1
|
Khosravi S, Hinrichs R, Rönspies M, Haghi R, Puchta H, Houben A. Epigenetic state and gene expression remain stable after CRISPR/Cas-mediated chromosomal inversions. THE NEW PHYTOLOGIST 2025; 245:2527-2539. [PMID: 39878102 PMCID: PMC11840415 DOI: 10.1111/nph.20403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
The epigenetic state of chromatin, gene activity and chromosomal positions are interrelated in plants. In Arabidopsis thaliana, chromosome arms are DNA-hypomethylated and enriched with the euchromatin-specific histone mark H3K4me3, while pericentromeric regions are DNA-hypermethylated and enriched with the heterochromatin-specific mark H3K9me2. We aimed to investigate how the chromosomal location affects epigenetic stability and gene expression by chromosome engineering. Two chromosomal inversions of different sizes were induced using CRISPR/Cas9 to move heterochromatic, pericentric sequences into euchromatic regions. The epigenetic status of these lines was investigated using whole-genome bisulfite sequencing and chromatin immunoprecipitation. Gene expression changes following the induction of the chromosomal inversions were studied via transcriptome analysis. Both inversions had a minimal impact on the global distribution of histone marks and DNA methylation patterns, although minor epigenetic changes were observed across the genome. Notably, the inverted chromosomal regions and their borders retained their original epigenetic profiles. Gene expression analysis showed that only 0.5-1% of genes were differentially expressed genome-wide following the induction of the inversions. CRISPR/Cas-induced chromosomal inversions minimally affect epigenetic landscape and gene expression, preserving their profiles in subsequent generations.
Collapse
Affiliation(s)
- Solmaz Khosravi
- Leibniz Institute of Plant Genetics and Crop Plant Research GaterslebenCorrensstrasse 306466SeelandGermany
| | - Rebecca Hinrichs
- Joseph Gottlieb Kölreuter Institute for Plant Sciences – Molecular BiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
| | - Michelle Rönspies
- Joseph Gottlieb Kölreuter Institute for Plant Sciences – Molecular BiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
| | - Reza Haghi
- Leibniz Institute of Plant Genetics and Crop Plant Research GaterslebenCorrensstrasse 306466SeelandGermany
| | - Holger Puchta
- Joseph Gottlieb Kölreuter Institute for Plant Sciences – Molecular BiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research GaterslebenCorrensstrasse 306466SeelandGermany
| |
Collapse
|
2
|
Helia O, Matúšová B, Havlová K, Hýsková A, Lyčka M, Beying N, Puchta H, Fajkus J, Fojtová M. Chromosome engineering points to the cis-acting mechanism of chromosome arm-specific telomere length setting and robustness of plant phenotype, chromatin structure and gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70024. [PMID: 39962352 PMCID: PMC11832813 DOI: 10.1111/tpj.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/20/2025]
Abstract
The study investigates the impact of targeted chromosome engineering on telomere dynamics, chromatin structure, gene expression, and phenotypic stability in Arabidopsis thaliana. Using precise CRISPR/Cas-based engineering, reciprocal translocations of chromosome arms were introduced between non-homologous chromosomes. The subsequent homozygous generations of plants were assessed for phenotype, transcriptomic changes and chromatin modifications near translocation breakpoints, and telomere length maintenance. Phenotypically, translocated lines were indistinguishable from wild-type plants, as confirmed through morphological assessments and principal component analysis. Gene expression profiling detected minimal differential expression, with affected genes dispersed across the genome, indicating negligible transcriptional impact. Similarly, ChIPseq analysis showed no substantial alterations in the enrichment of key histone marks (H3K27me3, H3K4me1, H3K56ac) near junction sites or across the genome. Finally, bulk and arm-specific telomere lengths remained stable across multiple generations, except for minor variations in one translocation line. These findings highlight the remarkable genomic and phenotypic robustness of A. thaliana despite large-scale chromosomal rearrangements. The study offers insights into the cis-acting mechanisms underlying chromosome arm-specific telomere length setting and establishes the feasibility of chromosome engineering for studies of plant genome evolution and crop improvement strategies.
Collapse
Affiliation(s)
- Ondřej Helia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCZ‐62500Czech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCZ‐62500Czech Republic
| | - Barbora Matúšová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCZ‐62500Czech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCZ‐62500Czech Republic
| | - Kateřina Havlová
- Department of Cell Biology and Radiobiology, Institute of BiophysicsAcademy of Sciences of the Czech RepublicBrnoCZ‐61200Czech Republic
| | - Anna Hýsková
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCZ‐62500Czech Republic
| | - Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCZ‐62500Czech Republic
| | - Natalja Beying
- Joseph Gottlieb Kölreuter Institute for Plant Sciences – Molecular BiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
| | - Holger Puchta
- Joseph Gottlieb Kölreuter Institute for Plant Sciences – Molecular BiologyKarlsruhe Institute of TechnologyFritz‐Haber‐Weg 476131KarlsruheGermany
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCZ‐62500Czech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCZ‐62500Czech Republic
- Department of Cell Biology and Radiobiology, Institute of BiophysicsAcademy of Sciences of the Czech RepublicBrnoCZ‐61200Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCZ‐62500Czech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCZ‐62500Czech Republic
| |
Collapse
|
3
|
Fuentes RR, Nieuwenhuis R, Chouaref J, Hesselink T, van Dooijeweert W, van den Broeck HC, Schijlen E, Schouten HJ, Bai Y, Fransz P, Stam M, de Jong H, Trivino SD, de Ridder D, van Dijk ADJ, Peters SA. A catalogue of recombination coldspots in interspecific tomato hybrids. PLoS Genet 2024; 20:e1011336. [PMID: 38950081 PMCID: PMC11244794 DOI: 10.1371/journal.pgen.1011336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/12/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024] Open
Abstract
Increasing natural resistance and resilience in plants is key for ensuring food security within a changing climate. Breeders improve these traits by crossing cultivars with their wild relatives and introgressing specific alleles through meiotic recombination. However, some genomic regions are devoid of recombination especially in crosses between divergent genomes, limiting the combinations of desirable alleles. Here, we used pooled-pollen sequencing to build a map of recombinant and non-recombinant regions between tomato and five wild relatives commonly used for introgressive tomato breeding. We detected hybrid-specific recombination coldspots that underscore the role of structural variations in modifying recombination patterns and maintaining genetic linkage in interspecific crosses. Crossover regions and coldspots show strong association with specific TE superfamilies exhibiting differentially accessible chromatin between somatic and meiotic cells. About two-thirds of the genome are conserved coldspots, located mostly in the pericentromeres and enriched with retrotransposons. The coldspots also harbor genes associated with agronomic traits and stress resistance, revealing undesired consequences of linkage drag and possible barriers to breeding. We presented examples of linkage drag that can potentially be resolved by pairing tomato with other wild species. Overall, this catalogue will help breeders better understand crossover localization and make informed decisions on generating new tomato varieties.
Collapse
Affiliation(s)
- Roven Rommel Fuentes
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
- Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ronald Nieuwenhuis
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Jihed Chouaref
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thamara Hesselink
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Willem van Dooijeweert
- Centre for Genetic Resources, Wageningen University and Research, Wageningen, The Netherlands
| | - Hetty C van den Broeck
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Elio Schijlen
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Henk J Schouten
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Paul Fransz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Maike Stam
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans de Jong
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
| | - Sara Diaz Trivino
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Sander A Peters
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Simon L, Probst AV. Maintenance and dynamic reprogramming of chromatin organization during development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:657-670. [PMID: 36700345 DOI: 10.1111/tpj.16119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/17/2023]
Abstract
Controlled transcription of genes is critical for cell differentiation and development. Gene expression regulation therefore involves a multilayered control from nucleosome composition in histone variants and their post-translational modifications to higher-order folding of chromatin fibers and chromatin interactions in nuclear space. Recent technological advances have allowed gaining insight into these mechanisms, the interplay between local and higher-order chromatin organization, and the dynamic changes that occur during stress response and developmental transitions. In this review, we will discuss chromatin organization from the nucleosome to its three-dimensional structure in the nucleus, and consider how these different layers of organization are maintained during the cell cycle or rapidly reprogrammed during development.
Collapse
Affiliation(s)
- Lauriane Simon
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Aline V Probst
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|
5
|
Lian Q, Huettel B, Walkemeier B, Mayjonade B, Lopez-Roques C, Gil L, Roux F, Schneeberger K, Mercier R. A pan-genome of 69 Arabidopsis thaliana accessions reveals a conserved genome structure throughout the global species range. Nat Genet 2024; 56:982-991. [PMID: 38605175 PMCID: PMC11096106 DOI: 10.1038/s41588-024-01715-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024]
Abstract
Although originally primarily a system for functional biology, Arabidopsis thaliana has, owing to its broad geographical distribution and adaptation to diverse environments, developed into a powerful model in population genomics. Here we present chromosome-level genome assemblies of 69 accessions from a global species range. We found that genomic colinearity is very conserved, even among geographically and genetically distant accessions. Along chromosome arms, megabase-scale rearrangements are rare and typically present only in a single accession. This indicates that the karyotype is quasi-fixed and that rearrangements in chromosome arms are counter-selected. Centromeric regions display higher structural dynamics, and divergences in core centromeres account for most of the genome size variations. Pan-genome analyses uncovered 32,986 distinct gene families, 60% being present in all accessions and 40% appearing to be dispensable, including 18% private to a single accession, indicating unexplored genic diversity. These 69 new Arabidopsis thaliana genome assemblies will empower future genetic research.
Collapse
Affiliation(s)
- Qichao Lian
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bruno Huettel
- Max Planck-Genome-centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Birgit Walkemeier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Baptiste Mayjonade
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | | | - Lisa Gil
- INRAE, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Fabrice Roux
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Korbinian Schneeberger
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Düsseldorf, Germany.
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
6
|
Zhang B, Wu Y, Li S, Yang L, Zhuang M, Lv H, Wang Y, Ji J, Hou X, Han F, Zhang Y. Two large inversions seriously suppress recombination and are essential for key genotype fixation in cabbage ( Brassica oleracea L. var. capitata). HORTICULTURE RESEARCH 2024; 11:uhae030. [PMID: 39896709 PMCID: PMC11784747 DOI: 10.1093/hr/uhae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/23/2024] [Indexed: 02/04/2025]
Abstract
Chromosomal inversion is an important structural variation that usually suppresses recombination and is critical for key genotype fixation. In a previous study, an 11.47 Mb recombination suppression region was identified in the yellow-green leaf locus BoYgl-1 on chromosome 1, but the cause of recombination suppression is still unclear. In this study, chlorophyll and carotenoid contents were found to be significantly decreased in the yellow-green leaf mutant YL-1. Genome assembly and comparative analysis revealed that two large inversions in YL-1 were responsible for the severe recombination suppression in the BoYgl-1 locus. Analyses with inversion-specific markers revealed that the inversions were present in 44 (including all wild cabbage; INV1 and INV2) of 195 cabbage inbred lines and 15 (INV1) ornamental kale inbred lines, indicating that these species with INV1 or INV2 may have evolved much earlier than other types of cabbage. Analyses with inversion-correlated markers revealed that the genotypes of CoINV1, CoINV2 and CoINV3 were highly correlated with INV1 and INV2, indicating that INVs could fix the key genotypes of the involved region. In addition, a 5.87 Mb assembly inversion was identified at the BoYgl-1 locus in the TO1000 genome by genome comparative analysis. This study provides new insight into the recombination suppression mechanism of chromosomal inversion and the application of genome fragment fixation in cabbage breeding.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuankang Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shoufan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Limei Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mu Zhuang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Honghao Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jialei Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yangyong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Puchta H, Houben A. Plant chromosome engineering - past, present and future. THE NEW PHYTOLOGIST 2024; 241:541-552. [PMID: 37984056 DOI: 10.1111/nph.19414] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Spontaneous chromosomal rearrangements (CRs) play an essential role in speciation, genome evolution and crop domestication. To be able to use the potential of CRs for breeding, plant chromosome engineering was initiated by fragmenting chromosomes by X-ray irradiation. With the rise of the CRISPR/Cas system, it became possible to induce double-strand breaks (DSBs) in a highly efficient manner at will at any chromosomal position. This has enabled a completely new level of predesigned chromosome engineering. The genetic linkage between specific genes can be broken by inducing chromosomal translocations. Natural inversions, which suppress genetic exchange, can be reverted for breeding. In addition, various approaches for constructing minichromosomes by downsizing regular standard A or supernumerary B chromosomes, which could serve as future vectors in plant biotechnology, have been developed. Recently, a functional synthetic centromere could be constructed. Also, different ways of genome haploidization have been set up, some based on centromere manipulations. In the future, we expect to see even more complex rearrangements, which can be combined with previously developed engineering technologies such as recombinases. Chromosome engineering might help to redefine genetic linkage groups, change the number of chromosomes, stack beneficial genes on mini cargo chromosomes, or set up genetic isolation to avoid outcrossing.
Collapse
Affiliation(s)
- Holger Puchta
- Joseph Gottlieb Kölreuter Institute for Plant Sciences (JKIP) - Molecular Biology, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| |
Collapse
|
8
|
Ferraz ME, Ribeiro T, Sader M, Nascimento T, Pedrosa-Harand A. Comparative analysis of repetitive DNA in dysploid and non-dysploid Phaseolus beans. Chromosome Res 2023; 31:30. [PMID: 37812264 DOI: 10.1007/s10577-023-09739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
Structural karyotype changes result from ectopic recombination events frequently associated with repetitive DNA. Although most Phaseolus species present relatively stable karyotypes with 2n = 22 chromosomes, the karyotypes of species of the Leptostachyus group show high rates of structural rearrangements, including a nested chromosome fusion that led to the dysploid chromosome number of the group (2n = 20). We examined the roles of repetitive landscapes in the rearrangements of species of the Leptostachyus group using genome-skimming data to characterize the repeatome in a range of Phaseolus species and compared them to species of that group (P. leptostachyus and P. macvaughii). LTR retrotransposons, especially the Ty3/gypsy lineage Chromovirus, were the most abundant elements in the genomes. Differences in the abundance of Tekay, Retand, and SIRE elements between P. macvaughii and P. leptostachyus were reflected in their total amounts of Ty3/gypsy and Ty1/copia. The satellite DNA fraction was the most divergent among the species, varying both in abundance and distribution, even between P. leptostachyus and P. macvaughii. The rapid turnover of repeats in the Leptostachyus group may be associated with the several rearrangements observed.
Collapse
Affiliation(s)
- Maria Eduarda Ferraz
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Centre, Federal University of Pernambuco, Recife, PE, Brazil
| | - Tiago Ribeiro
- Integrative Plant Research Lab, Department of Botany and Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, MT, Brazil
| | - Mariela Sader
- Multidisciplinary Institute of Plant Biology, National Council for Scientific and Technical Research, National University of Córdoba, Córdoba, Argentina
| | - Thiago Nascimento
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Centre, Federal University of Pernambuco, Recife, PE, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Centre, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
9
|
Chien PS, Chen PH, Lee CR, Chiou TJ. Transcriptome-wide association study coupled with eQTL analysis reveals the genetic connection between gene expression and flowering time in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5653-5666. [PMID: 37419660 DOI: 10.1093/jxb/erad262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/06/2023] [Indexed: 07/09/2023]
Abstract
Genome-wide association study (GWAS) has improved our understanding of complex traits, but challenges exist in distinguishing causation versus association caused by linkage disequilibrium. Instead, transcriptome-wide association studies (TWAS) detect direct associations between expression levels and phenotypic variations, providing an opportunity to better prioritize candidate genes. To assess the feasibility of TWAS, we investigated the association between transcriptomes, genomes, and various traits in Arabidopsis, including flowering time. The associated genes formerly known to regulate growth allometry or metabolite production were first identified by TWAS. Next, for flowering time, six TWAS-newly identified genes were functionally validated. Analysis of the expression quantitative trait locus (eQTL) further revealed a trans-regulatory hotspot affecting the expression of several TWAS-identified genes. The hotspot covers the FRIGIDA (FRI) gene body, which possesses multiple haplotypes differentially affecting the expression of downstream genes, such as FLOWERING LOCUS C (FLC) and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1). We also revealed multiple independent paths towards the loss of function of FRI in natural accessions. Altogether, this study demonstrates the potential of combining TWAS with eQTL analysis to identify important regulatory modules of FRI-FLC-SOC1 for quantitative traits in natural populations.
Collapse
Affiliation(s)
- Pei-Shan Chien
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Pin-Hua Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Ruei Lee
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
10
|
Nascimento T, Pedrosa-Harand A. High rates of structural rearrangements have shaped the chromosome evolution in dysploid Phaseolus beans. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:215. [PMID: 37751069 DOI: 10.1007/s00122-023-04462-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023]
Abstract
KEY MESSAGE Karyotypes evolve through numerical and structural chromosome rearrangements. We show that Phaseolus leptostachyus, a wild bean, underwent a rapid genome reshuffling associated with the reduction from 11 to 10 chromosome pairs, but without whole genome duplication, the highest chromosome evolution rate known for plants. Plant karyotypes evolve through structural rearrangements often associated with polyploidy or dysploidy. The genus Phaseolus comprises ~ 90 species, five of them domesticated due to their nutritional relevance. Most of the species have 2n = 22 karyotypes and are highly syntenic, except for three dysploid karyotypes of species from the Leptostachyus group (2n = 20) that have accumulated several rearrangements. Here, we investigated the degrees of structural rearrangements among Leptostachyus and other Phaseolus groups by estimating their chromosomal evolution rates (CER). For this, we combined our oligo-FISH barcode system for beans and chromosome-specific painting probes for chromosomes 2 and 3, with rDNA and a centromeric probe to establish chromosome orthologies and identify structural rearrangements across nine Phaseolus species. We also integrated the detected rearrangements with a phylogenomic approach to estimate the CERs for each Phaseolus lineage. Our data allowed us to identify translocations, inversions, duplications and deletions, mostly in species belonging to the Leptostachyus group. Phaseolus leptostachyus showed the highest CER (12.31 rearrangements/My), a tenfold increase in contrast to the 2n = 22 species analysed. This is the highest rate known yet for plants, making it a model species for investigating the mechanisms behind rapid genome reshuffling in early species diversification.
Collapse
Affiliation(s)
- Thiago Nascimento
- Laboratory of Plants Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plants Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
11
|
Bock DG, Cai Z, Elphinstone C, González-Segovia E, Hirabayashi K, Huang K, Keais GL, Kim A, Owens GL, Rieseberg LH. Genomics of plant speciation. PLANT COMMUNICATIONS 2023; 4:100599. [PMID: 37050879 PMCID: PMC10504567 DOI: 10.1016/j.xplc.2023.100599] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Studies of plants have been instrumental for revealing how new species originate. For several decades, botanical research has complemented and, in some cases, challenged concepts on speciation developed via the study of other organisms while also revealing additional ways in which species can form. Now, the ability to sequence genomes at an unprecedented pace and scale has allowed biologists to settle decades-long debates and tackle other emerging challenges in speciation research. Here, we review these recent genome-enabled developments in plant speciation. We discuss complications related to identification of reproductive isolation (RI) loci using analyses of the landscape of genomic divergence and highlight the important role that structural variants have in speciation, as increasingly revealed by new sequencing technologies. Further, we review how genomics has advanced what we know of some routes to new species formation, like hybridization or whole-genome duplication, while casting doubt on others, like population bottlenecks and genetic drift. While genomics can fast-track identification of genes and mutations that confer RI, we emphasize that follow-up molecular and field experiments remain critical. Nonetheless, genomics has clarified the outsized role of ancient variants rather than new mutations, particularly early during speciation. We conclude by highlighting promising avenues of future study. These include expanding what we know so far about the role of epigenetic and structural changes during speciation, broadening the scope and taxonomic breadth of plant speciation genomics studies, and synthesizing information from extensive genomic data that have already been generated by the plant speciation community.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Zhe Cai
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Cassandra Elphinstone
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Eric González-Segovia
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | - Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Graeme L Keais
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Amy Kim
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Gregory L Owens
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Boutet G, Lavaud C, Lesné A, Miteul H, Pilet-Nayel ML, Andrivon D, Lejeune-Hénaut I, Baranger A. Five Regions of the Pea Genome Co-Control Partial Resistance to D. pinodes, Tolerance to Frost, and Some Architectural or Phenological Traits. Genes (Basel) 2023; 14:1399. [PMID: 37510304 PMCID: PMC10379203 DOI: 10.3390/genes14071399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Evidence for reciprocal links between plant responses to biotic or abiotic stresses and architectural and developmental traits has been raised using approaches based on epidemiology, physiology, or genetics. Winter pea has been selected for years for many agronomic traits contributing to yield, taking into account architectural or phenological traits such as height or flowering date. It remains nevertheless particularly susceptible to biotic and abiotic stresses, among which Didymella pinodes and frost are leading examples. The purpose of this study was to identify and resize QTL localizations that control partial resistance to D. pinodes, tolerance to frost, and architectural or phenological traits on pea dense genetic maps, considering how QTL colocalizations may impact future winter pea breeding. QTL analysis revealed five metaQTLs distributed over three linkage groups contributing to both D. pinodes disease severity and frost tolerance. At these loci, the haplotypes of alleles increasing both partial resistance to D. pinodes and frost tolerance also delayed the flowering date, increased the number of branches, and/or decreased the stipule length. These results question both the underlying mechanisms of the joint control of biotic stress resistance, abiotic stress tolerance, and plant architecture and phenology and the methods of marker-assisted selection optimizing stress control and productivity in winter pea breeding.
Collapse
Affiliation(s)
- Gilles Boutet
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu, France
| | - Clément Lavaud
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu, France
| | - Angélique Lesné
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu, France
| | - Henri Miteul
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu, France
| | | | - Didier Andrivon
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu, France
| | - Isabelle Lejeune-Hénaut
- BioEcoAgro Joint Research Unit, INRAE, Université de Lille, Université de Liège, Université de Picardie Jules Verne, 80200 Estrées-Mons, France
| | - Alain Baranger
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu, France
| |
Collapse
|
13
|
Feng Z, Du Y, Chen J, Chen X, Ren W, Wang L, Zhou L. Comparison and Characterization of Phenotypic and Genomic Mutations Induced by a Carbon-Ion Beam and Gamma-ray Irradiation in Soybean ( Glycine max (L.) Merr.). Int J Mol Sci 2023; 24:ijms24108825. [PMID: 37240171 DOI: 10.3390/ijms24108825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Soybean (Glycine max (L.) Merr.) is a nutritious crop that can provide both oil and protein. A variety of mutagenesis methods have been proposed to obtain better soybean germplasm resources. Among the different types of physical mutagens, carbon-ion beams are considered to be highly efficient with high linear energy transfer (LET), and gamma rays have also been widely used for mutation breeding. However, systematic knowledge of the mutagenic effects of these two mutagens during development and on phenotypic and genomic mutations has not yet been elucidated in soybean. To this end, dry seeds of Williams 82 soybean were irradiated with a carbon-ion beam and gamma rays. The biological effects of the M1 generation included changes in survival rate, yield and fertility. Compared with gamma rays, the relative biological effectiveness (RBE) of the carbon-ion beams was between 2.5 and 3.0. Furthermore, the optimal dose for soybean was determined to be 101 Gy to 115 Gy when using the carbon-ion beam, and it was 263 Gy to 343 Gy when using gamma rays. A total of 325 screened mutant families were detected from out of 2000 M2 families using the carbon-ion beam, and 336 screened mutant families were found using gamma rays. Regarding the screened phenotypic M2 mutations, the proportion of low-frequency phenotypic mutations was 23.4% when using a carbon ion beam, and the proportion was 9.8% when using gamma rays. Low-frequency phenotypic mutations were easily obtained with the carbon-ion beam. After screening the mutations from the M2 generation, their stability was verified, and the genome mutation spectrum of M3 was systemically profiled. A variety of mutations, including single-base substitutions (SBSs), insertion-deletion mutations (INDELs), multinucleotide variants (MNVs) and structural variants (SVs) were detected with both carbon-ion beam irradiation and gamma-ray irradiation. Overall, 1988 homozygous mutations and 9695 homozygous + heterozygous genotype mutations were detected when using the carbon-ion beam. Additionally, 5279 homozygous mutations and 14,243 homozygous + heterozygous genotype mutations were detected when using gamma rays. The carbon-ion beam, which resulted in low levels of background mutations, has the potential to alleviate the problems caused by linkage drag in soybean mutation breeding. Regarding the genomic mutations, when using the carbon-ion beam, the proportion of homozygous-genotype SVs was 0.45%, and that of homozygous + heterozygous-genotype SVs was 6.27%; meanwhile, the proportions were 0.04% and 4.04% when using gamma rays. A higher proportion of SVs were detected when using the carbon ion beam. The gene effects of missense mutations were greater under carbon-ion beam irradiation, and the gene effects of nonsense mutations were greater under gamma-ray irradiation, which meant that the changes in the amino acid sequences were different between the carbon-ion beam and gamma rays. Taken together, our results demonstrate that both carbon-ion beam and gamma rays are effective techniques for rapid mutation breeding in soybean. If one would like to obtain mutations with a low-frequency phenotype, low levels of background genomic mutations and mutations with a higher proportion of SVs, carbon-ion beams are the best choice.
Collapse
Affiliation(s)
- Zhuo Feng
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Du
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingmin Chen
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Chen
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibin Ren
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lulu Wang
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Libin Zhou
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Zhao J, Li X, Qiao L, Zheng X, Wu B, Guo M, Feng M, Qi Z, Yang W, Zheng J. Identification of structural variations related to drought tolerance in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:37. [PMID: 36897407 DOI: 10.1007/s00122-023-04283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/07/2022] [Indexed: 06/18/2023]
Abstract
Structural variations are common in plant genomes, affecting meiotic recombination and distorted segregation in wheat. And presence/absence variations can significantly affect drought tolerance in wheat. Drought is a major abiotic stress limiting wheat production. Common wheat has a complex genome with three sub-genomes, which host large numbers of structural variations (SVs). SVs play critical roles in understanding the genetic contributions of plant domestication and phenotypic plasticity, but little is known about their genomic characteristics and their effects on drought tolerance. In the present study, high-resolution karyotypes of 180 doubled haploids (DHs) were developed. Signal polymorphisms between the parents involved with 8 presence-absence variations (PAVs) of tandem repeats (TR) distributed on the 7 (2A, 4A, 5A, 7A, 3B, 7B, and 2D) of 21 chromosomes. Among them, PAV on chromosome 2D showed distorted segregation, others transmit normal conforming to a 1:1 segregation ration in the population; and a PAVs recombination occurred on chromosome 2A. Association analysis of PAV and phenotypic traits under different water regimes, we found PAVs on chromosomes 4A, 5A, and 7B showed negative effect on grain length (GL) and grain width (GW); PAV.7A had opposite effect on grain thickness (GT) and spike length (SL), with the effect on traits differing under different water regimes. PAVs on linkage group 2A, 4A, 7A, 2D, and 7B associated with the drought tolerance coefficients (DTCs), and significant negative effect on drought resistance values (D values) were detected in PAV.7B. Additionally, quantitative trait loci (QTL) associated with phenotypic traits using the 90 K SNP array showed QTL for DTCs and grain-related traits in chromosomes 4A, and 5A, 3B were co-localized in differential regions of PAVs. These PAVs can cause the differentiation of the target region of SNP and could be used for genetic improvement of agronomic traits under drought stress via marker-assisted selection (MAS) breeding.
Collapse
Affiliation(s)
- Jiajia Zhao
- College of Agriculture, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taigu, China
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiaohua Li
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Ling Qiao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Xingwei Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Bangbang Wu
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Meijun Guo
- College of Agriculture, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taigu, China
- Jinzhong University, Jinzhong, China
| | - Meichen Feng
- College of Agriculture, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taigu, China
| | - Zengjun Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Wude Yang
- College of Agriculture, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taigu, China.
| | - Jun Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China.
| |
Collapse
|
15
|
Zhao J, Zheng X, Qiao L, Yang C, Wu B, He Z, Tang Y, Li G, Yang Z, Zheng J, Qi Z. Genome-wide association study reveals structural chromosome variations with phenotypic effects in wheat (Triticum aestivum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1447-1461. [PMID: 36345647 DOI: 10.1111/tpj.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Structural chromosome variations (SCVs) are large-scale genomic variations that can be detected by fluorescence in situ hybridization (FISH). SCVs have played important roles in the genome evolution of wheat (Triticum aestivum L.), but little is known about their genetic effects. In this study, a total of 543 wheat accessions from the Chinese wheat mini-core collection and the Shanxi Province wheat collection were used for chromosome analysis using oligonucleotide probe multiplex FISH. A total of 139 SCVs including translocations, pericentric inversions, presence/absence variations (PAVs), and copy number variations (CNVs) in heterochromatin were identified at 230 loci. The distribution frequency of SCVs varied between ecological regions and between landraces and modern cultivars. Structural analysis using SCVs as markers clearly divided the landraces and modern cultivars into different groups. There are very clear instances illustrating alien introgression and wide application of foreign germplasms improved the chromosome diversity of Chinese modern wheat cultivars. A genome-wide association study (GWAS) identified 29 SCVs associated with 12 phenotypic traits, and five (RT4AS•4AL-1DS/1DL•1DS-4AL, Mg2A-3, Mr3B-10, Mr7B-13, and Mr4A-7) of them were further validated using a doubled haploid population and advanced sib-lines, implying the potential value of these SCVs. Importantly, the number of favored SCVs that were associated with agronomic trait improvement was significantly higher in modern cultivars compared to landraces, indicating positive selection in wheat breeding. This study demonstrates the significant effects of SCVs during wheat breeding and provides an efficient method of mining favored SCVs in wheat and other crops.
Collapse
Affiliation(s)
- Jiajia Zhao
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingwei Zheng
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
| | - Ling Qiao
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
| | - Chenkang Yang
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
| | - Bangbang Wu
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
| | - Ziming He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuqing Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangrong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu, 611731, China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu, 611731, China
| | - Jun Zheng
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
| | - Zengjun Qi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
16
|
Rönspies M, Schmidt C, Schindele P, Lieberman-Lazarovich M, Houben A, Puchta H. Massive crossover suppression by CRISPR-Cas-mediated plant chromosome engineering. NATURE PLANTS 2022; 8:1153-1159. [PMID: 36109610 DOI: 10.1038/s41477-022-01238-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/02/2022] [Indexed: 05/06/2023]
Abstract
Recent studies have demonstrated that not only genes but also entire chromosomes can be engineered using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPER-associated protein 9 (Cas9)1-5. A major objective of applying chromosome restructuring in plant breeding is the manipulation of genetic exchange6. Here we show that meiotic recombination can be suppressed in nearly the entire chromosome using chromosome restructuring. We were able to induce a heritable inversion of a >17 Mb-long chromosome fragment that contained the centromere and covered most of chromosome 2 of the Arabidopsis ecotype Col-0. Only the 2 and 0.5 Mb-long telomeric ends remained in their original orientation. In single-nucleotide polymorphism marker analysis of the offspring of crosses with the ecotype Ler-1, we detected a massive reduction of crossovers within the inverted chromosome region, coupled with a shift of crossovers to the telomeric ends. The few genetic exchanges detected within the inversion all originated from double crossovers. This not only indicates that heritable genetic exchange can occur by interstitial chromosome pairing, but also that it is restricted to the production of viable progeny.
Collapse
Affiliation(s)
- Michelle Rönspies
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Carla Schmidt
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Department of Vegetable and Field Crops, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
17
|
Samoluk SS, Vaio M, Ortíz AM, Chalup LMI, Robledo G, Bertioli DJ, Seijo G. Comparative repeatome analysis reveals new evidence on genome evolution in wild diploid Arachis (Fabaceae) species. PLANTA 2022; 256:50. [PMID: 35895167 DOI: 10.1007/s00425-022-03961-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Opposing changes in the abundance of satellite DNA and long terminal repeat (LTR) retroelements are the main contributors to the variation in genome size and heterochromatin amount in Arachis diploids. The South American genus Arachis (Fabaceae) comprises 83 species organized in nine taxonomic sections. Among them, section Arachis is characterized by species with a wide genome and karyotype diversity. Such diversity is determined mainly by the amount and composition of repetitive DNA. Here we performed computational analysis on low coverage genome sequencing to infer the dynamics of changes in major repeat families that led to the differentiation of genomes in diploid species (x = 10) of genus Arachis, focusing on section Arachis. Estimated repeat content ranged from 62.50 to 71.68% of the genomes. Species with different genome composition tended to have different landscapes of repeated sequences. Athila family retrotransposons were the most abundant and variable lineage among Arachis repeatomes, with peaks of transpositional activity inferred at different times in the evolution of the species. Satellite DNAs (satDNAs) were less abundant, but differentially represented among species. High rates of evolution of an AT-rich superfamily of satDNAs led to the differential accumulation of heterochromatin in Arachis genomes. The relationship between genome size variation and the repetitive content is complex. However, largest genomes presented a higher accumulation of LTR elements and lower contents of satDNAs. In contrast, species with lowest genome sizes tended to accumulate satDNAs in detriment of LTR elements. Phylogenetic analysis based on repetitive DNA supported the genome arrangement of section Arachis. Altogether, our results provide the most comprehensive picture on the repeatome dynamics that led to the genome differentiation of Arachis species.
Collapse
Affiliation(s)
- Sergio S Samoluk
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Corrientes, Argentina.
| | - Magdalena Vaio
- Laboratory of Plant Genome Evolution and Domestication, Department of Plant Biology, Faculty of Agronomy, University of the Republic, Montevideo, Uruguay
| | - Alejandra M Ortíz
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Corrientes, Argentina
| | - Laura M I Chalup
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Corrientes, Argentina
| | - Germán Robledo
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Corrientes, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - David J Bertioli
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Guillermo Seijo
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Corrientes, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina
| |
Collapse
|
18
|
Boideau F, Richard G, Coriton O, Huteau V, Belser C, Deniot G, Eber F, Falentin C, Ferreira de Carvalho J, Gilet M, Lodé-Taburel M, Maillet L, Morice J, Trotoux G, Aury JM, Chèvre AM, Rousseau-Gueutin M. Epigenomic and structural events preclude recombination in Brassica napus. THE NEW PHYTOLOGIST 2022; 234:545-559. [PMID: 35092024 DOI: 10.1111/nph.18004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Meiotic recombination is a major evolutionary process generating genetic diversity at each generation in sexual organisms. However, this process is highly regulated, with the majority of crossovers lying in the distal chromosomal regions that harbor low DNA methylation levels. Even in these regions, some islands without recombination remain, for which we investigated the underlying causes. Genetic maps were established in two Brassica napus hybrids to detect the presence of such large nonrecombinant islands. The role played by DNA methylation and structural variations in this local absence of recombination was determined by performing bisulfite sequencing and whole genome comparisons. Inferred structural variations were validated using either optical mapping or oligo fluorescence in situ hybridization. Hypermethylated or inverted regions between Brassica genomes were associated with the absence of recombination. Pairwise comparisons of nine B. napus genome assemblies revealed that such inversions occur frequently and may contain key agronomic genes such as resistance to biotic stresses. We conclude that such islands without recombination can have different origins, such as DNA methylation or structural variations in B. napus. It is thus essential to take into account these features in breeding programs as they may hamper the efficient combination of favorable alleles in elite varieties.
Collapse
Affiliation(s)
- Franz Boideau
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - Gautier Richard
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - Olivier Coriton
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - Virginie Huteau
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Gwenaelle Deniot
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - Frédérique Eber
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - Cyril Falentin
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | | | - Marie Gilet
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | | | - Loeiz Maillet
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - Jérôme Morice
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - Gwenn Trotoux
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | | | | |
Collapse
|
19
|
Gehrke F, Schindele A, Puchta H. Nonhomologous end joining as key to CRISPR/Cas-mediated plant chromosome engineering. PLANT PHYSIOLOGY 2022; 188:1769-1779. [PMID: 34893907 PMCID: PMC8968298 DOI: 10.1093/plphys/kiab572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/09/2021] [Indexed: 05/24/2023]
Abstract
Although clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-mediated gene editing has revolutionized biology and plant breeding, large-scale, heritable restructuring of plant chromosomes is still in its infancy. Duplications and inversions within a chromosome, and also translocations between chromosomes, can now be achieved. Subsequently, genetic linkages can be broken or can be newly created. Also, the order of genes on a chromosome can be changed. While natural chromosomal recombination occurs by homologous recombination during meiosis, CRISPR/Cas-mediated chromosomal rearrangements can be obtained best by harnessing nonhomologous end joining (NHEJ) pathways in somatic cells. NHEJ can be subdivided into the classical (cNHEJ) and alternative NHEJ (aNHEJ) pathways, which partially operate antagonistically. The cNHEJ pathway not only protects broken DNA ends from degradation but also suppresses the joining of previously unlinked broken ends. Hence, in the absence of cNHEJ, more inversions or translocations can be obtained which can be ascribed to the unrestricted use of the aNHEJ pathway for double-strand break (DSB) repair. In contrast to inversions or translocations, short tandem duplications can be produced by paired single-strand breaks via a Cas9 nickase. Interestingly, the cNHEJ pathway is essential for these kinds of duplications, whereas aNHEJ is required for patch insertions that can also be formed during DSB repair. As chromosome engineering has not only been accomplished in the model plant Arabidopsis (Arabidopsis thaliana) but also in the crop maize (Zea mays), we expect that this technology will soon transform the breeding process.
Collapse
Affiliation(s)
- Fabienne Gehrke
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Angelina Schindele
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| |
Collapse
|
20
|
Fuentes RR, de Ridder D, van Dijk ADJ, Peters SA. Domestication shapes recombination patterns in tomato. Mol Biol Evol 2021; 39:6379725. [PMID: 34597400 PMCID: PMC8763028 DOI: 10.1093/molbev/msab287] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Meiotic recombination is a biological process of key importance in breeding, to generate genetic diversity and develop novel or agronomically relevant haplotypes. In crop tomato, recombination is curtailed as manifested by linkage disequilibrium decay over a longer distance and reduced diversity compared with wild relatives. Here, we compared domesticated and wild populations of tomato and found an overall conserved recombination landscape, with local changes in effective recombination rate in specific genomic regions. We also studied the dynamics of recombination hotspots resulting from domestication and found that loss of such hotspots is associated with selective sweeps, most notably in the pericentromeric heterochromatin. We detected footprints of genetic changes and structural variants, among them associated with transposable elements, linked with hotspot divergence during domestication, likely causing fine-scale alterations to recombination patterns and resulting in linkage drag.
Collapse
Affiliation(s)
- Roven Rommel Fuentes
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB The Netherlands
| | - Sander A Peters
- Applied Bioinformatics, Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| |
Collapse
|
21
|
Sharma SP, Zuo T, Peterson T. Transposon-induced inversions activate gene expression in the maize pericarp. Genetics 2021; 218:iyab062. [PMID: 33905489 PMCID: PMC8225341 DOI: 10.1093/genetics/iyab062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022] Open
Abstract
Chromosomal inversions can have considerable biological and agronomic impacts including disrupted gene function, change in gene expression, and inhibited recombination. Here, we describe the molecular structure and functional impact of six inversions caused by Alternative Transpositions between p1 and p2 genes responsible for floral pigmentation in maize. In maize line p1-wwB54, the p1 gene is null and the p2 gene is expressed in anther and silk but not in pericarp, making the kernels white. By screening for kernels with red pericarp, we identified inversions in this region caused by transposition of Ac and fractured Ac (fAc) transposable elements. We hypothesize that these inversions place the p2 gene promoter near a p1 gene enhancer, thereby activating p2 expression in kernel pericarp. To our knowledge, this is the first report of multiple recurrent inversions that change the position of a gene promoter relative to an enhancer to induce ectopic expression in a eukaryote.
Collapse
Affiliation(s)
- Sharu Paul Sharma
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Tao Zuo
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Thomas Peterson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
22
|
Rönspies M, Dorn A, Schindele P, Puchta H. CRISPR-Cas-mediated chromosome engineering for crop improvement and synthetic biology. NATURE PLANTS 2021; 7:566-573. [PMID: 33958776 DOI: 10.1038/s41477-021-00910-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/31/2021] [Indexed: 05/20/2023]
Abstract
Plant breeding relies on the presence of genetic variation, as well as on the ability to break or stabilize genetic linkages between traits. The development of the genome-editing tool clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) has allowed breeders to induce genetic variability in a controlled and site-specific manner, and to improve traits with high efficiency. However, the presence of genetic linkages is a major obstacle to the transfer of desirable traits from wild species to their cultivated relatives. One way to address this issue is to create mutants with deficiencies in the meiotic recombination machinery, thereby enhancing global crossover frequencies between homologous parental chromosomes. Although this seemed to be a promising approach at first, thus far, no crossover frequencies could be enhanced in recombination-cold regions of the genome. Additionally, this approach can lead to unintended genomic instabilities due to DNA repair defects. Therefore, efforts have been undertaken to obtain predefined crossovers between homologues by inducing site-specific double-strand breaks (DSBs) in meiotic, as well as in somatic plant cells using CRISPR-Cas tools. However, this strategy has not been able to produce a substantial number of heritable homologous recombination-based crossovers. Most recently, heritable chromosomal rearrangements, such as inversions and translocations, have been obtained in a controlled way using CRISPR-Cas in plants. This approach unlocks a completely new way of manipulating genetic linkages, one in which the DSBs are induced in somatic cells, enabling the formation of chromosomal rearrangements in the megabase range, by DSB repair via non-homologous end-joining. This technology might also enable the restructuring of genomes more globally, resulting in not only the obtainment of synthetic plant chromosome, but also of novel plant species.
Collapse
Affiliation(s)
- Michelle Rönspies
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Annika Dorn
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
23
|
Göktay M, Fulgione A, Hancock AM. A New Catalog of Structural Variants in 1,301 A. thaliana Lines from Africa, Eurasia, and North America Reveals a Signature of Balancing Selection at Defense Response Genes. Mol Biol Evol 2021; 38:1498-1511. [PMID: 33247723 PMCID: PMC8042739 DOI: 10.1093/molbev/msaa309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genomic variation in the model plant Arabidopsis thaliana has been extensively used to understand evolutionary processes in natural populations, mainly focusing on single-nucleotide polymorphisms. Conversely, structural variation has been largely ignored in spite of its potential to dramatically affect phenotype. Here, we identify 155,440 indels and structural variants ranging in size from 1 bp to 10 kb, including presence/absence variants (PAVs), inversions, and tandem duplications in 1,301 A. thaliana natural accessions from Morocco, Madeira, Europe, Asia, and North America. We show evidence for strong purifying selection on PAVs in genes, in particular for housekeeping genes and homeobox genes, and we find that PAVs are concentrated in defense-related genes (R-genes, secondary metabolites) and F-box genes. This implies the presence of a "core" genome underlying basic cellular processes and a "flexible" genome that includes genes that may be important in spatially or temporally varying selection. Further, we find an excess of intermediate frequency PAVs in defense response genes in nearly all populations studied, consistent with a history of balancing selection on this class of genes. Finally, we find that PAVs in genes involved in the cold requirement for flowering (vernalization) and drought response are strongly associated with temperature at the sites of origin.
Collapse
Affiliation(s)
- Mehmet Göktay
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrea Fulgione
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Angela M Hancock
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
24
|
Ngoot-Chin T, Zulkifli MA, van de Weg E, Zaki NM, Serdari NM, Mustaffa S, Zainol Abidin MI, Sanusi NSNM, Smulders MJM, Low ETL, Ithnin M, Singh R. Detection of ploidy and chromosomal aberrations in commercial oil palm using high-throughput SNP markers. PLANTA 2021; 253:63. [PMID: 33544231 DOI: 10.1007/s00425-021-03567-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 05/14/2023]
Abstract
Karyotyping using high-density genome-wide SNP markers identified various chromosomal aberrations in oil palm (Elaeis guineensis Jacq.) with supporting evidence from the 2C DNA content measurements (determined using FCM) and chromosome counts. Oil palm produces a quarter of the world's total vegetable oil. In line with its global importance, an initiative to sequence the oil palm genome was carried out successfully, producing huge amounts of sequence information, allowing SNP discovery. High-capacity SNP genotyping platforms have been widely used for marker-trait association studies in oil palm. Besides genotyping, a SNP array is also an attractive tool for understanding aberrations in chromosome inheritance. Exploiting this, the present study utilized chromosome-wide SNP allelic distributions to determine the ploidy composition of over 1,000 oil palms from a commercial F1 family, including 197 derived from twin-embryo seeds. Our method consisted of an inspection of the allelic intensity ratio using SNP markers. For palms with a shifted or abnormal distribution ratio, the SNP allelic frequencies were plotted along the pseudo-chromosomes. This method proved to be efficient in identifying whole genome duplication (triploids) and aneuploidy. We also detected several loss of heterozygosity regions which may indicate small chromosomal deletions and/or inheritance of identical by descent regions from both parents. The SNP analysis was validated by flow cytometry and chromosome counts. The triploids were all derived from twin-embryo seeds. This is the first report on the efficiency and reliability of SNP array data for karyotyping oil palm chromosomes, as an alternative to the conventional cytogenetic technique. Information on the ploidy composition and chromosomal structural variation can help to better understand the genetic makeup of samples and lead to a more robust interpretation of the genomic data in marker-trait association analyses.
Collapse
Affiliation(s)
- Ting Ngoot-Chin
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Muhammad Azwan Zulkifli
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Eric van de Weg
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Noorhariza Mohd Zaki
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Norhalida Mohamed Serdari
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Suzana Mustaffa
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Mohd Isa Zainol Abidin
- Plant Breeding and Services Department, KULIM Plantations Berhad, 81900, Kota Tinggi, Johor, Malaysia
| | - Nik Shazana Nik Mohd Sanusi
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | | | - Eng Ti Leslie Low
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Maizura Ithnin
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Rajinder Singh
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
25
|
Rönspies M, Schindele P, Puchta H. CRISPR/Cas-mediated chromosome engineering: opening up a new avenue for plant breeding. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:177-183. [PMID: 33258473 DOI: 10.1093/jxb/eraa463] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/03/2020] [Indexed: 05/21/2023]
Abstract
The advent of powerful site-specific nucleases, particularly the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system, which enables precise genome manipulation, has revolutionized plant breeding. Until recently, the main focus of researchers has been to simply knock-in or knock-out single genes, or to induce single base changes, but constant improvements of this technology have enabled more ambitious applications that aim to improve plant productivity or other desirable traits. One long-standing aim has been the induction of targeted chromosomal rearrangements (crossovers, inversions, or translocations). The feasibility of this technique has the potential to transform plant breeding, because natural rearrangements, like inversions, for example, typically present obstacles to the breeding process. In this way, genetic linkages between traits could be altered to combine or separate favorable and deleterious genes, respectively. In this review, we discuss recent breakthroughs in the field of chromosome engineering in plants and their potential applications in the field of plant breeding. In the future, these approaches might be applicable in shaping plant chromosomes in a directed manner, based on plant breeding needs.
Collapse
Affiliation(s)
- Michelle Rönspies
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, Karlsruhe, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, Karlsruhe, Germany
| |
Collapse
|
26
|
Lee SW, Kwon YJ, Baek I, Choi HI, Ahn JW, Kim JB, Kang SY, Kim SH, Jo YD. Mutagenic Effect of Proton Beams Characterized by Phenotypic Analysis and Whole Genome Sequencing in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:752108. [PMID: 34777430 PMCID: PMC8581144 DOI: 10.3389/fpls.2021.752108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/05/2021] [Indexed: 05/19/2023]
Abstract
Protons may have contributed to the evolution of plants as a major component of cosmic-rays and also have been used for mutagenesis in plants. Although the mutagenic effect of protons has been well-characterized in animals, no comprehensive phenotypic and genomic analyses has been reported in plants. Here, we investigated the phenotypes and whole genome sequences of Arabidopsis M2 lines derived by irradiation with proton beams and gamma-rays, to determine unique characteristics of proton beams in mutagenesis. We found that mutation frequency was dependent on the irradiation doses of both proton beams and gamma-rays. On the basis of the relationship between survival and mutation rates, we hypothesized that there may be a mutation rate threshold for survived individuals after irradiation. There were no significant differences between the total mutation rates in groups derived using proton beam or gamma-ray irradiation at doses that had similar impacts on survival rate. However, proton beam irradiation resulted in a broader mutant phenotype spectrum than gamma-ray irradiation, and proton beams generated more DNA structural variations (SVs) than gamma-rays. The most frequent SV was inversion. Most of the inversion junctions contained sequences with microhomology and were associated with the deletion of only a few nucleotides, which implies that preferential use of microhomology in non-homologous end joining was likely to be responsible for the SVs. These results show that protons, as particles with low linear energy transfer (LET), have unique characteristics in mutagenesis that partially overlap with those of low-LET gamma-rays and high-LET heavy ions in different respects.
Collapse
Affiliation(s)
- Sang Woo Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Yu-Jeong Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
- Department of Horticulture, Chonbuk National University, Jeonju-si, South Korea
| | - Inwoo Baek
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Si-Yong Kang
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan-gun, South Korea
| | - Sang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Yeong Deuk Jo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
- *Correspondence: Yeong Deuk Jo,
| |
Collapse
|
27
|
Matsusaka D, Filiault D, Sanchez DH, Botto JF. Ultra-High-Density QTL Marker Mapping for Seedling Photomorphogenesis Mediating Arabidopsis Establishment in Southern Patagonia. FRONTIERS IN PLANT SCIENCE 2021; 12:677728. [PMID: 34367202 PMCID: PMC8343176 DOI: 10.3389/fpls.2021.677728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/22/2021] [Indexed: 05/15/2023]
Abstract
Arabidopsis thaliana shows a wide range of genetic and trait variation among wild accessions. Because of its unparalleled biological and genomic resources, Arabidopsis has a high potential for the identification of genes underlying ecologically important complex traits, thus providing new insights on genome evolution. Previous research suggested that distinct light responses were crucial for Arabidopsis establishment in a peculiar ecological niche of southern Patagonia. The aim of this study was to explore the genetic basis of contrasting light-associated physiological traits that may have mediated the rapid adaptation to this new environment. From a biparental cross between the photomorphogenic contrasting accessions Patagonia (Pat) and Columbia (Col-0), we generated a novel recombinant inbred line (RIL) population, which was entirely next-generation sequenced to achieve ultra-high-density saturating molecular markers resulting in supreme mapping sensitivity. We validated the quality of the RIL population by quantitative trait loci (QTL) mapping for seedling de-etiolation, finding seven QTLs for hypocotyl length in the dark and continuous blue light (Bc), continuous red light (Rc), and continuous far-red light (FRc). The most relevant QTLs, Rc1 and Bc1, were mapped close together to chromosome V; the former for Rc and Rc/dark, and the latter for Bc, FRc, and dark treatments. The additive effects of both QTLs were confirmed by independent heterogeneous inbred families (HIFs), and we explored TZP and ABA1 as potential candidate genes for Rc1 and Bc1QTLs, respectively. We conclude that the Pat × Col-0 RIL population is a valuable novel genetic resource to explore other adaptive traits in Arabidopsis.
Collapse
Affiliation(s)
- Daniel Matsusaka
- IFEVA, UBA, CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniele Filiault
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Diego H. Sanchez
- IFEVA, UBA, CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier F. Botto
- IFEVA, UBA, CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Javier F. Botto,
| |
Collapse
|
28
|
Maney DL, Merritt JR, Prichard MR, Horton BM, Yi SV. Inside the supergene of the bird with four sexes. Horm Behav 2020; 126:104850. [PMID: 32937166 PMCID: PMC7725849 DOI: 10.1016/j.yhbeh.2020.104850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
Abstract
The white-throated sparrow (Zonotrichia albicollis) offers unique opportunities to understand the adaptive value of supergenes, particularly their role in alternative phenotypes. In this species, alternative plumage morphs segregate with a nonrecombining segment of chromosome 2, which has been called a 'supergene'. The species mates disassortatively with respect to the supergene; that is, each breeding pair consists of one individual with it and one without it. This species has therefore been called the "bird with four sexes". The supergene segregates with a behavioral phenotype; birds with it are more aggressive and less parental than birds without it. Here, we review our efforts to identify the genes inside the supergene that are responsible for the behavioral polymorphism. The gene ESR1, which encodes estrogen receptor α, differs between the morphs and predicts both territorial and parental behavior. Variation in the regulatory regions of ESR1 causes an imbalance in expression of the two alleles, and the degree to which this imbalance favors the supergene allele predicts territorial singing. In heterozygotes, knockdown of ESR1 causes a phenotypic switch, from more aggressive to less aggressive. We recently showed that another gene important for social behavior, vasoactive intestinal peptide (VIP), is differentially expressed between the morphs and predicts territorial singing. We hypothesize that ESR1 and VIP contribute to behavior in a coordinated way and could represent co-adapted alleles. Because the supergene contains more than 1000 individual genes, this species provides rich possibilities for discovering alleles that work together to mediate life-history trade-offs and maximize the fitness of alternative complex phenotypes.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA, USA.
| | | | | | - Brent M Horton
- Department of Biology, Millersville University, Millersville, PA, USA
| | - Soojin V Yi
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
29
|
Ali HBM, Osman SA. Ribosomal DNA localization on Lathyrus species chromosomes by FISH. J Genet Eng Biotechnol 2020; 18:63. [PMID: 33079306 PMCID: PMC7575666 DOI: 10.1186/s43141-020-00075-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fluorescence In Situ Hybridization (FISH) played an essential role to locate the ribosomal RNA genes on the chromosomes that offered a new tool to study the chromosome structure and evolution in plant. The 45S and 5S rRNA genes are independent and localized at one or more loci per the chromosome complement, their positions along chromosomes offer useful markers for chromosome discriminations. In the current study FISH has been performed to locate 45S and 5S rRNA genes on the chromosomes of nine Lathyrus species belong to five different sections, all have chromosome number 2n=14, Lathyrus gorgoni Parl, Lathyrus hirsutus L., Lathyrus amphicarpos L., Lathyrus odoratus L., Lathyrus sphaericus Retz, Lathyrus incospicuus L, Lathyrus paranensis Burkart, Lathyrus nissolia L., and Lathyrus articulates L. RESULTS The revealed loci of 45S and 5S rDNA by FISH on metaphase chromosomes of the examined species were as follow: all of the studied species have one 45S rDNA locus and one 5S rDNA locus except L. odoratus L., L. amphicarpos L. and L. sphaericus Retz L. have two loci of 5S rDNA. Three out of the nine examined species have the loci of 45S and 5S rRNA genes on the opposite arms of the same chromosome (L. nissolia L., L. amphicarpos L., and L. incospicuus L.), while L. hirsutus L. has both loci on the same chromosome arm. The other five species showed the loci of the two types of rDNA on different chromosomes. CONCLUSION The detected 5S and 45S rDNA loci in Lathyrus could be used as chromosomal markers to discriminate the chromosome pairs of the examined species. FISH could discriminate only one chromosome pair out of the seven pairs in three species, in L. hirsutus L., L. nissolia L. and L. incospicuus L., and two chromosome pairs in five species, in L. paranensis Burkart, L. odoratus L., L. amphicarpos L., L. gorgoni Parl. and L. articulatus L., while it could discriminate three chromosome pairs in L. sphaericus Retz. these results could contribute into the physical genome mapping of Lathyrus species and the evolution of rDNA patterns by FISH in the coming studies in future.
Collapse
Affiliation(s)
- Hoda B. M. Ali
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, P.O. 12622 Egypt
| | - Samira A. Osman
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, P.O. 12622 Egypt
| |
Collapse
|
30
|
Schmidt C, Fransz P, Rönspies M, Dreissig S, Fuchs J, Heckmann S, Houben A, Puchta H. Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering. Nat Commun 2020. [PMID: 32887885 DOI: 10.10382/fs41467-020-18277-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Chromosomal inversions are recurrent rearrangements that occur between different plant isolates or cultivars. Such inversions may underlie reproductive isolation in evolution and represent a major obstacle for classical breeding as no crossovers can be observed between inverted sequences on homologous chromosomes. The heterochromatic knob (hk4S) on chromosome 4 is the most well-known inversion of Arabidopsis. If a knob carrying accession such as Col-0 is crossed with a knob-less accession such as Ler-1, crossovers cannot be recovered within the inverted region. Our work shows that by egg-cell specific expression of the Cas9 nuclease from Staphylococcus aureus, a targeted reversal of the 1.1 Mb long hk4S-inversion can be achieved. By crossing Col-0 harbouring the rearranged chromosome 4 with Ler-1, meiotic crossovers can be restored into a region with previously no detectable genetic exchange. The strategy of somatic chromosome engineering for breaking genetic linkage has huge potential for application in plant breeding.
Collapse
Affiliation(s)
- Carla Schmidt
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133, Karlsruhe, Germany
| | - Paul Fransz
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute of Life Sciences, University of Amsterdam, Postbus 1210, 1000 BE, Amsterdam, Netherlands
| | - Michelle Rönspies
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133, Karlsruhe, Germany
| | - Steven Dreissig
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle Wittenberg, Karl-Freiherr-von-Fritsch-Str. 4, 06120, Halle, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Gatersleben, Germany
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Gatersleben, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Gatersleben, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133, Karlsruhe, Germany.
| |
Collapse
|
31
|
Schmidt C, Fransz P, Rönspies M, Dreissig S, Fuchs J, Heckmann S, Houben A, Puchta H. Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering. Nat Commun 2020; 11:4418. [PMID: 32887885 PMCID: PMC7474074 DOI: 10.1038/s41467-020-18277-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/12/2020] [Indexed: 01/20/2023] Open
Abstract
Chromosomal inversions are recurrent rearrangements that occur between different plant isolates or cultivars. Such inversions may underlie reproductive isolation in evolution and represent a major obstacle for classical breeding as no crossovers can be observed between inverted sequences on homologous chromosomes. The heterochromatic knob (hk4S) on chromosome 4 is the most well-known inversion of Arabidopsis. If a knob carrying accession such as Col-0 is crossed with a knob-less accession such as Ler-1, crossovers cannot be recovered within the inverted region. Our work shows that by egg-cell specific expression of the Cas9 nuclease from Staphylococcus aureus, a targeted reversal of the 1.1 Mb long hk4S-inversion can be achieved. By crossing Col-0 harbouring the rearranged chromosome 4 with Ler-1, meiotic crossovers can be restored into a region with previously no detectable genetic exchange. The strategy of somatic chromosome engineering for breaking genetic linkage has huge potential for application in plant breeding.
Collapse
Affiliation(s)
- Carla Schmidt
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133, Karlsruhe, Germany
| | - Paul Fransz
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute of Life Sciences, University of Amsterdam, Postbus 1210, 1000 BE, Amsterdam, Netherlands
| | - Michelle Rönspies
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133, Karlsruhe, Germany
| | - Steven Dreissig
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle Wittenberg, Karl-Freiherr-von-Fritsch-Str. 4, 06120, Halle, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Gatersleben, Germany
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Gatersleben, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Gatersleben, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133, Karlsruhe, Germany.
| |
Collapse
|
32
|
Pan Y, Wen C, Han Y, Wang Y, Li Y, Li S, Cheng X, Weng Y. QTL for horticulturally important traits associated with pleiotropic andromonoecy and carpel number loci, and a paracentric inversion in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2271-2290. [PMID: 32306094 DOI: 10.1007/s00122-020-03596-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
The legendary cucumber inbred line WI2757 possesses a rare combination of resistances against nine pathogens, which is an important germplasm for cucumber breeding. However, WI2757 flowers late and does not perform well under field conditions. The genetic basis for horticulturally important traits other than disease resistances in WI2757 is largely unknown. In this study, we conducted QTL mapping using F2 and recombinant inbred line (RIL) populations from the WI2757 × True Lemon cross that were segregating for multiple traits. Phenotypic data were collected in replicated field trials across multiple years for seven traits including fruit carpel number (CN) and sex expression. A high-density SNP-based genetic map was developed with genotyping by sequencing of the RIL population, which revealed a region on chromosome 1 with strong recombination suppression. The reduced recombination in this region was due to a ~ 10-Mbp paracentric inversion in WI2757 that was confirmed with additional segregation and cytological (FISH) analyses. Thirty-six QTL were detected for flowering time, fruit length (FL), fruit diameter (FD), fruit shape (LD), fruit number (FN), CN, and powdery mildew resistance. Five moderate- or major-effect QTL for FL, FD, LD, and FN inside the inversion are likely the pleiotropic effects of the andromonoecy (m), or the cn locus. The major-effect flowering time QTL ft1.1 was also mapped inside the inversion, which seems to be different from the previously assigned delayed flowering in WI2757. Implications of these findings on the use of WI2757 in cucumber breeding are discussed.
Collapse
Affiliation(s)
- Yupeng Pan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Changlong Wen
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Yonghua Han
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yuhui Wang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sen Li
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Horticulture College, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaomao Cheng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, 1575 Linden Dr., Madison, WI, 53706, USA.
| |
Collapse
|
33
|
Nishitsuji K, Arimoto A, Yonashiro Y, Hisata K, Fujie M, Kawamitsu M, Shoguchi E, Satoh N. Comparative genomics of four strains of the edible brown alga, Cladosiphon okamuranus. BMC Genomics 2020; 21:422. [PMID: 32586267 PMCID: PMC7318753 DOI: 10.1186/s12864-020-06792-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/21/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The brown alga, Cladosiphon okamuranus (Okinawa mozuku), is one of the most important edible seaweeds, and it is cultivated for market primarily in Okinawa, Japan. Four strains, denominated S, K, O, and C, with distinctively different morphologies, have been cultivated commercially since the early 2000s. We previously reported a draft genome of the S-strain. To facilitate studies of seaweed biology for future aquaculture, we here decoded and analyzed genomes of the other three strains (K, O, and C). RESULTS Here we improved the genome of the S-strain (ver. 2, 130 Mbp, 12,999 genes), and decoded the K-strain (135 Mbp, 12,511 genes), the O-strain (140 Mbp, 12,548 genes), and the C-strain (143 Mbp, 12,182 genes). Molecular phylogenies, using mitochondrial and nuclear genes, showed that the S-strain diverged first, followed by the K-strain, and most recently the C- and O-strains. Comparisons of genome architecture among the four strains document the frequent occurrence of inversions. In addition to gene acquisitions and losses, the S-, K-, O-, and C-strains possess 457, 344, 367, and 262 gene families unique to each strain, respectively. Comprehensive Blast searches showed that most genes have no sequence similarity to any entries in the non-redundant protein sequence database, although GO annotation suggested that they likely function in relation to molecular and biological processes and cellular components. CONCLUSIONS Our study compares the genomes of four strains of C. okamuranus and examines their phylogenetic relationships. Due to global environmental changes, including temperature increases, acidification, and pollution, brown algal aquaculture is facing critical challenges. Genomic and phylogenetic information reported by the present research provides useful tools for isolation of novel strains.
Collapse
Affiliation(s)
- Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| | - Asuka Arimoto
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
- Present address: Marine Biological Laboratory, Graduate School of Integrated Sciences for Life, Hiroshima University, Onomichi, Hiroshima, 722-0073, Japan
| | - Yoshitaka Yonashiro
- Okinawa Prefectural Fisheries Research and Extension Center, Itoman, Okinawa, 901-0354, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Mayumi Kawamitsu
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
34
|
Mandáková T, Hloušková P, Windham MD, Mitchell-Olds T, Ashby K, Price B, Carman J, Lysak MA. Chromosomal Evolution and Apomixis in the Cruciferous Tribe Boechereae. FRONTIERS IN PLANT SCIENCE 2020; 11:514. [PMID: 32547569 PMCID: PMC7270200 DOI: 10.3389/fpls.2020.00514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/06/2020] [Indexed: 05/25/2023]
Abstract
The mustard family (Brassicaceae) comprises several dozen monophyletic clades usually ranked as tribes. The tribe Boechereae plays a prominent role in plant research due to the incidence of apomixis and its close relationship to Arabidopsis. This tribe, largely confined to western North America, harbors nine genera and c. 130 species, with >90% of species belonging to the genus Boechera. Hundreds of apomictic diploid and triploid Boechera hybrids have spurred interest in this genus, but the remaining Boechereae genomes remain virtually unstudied. Here we report on comparative genome structure of six genera (Borodinia, Cusickiella, Phoenicaulis, Polyctenium, Nevada, and Sandbergia) and three Boechera species as revealed by comparative chromosome painting (CCP). All analyzed taxa shared the same seven-chromosome genome structure. Comparisons with the sister Halimolobeae tribe (n = 8) showed that the ancestral Boechereae genome (n = 7) was derived from an older n = 8 genome by descending dysploidy followed by the divergence of extant Boechereae taxa. As tribal divergence post-dated the origin of four tribe-specific chromosomes, it is proposed that these chromosomal rearrangements were a key evolutionary innovation underlaying the origin and diversification of the Boechereae in North America. Although most Boechereae genera exhibit genomic conservatism, intra-tribal cladogenesis has occasionally been accompanied by chromosomal rearrangements (particularly inversions). Recently, apomixis was reported in the Boechereae genera Borodinia and Phoenicaulis. Here, we report sexual reproduction in diploid Nevada, diploid Sandbergia, and tetraploid Cusickiella and aposporous apomixis in tetraploids of Polyctenium and Sandbergia. In sum, apomixis is now known to occur in five of the nine Boechereae genera.
Collapse
Affiliation(s)
| | | | | | | | - Kaylynn Ashby
- Plants, Soils, and Climate Department, Utah State University, Logan, UT, United States
| | - Bo Price
- Plants, Soils, and Climate Department, Utah State University, Logan, UT, United States
| | - John Carman
- Plants, Soils, and Climate Department, Utah State University, Logan, UT, United States
| | | |
Collapse
|
35
|
Huang K, Rieseberg LH. Frequency, Origins, and Evolutionary Role of Chromosomal Inversions in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:296. [PMID: 32256515 DOI: 10.3389/fpls.2020.00296/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/27/2020] [Indexed: 05/24/2023]
Abstract
Chromosomal inversions have the potential to play an important role in evolution by reducing recombination between favorable combinations of alleles. Until recently, however, most evidence for their likely importance derived from dipteran flies, whose giant larval salivary chromosomes aided early cytogenetic studies. The widespread application of new genomic technologies has revealed that inversions are ubiquitous across much of the plant and animal kingdoms. Here we review the rapidly accumulating literature on inversions in the plant kingdom and discuss what we have learned about their establishment and likely evolutionary role. We show that inversions are prevalent across a wide range of plant groups. We find that inversions are often associated with locally favored traits, as well as with traits that contribute to assortative mating, suggesting that they may be key to adaptation and speciation in the face of gene flow. We also discuss the role of inversions in sex chromosome formation, and explore possible parallels with inversion establishment on autosomes. The identification of inversion origins, as well as the causal variants within them, will advance our understanding of chromosomal evolution in plants.
Collapse
Affiliation(s)
- Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
36
|
Huang K, Rieseberg LH. Frequency, Origins, and Evolutionary Role of Chromosomal Inversions in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:296. [PMID: 32256515 PMCID: PMC7093584 DOI: 10.3389/fpls.2020.00296] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/27/2020] [Indexed: 05/11/2023]
Abstract
Chromosomal inversions have the potential to play an important role in evolution by reducing recombination between favorable combinations of alleles. Until recently, however, most evidence for their likely importance derived from dipteran flies, whose giant larval salivary chromosomes aided early cytogenetic studies. The widespread application of new genomic technologies has revealed that inversions are ubiquitous across much of the plant and animal kingdoms. Here we review the rapidly accumulating literature on inversions in the plant kingdom and discuss what we have learned about their establishment and likely evolutionary role. We show that inversions are prevalent across a wide range of plant groups. We find that inversions are often associated with locally favored traits, as well as with traits that contribute to assortative mating, suggesting that they may be key to adaptation and speciation in the face of gene flow. We also discuss the role of inversions in sex chromosome formation, and explore possible parallels with inversion establishment on autosomes. The identification of inversion origins, as well as the causal variants within them, will advance our understanding of chromosomal evolution in plants.
Collapse
Affiliation(s)
- Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Loren H. Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
Lee K, Kim MS, Lee JS, Bae DN, Jeong N, Yang K, Lee JD, Park JH, Moon JK, Jeong SC. Chromosomal features revealed by comparison of genetic maps of Glycine max and Glycine soja. Genomics 2020; 112:1481-1489. [PMID: 31461668 DOI: 10.1016/j.ygeno.2019.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/08/2019] [Accepted: 08/24/2019] [Indexed: 11/18/2022]
Abstract
Recombination is a crucial component of evolution and breeding. New combinations of variation on chromosomes are shaped by recombination. Recombination is also involved in chromosomal rearrangements. However, recombination rates vary tremendously among chromosome segments. Genome-wide genetic maps are one of the best tools to study variation of recombination. Here, we describe high density genetic maps of Glycine max and Glycine soja constructed from four segregating populations. The maps were used to identify chromosomal rearrangements and find the highly predictable pattern of cross-overs on the broad scale in soybean. Markers on these genetic maps were used to evaluate assembly quality of the current soybean reference genome sequence. We find a strong inversion candidate larger than 3 Mb based on patterns of cross-overs. We also identify quantitative trait loci (QTL) that control number of cross-overs. This study provides fundamental insights relevant to practical strategy for breeding programs and for pan-genome researches.
Collapse
Affiliation(s)
- Kwanghee Lee
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Myung-Shin Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Ju Seok Lee
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Dong Nyuk Bae
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Namhee Jeong
- National Institute of Crop Science, Rural Development Administration, Wanju, Jeonbuk 55365, Republic of Korea
| | - Kiwoung Yang
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; Present address, Geolim Pharmaceutical Co., Ltd, QB e centum, 2307, Centumjunggang-ro 90, Heaundae-gu, Busan, Republic of Korea
| | - Jeong-Dong Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Jung-Kyung Moon
- Agricultural Genome Center, National Academy of Agricultural Sciences, Rural Development Administration, Jeonju, Jeonbuk 55365, Republic of Korea
| | - Soon-Chun Jeong
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea.
| |
Collapse
|
38
|
Schmidt C, Schindele P, Puchta H. From gene editing to genome engineering: restructuring plant chromosomes via CRISPR/Cas. ABIOTECH 2020; 1:21-31. [PMID: 36305002 PMCID: PMC9584095 DOI: 10.1007/s42994-019-00002-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/03/2019] [Indexed: 01/16/2023]
Abstract
In the last years, tremendous progress has been achieved in the field of gene editing in plants. By the induction of single site-specific double-strand breaks (DSBs), the knockout of genes by non-homologous end joining has become routine in many plant species. Recently, the efficiency of inducing pre-planned mutations by homologous recombination has also been improved considerably. However, very little effort has been undertaken until now to achieve more complex changes in plant genomes by the simultaneous induction of several DSBs. Several reports have been published on the efficient induction of deletions. However, the induction of intrachromosomal inversions and interchromosomal recombination by the use of CRISPR/Cas has only recently been reported. In this review, we want to sum up these results and put them into context with regards to what is known about natural chromosome rearrangements in plants. Moreover, we review the recent progress in CRISPR/Cas-based mammalian chromosomal rearrangements, which might be inspiring for plant biologists. In the long run, the controlled restructuring of plant genomes should enable us to link or break linkage of traits at will, thus defining a new area of plant breeding.
Collapse
Affiliation(s)
- Carla Schmidt
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76133 Karlsruhe, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76133 Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76133 Karlsruhe, Germany
| |
Collapse
|
39
|
Boutte J, Maillet L, Chaussepied T, Letort S, Aury JM, Belser C, Boideau F, Brunet A, Coriton O, Deniot G, Falentin C, Huteau V, Lodé-Taburel M, Morice J, Trotoux G, Chèvre AM, Rousseau-Gueutin M, Ferreira de Carvalho J. Genome Size Variation and Comparative Genomics Reveal Intraspecific Diversity in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2020; 11:577536. [PMID: 33281844 PMCID: PMC7689015 DOI: 10.3389/fpls.2020.577536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/24/2020] [Indexed: 05/07/2023]
Abstract
Traditionally, reference genomes in crop species rely on the assembly of one accession, thus occulting most of intraspecific diversity. However, rearrangements, gene duplications, and transposable element content may have a large impact on the genomic structure, which could generate new phenotypic traits. Comparing two Brassica rapa genomes recently sequenced and assembled using long-read technology and optical mapping, we investigated structural variants and repetitive content between the two accessions and genome size variation among a core collection. We explored the structural consequences of the presence of large repeated sequences in B. rapa 'Z1' genome vs. the B. rapa 'Chiifu' genome, using comparative genomics and cytogenetic approaches. First, we showed that large genomic variants on chromosomes A05, A06, A09, and A10 are due to large insertions and inversions when comparing B. rapa 'Z1' and B. rapa 'Chiifu' at the origin of important length differences in some chromosomes. For instance, lengths of 'Z1' and 'Chiifu' A06 chromosomes were estimated in silico to be 55 and 29 Mb, respectively. To validate these observations, we compared using fluorescent in situ hybridization (FISH) the two A06 chromosomes present in an F1 hybrid produced by crossing these two varieties. We confirmed a length difference of 17.6% between the A06 chromosomes of 'Z1' compared to 'Chiifu.' Alternatively, using a copy number variation approach, we were able to quantify the presence of a higher number of rDNA and gypsy elements in 'Z1' genome compared to 'Chiifu' on different chromosomes including A06. Using flow cytometry, the total genome size of 12 Brassica accessions corresponding to a B. rapa available core collection was estimated and revealed a genome size variation of up to 16% between these accessions as well as some shared inversions. This study revealed the contribution of long-read sequencing of new accessions belonging to different cultigroups of B. rapa and highlighted the potential impact of differential insertion of repeat elements and inversions of large genomic regions in genome size intraspecific variability.
Collapse
Affiliation(s)
- Julien Boutte
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
- *Correspondence: Julien Boutte,
| | - Loeiz Maillet
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
| | | | | | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut de biologie François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut de biologie François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Franz Boideau
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
| | - Anael Brunet
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
| | | | | | - Cyril Falentin
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
| | | | | | - Jérôme Morice
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
| | - Gwenn Trotoux
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
| | | | | | | |
Collapse
|
40
|
Termolino P, Falque M, Aiese Cigliano R, Cremona G, Paparo R, Ederveen A, Martin OC, Consiglio FM, Conicella C. Recombination suppression in heterozygotes for a pericentric inversion induces the interchromosomal effect on crossovers in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1163-1175. [PMID: 31436858 PMCID: PMC6973161 DOI: 10.1111/tpj.14505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 05/02/2023]
Abstract
During meiosis, recombination ensures allelic exchanges through crossovers (COs) between the homologous chromosomes. Advances in our understanding of the rules of COs have come from studies of mutations including structural chromosomal rearrangements that, when heterozygous, are known to impair COs in various organisms. In this work, we investigate the effect of a large heterozygous pericentric inversion on male and female recombination in Arabidopsis. The inversion was discovered in the Atmcc1 mutant background and was characterized through genetic and next-generation sequencing analysis. Reciprocal backcross populations, each consisting of over 400 individuals, obtained from the mutant and the wild type, both crossed with Landsberg erecta, were analyzed genome-wide by 143 single-nucleotide polymorphisms. The negative impact of inversion became evident in terms of CO loss in the rearranged chromosome in both male and female meiosis. No single-CO event was detected within the inversion, consistent with a post-meiotic selection operating against unbalanced gametes. Cytological analysis of chiasmata in F1 plants confirmed that COs were reduced in male meiosis in the chromosome with inversion. Crossover suppression on the rearranged chromosome is associated with a significant increase of COs in the other chromosomes, thereby maintaining unchanged the number of COs per cell. The CO pattern observed in our study is consistent with the interchromosomal (IC) effect as first described in Drosophila. In contrast to male meiosis, in female meiosis no IC effect is visible. This may be related to the greater strength of interference that constrains the CO number in excess of the minimum value imposed by CO assurance in Arabidopsis female meiosis.
Collapse
Affiliation(s)
- Pasquale Termolino
- Institute of Biosciences and Bioresources (IBBR)National Research Council of Italy (CNR)80055PorticiItaly
| | - Matthieu Falque
- Génétique Quantitative et Evolution‐Le MoulonInstitut National de la Recherche AgronomiqueUniversité Paris‐SudCNRSAgroParisTechUniversité Paris‐Saclay91190Gif‐sur‐YvetteFrance
| | | | - Gaetana Cremona
- Institute of Biosciences and Bioresources (IBBR)National Research Council of Italy (CNR)80055PorticiItaly
| | - Rosa Paparo
- Institute of Biosciences and Bioresources (IBBR)National Research Council of Italy (CNR)80055PorticiItaly
| | - Antoine Ederveen
- Department of Molecular Plant PhysiologyInstitute for Water and Wetland Research (IWWR)Radboud University Nijmegen9102 6500Nijmegenthe Netherlands
| | - Olivier C. Martin
- Génétique Quantitative et Evolution‐Le MoulonInstitut National de la Recherche AgronomiqueUniversité Paris‐SudCNRSAgroParisTechUniversité Paris‐Saclay91190Gif‐sur‐YvetteFrance
| | - Federica M. Consiglio
- Institute of Biosciences and Bioresources (IBBR)National Research Council of Italy (CNR)80055PorticiItaly
| | - Clara Conicella
- Institute of Biosciences and Bioresources (IBBR)National Research Council of Italy (CNR)80055PorticiItaly
| |
Collapse
|
41
|
Rowan BA, Heavens D, Feuerborn TR, Tock AJ, Henderson IR, Weigel D. An Ultra High-Density Arabidopsis thaliana Crossover Map That Refines the Influences of Structural Variation and Epigenetic Features. Genetics 2019; 213:771-787. [PMID: 31527048 PMCID: PMC6827372 DOI: 10.1534/genetics.119.302406] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/28/2019] [Indexed: 11/18/2022] Open
Abstract
Many environmental, genetic, and epigenetic factors are known to affect the frequency and positioning of meiotic crossovers (COs). Suppression of COs by large, cytologically visible inversions and translocations has long been recognized, but relatively little is known about how smaller structural variants (SVs) affect COs. To examine fine-scale determinants of the CO landscape, including SVs, we used a rapid, cost-effective method for high-throughput sequencing to generate a precise map of >17,000 COs between the Col-0 and Ler-0 accessions of Arabidopsis thaliana COs were generally suppressed in regions with SVs, but this effect did not depend on the size of the variant region, and was only marginally affected by the variant type. CO suppression did not extend far beyond the SV borders and CO rates were slightly elevated in the flanking regions. Disease resistance gene clusters, which often exist as SVs, exhibited high CO rates at some loci, but there was a tendency toward depressed CO rates at loci where large structural differences exist between the two parents. Our high-density map also revealed in fine detail how CO positioning relates to genetic (DNA motifs) and epigenetic (chromatin structure) features of the genome. We conclude that suppression of COs occurs over a narrow region spanning large- and small-scale SVs, representing an influence on the CO landscape in addition to sequence and epigenetic variation along chromosomes.
Collapse
Affiliation(s)
- Beth A Rowan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | | - Tatiana R Feuerborn
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, CB2 3EA, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, CB2 3EA, United Kingdom
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
42
|
MacQueen A, Tian D, Chang W, Holub E, Kreitman M, Bergelson J. Population Genetics of the Highly Polymorphic RPP8 Gene Family. Genes (Basel) 2019; 10:E691. [PMID: 31500388 PMCID: PMC6771003 DOI: 10.3390/genes10090691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Plant nucleotide-binding domain and leucine-rich repeat containing (NLR) genes provide some of the most extreme examples of polymorphism in eukaryotic genomes, rivalling even the vertebrate major histocompatibility complex. Surprisingly, this is also true in Arabidopsis thaliana, a predominantly selfing species with low heterozygosity. Here, we investigate how gene duplication and intergenic exchange contribute to this extraordinary variation. RPP8 is a three-locus system that is configured chromosomally as either a direct-repeat tandem duplication or as a single copy locus, plus a locus 2 Mb distant. We sequenced 48 RPP8 alleles from 37 accessions of A. thaliana and 12 RPP8 alleles from Arabidopsis lyrata to investigate the patterns of interlocus shared variation. The tandem duplicates display fixed differences and share less variation with each other than either shares with the distant paralog. A high level of shared polymorphism among alleles at one of the tandem duplicates, the single-copy locus and the distal locus, must involve both classical crossing over and intergenic gene conversion. Despite these polymorphism-enhancing mechanisms, the observed nucleotide diversity could not be replicated under neutral forward-in-time simulations. Only by adding balancing selection to the simulations do they approach the level of polymorphism observed at RPP8. In this NLR gene triad, genetic architecture, gene function and selection all combine to generate diversity.
Collapse
Affiliation(s)
- Alice MacQueen
- Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210008, China.
| | - Wenhan Chang
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL 60637, USA.
| | - Eric Holub
- School of Life Sciences, Wellesbourne Innovation Campus, University of Warwick, Wellesbourne CV359EF, UK.
| | - Martin Kreitman
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL 60637, USA.
| | - Joy Bergelson
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
43
|
Finke A, Mandáková T, Nawaz K, Vu GTH, Novák P, Macas J, Lysak MA, Pecinka A. Genome invasion by a hypomethylated satellite repeat in Australian crucifer Ballantinia antipoda. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1066-1079. [PMID: 31074166 DOI: 10.1111/tpj.14380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 04/02/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Repetitive sequences are ubiquitous components of all eukaryotic genomes. They contribute to genome evolution and the regulation of gene transcription. However, the uncontrolled activity of repetitive sequences can negatively affect genome functions and stability. Therefore, repetitive DNAs are embedded in a highly repressive heterochromatic environment in plant cell nuclei. Here, we analyzed the sequence, composition and the epigenetic makeup of peculiar non-pericentromeric heterochromatic segments in the genome of the Australian crucifer Ballantinia antipoda. By the combination of high throughput sequencing, graph-based clustering and cytogenetics, we found that the heterochromatic segments consist of a mixture of unique sequences and an A-T-rich 174 bp satellite repeat (BaSAT1). BaSAT1 occupies about 10% of the B. antipoda nuclear genome in >250 000 copies. Unlike many other highly repetitive sequences, BaSAT1 repeats are hypomethylated; this contrasts with the normal patterns of DNA methylation in the B. antipoda genome. Detailed analysis of several copies revealed that these non-methylated BaSAT1 repeats were also devoid of heterochromatic histone H3K9me2 methylation. However, the factors decisive for the methylation status of BaSAT1 repeats remain currently unknown. In summary, we show that even highly repetitive sequences can exist as hypomethylated in the plant nuclear genome.
Collapse
Affiliation(s)
- Andreas Finke
- Max Planck Institute for Plant Breeding Research (MPIPZ), Cologne, 50829, Germany
| | - Terezie Mandáková
- Plant Cytogenomics Research Group, CEITEC - Central-European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Kashif Nawaz
- Max Planck Institute for Plant Breeding Research (MPIPZ), Cologne, 50829, Germany
- The Czech Academy of Sciences, Institute of Experimental Botany (IEB), Centre of the Region Haná for Agricultural and Biotechnological Research (CRH), Olomouc, 77900, Czech Republic
| | - Giang T H Vu
- Max Planck Institute for Plant Breeding Research (MPIPZ), Cologne, 50829, Germany
| | - Petr Novák
- Biology Centre, The Czech Academy of Sciences, České Budejovice, 37005, Czech Republic
| | - Jiri Macas
- Biology Centre, The Czech Academy of Sciences, České Budejovice, 37005, Czech Republic
| | - Martin A Lysak
- Plant Cytogenomics Research Group, CEITEC - Central-European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Ales Pecinka
- Max Planck Institute for Plant Breeding Research (MPIPZ), Cologne, 50829, Germany
- The Czech Academy of Sciences, Institute of Experimental Botany (IEB), Centre of the Region Haná for Agricultural and Biotechnological Research (CRH), Olomouc, 77900, Czech Republic
| |
Collapse
|
44
|
Comparative Tyramide-FISH mapping of the genes controlling flavor and bulb color in Allium species revealed an altered gene order. Sci Rep 2019; 9:12007. [PMID: 31427665 PMCID: PMC6700127 DOI: 10.1038/s41598-019-48564-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 08/07/2019] [Indexed: 01/29/2023] Open
Abstract
Evolutionarily related species often share a common order of genes along homeologous chromosomes. Here we report the collinearity disruption of genes located on homeologous chromosome 4 in Allium species. Ultra-sensitive fluorescence in situ hybridization with tyramide signal amplification (tyr-FISH) allowed the visualization of the alliinase multigene family, chalcon synthase gene and EST markers on Allium cepa and Allium fistulosum chromosomes. In A. cepa, bulb alliinase, root alliinase (ALL1) and chalcon synthase (CHS-B) genes were located in the long arm but EST markers (API18 and ACM082) were located in the short arm. In A. fistulosum, all the visualized genes and markers were located in the short arm. Moreover, root alliinase genes (ALL1 and AOB249) showed contrast patterns in number of loci. We suppose that the altered order of the genes/markers is the result of a large pericentric inversion. To get insight into the evolution of the chromosome rearrangement, we mapped the bulb alliinase gene in phylogenetically close and distant species. In the taxonomic clade including A. fistulosum, A. altaicum, A. oschaninii and A. pskemense and in phylogenetically distant species A. roylei and A. nutans, the bulb alliinase gene was located on the short arm of chromosome 4 while, in A. cepa and A. schoenoprasum, the bulb alliinase gene was located on the long arm of chromosome 4. These results have encouraging implications for the further tracing of inverted regions in meiosis of interspecific hybrids and studding chromosome evolution. Also, this finding may have a practical benefit as closely related species are actively used for improving onion crop stock.
Collapse
|
45
|
Lawrence EJ, Gao H, Tock AJ, Lambing C, Blackwell AR, Feng X, Henderson IR. Natural Variation in TBP-ASSOCIATED FACTOR 4b Controls Meiotic Crossover and Germline Transcription in Arabidopsis. Curr Biol 2019; 29:2676-2686.e3. [PMID: 31378616 DOI: 10.1016/j.cub.2019.06.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 10/26/2022]
Abstract
Meiotic crossover frequency varies within genomes, which influences genetic diversity and adaptation. In turn, genetic variation within populations can act to modify crossover frequency in cis and trans. To identify genetic variation that controls meiotic crossover frequency, we screened Arabidopsis accessions using fluorescent recombination reporters. We mapped a genetic modifier of crossover frequency in Col × Bur populations of Arabidopsis to a premature stop codon within TBP-ASSOCIATED FACTOR 4b (TAF4b), which encodes a subunit of the RNA polymerase II general transcription factor TFIID. The Arabidopsis taf4b mutation is a rare variant found in the British Isles, originating in South-West Ireland. Using genetics, genomics, and immunocytology, we demonstrate a genome-wide decrease in taf4b crossovers, with strongest reduction in the sub-telomeric regions. Using RNA sequencing (RNA-seq) from purified meiocytes, we show that TAF4b expression is meiocyte enriched, whereas its paralog TAF4 is broadly expressed. Consistent with the role of TFIID in promoting gene expression, RNA-seq of wild-type and taf4b meiocytes identified widespread transcriptional changes, including in genes that regulate the meiotic cell cycle and recombination. Therefore, TAF4b duplication is associated with acquisition of meiocyte-specific expression and promotion of germline transcription, which act directly or indirectly to elevate crossovers. This identifies a novel mode of meiotic recombination control via a general transcription factor.
Collapse
Affiliation(s)
- Emma J Lawrence
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Hongbo Gao
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Andrew J Tock
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Christophe Lambing
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Alexander R Blackwell
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Xiaoqi Feng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK.
| | - Ian R Henderson
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK.
| |
Collapse
|
46
|
Yang Z, Ge X, Yang Z, Qin W, Sun G, Wang Z, Li Z, Liu J, Wu J, Wang Y, Lu L, Wang P, Mo H, Zhang X, Li F. Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nat Commun 2019; 10:2989. [PMID: 31278252 PMCID: PMC6611876 DOI: 10.1038/s41467-019-10820-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/03/2019] [Indexed: 01/28/2023] Open
Abstract
Multiple cotton genomes (diploid and tetraploid) have been assembled. However, genomic variations between cultivars of allotetraploid upland cotton (Gossypium hirsutum L.), the most widely planted cotton species in the world, remain unexplored. Here, we use single-molecule long read and Hi-C sequencing technologies to assemble genomes of the two upland cotton cultivars TM-1 and zhongmiansuo24 (ZM24). Comparisons among TM-1 and ZM24 assemblies and the genomes of the diploid ancestors reveal a large amount of genetic variations. Among them, the top three longest structural variations are located on chromosome A08 of the tetraploid upland cotton, which account for ~30% total length of this chromosome. Haplotype analyses of the mapping population derived from these two cultivars and the germplasm panel show suppressed recombination rates in this region. This study provides additional genomic resources for the community, and the identified genetic variations, especially the reduced meiotic recombination on chromosome A08, will help future breeding.
Collapse
Affiliation(s)
- Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyang Ge
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wenqiang Qin
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Gaofei Sun
- Anyang Institute of Technology, Anyang, 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ji Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jie Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ye Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lili Lu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Peng Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Huijuan Mo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xueyan Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China.
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
47
|
Schmidt C, Pacher M, Puchta H. Efficient induction of heritable inversions in plant genomes using the CRISPR/Cas system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:577-589. [PMID: 30900787 DOI: 10.1111/tpj.14322] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 05/02/2023]
Abstract
During the evolution of plant genomes, sequence inversions occurred repeatedly making the respective regions inaccessible for meiotic recombination and thus for breeding. Therefore, it is important to develop technologies that allow the induction of inversions within chromosomes in a directed and efficient manner. Using the Cas9 nuclease from Staphylococcus aureus (SaCas9), we were able to obtain scarless heritable inversions with high efficiency in the model plant Arabidopsis thaliana. Via deep sequencing, we defined the patterns of junction formation in wild-type and in the non-homologous end-joining (NHEJ) mutant ku70-1. Surprisingly, in plants deficient of KU70, inversion induction is enhanced, indicating that KU70 is required for tethering the local broken ends together during repair. However, in contrast to wild-type, most junctions are formed by microhomology-mediated NHEJ and thus are imperfect with mainly deletions, making this approach unsuitable for practical applications. Using egg-cell-specific expression of Cas9, we were able to induce heritable inversions at different genomic loci and at intervals between 3 and 18 kb, in the percentage range, in the T1 generation. By screening individual lines, inversion frequencies of up to the 10% range were found in T2. Most of these inversions had scarless junctions and were without any sequence change within the inverted region, making the technology attractive for use in crop plants. Applying our approach, it should be possible to reverse natural inversions and induce artificial ones to break or fix linkages between traits at will.
Collapse
Affiliation(s)
- Carla Schmidt
- Botanical Institute, Fritz-Haber-Weg 4, 76133, Karlsruhe, Germany
| | - Michael Pacher
- Botanical Institute, Fritz-Haber-Weg 4, 76133, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Fritz-Haber-Weg 4, 76133, Karlsruhe, Germany
| |
Collapse
|
48
|
Hsu CW, Lo CY, Lee CR. On the postglacial spread of human commensal Arabidopsis thaliana: journey to the East. THE NEW PHYTOLOGIST 2019; 222:1447-1457. [PMID: 30636325 DOI: 10.1111/nph.15682] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/07/2019] [Indexed: 05/28/2023]
Abstract
With more sequenced genomes, our understanding of the demographic history of Arabidopsis thaliana is rapidly expanding. However, no-one has yet compiled previous data to investigate patterns of genetic variation across Eurasia. While sub-Saharan accessions have been reported to be the most divergent group, in the nuclear genome we found accessions from Yunnan, China to be genetically closest to the sub-Saharan group. In chloroplast, several deeply diverged haplogroups exist only in Eurasia, and African populations have lower variation in many haplogroups that they share with the Eurasian populations. These patterns cannot be easily explained by a single out-of-Africa event suggested previously. For more recent demographic history, we dated the nonrelict expansion to 10 ka. In the Chinese Yangtze nonrelicts, we found clear traces of gene flow with local relicts, and genes under strong selection were enriched for traces of relict introgression, especially those related to biotic and immune responses. The results suggest the ability of nonrelicts to obtain locally adaptive alleles through admixture with relicts is important for the expansion across environmental gradients of Eurasia. Our re-analyses provide another model for the early history as well as elucidating factors contributing to the recent demographic turnover event of this species.
Collapse
Affiliation(s)
- Che-Wei Hsu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, No 1, Sec 4, Roosevelt Road, Taipei, 10617, Taiwan ROC
| | - Cheng-Yu Lo
- Institute of Ecology and Evolutionary Biology, National Taiwan University, No 1, Sec 4, Roosevelt Road, Taipei, 10617, Taiwan ROC
| | - Cheng-Ruei Lee
- Institute of Ecology and Evolutionary Biology, National Taiwan University, No 1, Sec 4, Roosevelt Road, Taipei, 10617, Taiwan ROC
- Institute of Plant Biology, National Taiwan University, No 1, Sec 4, Roosevelt Road, Taipei, 10617, Taiwan ROC
- Genome and Systems Biology Degree Program, National Taiwan University, No 1, Sec 4, Roosevelt Road, Taipei, 10617, Taiwan ROC
| |
Collapse
|
49
|
Flagel LE, Blackman BK, Fishman L, Monnahan PJ, Sweigart A, Kelly JK. GOOGA: A platform to synthesize mapping experiments and identify genomic structural diversity. PLoS Comput Biol 2019; 15:e1006949. [PMID: 30986215 PMCID: PMC6483263 DOI: 10.1371/journal.pcbi.1006949] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 04/25/2019] [Accepted: 03/15/2019] [Indexed: 11/18/2022] Open
Abstract
Understanding genomic structural variation such as inversions and translocations is a key challenge in evolutionary genetics. We develop a novel statistical approach to comparative genetic mapping to detect large-scale structural mutations from low-level sequencing data. The procedure, called Genome Order Optimization by Genetic Algorithm (GOOGA), couples a Hidden Markov Model with a Genetic Algorithm to analyze data from genetic mapping populations. We demonstrate the method using both simulated data (calibrated from experiments on Drosophila melanogaster) and real data from five distinct crosses within the flowering plant genus Mimulus. Application of GOOGA to the Mimulus data corrects numerous errors (misplaced sequences) in the M. guttatus reference genome and confirms or detects eight large inversions polymorphic within the species complex. Finally, we show how this method can be applied in genomic scans to improve the accuracy and resolution of Quantitative Trait Locus (QTL) mapping.
Collapse
Affiliation(s)
- Lex E. Flagel
- Bayer Crop Science, Chesterfield, MO, United States of America
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States of America
- * E-mail: (LEF); (JKK)
| | - Benjamin K. Blackman
- Department of Plant and Microbial Biology, University of California—Berkeley, Berkeley, CA, United States of America
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, MT, United States of America
| | - Patrick J. Monnahan
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, United States of America
| | - Andrea Sweigart
- Department of Genetics, University of Georgia, Athens, GA, United States of America
| | - John K. Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America
- * E-mail: (LEF); (JKK)
| |
Collapse
|
50
|
Zaidem ML, Groen SC, Purugganan MD. Evolutionary and ecological functional genomics, from lab to the wild. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:40-55. [PMID: 30444573 DOI: 10.1111/tpj.14167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 05/12/2023]
Abstract
Plant phenotypes are the result of both genetic and environmental forces that act to modulate trait expression. Over the last few years, numerous approaches in functional genomics and systems biology have led to a greater understanding of plant phenotypic variation and plant responses to the environment. These approaches, and the questions that they can address, have been loosely termed evolutionary and ecological functional genomics (EEFG), and have been providing key insights on how plants adapt and evolve. In particular, by bringing these studies from the laboratory to the field, EEFG studies allow us to gain greater knowledge of how plants function in their natural contexts.
Collapse
Affiliation(s)
- Maricris L Zaidem
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
| | - Simon C Groen
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
| | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
- Center for Genomics and Systems Biology, NYU Abu Dhabi Research Institute, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|