere. PHYSIOLOGIA PLANTARUM 2020; 168:803-818. [PMID: 31390065 DOI: 10.1111/ppl.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/12/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Cold-induced Ca2+ signals in plants are widely accepted to be involved in cold acclimation. Surprisingly, despite using Arabidopsis plants grown in a growth chamber, we observed a clear seasonal change in cold-induced Ca2+ signals only in roots. Ca2+ signals were captured using Arabidopsis expressing Yellow Cameleon 3.60. In winter, two Ca2+ signal peaks were observed during a cooling treatment from 20 to 0°C, but in summer only one small peak was observed under the same cooling condition. In the spring and autumn seasons, an intermediate type of Ca2+ signal, which had a delayed first peak and smaller second peaks compared with the those of the winter type, was observed. Volatile chemicals and/or particles in the air from the outside may affect plants in the growth chamber. This idea is supported by the fact that incubation of plants with activated carbon changed the intermediate-type Ca2+ signal to the summer-type. The seasonality was also observed in the freezing tolerance of plants cold-acclimated in a low-temperature chamber. The solar radiation intensity was weakly correlated, not only with the seasonal characteristics of the Ca2+ signal but also with freezing tolerance. It has been reported that the ethylene concentration in the atmosphere seasonally changes depending on the solar radiation intensity. Ethylene gas and 1-aminocyclopropane-1-carboxylic acid treatment affected the Ca2+ signals, the shape of which became a shape close to, but not the same as, the winter type from the other types, indicating that ethylene may be one of several factors influencing the cold-induced Ca2+ signal.
Collapse
Affiliation(s)
- Hayato Hiraki
- The United Graduate School of Agricultural Sciences, Iwate University, Iwate, 020-8550, Japan
| | - Manabu Watanabe
- Field Science Center, Faculty of Agriculture, Iwate University, Iwate, 020-0611, Japan
| | - Matsuo Uemura
- The United Graduate School of Agricultural Sciences, Iwate University, Iwate, 020-8550, Japan
- Department of Plant Bioscience, Iwate University, Iwate, 020-8550, Japan
| | - Yukio Kawamura
- The United Graduate School of Agricultural Sciences, Iwate University, Iwate, 020-8550, Japan
- Department of Plant Bioscience, Iwate University, Iwate, 020-8550, Japan
| |
Collapse
|
14
|
Plasma membrane proteome analyses of Arabidopsis thaliana suspension-cultured cells during cold or ABA treatment: Relationship with freezing tolerance and growth phase. J Proteomics 2020; 211:103528. [DOI: 10.1016/j.jprot.2019.103528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/28/2019] [Accepted: 09/15/2019] [Indexed: 11/22/2022]
|
15
|
Dos Reis MV, Rouhana LV, Sadeque A, Koga L, Clough SJ, Calla B, Paiva PDDO, Korban SS. Genome-wide expression of low temperature response genes in Rosa hybrida L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:238-248. [PMID: 31765955 DOI: 10.1016/j.plaphy.2019.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Plants respond to low temperature stress during cold acclimation, a complex process involving changes in physiological and biochemical modifications. The rose serves as a good model to investigate low temperature responses in perennial ornamentals. In this study, a heterologous apple microarray is used to investigate genome-wide expression profiles in Rosa hybrida subjected to low temperature dark treatment. Transcriptome profiles are determined in floral buds at 0h, 2h, and 12h of low temperature treatment (4 °C). It is observed that a total of 134 transcripts are up-regulated and 169 transcripts are down-regulated in response to low temperature. Interestingly, a total of eight up-regulated genes, including those coding for two cytochrome P450 proteins, two ankyrin repeat family proteins, two metal ion binding proteins, and two zinc finger protein-related transcription factors, along with a single down-regulated gene, coding for a dynamin-like protein, are detected. Transcript profiles of 12 genes known to be involved in cold stress response are also validated using qRT-PCR. Furthermore, expression patterns of the AP2/ERF gene family of transcription factors are investigated in both floral buds and leaves. Overall, AP2/ERFs genes are more rapidly induced in leaves than in floral buds. Moreover, differential expression of several AP2/ERF genes are detected earlier in vegetative rather than in reproductive tissues. These findings highlight important roles of various low temperature response genes in mediating cold acclimation, thereby allowing roses to adapt to low temperatures, but without adversely affecting flower bud development and subsequent flowering, while vegetative tissues undergo early adaptation to low temperatures.
Collapse
Affiliation(s)
- Michele Valquíria Dos Reis
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Agriculture, Federal University of Lavras, Lavras, MG, 37200-000, Brazil
| | - Laura Vaughn Rouhana
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ahmed Sadeque
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lucimara Koga
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Steven J Clough
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; USDA-ARS, Urbana, IL, 61801, USA
| | - Bernanda Calla
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Schuyler S Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
16
|
Wu G, Cui X, Chen H, Renaud JB, Yu K, Chen X, Wang A. Dynamin-Like Proteins of Endocytosis in Plants Are Coopted by Potyviruses To Enhance Virus Infection. J Virol 2018; 92:e01320-18. [PMID: 30258010 PMCID: PMC6232491 DOI: 10.1128/jvi.01320-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023] Open
Abstract
Endocytosis and endosomal trafficking regulate the proteins targeted to the plasma membrane and play essential roles in diverse cellular processes, including responses to pathogen attack. Here, we report the identification of Glycine max (soybean) endocytosis dynamin-like protein 5A (GmSDL5A) associated with purified soybean mosaic virus (SMV) virions from soybean using a bottom-up proteomics approach. Knockdown of GmSDL5A and its homologous gene GmSDL12A inhibits SMV infection in soybean. The role of analogous dynamin-like proteins in potyvirus infection was further confirmed and investigated using the Arabidopsis/turnip mosaic virus (TuMV) pathosystem. We demonstrate that dynamin-related proteins 2A and 2B in Arabidopsis thaliana (AtDRP2A, AtDRP2B), homologs of GmSDL5A, are recruited to the virus replication complex (VRC) of TuMV. TuMV infection is inhibited in both A. thalianadrp2a (atdrp2a) and atdrp2b knockout mutants. Overexpression of AtDRP2 promotes TuMV replication and intercellular movement. AtRDP2 interacts with TuMV VPg, CP, CI, and 6K2. Of these viral proteins, VPg, CP, and CI are essential for viral intercellular movement, and 6K2, VPg, and CI are critical components of the VRC. We reveal that VPg and CI are present in the punctate structures labeled by the endocytic tracer FM4-64, suggesting that VPg and CI can be endocytosed. Treatment of plant leaves with a dynamin-specific inhibitor disrupts the delivery of VPg and CI to endocytic structures and suppresses TuMV replication and intercellular movement. Taken together, these data suggest that dynamin-like proteins are novel host factors of potyviruses and that endocytic processes are involved in potyvirus infection.IMPORTANCE It is well known that animal viruses enter host cells via endocytosis, whereas plant viruses require physical assistance, such as human and insect activities, to penetrate the host cell to establish their infection. In this study, we report that the endocytosis pathway is also involved in virus infection in plants. We show that plant potyviruses recruit endocytosis dynamin-like proteins to support their infection. Depletion of them by knockout of the corresponding genes suppresses virus replication, whereas overexpression of them enhances virus replication and intercellular movement. We also demonstrate that the dynamin-like proteins interact with several viral proteins that are essential for virus replication and cell-to-cell movement. We further show that treatment of a dynamin-specific inhibitor disrupts endocytosis and inhibits virus replication and intercellular movement. Therefore, the dynamin-like proteins are novel host factors of potyviruses. The corresponding genes may be manipulated using advanced biotechnology to control potyviral diseases.
Collapse
Affiliation(s)
- Guanwei Wu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, People's Republic of China
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Xiaoyan Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, People's Republic of China
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Hui Chen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Justin B Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Kangfu Yu
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, People's Republic of China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
17
|
Takahashi D, Uemura M, Kawamura Y. Freezing Tolerance of Plant Cells: From the Aspect of Plasma Membrane and Microdomain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:61-79. [PMID: 30288704 DOI: 10.1007/978-981-13-1244-1_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Freezing stress is accompanied by a state change from water to ice and has multiple facets causing dehydration; consequently, hyperosmotic and mechanical stresses coupled with unfavorable chilling stress act in a parallel way. Freezing tolerance varies widely among plant species, and, for example, most temperate plants can overcome deleterious effects caused by freezing temperatures in winter. Destabilization and dysfunction of the plasma membrane are tightly linked to freezing injury of plant cells. Plant freezing tolerance increases upon exposure to nonfreezing low temperatures (cold acclimation). Recent studies have unveiled pleiotropic responses of plasma membrane lipids and proteins to cold acclimation. In addition, advanced techniques have given new insights into plasma membrane structural non-homogeneity, namely, microdomains. This chapter describes physiological implications of plasma membrane responses enhancing freezing tolerance during cold acclimation, with a focus on microdomains.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Central Infrastructure Group Genomics and Transcript Profiling, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences and Department of Plant-biosciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yukio Kawamura
- Cryobiofrontier Research Center and Department of Plant-biosciences, and United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, Japan.
| |
Collapse
|
18
|
Zhang HM, Colyvas K, Patrick JW, Offler CE. A Ca2+-dependent remodelled actin network directs vesicle trafficking to build wall ingrowth papillae in transfer cells. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4749-4764. [PMID: 29048561 PMCID: PMC5853249 DOI: 10.1093/jxb/erx315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/02/2017] [Indexed: 05/18/2023]
Abstract
The transport function of transfer cells is conferred by an enlarged plasma membrane area, enriched in nutrient transporters, that is supported on a scaffold of wall ingrowth (WI) papillae. Polarized plumes of elevated cytosolic Ca2+ define loci at which WI papillae form in developing adaxial epidermal transfer cells of Vicia faba cotyledons that are induced to trans-differentiate when the cotyledons are placed on culture medium. We evaluated the hypothesis that vesicle trafficking along a Ca2+-regulated remodelled actin network is the mechanism that underpins this outcome. Polarized to the outer periclinal cytoplasm, a Ca2+-dependent remodelling of long actin bundles into short, thin bundles was found to be essential for assembling WI papillae but not the underlying uniform wall layer. The remodelled actin network directed polarized vesicle trafficking to sites of WI papillae construction, and a pharmacological study indicated that both exo- and endocytosis contributed to assembly of the papillae. Potential candidates responsible for the Ca2+-dependent actin remodelling, along with those underpinning polarized exo- and endocyotosis, were identified in a transcriptome RNAseq database generated from the trans-differentiating epidermal cells. Of most significance, endocytosis was controlled by up-regulated expression of a dynamin-like isoform. How a cycle of localized exo- and endocytosis, regulated by Ca2+-dependent actin remodelling, assembles WI papillae is discussed.
Collapse
Affiliation(s)
| | - Kim Colyvas
- School of Mathematical and Physical Sciences, The University of Newcastle, Newcastle NSW, Australia
| | - John W Patrick
- School of Environmental and Life Sciences
- Correspondence: or
| | | |
Collapse
|
19
|
Minami A, Takahashi D, Kawamura Y, Uemura M. Isolation of Plasma Membrane and Plasma Membrane Microdomains. Methods Mol Biol 2017; 1511:199-212. [PMID: 27730613 DOI: 10.1007/978-1-4939-6533-5_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The plasma membrane surrounds the cytoplasm of a cell and functions as a barrier to separate the intracellular compartment from the extracellular environment. Protein and lipid components distribute nonuniformly and the components form clusters with various functions in the plasma membrane. These clusters are called as "microdomains." In plant cells, microdomains have been studied extensively because they play important roles in biotic/abiotic stress responses, cellular trafficking, and cell wall metabolism. Here we describe a standard protocol for the isolation of the plasma membrane and microdomains from plant cells, Arabidopsis and oat.
Collapse
Affiliation(s)
- Anzu Minami
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Daisuke Takahashi
- United Graduate School of Agricultural Sciences and Cryobiofrontier Research Center, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan
| | - Yukio Kawamura
- United Graduate School of Agricultural Sciences and Cryobiofrontier Research Center, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences and Cryobiofrontier Research Center, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan.
| |
Collapse
|
20
|
Mostafa I, Yoo MJ, Zhu N, Geng S, Dufresne C, Abou-Hashem M, El-Domiaty M, Chen S. Membrane Proteomics of Arabidopsis Glucosinolate Mutants cyp79B2/B3 and myb28/29. FRONTIERS IN PLANT SCIENCE 2017; 8:534. [PMID: 28443122 PMCID: PMC5387099 DOI: 10.3389/fpls.2017.00534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/24/2017] [Indexed: 05/09/2023]
Abstract
Glucosinolates (Gls) constitute a major group of natural metabolites represented by three major classes (aliphatic, indolic and aromatic) of more than 120 chemical structures. In our previous work, soluble proteins and metabolites in Arabidopsis mutants deficient of aliphatic (myb28/29) and indolic Gls (cyp79B2B3) were analyzed. Here we focus on investigating the changes at the level of membrane proteins in these mutants. Our LC/MS-MS analyses of tandem mass tag (TMT) labeled peptides derived from the cyp79B2/B3 and myb28/29 relative to wild type resulted in the identification of 4,673 proteins, from which 2,171 are membrane proteins. Fold changes and statistical analysis showed 64 increased and 74 decreased in cyp79B2/B3, while 28 increased and 17 decreased in myb28/29. As to the shared protein changes between the mutants, one protein was increased and eight were decreased. Bioinformatics analysis of the changed proteins led to the discovery of three cytochromes in glucosinolate molecular network (GMN): cytochrome P450 86A7 (At1g63710), cytochrome P450 71B26 (At3g26290), and probable cytochrome c (At1g22840). CYP86A7 and CYP71B26 may play a role in hydroxyl-indolic Gls production. In addition, flavone 3'-O-methyltransferase 1 represents an interesting finding as it is likely to participate in the methylation process of the hydroxyl-indolic Gls to form methoxy-indolic Gls. The analysis also revealed additional new nodes in the GMN related to stress and defense activity, transport, photosynthesis, and translation processes. Gene expression and protein levels were found to be correlated in the cyp79B2/B3, but not in the myb28/29.
Collapse
Affiliation(s)
- Islam Mostafa
- Department of Biology, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig UniversityZagazig, Egypt
| | - Mi-Jeong Yoo
- Department of Biology, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
| | - Ning Zhu
- Department of Biology, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
| | - Sisi Geng
- Department of Biology, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | | | - Maged Abou-Hashem
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig UniversityZagazig, Egypt
| | - Maher El-Domiaty
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig UniversityZagazig, Egypt
| | - Sixue Chen
- Department of Biology, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
- Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
- *Correspondence: Sixue Chen
| |
Collapse
|