1
|
Redmond EJ, Ronald J, Davis SJ, Ezer D. Stable and dynamic gene expression patterns over diurnal and developmental timescales in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2025; 246:1147-1162. [PMID: 40114416 PMCID: PMC11982781 DOI: 10.1111/nph.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/24/2025] [Indexed: 03/22/2025]
Abstract
Developmental processes are known to be circadian-regulated in plants. For instance, the circadian clock regulates genes involved in the photoperiodic flowering pathway and the initiation of leaf senescence. Furthermore, signals that entrain the circadian clock, such as energy availability, are known to vary in strength over plant development. However, diel oscillations of the Arabidopsis transcriptome have typically been measured in seedlings. We collected RNA sequencing (RNA-seq) data from Arabidopsis leaves over developmental and diel timescales, concurrently: every 4 h d-1, on three separate days after a synchronised vegetative-to-reproductive transition. Gene expression varied more over the developmental timescale than on the diel timescale, including genes related to a key energy sensor: the sucrose nonfermenting-1-related protein kinase complex. Moreover, regulatory targets of core clock genes displayed changes in rhythmicity and amplitude of expression over development. Cell-type-specific expression showed diel patterns that varied in amplitude, but not phase, over development. Some previously identified reverse transcription quantitative polymerase chain reaction housekeeping genes display undesirable levels of variation over both timescales. We identify which common reverse transcription quantitative polymerase chain reaction housekeeping genes are most stable across developmental and diel timescales. In summary, we establish the patterns of circadian transcriptional regulation over plant development, demonstrating how diel patterns of expression change over developmental timescales.
Collapse
Affiliation(s)
- Ethan J. Redmond
- Department of BiologyUniversity of YorkWentworth Way, HeslingtonYorkYO10 5DDUK
| | - James Ronald
- Department of BiologyUniversity of YorkWentworth Way, HeslingtonYorkYO10 5DDUK
| | - Seth J. Davis
- Department of BiologyUniversity of YorkWentworth Way, HeslingtonYorkYO10 5DDUK
| | - Daphne Ezer
- Department of BiologyUniversity of YorkWentworth Way, HeslingtonYorkYO10 5DDUK
| |
Collapse
|
2
|
Wang Y, Lv T, Fan T, Zhou Y, Tian CE. Research progress on delayed flowering under short-day condition in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2025; 16:1523788. [PMID: 40123949 PMCID: PMC11926150 DOI: 10.3389/fpls.2025.1523788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/03/2025] [Indexed: 03/25/2025]
Abstract
Flowering represents a pivotal phase in the reproductive and survival processes of plants, with the photoperiod serving as a pivotal regulator of plant-flowering timing. An investigation of the mechanism of flowering inhibition in the model plant Arabidopsis thaliana under short-day (SD) conditions will facilitate a comprehensive approach to crop breeding for flowering time, reducing or removing flowering inhibition, for example, can extend the range of adaptation of soybean to high-latitude environments. In A. thaliana, CONSTANS (CO) is the most important component for promoting flowering under long-day (LD) conditions. However, CO inhibited flowering under the SD conditions. Furthermore, the current studies revealed that A. thaliana delayed flowering through multiple pathways that inhibit the transcription and sensitivity of FLOWERING LOCUS T (FT) and suppresses the response to, or synthesis of, gibberellins (GA) at different times, for potential crop breeding resources that can be explored in both aspects. However, the underlying mechanism remains poorly understood. In this review, we summarized the current understanding of delayed flowering under SD conditions and discussed future directions for related topics.
Collapse
Affiliation(s)
| | | | | | | | - Chang-en Tian
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of
Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| |
Collapse
|
3
|
Wang Q, Si C, Tang Q, Zhai Y, He Y, Li J, Feng X, Wang L, Zhou L, Wang L, Chen S, Chen F, Jiang J. The B-box protein CmBBX8 recruits chromatin modifiers CmFDM2/CmSWI3B to induce flowering in summer chrysanthemum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17182. [PMID: 39630875 DOI: 10.1111/tpj.17182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
The transition from vegetative to reproductive growth is essential for the flowering process of plants. In summer chrysanthemum, CmBBX8 exploits prominence function in floral transition by activating the expression of CmFTL1. However, how CmBBX8 induces CmFTL1 during the photoperiod inductive cycles remains unknown. Here, we show that CmBBX8 interacts with the SGS3-like protein CmFDM2, and the CmFDM2 overexpression strains presented early flowering, while knockdown strains delayed flowering. Additionally, CmFDM2 could bind to the CmFTL1 promoter and activate the expression of CmFTL1, and associate with chromatin remodeling factor CmSWI3B, and CmBBX8 induces flowering dependent on CmFDM2 and CmSWI3B. CmFDM2 also partially depends on CmSWI3B. The CmSWI3B knockdown strains exhibited a significant late flowering phenotype. Interestingly, CmBBX8 also interacts with CmSWI3B. Moreover, the level of H3K27me3 at the CmFTL1 locus was reduced when CmBBX8 and CmFDM2/CmSWI3B occupied the locus to promote chrysanthemum flowering during the photoperiod inductive cycles, which was accompanied by the increasing level of CmFTL1 transcripts. Thus, our work provides novel insights into the gradually increasing level of CmFTL1 for the floral transition through CmBBX8 recruiting chromatin modifiers CmFDM2/CmSWI3B.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Chaona Si
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qingling Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yiwen Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuhua He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiayu Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xin Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lijun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Jabbur ML, Bratton BP, Johnson CH. Bacteria can anticipate the seasons: Photoperiodism in cyanobacteria. Science 2024; 385:1105-1111. [PMID: 39236161 PMCID: PMC11473183 DOI: 10.1126/science.ado8588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
Photoperiodic time measurement is the ability of plants and animals to measure differences in day versus night length (photoperiod) and use that information to anticipate critical seasonal transformations, such as annual temperature cycles. This timekeeping phenomenon triggers adaptive responses in higher organisms, such as gonadal stimulation, flowering, and hibernation. Unexpectedly, we observed this capability in cyanobacteria-unicellular prokaryotes with generation times as short as 5 to 6 hours. Cyanobacteria exposed to short, winter-like days developed enhanced resistance to cold mediated by desaturation of membrane lipids and differential programs of gene transcription, including stress response pathways. As in eukaryotes, this photoperiodic timekeeping required an intact circadian clockwork and developed over multiple cycles of photoperiod. Therefore, photoperiodic timekeeping evolved in much simpler organisms than previously appreciated and enabled genetic responses to stresses that recur seasonally.
Collapse
Affiliation(s)
- Maria Luísa Jabbur
- Department of Biological Sciences, Vanderbilt University; Nashville, TN, USA
| | - Benjamin P. Bratton
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
5
|
Jabbur ML, Johnson CH. Bacteria can anticipate the seasons: photoperiodism in cyanobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593996. [PMID: 38798677 PMCID: PMC11118479 DOI: 10.1101/2024.05.13.593996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Photoperiodic Time Measurement is the ability of plants and animals to measure differences in day/night-length (photoperiod) and use that information to anticipate critical seasonal transformations such as annual temperature cycles. This timekeeping phenomenon triggers adaptive responses in higher organisms such as gonadal growth/regression, flowering, and hibernation. Unexpectedly, we discovered this capability in cyanobacteria, unicellular prokaryotes with generation times of only 5-6 h. Cyanobacteria in short winter-like days develop enhanced resistance to cold that involves desaturation of membrane lipids and differential programs of gene transcription, including stress response pathways. As in eukaryotes, this photoperiodic timekeeping requires an intact circadian clockwork and develops over multiple cycles. Therefore, photoperiodic timekeeping evolved in much simpler organisms than previously appreciated, and involved genetic responses to stresses that recur seasonally.
Collapse
Affiliation(s)
- Maria Luísa Jabbur
- Department of Biological Sciences, Vanderbilt University; Nashville, 37221, USA
| | | |
Collapse
|
6
|
Lee N, Shim JS, Kang MK, Kwon M. Insight from expression profiles of FT orthologs in plants: conserved photoperiodic transcriptional regulatory mechanisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1397714. [PMID: 38887456 PMCID: PMC11180818 DOI: 10.3389/fpls.2024.1397714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Floral transition from the vegetative to the reproductive stages is precisely regulated by both environmental and endogenous signals. Among these signals, photoperiod is one of the most important environmental factors for onset of flowering. A florigen, FLOWERING LOCUS T (FT) in Arabidopsis, has thought to be a major hub in the photoperiod-dependent flowering time regulation. Expression levels of FT likely correlates with potence of flowering. Under long days (LD), FT is mainly synthesized in leaves, and FT protein moves to shoot apical meristem (SAM) where it functions and in turns induces flowering. Recently, it has been reported that Arabidopsis grown under natural LD condition flowers earlier than that grown under laboratory LD condition, in which a red (R)/far-red (FR) ratio of light sources determines FT expression levels. Additionally, FT expression profile changes in response to combinatorial effects of FR light and photoperiod. FT orthologs exist in most of plants and functions are thought to be conserved. Although molecular mechanisms underlying photoperiodic transcriptional regulation of FT orthologs have been studied in several plants, such as rice, however, dynamics in expression profiles of FT orthologs have been less spotlighted. This review aims to revisit previously reported but overlooked expression information of FT orthologs from various plant species and classify these genes depending on the expression profiles. Plants, in general, could be classified into three groups depending on their photoperiodic flowering responses. Thus, we discuss relationship between photoperiodic responsiveness and expression of FT orthologs. Additionally, we also highlight the expression profiles of FT orthologs depending on their activities in flowering. Comparative analyses of diverse plant species will help to gain insight into molecular mechanisms for flowering in nature, and this can be utilized in the future for crop engineering to improve yield by controlling flowering time.
Collapse
Affiliation(s)
- Nayoung Lee
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Min-Kyoung Kang
- Division of Applied Life Science (BK21 Four), Anti-aging Bio Cell factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Division of Applied Life Science (BK21 Four), ABC-RLRC, RIMA, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
7
|
Huang PK, Schmitt J, Runcie DE. Exploring the molecular regulation of vernalization-induced flowering synchrony in Arabidopsis. THE NEW PHYTOLOGIST 2024; 242:947-959. [PMID: 38509854 DOI: 10.1111/nph.19680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Many plant populations exhibit synchronous flowering, which can be advantageous in plant reproduction. However, molecular mechanisms underlying flowering synchrony remain poorly understood. We studied the role of known vernalization-response and flower-promoting pathways in facilitating synchronized flowering in Arabidopsis thaliana. Using the vernalization-responsive Col-FRI genotype, we experimentally varied germination dates and daylength among individuals to test flowering synchrony in field and controlled environments. We assessed the activity of flowering regulation pathways by measuring gene expression across leaves produced at different time points during development and through a mutant analysis. We observed flowering synchrony across germination cohorts in both environments and discovered a previously unknown process where flower-promoting and repressing signals are differentially regulated between leaves that developed under different environmental conditions. We hypothesized this mechanism may underlie synchronization. However, our experiments demonstrated that signals originating from sources other than leaves must also play a pivotal role in synchronizing flowering time, especially in germination cohorts with prolonged growth before vernalization. Our results suggest flowering synchrony is promoted by a plant-wide integration of flowering signals across leaves and among organs. To summarize our findings, we propose a new conceptual model of vernalization-induced flowering synchrony and provide suggestions for future research in this field.
Collapse
Affiliation(s)
- Po-Kai Huang
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Johanna Schmitt
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, 95616, USA
| | - Daniel E Runcie
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
8
|
Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1336892. [PMID: 38410737 PMCID: PMC10894941 DOI: 10.3389/fpls.2024.1336892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and consistent flowering is vital for maintaining crop production amidst the challenges presented by climate change. In this review, we summarized key recent efforts aimed at unraveling the complexities of plant flowering through genetic, genomic, physiological, and biochemical studies in woody species, with a special focus on the genetic control of floral initiation and activation in woody horticultural species. Key topics covered in the review include major flowering pathway genes in deciduous woody plants, regulation of the phase transition from juvenile to adult stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the multifunctional roles of MADS-box genes in flowering and dormancy release triggered by chilling. Based on our own research work in blueberries, we highlighted the central roles played by two key flowering pathway genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, which regulate floral initiation and activation (dormancy release), respectively. Collectively, our survey shows both the conserved and diverse aspects of the flowering pathway in annual and woody plants, providing insights into the potential molecular mechanisms governing woody plants. This paves the way for enhancing the resilience and productivity of fruit-bearing crops in the face of changing climatic conditions, all through the perspective of genetic interventions.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Zongrang Liu
- USDA Agricultural Research Services, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Gan-Yuan Zhong
- USDA Agricultural Research Services, Grape Genetics Research Unit and Plant Genetic Resources Unit, Geneva, NY, United States
| |
Collapse
|
9
|
Lee N, Ozaki Y, Hempton AK, Takagi H, Purusuwashi S, Song YH, Endo M, Kubota A, Imaizumi T. The FLOWERING LOCUS T gene expression is controlled by high-irradiance response and external coincidence mechanism in long days in Arabidopsis. THE NEW PHYTOLOGIST 2023; 239:208-221. [PMID: 37084001 PMCID: PMC10244125 DOI: 10.1111/nph.18932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
In natural long days, the florigen gene FLOWERING LOCUS T (FT) shows a bimodal expression pattern with morning and dusk peaks in Arabidopsis. This pattern differs from the one observed in the laboratory, and little is known about underlying mechanisms. A red : far-red (R : FR) ratio difference between sunlight and fluorescent light causes this FT pattern mismatch. We showed that bimodal FT expression patterns were induced in a day longer than 14 h with sunlight R : FR (= c. 1) conditions. By circadian gating experiments, we found that cumulative exposure of R : FR-adjusted light (R : FR ratio was adjusted to 1 with FR supplement) spanning from the afternoon to the next morning required full induction of FT in the morning. Conversely, only 2 h of R : FR adjustment in the late afternoon was sufficient for FT induction at dusk. We identified that phytochrome A (phyA) is required for the morning FT expression in response to the R : FR adjustment on the previous day. As a part of this mechanism, we showed that PHYTOCHROME-INTERACTING FACTOR 7 contributes to FT regulation. Our results suggest that phyA-mediated high-irradiance response and the external coincidence mechanism contribute to morning FT induction under natural long-day conditions.
Collapse
Affiliation(s)
- Nayoung Lee
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Yusuke Ozaki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Andrew K. Hempton
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Hiroshi Takagi
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Center for Gene Research, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Savita Purusuwashi
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Young Hun Song
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Motomu Endo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Akane Kubota
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Center for Gene Research, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| |
Collapse
|
10
|
Song GQ, Carter BB, Zhong GY. Multiple transcriptome comparisons reveal the essential roles of FLOWERING LOCUS T in floral initiation and SOC1 and SVP in floral activation in blueberry. Front Genet 2023; 14:1105519. [PMID: 37091803 PMCID: PMC10113452 DOI: 10.3389/fgene.2023.1105519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
The flowering mechanisms, especially chilling requirement-regulated flowering, in deciduous woody crops remain to be elucidated. Flower buds of northern highbush blueberry cultivar Aurora require approximately 1,000 chilling hours to bloom. Overexpression of a blueberry FLOWERING LOCUS T (VcFT) enabled precocious flowering of transgenic “Aurora” mainly in non-terminated apical buds during flower bud formation, meanwhile, most of the mature flower buds could not break until they received enough chilling hours. In this study, we highlighted two groups of differentially expressed genes (DEGs) in flower buds caused by VcFT overexpression (VcFT-OX) and full chilling. We compared the two groups of DEGs with a focus on flowering pathway genes. We found: 1) In non-chilled flower buds, VcFT-OX drove a high VcFT expression and repressed expression of a major MADS-box gene, blueberry SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (VcSOC1) resulting an increased VcFT/VcSOC1 expression ratio; 2) In fully chilled flower buds that are ready to break, the chilling upregulated VcSOC1 expression in non-transgenic “Aurora” and repressed VcFT expression in VcFT-OX “Aurora”, and each resulted in a decreased ratio of VcFT to VcSOC1; additionally, expression of a blueberry SHORT VEGETATIVE PHASE (VcSVP) was upregulated in chilled flower buds of both transgenic and non-transgenic’ “Aurora”. Together with additional analysis of VcFT and VcSOC1 in the transcriptome data of other genotypes and tissues, we provide evidence to support that VcFT expression plays a significant role in promoting floral initiation and that VcSOC1 expression is a key floral activator. We thus propose a new hypothesis on blueberry flowering mechanism, of which the ratios of VcFT-to-VcSOC1 at transcript levels in the flowering pathways determine flower bud formation and bud breaking. Generally, an increased VcFT/VcSOC1 ratio or increased VcSOC1 in leaf promotes precocious flowering and flower bud formation, and a decreased VcFT/VcSOC1 ratio with increased VcSOC1 in fully chilled flower buds contributes to flower bud breaking.
Collapse
Affiliation(s)
- Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
- *Correspondence: Guo-qing Song,
| | - Benjamin B. Carter
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Gan-Yuan Zhong
- Grape Genetics Research Unit, USDA-Agricultural Research Service, Geneva, NY, United States
| |
Collapse
|
11
|
Wu B, Zhang X, Hu K, Zheng H, Zhang S, Liu X, Ma M, Zhao H. Two alternative splicing variants of a wheat gene TaNAK1, TaNAK1.1 and TaNAK1.2, differentially regulate flowering time and plant architecture leading to differences in seed yield of transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1014176. [PMID: 36531344 PMCID: PMC9751850 DOI: 10.3389/fpls.2022.1014176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
In wheat production, appropriate flowering time and ideal plant architecture are the prerequisites for high grain yield. Alternative splicing (AS) is a vital process that regulates gene expression at the post-transcriptional level, and AS events in wheat have been found to be closely related to grain-related traits and abiotic stress tolerance. However, AS events and their biological roles in regulating flowering time and plant architecture in wheat remain unclear. In this study, we report that TaNAK1 undergoes AS, producing three splicing variants. Molecular characterization of TaNAK1 and its splicing variants demonstrated that all three protein isoforms have a conserved NB-ARC domain and a protein kinase domain, but the positions of these two domains and the length of the protein kinase domains are different among them, implying that they may have different three-dimensional structures and therefore have different functions. Further investigations showed that the two splicing variants of TaNAK1, TaNAK1.1 and TaNAK1.2, exhibited different expression patterns during wheat growth and development, while the other one, TaNAK1.3, was not detected. Subcellular localization demonstrated that TaNAK1.1 was mainly localized in the cytoplasm, while TaNAK1.2 was localized in the nucleus and cytoplasm. Both TaNAK1.1 and TaNAK1.2 exhibit protein kinase activity in vitro. Ectopic expression of TaNAK1.1 and TaNAK1.2 in Arabidopsis demonstrated that these two splicing variants play opposite roles in regulating flowering time and plant architecture, resulting in different seed yields. TaNAK1.2 positive regulates the transition from vegetative to reproductive growth, plant height, branching number, seed size, and seed yield of Arabidopsis, while TaNAK1.1 negatively regulates these traits. Our findings provide new gene resource for regulating flowering time and plant architecture in crop breeding for high grain yield.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Meng Ma
- *Correspondence: Huixian Zhao, ; Meng Ma,
| | | |
Collapse
|
12
|
Xie J, Wang L, Zheng H. Molecular Basis to Integrate Microgravity Signals into the Photoperiodic Flowering Pathway in Arabidopsis thaliana under Spaceflight Condition. Int J Mol Sci 2021; 23:63. [PMID: 35008489 PMCID: PMC8744661 DOI: 10.3390/ijms23010063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding the effects of spaceflight on plant flowering regulation is important to setup a life support system for long-term human space exploration. However, the way in which plant flowering is affected by spaceflight remains unclear. Here, we present results from our latest space experiments on the Chinese spacelab Tiangong-2, in which Arabidopsis wild-type and transgenic plants pFT::GFP germinated and grew as normally as their controls on the ground, but the floral initiation under the long-day condition in space was about 20 days later than their controls on the ground. Time-course series of digital images of pFT::GFP plants showed that the expression rhythm of FT in space did not change, but the peak appeared later in comparison with those of their controls on the ground. Whole-genome microarray analysis revealed that approximately 16% of Arabidopsis genes at the flowering stage changed their transcript levels under spaceflight conditions in comparison with their controls on the ground. The GO terms were enriched in DEGs with up-regulation of the response to temperature, wounding, and protein stabilization and down-regulation of the function in circadian rhythm, gibberellins, and mRNA processes. FT and SOC1 could act as hubs to integrate spaceflight stress signals into the photoperiodic flowering pathway in Arabidopsis in space.
Collapse
Affiliation(s)
| | | | - Huiqiong Zheng
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.X.); (L.W.)
| |
Collapse
|
13
|
Kinmonth-Schultz H, Lewandowska-Sabat A, Imaizumi T, Ward JK, Rognli OA, Fjellheim S. Flowering Times of Wild Arabidopsis Accessions From Across Norway Correlate With Expression Levels of FT, CO, and FLC Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:747740. [PMID: 34790213 PMCID: PMC8591261 DOI: 10.3389/fpls.2021.747740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 06/12/2023]
Abstract
Temperate species often require or flower most rapidly in the long daylengths, or photoperiods, experienced in summer or after prolonged periods of cold temperatures, referred to as vernalization. Yet, even within species, plants vary in the degree of responsiveness to these cues. In Arabidopsis thaliana, CONSTANS (CO) and FLOWERING LOCUS C (FLC) genes are key to photoperiod and vernalization perception and antagonistically regulate FLOWERING LOCUS T (FT) to influence the flowering time of the plants. However, it is still an open question as to how these genes vary in their interactions among wild accessions with different flowering behaviors and adapted to different microclimates, yet this knowledge could improve our ability to predict plant responses in variable natural conditions. To assess the relationships among these genes and to flowering time, we exposed 10 winter-annual Arabidopsis accessions from throughout Norway, ranging from early to late flowering, along with two summer-annual accessions to 14 weeks of vernalization and either 8- or 19-h photoperiods to mimic Norwegian climate conditions, then assessed gene expression levels 3-, 5-, and 8-days post vernalization. CO and FLC explained both FT levels and flowering time (days) but not rosette leaf number at flowering. The correlation between FT and flowering time increased over time. Although vernalization suppresses FLC, FLC was high in the late-flowering accessions. Across accessions, FT was expressed only at low FLC levels and did not respond to CO in the late-flowering accessions. We proposed that FT may only be expressed below a threshold value of FLC and demonstrated that these three genes correlated to flowering times across genetically distinct accessions of Arabidopsis.
Collapse
Affiliation(s)
- Hannah Kinmonth-Schultz
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
| | | | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Joy K. Ward
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Odd Arne Rognli
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Siri Fjellheim
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
14
|
Xu K, Zhang XM, Chen H, Zhang C, Zhu J, Cheng Z, Huang P, Zhou X, Miao Y, Feng X, Fu YF. Fine-Tuning Florigen Increases Field Yield Through Improving Photosynthesis in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:710754. [PMID: 34484271 PMCID: PMC8415793 DOI: 10.3389/fpls.2021.710754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 05/29/2023]
Abstract
Crop yield has been maintaining its attraction for researchers because of the demand of global population growth. Mutation of flowering activators, such as florigen, increases plant biomass at the expense of later flowering, which prevents crop maturity in the field. As a result, it is difficult to apply flowering activators in agriculture production. Here, we developed a strategy to utilize florigen to significantly improve soybean yield in the field. Through the screening of transgenic lines of RNAi-silenced florigen homologs in soybean (Glycine-max-Flowering Locus T Like, GmFTL), we identified a line, GmFTL-RNAi#1, with minor changes in both GmFTL expression and flowering time but with notable increase in soybean yield. As expected, GmFTL-RNAi#1 matured normally in the field and exhibited markedly high yield over multiple locations and years, indicating that it is possible to reach a trade-off between flowering time and high yield through the fine-tuning expression of flowering activators. Further studies uncovered an unknown mechanism by which GmFTL negatively regulates photosynthesis, a substantial source of crop yield, demonstrating a novel function of florigen. Thus, because of the highly conserved functions of florigen in plants and the classical RNAi approach, the findings provide a promising strategy to harness early flowering genes to improve crop yield.
Collapse
Affiliation(s)
- Kun Xu
- MOA Key Laboratory of Soybean Biology, National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Xiao-Mei Zhang
- MOA Key Laboratory of Soybean Biology, National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haifeng Chen
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Chanjuan Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Jinlong Zhu
- MOA Key Laboratory of Soybean Biology, National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Zhiyuan Cheng
- MOA Key Laboratory of Soybean Biology, National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Penghui Huang
- MOA Key Laboratory of Soybean Biology, National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinan Zhou
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Yuchen Miao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xianzhong Feng
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yong-Fu Fu
- MOA Key Laboratory of Soybean Biology, National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Calderwood A, Hepworth J, Woodhouse S, Bilham L, Jones DM, Tudor E, Ali M, Dean C, Wells R, Irwin JA, Morris RJ. Comparative transcriptomics reveals desynchronisation of gene expression during the floral transition between Arabidopsis and Brassica rapa cultivars. QUANTITATIVE PLANT BIOLOGY 2021; 2:e4. [PMID: 37077206 PMCID: PMC10095958 DOI: 10.1017/qpb.2021.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 05/03/2023]
Abstract
Comparative transcriptomics can be used to translate an understanding of gene regulatory networks from model systems to less studied species. Here, we use RNA-Seq to determine and compare gene expression dynamics through the floral transition in the model species Arabidopsis thaliana and the closely related crop Brassica rapa. We find that different curve registration functions are required for different genes, indicating that there is no single common 'developmental time' between Arabidopsis and B. rapa. A detailed comparison between Arabidopsis and B. rapa and between two B. rapa accessions reveals different modes of regulation of the key floral integrator SOC1, and that the floral transition in the B. rapa accessions is triggered by different pathways. Our study adds to the mechanistic understanding of the regulatory network of flowering time in rapid cycling B. rapa and highlights the importance of registration methods for the comparison of developmental gene expression data.
Collapse
Affiliation(s)
- Alexander Calderwood
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Jo Hepworth
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Shannon Woodhouse
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Lorelei Bilham
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - D. Marc Jones
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
- VIB-UGent Centre for Plant Systems Biology, Gent, Belgium
| | - Eleri Tudor
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Mubarak Ali
- Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Rachel Wells
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Judith A. Irwin
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Richard J. Morris
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
16
|
Kinmonth-Schultz HA, MacEwen MJS, Seaton DD, Millar AJ, Imaizumi T, Kim SH. An explanatory model of temperature influence on flowering through whole-plant accumulation of FLOWERING LOCUS T in Arabidopsis thaliana. IN SILICO PLANTS 2019; 1:diz006. [PMID: 36203490 PMCID: PMC9534314 DOI: 10.1093/insilicoplants/diz006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We assessed mechanistic temperature influence on flowering by incorporating temperature-responsive flowering mechanisms across developmental age into an existing model. Temperature influences the leaf production rate as well as expression of FLOWERING LOCUS T (FT), a photoperiodic flowering regulator that is expressed in leaves. The Arabidopsis Framework Model incorporated temperature influence on leaf growth but ignored the consequences of leaf growth on and direct temperature influence of FT expression. We measured FT production in differently aged leaves and modified the model, adding mechanistic temperature influence on FT transcription, and causing whole-plant FT to accumulate with leaf growth. Our simulations suggest that in long days, the developmental stage (leaf number) at which the reproductive transition occurs is influenced by day length and temperature through FT, while temperature influences the rate of leaf production and the time (in days) the transition occurs. Further, we demonstrate that FT is mainly produced in the first 10 leaves in the Columbia (Col-0) accession, and that FT accumulation alone cannot explain flowering in conditions in which flowering is delayed. Our simulations supported our hypotheses that: (i) temperature regulation of FT, accumulated with leaf growth, is a component of thermal time, and (ii) incorporating mechanistic temperature regulation of FT can improve model predictions when temperatures change over time.
Collapse
Affiliation(s)
- Hannah A. Kinmonth-Schultz
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Present address: Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Melissa J. S. MacEwen
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Present address: Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Daniel D. Seaton
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JY, UK
- Present address: European Bioinformatics Institute, European Molecular Biology Laboratory, Cambridge CB10 1SD, UK
| | - Andrew J. Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JY, UK
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Soo-Hyung Kim
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Luccioni L, Krzymuski M, Sánchez-Lamas M, Karayekov E, Cerdán PD, Casal JJ. CONSTANS delays Arabidopsis flowering under short days. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:923-932. [PMID: 30468542 DOI: 10.1111/tpj.14171] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 05/22/2023]
Abstract
Long days (LD) promote flowering of Arabidopsis thaliana compared with short days (SD) by activating the photoperiodic pathway. Here we show that growth under very-SD (3 h) or darkness (on sucrose) also accelerates flowering on a biological scale, indicating that SD actively repress flowering compared with very-SD. CONSTANS (CO) repressed flowering under SD, and the early flowering of co under SD required FLOWERING LOCUS T (FT). FT was expressed at a basal level in the leaves under SD, but these levels were not enhanced in co. This indicates that the action of CO in A. thaliana is not the mirror image of the action of its homologue in rice. In the apex, CO enhanced the expression of TERMINAL FLOWER 1 (TFL1) around the time when FT expression is important to promote flowering. Under SD, the tfl1 mutation was epistatic to co and in turn ft was epistatic to tfl1. These observations are consistent with the long-standing but not demonstrated model where CO can inhibit FT induction of flowering by affecting TFL1 expression.
Collapse
Affiliation(s)
- Laura Luccioni
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | - Martín Krzymuski
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | | | - Elizabeth Karayekov
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | - Pablo D Cerdán
- IIBBA-CONICET, Fundación Instituto Leloir, C1405BWE, Buenos Aires, Argentina
| | - Jorge J Casal
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, 1417, Buenos Aires, Argentina
- IIBBA-CONICET, Fundación Instituto Leloir, C1405BWE, Buenos Aires, Argentina
| |
Collapse
|
18
|
Satake A, Kawatsu K, Chiba Y, Kitamura K, Han Q. Synchronized expression of FLOWERING LOCUS T
between branches underlies mass flowering in Fagus crenata. POPUL ECOL 2018. [DOI: 10.1002/1438-390x.1010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Akiko Satake
- Department of Biology; Faculty of Science, Kyushu University; Fukuoka Japan
| | - Kazutaka Kawatsu
- Graduate School of Life Sciences; Tohoku University; Sendai Japan
| | - Yukako Chiba
- Graduate School of Life Science; Hokkaido University; Sapporo Japan
| | - Keiko Kitamura
- Hokkaido Research Center; Forestry and Forest Products Research Institute; Sapporo Japan
| | - Qingmin Han
- Department of Plant Ecology; Forestry and Forest Products Research Institute; Tsukuba Japan
| |
Collapse
|
19
|
Song YH, Kubota A, Kwon MS, Covington MF, Lee N, Taagen ER, Laboy Cintrón D, Hwang DY, Akiyama R, Hodge SK, Huang H, Nguyen NH, Nusinow DA, Millar AJ, Shimizu KK, Imaizumi T. Molecular basis of flowering under natural long-day conditions in Arabidopsis. NATURE PLANTS 2018; 4:824-835. [PMID: 30250277 PMCID: PMC6195122 DOI: 10.1038/s41477-018-0253-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/16/2018] [Indexed: 05/18/2023]
Abstract
Plants sense light and temperature changes to regulate flowering time. Here, we show that expression of the Arabidopsis florigen gene, FLOWERING LOCUS T (FT), peaks in the morning during spring, a different pattern than we observe in the laboratory. Providing our laboratory growth conditions with a red/far-red light ratio similar to open-field conditions and daily temperature oscillation is sufficient to mimic the FT expression and flowering time in natural long days. Under the adjusted growth conditions, key light signalling components, such as phytochrome A and EARLY FLOWERING 3, play important roles in morning FT expression. These conditions stabilize CONSTANS protein, a major FT activator, in the morning, which is probably a critical mechanism for photoperiodic flowering in nature. Refining the parameters of our standard growth conditions to more precisely mimic plant responses in nature can provide a powerful method for improving our understanding of seasonal response.
Collapse
Affiliation(s)
- Young Hun Song
- Department of Biology, University of Washington, Seattle, WA, USA.
- Department of Life Sciences, Ajou University, Suwon, Korea.
| | - Akane Kubota
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Michael S Kwon
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | - Nayoung Lee
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Ella R Taagen
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | - Dae Yeon Hwang
- Department of Life Sciences, Ajou University, Suwon, Korea
| | - Reiko Akiyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Sarah K Hodge
- School of Biological Sciences and SynthSys, University of Edinburgh, Edinburgh, UK
| | - He Huang
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Nhu H Nguyen
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | - Andrew J Millar
- School of Biological Sciences and SynthSys, University of Edinburgh, Edinburgh, UK
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
20
|
Zhao L, Li M, Xu C, Yang X, Li D, Zhao X, Wang K, Li Y, Zhang X, Liu L, Ding F, Du H, Wang C, Sun J, Li W. Natural variation in GmGBP1 promoter affects photoperiod control of flowering time and maturity in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:147-162. [PMID: 30004144 DOI: 10.1111/tpj.14025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 05/13/2023]
Abstract
The present study screened for polymorphisms in coding and non-coding regions of the GmGBP1 gene in 278 soybean accessions with variable maturity and growth habit characteristics under natural field conditions in three different latitudes in China. The results showed that the promoter region was highly diversified compared with the coding sequence of GmGBP1. Five polymorphisms and four haplotypes were closely related to soybean flowering time and maturity through association and linkage disequilibrium analyses. Varieties with the polymorphisms SNP_-796G, SNP_-770G, SNP_-307T, InDel_-242normal, SNP_353A, or haplotypes Hap-3 and Hap-4 showed earlier flowering time and maturity in different environments. The shorter growth period might be largely due to higher GmGBP1 expression levels in soybean that were caused by the TCT-motif with SNP_-796G in the promoter. In contrast, the lower expression level of GmGBP1 in soybean caused by RNAi interference of GmGBP1 resulted in a longer growth period under different day lengths. Furthermore, the gene interference of GmGBP1 also caused a reduction in photoperiod response sensitivity (PRS) before flowering in soybean. RNA-seq analysis on GmGBP1 underexpression in soybean showed that 94 and 30 predicted genes were significantly upregulated and downregulated, respectively. Of these, the diurnal photoperiod-specific expression pattern of three significant flowering time genes GmFT2a, GmFT5a, and GmFULc also showed constantly lower mRNA levels in GmGBP1-i soybean than in wild type, especially under short day conditions. Together, the results showed that GmGBP1 functioned as a positive regulator upstream of GmFT2a and GmFT5a to activate the expression of GmFULc to promote flowering on short days.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin, 150030, China
| | - Minmin Li
- Key Laboratory of Soybean Biology of Ministry of Education China (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin, 150030, China
| | - Chongjing Xu
- Key Laboratory of Soybean Biology of Ministry of Education China (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin, 150030, China
| | - Xue Yang
- Key Laboratory of Soybean Biology of Ministry of Education China (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin, 150030, China
| | - Dongmei Li
- Key Laboratory of Soybean Biology of Ministry of Education China (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin, 150030, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin, 150030, China
| | - Kuo Wang
- Key Laboratory of Soybean Biology of Ministry of Education China (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin, 150030, China
| | - Yinghua Li
- Key Laboratory of Soybean Biology of Ministry of Education China (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoming Zhang
- Key Laboratory of Soybean Biology of Ministry of Education China (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin, 150030, China
| | - Lixue Liu
- Key Laboratory of Soybean Biology of Ministry of Education China (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin, 150030, China
| | - Fuquan Ding
- Key Laboratory of Soybean Biology of Ministry of Education China (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin, 150030, China
| | - Hailong Du
- Key Laboratory of Soybean Biology of Ministry of Education China (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin, 150030, China
| | - Chunsheng Wang
- Key Laboratory of Soybean Biology of Ministry of Education China (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin, 150030, China
| | - Jingzhe Sun
- Key Laboratory of Soybean Biology of Ministry of Education China (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin, 150030, China
| | - Wenbin Li
- Key Laboratory of Soybean Biology of Ministry of Education China (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China), Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
21
|
Shah S, Weinholdt C, Jedrusik N, Molina C, Zou J, Große I, Schiessl S, Jung C, Emrani N. Whole-transcriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (Brassica napus L.). PLANT, CELL & ENVIRONMENT 2018; 41:1935-1947. [PMID: 29813173 DOI: 10.1111/pce.13353] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/20/2018] [Accepted: 05/19/2018] [Indexed: 05/18/2023]
Abstract
Rapeseed (Brassica napus L.), one of the most important sources of vegetable oil and protein-rich meals worldwide, is adapted to different geographical regions by modification of flowering time. Rapeseed cultivars have different day length and vernalization requirements, which categorize them into winter, spring, and semiwinter ecotypes. To gain a deeper insight into genetic factors controlling floral transition in B. napus, we performed RNA sequencing (RNA-seq) in the semiwinter doubled haploid line, Ningyou7, at different developmental stages and temperature regimes. The expression profiles of more than 54,000 gene models were compared between different treatments and developmental stages, and the differentially expressed genes were considered as targets for association analysis and genetic mapping to confirm their role in floral transition. Consequently, 36 genes with association to flowering time, seed yield, or both were identified. We found novel indications for neofunctionalization in homologs of known flowering time regulators like VIN3 and FUL. Our study proved the potential of RNA-seq along with association analysis and genetic mapping to identify candidate genes for floral transition in rapeseed. The candidate genes identified in this study could be subjected to genetic modification or targeted mutagenesis and genotype building to breed rapeseed adapted to certain environments.
Collapse
Affiliation(s)
- Smit Shah
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Claus Weinholdt
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nicole Jedrusik
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Carlos Molina
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ivo Große
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sarah Schiessl
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Nazgol Emrani
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
22
|
Triozzi PM, Ramos-Sánchez JM, Hernández-Verdeja T, Moreno-Cortés A, Allona I, Perales M. Photoperiodic Regulation of Shoot Apical Growth in Poplar. FRONTIERS IN PLANT SCIENCE 2018; 9:1030. [PMID: 30057588 PMCID: PMC6053638 DOI: 10.3389/fpls.2018.01030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/25/2018] [Indexed: 05/19/2023]
Abstract
Woody perennials adapt their genetic traits to local climate conditions. Day length plays an essential role in the seasonal growth of poplar trees. When photoperiod falls below a given critical day length, poplars undergo growth cessation and bud set. A leaf-localized mechanism of photoperiod measurement triggers the transcriptional modulation of a long distance signaling molecule, FLOWERING LOCUS T (FT). This molecule targets meristem function giving rise to these seasonal responses. Studies over the past decade have identified conserved orthologous genes involved in photoperiodic flowering in Arabidopsis that regulate poplar vegetative growth. However, phenological and molecular examination of key photoperiod signaling molecules reveals functional differences between these two plant model systems suggesting alternative components and/or regulatory mechanisms operating during poplar vegetative growth. Here, we review current knowledge and provide new data regarding the molecular components of the photoperiod measuring mechanism that regulates annual growth in poplar focusing on main achievements and new perspectives.
Collapse
Affiliation(s)
- Paolo M. Triozzi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - José M. Ramos-Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Tamara Hernández-Verdeja
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Alicia Moreno-Cortés
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de MadridMadrid, Spain
- *Correspondence: Isabel Allona
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
- Mariano Perales
| |
Collapse
|
23
|
Henriques R, Wang H, Liu J, Boix M, Huang LF, Chua NH. The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering. THE NEW PHYTOLOGIST 2017; 216:854-867. [PMID: 28758689 DOI: 10.1111/nph.14703] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/12/2017] [Indexed: 05/19/2023]
Abstract
Circadian rhythms of gene expression are generated by the combinatorial action of transcriptional and translational feedback loops as well as chromatin remodelling events. Recently, long noncoding RNAs (lncRNAs) that are natural antisense transcripts (NATs) to transcripts encoding central oscillator components were proposed as modulators of core clock function in mammals (Per) and fungi (frq/qrf). Although oscillating lncRNAs exist in plants, their functional characterization is at an initial stage. By screening an Arabidopsis thaliana lncRNA custom-made array we identified CDF5 LONG NONCODING RNA (FLORE), a circadian-regulated lncRNA that is a NAT of CDF5. Quantitative real-time RT-PCR confirmed the circadian regulation of FLORE, whereas GUS-staining and flowering time evaluation were used to determine its biological function. FLORE and CDF5 antiphasic expression reflects mutual inhibition in a similar way to frq/qrf. Moreover, whereas the CDF5 protein delays flowering by directly repressing FT transcription, FLORE promotes it by repressing several CDFs (CDF1, CDF3, CDF5) and increasing FT transcript levels, indicating both cis and trans function. We propose that the CDF5/FLORE NAT pair constitutes an additional circadian regulatory module with conserved (mutual inhibition) and unique (function in trans) features, able to fine-tune its own circadian oscillation, and consequently, adjust the onset of flowering to favourable environmental conditions.
Collapse
Affiliation(s)
- Rossana Henriques
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065-6399, USA
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Huan Wang
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065-6399, USA
| | - Jun Liu
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065-6399, USA
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Marc Boix
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Li-Fang Huang
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065-6399, USA
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065-6399, USA
| |
Collapse
|
24
|
Shibuta M, Abe M. FE Controls the Transcription of Downstream Flowering Regulators Through Two Distinct Mechanisms in Leaf Phloem Companion Cells. PLANT & CELL PHYSIOLOGY 2017; 58:2017-2025. [PMID: 29036620 DOI: 10.1093/pcp/pcx133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/30/2017] [Indexed: 05/21/2023]
Abstract
In the facultative long-day plant Arabidopsis thaliana, FLOWERING LOCUS T (FT), encoding the mobile hormone florigen, plays an essential role in modulating the optimal timing of flowering to ensure reproductive success. Under inductive long-day conditions, the transcription of FT is activated by the CONSTANS (CO)/NUCLEAR FACTOR-Y (NF-Y) protein complex in leaf phloem companion cells. FT is transported to the shoot apical meristem through interaction with florigen transporters, such as SODIUM POTASSIUM ROOT DEFECTIVE 1 (NaKR1). Some regulators involved in photoperiod-dependent FT function have been reported previously; however, the molecular mechanism that coordinates FT protein synthesis and transport efficiently needs to be investigated. The present study examined the role of an Myb-related transcription factor, FE, in the activation of FT gene transcription and FT protein transport. Expression analysis using FE-inducible systems and chromatin immunoprecipitation assays showed that FE directly bound to the FT and NaKR1 promoters and activated the transcription of downstream target genes. FE failed to activate FT expression without CO function, whereas FE-mediated NaKR1 induction was not affected by CO function. Taken together, our data indicate that FE regulates the transcription of FT and florigen transporter genes via different mechanisms.
Collapse
Affiliation(s)
- Mio Shibuta
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033 Japan
| | - Mitsutomo Abe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033 Japan
| |
Collapse
|
25
|
Yeoh SH, Satake A, Numata S, Ichie T, Lee SL, Basherudin N, Muhammad N, Kondo T, Otani T, Hashim M, Tani N. Unravelling proximate cues of mass flowering in the tropical forests of South-East Asia from gene expression analyses. Mol Ecol 2017; 26:5074-5085. [PMID: 28749031 DOI: 10.1111/mec.14257] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 12/30/2022]
Abstract
Elucidating the physiological mechanisms of the irregular yet concerted flowering rhythm of mass flowering tree species in the tropics requires long-term monitoring of flowering phenology, exogenous and endogenous environmental factors, as well as identifying interactions and dependencies among these factors. To investigate the proximate factors for floral initiation of mast seeding trees in the tropics, we monitored the expression dynamics of two key flowering genes, meteorological conditions and endogenous resources over two flowering events of Shorea curtisii and Shorea leprosula in the Malay Peninsula. Comparisons of expression dynamics of genes studied indicated functional conservation of FLOWERING LOCUS T (FT) and LEAFY (LFY) in Shorea. The genes were highly expressed at least 1 month before anthesis for both species. A mathematical model considering the synergistic effect of cool temperature and drought on activation of the flowering gene was successful in predicting the observed gene expression patterns. Requirement of both cool temperature and drought for floral transition suggested by the model implies that flowering phenologies of these species are sensitive to climate change. Our molecular phenology approach in the tropics sheds light on the conserved role of flowering genes in plants inhabiting different climate zones and can be widely applied to dissect the flowering processes in other plant species.
Collapse
Affiliation(s)
- Suat Hui Yeoh
- Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Akiko Satake
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Shinya Numata
- Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Hachiouji, Tokyo, Japan
| | - Tomoaki Ichie
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Soon Leong Lee
- Forestry Biotechnology Division, Forest Research Institute Malaysia (FRIM), Kepong, Selangor, Malaysia
| | - Norlia Basherudin
- Forestry Biotechnology Division, Forest Research Institute Malaysia (FRIM), Kepong, Selangor, Malaysia
| | - Norwati Muhammad
- Forestry Biotechnology Division, Forest Research Institute Malaysia (FRIM), Kepong, Selangor, Malaysia
| | - Toshiaki Kondo
- Graduate School for International Development and Cooperation, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Tatsuya Otani
- Shikoku Research Center, Forestry and Forest Products Research Institute (FFPRI), Kochi, Japan
| | - Mazlan Hashim
- Geosciences & Digital Earth Centre (INSTeG), Research Institute of Sustainable Environment (RISE), Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Naoki Tani
- Forestry Biotechnology Division, Forest Research Institute Malaysia (FRIM), Kepong, Selangor, Malaysia.,Forestry Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| |
Collapse
|
26
|
Miyazaki Y, Satake A. Relationship between seasonal progression of floral meristem development and FLOWERING LOCUS T expression in the deciduous tree Fagus crenata. Ecol Res 2017. [DOI: 10.1007/s11284-017-1462-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Okada R, Nemoto Y, Endo-Higashi N, Izawa T. Synthetic control of flowering in rice independent of the cultivation environment. NATURE PLANTS 2017; 3:17039. [PMID: 28346447 DOI: 10.1038/nplants.2017.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/26/2017] [Indexed: 05/03/2023]
Abstract
For genetically homogeneous crops, the timing of flowering is determined largely by the cultivation environment and is strongly associated with the yield and quality of the harvest1. Flowering time and other agronomical traits are often tightly correlated, which can lead to difficulty excluding the effects of flowering time when evaluating the characteristics of different genetic varieties2. Here, we describe the development of transgenic rice plants whose flowering time can be controlled by specific agrochemicals. We first developed non-flowering rice plants by overexpressing a floral repressor gene, Grain number, plant height and heading date 7 (Ghd7)3,4, to inhibit any environmentally induced spontaneous flowering. We then co-transformed plants with a rice florigen gene, Heading date 3a (Hd3a)5, which is induced by the application of specific agrochemicals. This permitted the flowering time to be experimentally controlled regardless of the cultivation environment: some transgenic plants flowered only after agrochemical treatment. Furthermore, plant size and yield-related traits could, in some cases, be increased owing to both a longer duration of vegetative growth and an increased panicle size. This ability to control flowering time experimentally, independently of environmental variables, may lead to production of crops suitable for growth in different climates and facilitate breeding for various agronomical traits.
Collapse
Affiliation(s)
- Ryo Okada
- Functional Plant Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Yasue Nemoto
- Functional Plant Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Naokuni Endo-Higashi
- Functional Plant Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Takeshi Izawa
- Functional Plant Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
- Laoratory of Plant Breeding &Genetics, Department of Agriculture, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
28
|
Guan D, Yan B, Thieme C, Hua J, Zhu H, Boheler KR, Zhao Z, Kragler F, Xia Y, Zhang S. PlaMoM: a comprehensive database compiles plant mobile macromolecules. Nucleic Acids Res 2016; 45:D1021-D1028. [PMID: 27924044 PMCID: PMC5210661 DOI: 10.1093/nar/gkw988] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/23/2016] [Accepted: 10/13/2016] [Indexed: 01/14/2023] Open
Abstract
In plants, various phloem-mobile macromolecules including noncoding RNAs, mRNAs and proteins are suggested to act as important long-distance signals in regulating crucial physiological and morphological transition processes such as flowering, plant growth and stress responses. Given recent advances in high-throughput sequencing technologies, numerous mobile macromolecules have been identified in diverse plant species from different plant families. However, most of the identified mobile macromolecules are not annotated in current versions of species-specific databases and are only available as non-searchable datasheets. To facilitate study of the mobile signaling macromolecules, we compiled the PlaMoM (Plant Mobile Macromolecules) database, a resource that provides convenient and interactive search tools allowing users to retrieve, to analyze and also to predict mobile RNAs/proteins. Each entry in the PlaMoM contains detailed information such as nucleotide/amino acid sequences, ortholog partners, related experiments, gene functions and literature. For the model plant Arabidopsis thaliana, protein–protein interactions of mobile transcripts are presented as interactive molecular networks. Furthermore, PlaMoM provides a built-in tool to identify potential RNA mobility signals such as tRNA-like structures. The current version of PlaMoM compiles a total of 17 991 mobile macromolecules from 14 plant species/ecotypes from published data and literature. PlaMoM is available at http://www.systembioinfo.org/plamom/.
Collapse
Affiliation(s)
- Daogang Guan
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong.,School of Biomedical Sciences, The University of Hong Kong, Hong Kong.,Laboratory for Food Safety and Environmental Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bin Yan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.,Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong
| | - Christoph Thieme
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong
| | - Jingmin Hua
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Hailong Zhu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong.,Laboratory for Food Safety and Environmental Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | | | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Friedrich Kragler
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong .,Max Planck Institute of Molecular Plant Physiology Am Mühlenberg 1,14476 Potsdam-Golm, Germany
| | - Shoudong Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| |
Collapse
|
29
|
Kinmonth-Schultz HA, Tong X, Lee J, Song YH, Ito S, Kim SH, Imaizumi T. Cool night-time temperatures induce the expression of CONSTANS and FLOWERING LOCUS T to regulate flowering in Arabidopsis. THE NEW PHYTOLOGIST 2016; 211:208-24. [PMID: 26856528 PMCID: PMC4887344 DOI: 10.1111/nph.13883] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/06/2016] [Indexed: 05/18/2023]
Abstract
Day length and ambient temperature are major stimuli controlling flowering time. To understand flowering mechanisms in more natural conditions, we explored the effect of daily light and temperature changes on Arabidopsis thaliana. Seedlings were exposed to different day/night temperature and day-length treatments to assess expression changes in flowering genes. Cooler temperature treatments increased CONSTANS (CO) transcript levels at night. Night-time CO induction was diminished in flowering bhlh (fbh)-quadruple mutants. FLOWERING LOCUS T (FT) transcript levels were reduced at dusk, but increased at the end of cooler nights. The dusk suppression, which was alleviated in short vegetative phase (svp) mutants, occurred particularly in younger seedlings, whereas the increase during the night continued over 2 wk. Cooler temperature treatments altered the levels of FLOWERING LOCUS M-β (FLM-β) and FLM-δ splice variants. FT levels correlated strongly with flowering time across treatments. Day/night temperature changes modulate photoperiodic flowering by changing FT accumulation patterns. Cooler night-time temperatures enhance FLOWERING BHLH (FBH)-dependent induction of CO and consequently increase CO protein. When plants are young, cooler temperatures suppress FT at dusk through SHORT VEGETATIVE PHASE (SVP) function, perhaps to suppress precocious flowering. Our results suggest day length and diurnal temperature changes combine to modulate FT and flowering time.
Collapse
Affiliation(s)
| | - Xinran Tong
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Jae Lee
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Young Hun Song
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
- Department of Life Sciences, Ajou University, Suwon 443-749, Korea
| | - Shogo Ito
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Soo-Hyung Kim
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195-2100, USA
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| |
Collapse
|
30
|
Fernández V, Takahashi Y, Le Gourrierec J, Coupland G. Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:426-40. [PMID: 27117775 DOI: 10.1111/tpj.13183] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 02/24/2016] [Accepted: 03/21/2016] [Indexed: 05/18/2023]
Abstract
Plants detect changes in day length to induce seasonal patterns of flowering. The photoperiodic pathway accelerates the flowering of Arabidopsis thaliana under long days (LDs) whereas it is inactive under short days (SDs), resulting in delayed flowering. This delay is overcome by exposure of plants to high temperature (27°C) under SDs (27°C-SD). Previously, the high-temperature flowering response was proposed to involve either the impaired activity of MADS-box transcription factor (TF) floral repressors or PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) TF-mediated activation of FLOWERING LOCUS T (FT), which encodes the output signal of the photoperiodic pathway. We integrate these observations by studying several PIFs, the MADS-box SHORT VEGETATIVE PHASE (SVP) and the photoperiodic pathway under 27°C-SD. We find that the mRNAs of FT and its paralogue TWIN SISTER OF FT (TSF) are increased at dusk under 27°C-SD compared with 21°C-SD, and that this requires PIF4 and PIF5 as well as CONSTANS (CO), a TF that promotes flowering under LDs. The CO and PIF4 proteins are present at dusk under 27°C-SD, and they physically interact. Although Col-0 plants flower at similar times under 27°C-SD and 21°C-LD the expression level of FT is approximately 10-fold higher under 21°C-LD, suggesting that responsiveness to FT is also increased under 27°C-SD, perhaps as a result of the reduced activity of SVP in the meristem. Accordingly, only svp-41 ft-10 tsf-1 plants flowered at the same time under 21°C-SD and 27°C-SD. Thus, we propose that under non-inductive SDs, elevated temperatures increase the activity and sensitize the response to the photoperiod pathway.
Collapse
Affiliation(s)
- Virginia Fernández
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, D-50829, Cologne, Germany
| | - Yasuyuki Takahashi
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, D-50829, Cologne, Germany
| | - José Le Gourrierec
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, D-50829, Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, D-50829, Cologne, Germany
| |
Collapse
|
31
|
Tang Q, Guittard-Crilat E, Maldiney R, Habricot Y, Miginiac E, Bouly JP, Lebreton S. The mitogen-activated protein kinase phosphatase PHS1 regulates flowering in Arabidopsis thaliana. PLANTA 2016; 243:909-23. [PMID: 26721646 DOI: 10.1007/s00425-015-2447-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/14/2015] [Indexed: 05/13/2023]
Abstract
Arabidopsis PHS1, initially known as an actor of cytoskeleton organization, is a positive regulator of flowering in the photoperiodic and autonomous pathways by modulating both CO and FLC mRNA levels. Protein phosphorylation and dephosphorylation is a major type of post-translational modification, controlling many biological processes. In Arabidopsis thaliana, five genes encoding MAPK phosphatases (MKP)-like proteins have been identified. Among them, PROPYZAMIDE HYPERSENSITIVE 1 (PHS1) encoding a dual-specificity protein tyrosine phosphatase (DsPTP) has been shown to be involved in microtubule organization, germination and ABA-regulated stomatal opening. Here, we demonstrate that PHS1 also regulates flowering under long-day and short-day conditions. Using physiological, genetic and molecular approaches, we have shown that the late flowering phenotype of the knock-out phs1-5 mutant is linked to a higher expression of FLOWERING LOCUS C (FLC). In contrast, a decline of both CONSTANS (CO) and FLOWERING LOCUS T (FT) expression is observed in the knock-out phs1-5 mutant, especially at the end of the light period under long-day conditions when the induction of flowering occurs. We show that this partial loss of sensitivity to photoperiodic induction is independent of FLC. Our results thus indicate that PHS1 plays a dual role in flowering, in the photoperiodic and autonomous pathways, by modulating both CO and FLC mRNA levels. Our work reveals a novel actor in the complex network of the flowering regulation.
Collapse
Affiliation(s)
- Qian Tang
- Adaptation des Plantes aux Contraintes Environnementales, Sorbonne Universités, UPMC Univ Paris 06, URF5, 75005, Paris, France
- Plant Biological Sciences Graduate Program, Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, 1970 Folwell Avenue, Saint Paul, MN, 55108, USA
| | - Emilie Guittard-Crilat
- Adaptation des Plantes aux Contraintes Environnementales, Sorbonne Universités, UPMC Univ Paris 06, URF5, 75005, Paris, France
| | - Régis Maldiney
- Adaptation des Plantes aux Contraintes Environnementales, Sorbonne Universités, UPMC Univ Paris 06, URF5, 75005, Paris, France
| | - Yvette Habricot
- Biologie du Développement, Sorbonne Universités, UPMC Univ. Paris 06, UMR 7622, 75005, Paris, France
- Biologie du Développement, CNRS, UMR 7622, 75005, Paris, France
| | - Emile Miginiac
- Adaptation des Plantes aux Contraintes Environnementales, Sorbonne Universités, UPMC Univ Paris 06, URF5, 75005, Paris, France
| | - Jean-Pierre Bouly
- Computational and Quantitative Biology, Sorbonne Universités, UPMC Univ. Paris 06, UMR 7238, 75005, Paris, France.
- Computational and Quantitative Biology, CNRS-UPMC UMR 7238, 15, rue de l'Ecole de Médecine, 75006, Paris, France.
| | - Sandrine Lebreton
- Adaptation des Plantes aux Contraintes Environnementales, Sorbonne Universités, UPMC Univ Paris 06, URF5, 75005, Paris, France
| |
Collapse
|
32
|
Burghardt LT, Runcie DE, Wilczek AM, Cooper MD, Roe JL, Welch SM, Schmitt J. Fluctuating, warm temperatures decrease the effect of a key floral repressor on flowering time in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2016; 210:564-76. [PMID: 26681345 DOI: 10.1111/nph.13799] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/11/2015] [Indexed: 05/28/2023]
Abstract
The genetic basis of growth and development is often studied in constant laboratory environments; however, the environmental conditions that organisms experience in nature are often much more dynamic. We examined how daily temperature fluctuations, average temperature, day length and vernalization influence the flowering time of 59 genotypes of Arabidopsis thaliana with allelic perturbations known to affect flowering time. For a subset of genotypes, we also assessed treatment effects on morphology and growth. We identified 17 genotypes, many of which have high levels of the floral repressor FLOWERING LOCUS C (FLC), that bolted dramatically earlier in fluctuating - as opposed to constant - warm temperatures (mean = 22°C). This acceleration was not caused by transient VERNALIZATION INSENSITIVE 3-mediated vernalization, differential growth rates or exposure to high temperatures, and was not apparent when the average temperature was cool (mean = 12°C). Further, in constant temperatures, contrary to physiological expectations, these genotypes flowered more rapidly in cool than in warm environments. Fluctuating temperatures often reversed these responses, restoring faster bolting in warm conditions. Independently of bolting time, warm fluctuating temperature profiles also caused morphological changes associated with shade avoidance or 'high-temperature' phenotypes. Our results suggest that previous studies have overestimated the effect of the floral repressor FLC on flowering time by using constant temperature laboratory conditions.
Collapse
Affiliation(s)
- Liana T Burghardt
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA
- Biology Department, Duke University, Durham, NC, 27708, USA
| | - Daniel E Runcie
- Department of Evolution and Ecology, University of California at Davis, Davis, CA, 95616, USA
| | - Amity M Wilczek
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA
- Deep Springs College, Big Pine, CA, 93513, USA
| | - Martha D Cooper
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA
| | - Judith L Roe
- Department of Biology, University of Maine at Presque Isle, Presque Isle, ME, 04769, USA
| | - Stephen M Welch
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Johanna Schmitt
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA
- Deep Springs College, Big Pine, CA, 93513, USA
| |
Collapse
|