1
|
Wang H, Zhu B, Qiao S, Dong C, Wan X, Gong W, Zhang Z. Structure and evolution of alanine/serine decarboxylases and the engineering of theanine production. eLife 2024; 12:RP91046. [PMID: 39287621 PMCID: PMC11407765 DOI: 10.7554/elife.91046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Ethylamine (EA), the precursor of theanine biosynthesis, is synthesized from alanine decarboxylation by alanine decarboxylase (AlaDC) in tea plants. AlaDC evolves from serine decarboxylase (SerDC) through neofunctionalization and has lower catalytic activity. However, lacking structure information hinders the understanding of the evolution of substrate specificity and catalytic activity. In this study, we solved the X-ray crystal structures of AlaDC from Camellia sinensis (CsAlaDC) and SerDC from Arabidopsis thaliana (AtSerDC). Tyr341 of AtSerDC or the corresponding Tyr336 of CsAlaDC is essential for their enzymatic activity. Tyr111 of AtSerDC and the corresponding Phe106 of CsAlaDC determine their substrate specificity. Both CsAlaDC and AtSerDC have a distinctive zinc finger and have not been identified in any other Group II PLP-dependent amino acid decarboxylases. Based on the structural comparisons, we conducted a mutation screen of CsAlaDC. The results indicated that the mutation of L110F or P114A in the CsAlaDC dimerization interface significantly improved the catalytic activity by 110% and 59%, respectively. Combining a double mutant of CsAlaDCL110F/P114A with theanine synthetase increased theanine production 672% in an in vitro system. This study provides the structural basis for the substrate selectivity and catalytic activity of CsAlaDC and AtSerDC and provides a route to more efficient biosynthesis of theanine.
Collapse
Affiliation(s)
- Hao Wang
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Biying Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Siming Qiao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chunxia Dong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Weimin Gong
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Lu L, Yang H, Xu Y, Zhang L, Wu J, Yi H. Laser capture microdissection-based spatiotemporal transcriptomes uncover regulatory networks during seed abortion in seedless Ponkan (Citrus reticulata). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:642-661. [PMID: 37077034 DOI: 10.1111/tpj.16251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Seed abortion is an important process in the formation of seedless characteristics in citrus fruits. However, the molecular regulatory mechanism underlying citrus seed abortion is poorly understood. Laser capture microdissection-based RNA-seq combined with Pacbio-seq was used to profile seed development in the Ponkan cultivars 'Huagan No. 4' (seedless Ponkan) (Citrus reticulata) and 'E'gan No. 1' (seeded Ponkan) (C. reticulata) in two types of seed tissue across three developmental stages. Through comparative transcriptome and dynamic phytohormone analyses, plant hormone signal, cell division and nutrient metabolism-related processes were revealed to play critical roles in the seed abortion of 'Huagan No. 4'. Moreover, several genes may play indispensable roles in seed abortion of 'Huagan No. 4', such as CrWRKY74, CrWRKY48 and CrMYB3R4. Overexpression of CrWRKY74 in Arabidopsis resulted in severe seed abortion. By analyzing the downstream regulatory network, we further determined that CrWRKY74 participated in seed abortion regulation by inducing abnormal programmed cell death. Of particular importance is that a preliminary model was proposed to depict the regulatory networks underlying seed abortion in citrus. The results of this study provide novel insights into the molecular mechanism across citrus seed development, and reveal the master role of CrWRKY74 in seed abortion of 'Huagan No. 4'.
Collapse
Affiliation(s)
- Liqing Lu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Haijian Yang
- Fruit Tree Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329, P.R. China
| | - Yanhui Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Li Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Juxun Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hualin Yi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
3
|
Wu G, Li Z, Zheng Y, Zhang Y, Liu L, Gong D, Geng T. Supplementing cholamine to diet lowers laying rate by promoting liver fat deposition and altering intestinal microflora in laying hens. Poult Sci 2022; 101:102084. [PMID: 36055021 PMCID: PMC9449860 DOI: 10.1016/j.psj.2022.102084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/25/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
The effects of cholamine, a raw material for synthesis of some active lipids, are unknown in poultry. To address this, 180 52-wk-old Hyline laying hens were randomly divided into 3 groups (20 replicates per group with three hens per replicate). The control group and the treatment groups (treatment 1 and 2) were fed basal diet and the diet supplemented with 500 or 1,000 mg of cholamine per kilogram of the diet for 35 d, respectively. The data showed that supplementary cholamine significantly lowered egg production, daily feed intake, serum high-density lipoprotein cholesterol level, liver index, and the percentages of C15:0 and C20:0 in fatty acid composition of liver, significantly elevated hepatic triglyceride content, the ratio of villus height to crypt depth (P < 0.05), and the percentage of C18:2n-6 and the ratio of n-6 to n-3 polyunsaturated fatty acids in liver fat (P < 0.10). Moreover, supplementary cholamine altered the relative abundance of some intestinal bacteria with a decrease in the alpha biodiversity (P < 0.10). Additionally, transcriptome analysis on the livers of the treatment vs. the control groups identified 1,151 up- and 914 down-regulated differentially expressed genes (DEGs), and pathway analysis revealed that the suppressed Notch signaling pathway and the enhanced Oxidative phosphorylation pathway were enriched with DEGs. Particularly, fat absorption, transport and oxidative phosphorylation-related DEGs (e.g., FABP1, APOA4, and PCK1) were significantly induced, but fatty acid synthesis, and lipid package and secretion-related DEGs (e.g., FASN, SCD, and MTTP) were not. In conclusion, supplementary cholamine may lower egg production by promoting hepatic lipid deposition and reducing abundances of beneficial intestinal bacteria and microfloral biodiversity in laying hens.
Collapse
Affiliation(s)
- Guiping Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Zhenhui Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yun Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yihui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
4
|
Han X, Zhang YW, Liu JY, Zuo JF, Zhang ZC, Guo L, Zhang YM. 4D genetic networks reveal the genetic basis of metabolites and seed oil-related traits in 398 soybean RILs. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:92. [PMID: 36076247 PMCID: PMC9461130 DOI: 10.1186/s13068-022-02191-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022]
Abstract
Background The yield and quality of soybean oil are determined by seed oil-related traits, and metabolites/lipids act as bridges between genes and traits. Although there are many studies on the mode of inheritance of metabolites or traits, studies on multi-dimensional genetic network (MDGN) are limited. Results In this study, six seed oil-related traits, 59 metabolites, and 107 lipids in 398 recombinant inbred lines, along with their candidate genes and miRNAs, were used to construct an MDGN in soybean. Around 175 quantitative trait loci (QTLs), 36 QTL-by-environment interactions, and 302 metabolic QTL clusters, 70 and 181 candidate genes, including 46 and 70 known homologs, were previously reported to be associated with the traits and metabolites, respectively. Gene regulatory networks were constructed using co-expression, protein–protein interaction, and transcription factor binding site and miRNA target predictions between candidate genes and 26 key miRNAs. Using modern statistical methods, 463 metabolite–lipid, 62 trait–metabolite, and 89 trait–lipid associations were found to be significant. Integrating these associations into the above networks, an MDGN was constructed, and 128 sub-networks were extracted. Among these sub-networks, the gene–trait or gene–metabolite relationships in 38 sub-networks were in agreement with previous studies, e.g., oleic acid (trait)–GmSEI–GmDGAT1a–triacylglycerol (16:0/18:2/18:3), gene and metabolite in each of 64 sub-networks were predicted to be in the same pathway, e.g., oleic acid (trait)–GmPHS–d-glucose, and others were new, e.g., triacylglycerol (16:0/18:1/18:2)–GmbZIP123–GmHD-ZIPIII-10–miR166s–oil content. Conclusions This study showed the advantages of MGDN in dissecting the genetic relationships between complex traits and metabolites. Using sub-networks in MGDN, 3D genetic sub-networks including pyruvate/threonine/citric acid revealed genetic relationships between carbohydrates, oil, and protein content, and 4D genetic sub-networks including PLDs revealed the relationships between oil-related traits and phospholipid metabolism likely influenced by the environment. This study will be helpful in soybean quality improvement and molecular biological research. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02191-1.
Collapse
|
5
|
Hajheidari M, Gerlach N, Dorau K, Omidbakhshfard MA, Pesch L, Hofmann J, Hallab A, Ponce-Soto GY, Kuhalskaya A, Medeiros DB, Bourceret A, the RECONSTRUCT Consortium, Usadel B, Mayer J, Fernie A, Mansfeldt T, Sonnewald U, Bucher M. Crop genetic diversity uncovers metabolites, elements, and gene networks predicted to be associated with high plant biomass yields in maize. PNAS NEXUS 2022; 1:pgac068. [PMID: 36741443 PMCID: PMC9896949 DOI: 10.1093/pnasnexus/pgac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023]
Abstract
Rapid population growth and increasing demand for food, feed, and bioenergy in these times of unprecedented climate change require breeding for increased biomass production on the world's croplands. To accelerate breeding programs, knowledge of the relationship between biomass features and underlying gene networks is needed to guide future breeding efforts. To this end, large-scale multiomics datasets were created with genetically diverse maize lines, all grown in long-term organic and conventional cropping systems. Analysis of the datasets, integrated using regression modeling and network analysis revealed key metabolites, elements, gene transcripts, and gene networks, whose contents during vegetative growth substantially influence the build-up of plant biomass in the reproductive phase. We found that S and P content in the source leaf and P content in the root during the vegetative stage contributed the most to predicting plant performance at the reproductive stage. In agreement with the Gene Ontology enrichment analysis, the cis-motifs and identified transcription factors associated with upregulated genes under phosphate deficiency showed great diversity in the molecular response to phosphate deficiency in selected lines. Furthermore, our data demonstrate that genotype-dependent uptake, assimilation, and allocation of essential nutrient elements (especially C and N) during vegetative growth under phosphate starvation plays an important role in determining plant biomass by controlling root traits related to nutrient uptake. These integrative multiomics results revealed key factors underlying maize productivity and open new opportunities for efficient, rapid, and cost-effective plant breeding to increase biomass yield of the cereal crop maize under adverse environmental factors.
Collapse
Affiliation(s)
| | - Nina Gerlach
- Institute for Plant Sciences, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany
| | - Kristof Dorau
- Faculty of Mathematics and Natural Sciences, Department of Geosciences, Institute of Geography, University of Cologne, Albertus‐Magnus‐Platz, D‐50923 Köln, Germany
| | - M Amin Omidbakhshfard
- Max Planck Institute of Molecular Plant Physiology, Department of Molecular Physiology, D-14476 Potsdam-Golm, Germany
| | - Lina Pesch
- Institute for Plant Sciences, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany
| | - Jörg Hofmann
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Asis Hallab
- Bioinformatics (IBG‐4), Forschungszentrum Jülich GmbH, D‐52425 Jülich, Germany
| | | | - Anastasiya Kuhalskaya
- Max Planck Institute of Molecular Plant Physiology, Department of Molecular Physiology, D-14476 Potsdam-Golm, Germany
| | - David B Medeiros
- Max Planck Institute of Molecular Plant Physiology, Department of Molecular Physiology, D-14476 Potsdam-Golm, Germany
| | | | | | - Björn Usadel
- Bioinformatics (IBG‐4), Forschungszentrum Jülich GmbH, D‐52425 Jülich, Germany,HHU Düsseldorf, Institute of Biological Data Science, Cluster of Excellence on Plant Sciences, D-40225 Düsseldorf, Germany
| | - Jochen Mayer
- Agroscope, Department of Agroecology and Environment, CH-8046 Zurich, Switzerland
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, Department of Molecular Physiology, D-14476 Potsdam-Golm, Germany
| | - Tim Mansfeldt
- Faculty of Mathematics and Natural Sciences, Department of Geosciences, Institute of Geography, University of Cologne, Albertus‐Magnus‐Platz, D‐50923 Köln, Germany
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | | |
Collapse
|
6
|
Ngo AH, Angkawijaya AE, Lin YC, Liu YC, Nakamura Y. The phospho-base N-methyltransferases PMT1 and PMT2 produce phosphocholine for leaf growth in phosphorus-starved Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2985-2994. [PMID: 35560207 DOI: 10.1093/jxb/erab436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/04/2021] [Indexed: 06/15/2023]
Abstract
Phosphorus (P) is an essential nutrient for plants. Membrane lipid remodeling is an adaptive mechanism for P-starved plants that replaces membrane phospholipids with non-P galactolipids, presumably to retrieve scarce P sources and maintain membrane integrity. Whereas metabolic pathways to convert phospholipids to galactolipids are well-established, the mechanism by which phospholipid biosynthesis is involved in this process remains elusive. Here, we report that phospho-base N-methyltransferases 1 and 2 (PMT1 and PMT2), which convert phosphoethanolamine to phosphocholine (PCho), are transcriptionally induced by P starvation. Shoots of seedlings of pmt1 pmt2 double mutant showed defective growth upon P starvation; however, membrane lipid profiles were unaffected. We found that P-starved pmt1 pmt2 with defective leaf growth had reduced PCho content, and the growth defect was rescued by exogenous supplementation of PCho. We propose that PMT1 and PMT2 are induced by P starvation to produce PCho mainly for leaf growth maintenance, rather than for phosphatidylcholine biosynthesis, in membrane lipid remodeling.
Collapse
Affiliation(s)
- Anh H Ngo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | - Ying-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Chi Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Japan
| |
Collapse
|
7
|
Tan YR, Nakamura Y. The importance of Arabidopsis PHOSPHOLIPID N-METHYLTRANSFERASE in glycerolipid metabolism and plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2971-2984. [PMID: 35560202 DOI: 10.1093/jxb/erac049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/01/2022] [Indexed: 06/15/2023]
Abstract
Phosphatidylcholine (PC) is a major class of phospholipids that are essential for post-embryonic growth in plants. In Arabidopsis, three copies of the phospho-base N-methyltransferase, PMT1, PMT2, and PMT3, are known to account for PC biosynthesis because the triple-knockout mutant is devoid of biosynthesis and shows lethality in post-embryonic but not embryonic growth. Arabidopsis also contains a distinct phospholipid N-methyltransferase (PLMT) that is homologous with yeast and animal PLMT that methylates phospholipids to produce PC. However, the knockout mutant of PLMT does not show morphological phenotypes or decreased PC content, so the role of PLMT remains unclear. Here, we show that PLMT is ubiquitously expressed in different organs and localized at the endoplasmic reticulum, where PC is produced. Overexpression of PLMT in planta increased the content of phospholipids including PC and affected vegetative but not reproductive growth. Although silique lengths were shorter, pollen remained viable and mature seeds were produced. Intriguingly, seed triacylglycerol content was increased with altered fatty acid composition. We conclude that PLMT might be a functional enzyme in PC biosynthesis and play an organ-specific role in developing seeds, where rapid accumulation of triacylglycerol dominates the entire glycerolipid metabolic flux.
Collapse
Affiliation(s)
- Yue-Rong Tan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Japan
| |
Collapse
|
8
|
Kanehara K, Cho Y, Yu CY. A lipid viewpoint on the plant endoplasmic reticulum stress response. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2835-2847. [PMID: 35560195 DOI: 10.1093/jxb/erac063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/15/2022] [Indexed: 06/15/2023]
Abstract
Organisms, including humans, seem to be constantly exposed to various changes, which often have undesirable effects, referred to as stress. To keep up with these changes, eukaryotic cells may have evolved a number of relevant cellular processes, such as the endoplasmic reticulum (ER) stress response. Owing to presumably intimate links between human diseases and the ER function, the ER stress response has been extensively investigated in various organisms for a few decades. Based on these studies, we now have a picture of the molecular mechanisms of the ER stress response, one of which, the unfolded protein response (UPR), is highly conserved among yeasts, mammals, higher plants, and green algae. In this review, we attempt to highlight the plant UPR from the perspective of lipids, especially membrane phospholipids. Phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) are the most abundant membrane phospholipids in eukaryotic cells. The ratio of PtdCho to PtdEtn and the unsaturation of fatty acyl tails in both phospholipids may be critical factors for the UPR, but the pathways responsible for PtdCho and PtdEtn biosynthesis are distinct in animals and plants. We discuss the plant UPR in comparison with the system in yeasts and animals in the context of membrane phospholipids.
Collapse
Affiliation(s)
- Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yueh Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chao-Yuan Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
9
|
Shin S, Chairattanawat C, Yamaoka Y, Yang Q, Lee Y, Hwang JU. Early seed development requires the A-type ATP-binding cassette protein ABCA10. PLANT PHYSIOLOGY 2022; 189:360-374. [PMID: 35166840 PMCID: PMC9070825 DOI: 10.1093/plphys/kiac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/06/2022] [Indexed: 05/11/2023]
Abstract
A-type ATP-binding cassette (ABCA) proteins transport lipids and lipid-based molecules in humans, and their malfunction is associated with various inherited diseases. Although plant genomes encode many ABCA transporters, their molecular and physiological functions remain largely unknown. Seeds are rapidly developing organs that rely on the biosynthesis and transport of large quantities of lipids to generate new membranes and storage lipids. In this study, we characterized the Arabidopsis (Arabidopsis thaliana) ABCA10 transporter, which is selectively expressed in female gametophytes and early developing seeds. By 3 d after flowering (DAF), seeds from the abca10 loss-of-function mutant exhibited a smaller chalazal endosperm than those of the wild-type. By 4 DAF, their endosperm nuclei occupied a smaller area than those of the wild-type. The endosperm nuclei of the mutants also failed to distribute evenly inside the seed coat and stayed aggregated instead, possibly due to inadequate expansion of abca10 endosperm. This endosperm defect might have retarded abca10 embryo development. At 7 DAF, a substantial portion of abca10 embryos remained at the globular or earlier developmental stages, whereas wild-type embryos were at the torpedo or later stages. ABCA10 is likely involved in lipid metabolism, as ABCA10 overexpression induced the overaccumulation of triacylglycerol but did not change the carbohydrate or protein contents in seeds. In agreement, ABCA10 localized to the endoplasmic reticulum (ER), the major site of lipid biosynthesis. Our results reveal that ABCA10 plays an essential role in early seed development, possibly by transporting substrates for lipid metabolism to the ER.
Collapse
Affiliation(s)
- Seungjun Shin
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | | | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Qianying Yang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Youngsook Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | | |
Collapse
|
10
|
Rabeler C, Chen M, Kaplinsky N. BUMPY STEM Is an Arabidopsis Choline/Ethanolamine Kinase Required for Normal Development and Chilling Responses. FRONTIERS IN PLANT SCIENCE 2022; 13:851960. [PMID: 35574129 PMCID: PMC9100391 DOI: 10.3389/fpls.2022.851960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/17/2022] [Indexed: 05/10/2023]
Abstract
Phospholipid biosynthesis is a core metabolic pathway that affects all aspects of plant growth and development. One of the earliest step in this pathway is mediated by choline/ethanolamine kinases (CEKs), enzymes in the Kennedy pathway that catalyze the synthesis of the polar head groups found on the most abundant plant phospholipids. The Arabidopsis genome encodes four CEKs. CEK1-3 have been well characterized using viable mutants while CEK4 encodes an essential gene, making it difficult to characterize its effects on plant development and responses to the environment. We have isolated an EMS-induced allele of CEK4 called bumpy stem (bst). bst plants are viable, allowing the effects of decreased CEK4 function to be characterized throughout the Arabidopsis life cycle. bst mutants have a range of developmental defects including ectopic stem growths at the base of their flowers, reduced fertility, and short roots and stems. They are also sensitive to cold temperatures. Supplementation with choline, phosphocholine, ethanolamine, and phosphoethanolamine rescues bst root phenotypes, highlighting the flow of metabolites between the choline and ethanolamine branches of the Kennedy pathway. The identification of bst and characterization of its phenotypes defines new roles for CEK4 that go beyond its established biochemical function as an ethanolamine kinase.
Collapse
Affiliation(s)
- Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Mingjie Chen
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Nick Kaplinsky
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
- *Correspondence: Nick Kaplinsky,
| |
Collapse
|
11
|
Wu W, Wang S, Zhang H, Guo W, Lu H, Xu H, Zhan R, Fidan O, Sun L. Biosynthesis of Novel Naphthoquinone Derivatives in the Commonly-used Chassis Cells Saccharomyces cerevisiae and Escherichia coli. APPL BIOCHEM MICRO+ 2021. [PMCID: PMC8700708 DOI: 10.1134/s0003683821100124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Naphthoquinones harboring 1,4-naphthoquinone pharmacophore are considered as privileged structures in medicinal chemistry. In pharmaceutical industry and fundamental research, polyketide naphthoquinones were widely produced by heterologous expression of polyketide synthases in microbial chassis cells, such as Saccharomyces cerevisiae and Escherichia coli. Nevertheless, these cell factories still remain, to a great degree, black boxes that often exceed engineers’ expectations. In this work, the biotransformation of juglone or 1,4-naphthoquinone was conducted to generate novel derivatives and it was revealed that these two naphthoquinones can indeed be modified by the chassis cells. Seventeen derivatives, including 6 novel compounds, were isolated and their structural characterizations indicated the attachment of certain metabolites of chassis cells to naphthoquinones. Some of these biosynthesized derivatives were reported as potent antimicrobial agents with reduced cytotoxic activities. Additionally, molecular docking as simple and quick in silico approach was performed to screen the biosynthesized compounds for their potential antiviral activity. It was found that compound 11 and 17 showed the most promising binding affinities against Nsp9 of SARS-CoV-2, demonstrating their potential antiviral activities. Overall, this work provides a new approach to generate novel molecules in the commonly used chassis cells, which would expand the chemical diversity for the drug development pipeline. It also reveals a novel insight into the potential of the catalytic power of the most widely used chassis cells.
Collapse
Affiliation(s)
- W. Wu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, 510006 Guangzhou, P. R. China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, 510006 Guangzhou, P. R. China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, 510006 Guangzhou, P. R. China
| | - S. Wang
- Suzhou Institute of Drug Control, 215000 Suzhou, P. R. China
| | - H. Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, 510006 Guangzhou, P. R. China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, 510006 Guangzhou, P. R. China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, 510006 Guangzhou, P. R. China
| | - W. Guo
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, 510405 Guangzhou, P. R. China
| | - H. Lu
- Suzhou Institute of Drug Control, 215000 Suzhou, P. R. China
| | - H. Xu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, 510006 Guangzhou, P. R. China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, 510006 Guangzhou, P. R. China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, 510006 Guangzhou, P. R. China
| | - R. Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, 510006 Guangzhou, P. R. China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, 510006 Guangzhou, P. R. China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, 510006 Guangzhou, P. R. China
| | - O. Fidan
- Department of Bioengineering, Faculty of Life and Natural Sciences, Abdullah Gül University, 38080 Kayseri, Turkey
| | - L. Sun
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, 510006 Guangzhou, P. R. China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, 510006 Guangzhou, P. R. China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, 510006 Guangzhou, P. R. China
| |
Collapse
|
12
|
Fu X, Liao Y, Cheng S, Deng R, Yang Z. Stable Isotope-Labeled Precursor Tracing Reveals that l-Alanine is Converted to l-Theanine via l-Glutamate not Ethylamine in Tea Plants In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15354-15361. [PMID: 34904439 DOI: 10.1021/acs.jafc.1c06660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tea plants (Camellia sinensis) specifically produce l-theanine, which contributes to tea function and taste. Ethylamine is a limiting factor differentiating l-theanine accumulation between tea and other plants. Ethylamine has long been assumed to be derived from l-alanine in tea. In this study, the l-alanine content in tea root cells was mainly located in vacuoles and mitochondria using a nonaqueous fractionation technique, while alanine decarboxylase in tea (CsADC) was located in the cytoplasm. Although CsADC was able to catalyze l-alanine decarboxylation to produce ethylamine in vitro, it may not provide the same enzyme activity in tea plants. Stable isotope-labeled precursor tracing in tea plants discovered that l-alanine is not a direct precursor of ethylamine but a precursor of l-glutamate, which is involved in l-theanine biosynthesis in tea. Cortex with epidermis from root tissue was the main location of ethylamine. In summary, l-alanine is converted to l-theanine via l-glutamate not ethylamine in tea plants in vivo.
Collapse
Affiliation(s)
- Xiumin Fu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Yinyin Liao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Sihua Cheng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Rufang Deng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| |
Collapse
|
13
|
Tannert M, Balcke GU, Tissier A, Köck M. At4g29530 is a phosphoethanolamine phosphatase homologous to PECP1 with a role in flowering time regulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1072-1083. [PMID: 34098589 DOI: 10.1111/tpj.15367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/28/2021] [Indexed: 05/25/2023]
Abstract
Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the most abundant phospholipids in membranes. The biosynthesis of phospholipids occurs mainly via the Kennedy pathway. Recent studies have shown that through this pathway, choline (Cho) moieties are synthesized through the methylation of phosphoethanolamine (PEtn) to phosphocholine (PCho) by phospho-base N-methyltransferase. In Arabidopsis thaliana, the phosphoethanolamine/phosphocholine phosphatase1 (PECP1) is described as an enzyme that regulates the synthesis of PCho by decreasing the PEtn level during phosphate starvation to avoid the energy-consuming methylation step. By homology search, we identified a gene (At4g29530) encoding a putative PECP1 homolog from Arabidopsis with a currently unknown biological function in planta. We found that At4g29530 is not induced by phosphate starvation, and is mainly expressed in leaves and flowers. The analysis of null mutants and overexpression lines revealed that PEtn, rather than PCho, is the substrate in vivo, as in PECP1. Hydrophilic interaction chromatography-coupled mass spectrometry analysis of head group metabolites shows an increased PEtn level and decreased ethanolamine level in null mutants. At4g29530 null mutants have an early flowering phenotype, which is corroborated by a higher PC/PE ratio. Furthermore, we found an increased PCho level. The choline level was not changed, so the results corroborate that the PEtn-dependent pathway is the main route for the generation of Cho moieties. We assume that the PEtn-hydrolyzing enzyme participates in fine-tuning the metabolic pathway, and helps prevent the energy-consuming biosynthesis of PCho through the methylation pathway.
Collapse
Affiliation(s)
- Martin Tannert
- Biocenter, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle (Saale), 06120, Germany
| | - Gerd Ulrich Balcke
- Department Cell and Metabolic Biology, Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
| | - Alain Tissier
- Department Cell and Metabolic Biology, Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
| | - Margret Köck
- Biocenter, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle (Saale), 06120, Germany
| |
Collapse
|
14
|
Nakamura Y. Headgroup biosynthesis of phosphatidylcholine and phosphatidylethanolamine in seed plants. Prog Lipid Res 2021; 82:101091. [PMID: 33503494 DOI: 10.1016/j.plipres.2021.101091] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 12/23/2022]
Abstract
Phospholipid biosynthesis is crucial for plant growth and development. It involves attachment of fatty acids to a phospho-diacylglycerol backbone and modification of the phospho-group into an amino alcohol. The biochemistry and molecular biology of the former has been well established, but a number of enzymes responsible for the latter have only recently been cloned and functionally characterized in Arabidopsis and some other model plant species. The metabolism involving the polar head groups of phospholipids established by past biochemical studies can now be validated by available gene knockout models. Moreover, gene knockout studies have revealed emerging functions of phospholipids in regulating plant growth and development. This review aims to revisit the old questions of polar headgroup biosynthesis of plant phosphatidylcholine and phosphatidylethanolamine by giving an overview of recent advances in the field and beyond.
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
15
|
Narmani A, Teponno RB, Helaly SE, Arzanlou M, Stadler M. Cytotoxic, anti-biofilm and antimicrobial polyketides from the plant associated fungus Chaetosphaeronema achilleae. Fitoterapia 2019; 139:104390. [PMID: 31655088 DOI: 10.1016/j.fitote.2019.104390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 01/08/2023]
Abstract
From extracts of the plant associated fungus Chaetosphaeronema achilleae collected in Iran, a previously unreported isoindolinone named chaetosisoindolinone (1) and a previously undescribed indanone named chaetosindanone (2) were isolated in addition to five known metabolites, 2-(2-acetyl-3,5-dihydroxyphenyl) acetic acid (3), vulculic acid (4), 2-(2-acetyl-3-hydroxy-5-methoxyphenyl)acetic acid (5), curvulin (6), and curvulol (7). Their structures were elucidated on the basis of extensive spectroscopic analysis and high-resolution mass spectrometry. The isolated compounds were tested for their antimicrobial, anti-biofilm, and nematicidal activities. Compound 2 exhibited cytotoxicity against the human breast adenocarcinoma MCF-7 cells with an IC50 value of 1.5 μg/mL. Furthermore, compounds 4 and 7 almost completely inhibited biofilm formation in Staphylococcus aureus at 256 μg/mL. Weak antimicrobial activities were also observed for some of the isolated compounds against Mucor hiemalis, Rhodoturula glutinis, Chromobacterium violaceum, and Staphylococcus aureus.
Collapse
Affiliation(s)
- Abolfazl Narmani
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Rémy Bertrand Teponno
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Soleiman E Helaly
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Department of Chemistry, Faculty of Science, Aswan University, 81528 Aswan, Egypt
| | - Mahdi Arzanlou
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| |
Collapse
|
16
|
El Maddah F, Eguereva E, Kehraus S, König GM. Biosynthetic studies of novel polyketides from the marine sponge-derived fungusStachylidiumsp. 293K04. Org Biomol Chem 2019; 17:2747-2752. [DOI: 10.1039/c9ob00198k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A methylation of the acetate starter unit is part of the polyketide biosynthesis of phthalides and phthalimidines from the marine-derived fungusStachylidiumsp. 293K04.
Collapse
Affiliation(s)
- Fayrouz El Maddah
- Institute for Pharmaceutical Biology
- University of Bonn
- 53115 Bonn
- Germany
- Department of Pharmacognosy and Tissue Culture
| | | | - Stefan Kehraus
- Institute for Pharmaceutical Biology
- University of Bonn
- 53115 Bonn
- Germany
| | - Gabriele M. König
- Institute for Pharmaceutical Biology
- University of Bonn
- 53115 Bonn
- Germany
| |
Collapse
|
17
|
Liu YC, Lin YC, Kanehara K, Nakamura Y. A pair of phospho-base methyltransferases important for phosphatidylcholine biosynthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1064-1075. [PMID: 30218542 DOI: 10.1111/tpj.14090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 05/25/2023]
Abstract
Phosphatidylcholine (PtdCho) is a predominant membrane lipid class in eukaryotes. Phospho-base N-methyltransferase (PMT) catalyzes a critical step in PtdCho biosynthesis. However, in Arabidopsis thaliana, the discovery of involvement of the specific PMT isoform in PtdCho biosynthesis remains elusive. Here, we show that PMT1 and PMT3 redundantly play an essential role in phosphocholine (PCho) biosynthesis, a prerequisite for PtdCho production. A pmt1 pmt3 double mutant was devoid of PCho, which affected PtdCho biosynthesis in vivo, showing severe growth defects in post-embryonic development. PMT1 and PMT3 were both highly expressed in the vasculature. The pmt1 pmt3 mutants had specifically affected leaf vein development and showed pale-green seedlings that were rescued by exogenous supplementation of PCho. We suggest that PMT1 and PMT3 are the primary enzymes for PCho biosynthesis and are involved in PtdCho biosynthesis and vascular development in Arabidopsis seedlings.
Collapse
Affiliation(s)
- Yu-Chi Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ying-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Academia Sinica, Taiwan International Graduate Program, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
18
|
Ngo AH, Lin YC, Liu YC, Gutbrod K, Peisker H, Dörmann P, Nakamura Y. A pair of nonspecific phospholipases C, NPC2 and NPC6, are involved in gametophyte development and glycerolipid metabolism in Arabidopsis. THE NEW PHYTOLOGIST 2018; 219:163-175. [PMID: 29655284 DOI: 10.1111/nph.15147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/07/2018] [Indexed: 05/13/2023]
Abstract
Phospholipases play crucial roles in plant membrane lipid homeostasis. Nonspecific phospholipase C (NPCs) establish a unique class of phospholipases found only in plants and certain bacteria. Here, we show that two previously uncharacterized NPC isoforms, NPC2 and NPC6, are required for male and female gametophyte development in Arabidopsis. Double mutant plants of npc2-1 npc6-2 could not be retrieved because npc2-1 npc6-2 ovule and pollen development is affected. Genetic complementation, reciprocal crossing and microscope observation of npc2-1/- npc6-2/+ and npc2-1/+ npc6-2/- plants suggest that NPC2 and NPC6 are redundant and are required for normal gametophyte development. Both NPC2 and NPC6 proteins are localized to the plastids. Promoter-GUS assays in transgenic Arabidopsis revealed that NPC2 and NPC6 are preferentially expressed in floral organs rather than in leaves. In vitro enzyme assays showed that NPC2 and NPC6 hydrolyze phosphatidylcholine and phosphatidylethanolamine, but not phosphatidate, being consistent with the reported substrate selectivity of NPCs. The amounts of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol were increased in buds but not in flowers of npc2-1/- npc6-2/+ and npc2-1/+ npc6-2/- plants, presumably due to reduced phospholipid hydrolysis activity in developing flowers. Our results demonstrate that NPC2 and NPC6 play crucial roles in gametogenesis during flower development.
Collapse
Affiliation(s)
- Anh H Ngo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Academia Sinica, Taiwan International Graduate Program, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Ying-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Academia Sinica, Taiwan International Graduate Program, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Yu-Chi Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Katharina Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, D-53115, Bonn, Germany
| | - Helga Peisker
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, D-53115, Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, D-53115, Bonn, Germany
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Academia Sinica, Taiwan International Graduate Program, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
19
|
Membrane glycerolipid equilibrium under endoplasmic reticulum stress in Arabidopsis thaliana. Biochem Biophys Res Commun 2018. [PMID: 29524407 DOI: 10.1016/j.bbrc.2018.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endoplasmic reticulum (ER) is an indispensable organelle for secretory protein synthesis as well as metabolism of phospholipids and their derivatives in eukaryotic cells. Various external and internal factors may cause an accumulation of aberrant proteins in the ER, which causes ER stress and activates cellular ER stress responses to cope with the stress. In animal research, molecular mechanisms for protein quality control upon ER stress are well documented; however, how cells maintain lipid homeostasis under ER stress is an emerging issue. The ratio of phosphatidylcholine (PC) to phosphatidylethanolamine (PE), two major phospholipid classes, is important under ER stress in animal cells. However, in seed plants, no study has reported on the changes in membrane lipid content under ER stress, although a number of physiologically important environmental stresses, such as heat and salinity, induce ER stress. Here, we investigated membrane glycerolipid metabolism under ER stress in Arabidopsis. ER stress transcriptionally affected PC and PE biosynthesis pathways differentially, with no significant changes in membrane glycerolipid content. Our results suggest that higher plants maintain membrane lipid equilibrium during active transcription of phospholipid biosynthetic genes under ER stress.
Collapse
|
20
|
Liu YC, Gunawan F, Yunus IS, Nakamura Y. Arabidopsis Serine Decarboxylase 1 (SDC1) in Phospholipid and Amino Acid Metabolism. FRONTIERS IN PLANT SCIENCE 2018; 9:972. [PMID: 30108598 PMCID: PMC6080597 DOI: 10.3389/fpls.2018.00972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/15/2018] [Indexed: 05/13/2023]
Abstract
Arabidopsis thaliana serine decarboxylase 1 (SDC1) catalyzes conversion of serine to ethanolamine, the first reaction step of phosphatidylcholine and phosphatidylethanolamine biosynthesis. However, an involvement of SDC1 in amino acid metabolism remains elusive despite that serine is the substrate of SDC1. Here, we showed that SDC1 localizes in mitochondria although phosphatidylcholine and phosphatidylethanolamine are known to be produced in the endoplasmic reticulum (ER). Moreover, we found that overexpression of SDC1 decreased levels of amino acid compounds derived from mitochondrial tricarboxylic acid cycle. These results suggest that mitochondria-localized SDC1 plays an important role in both phospholipid and amino acid metabolism in A. thaliana.
Collapse
|
21
|
Nakamura Y. Plant Phospholipid Diversity: Emerging Functions in Metabolism and Protein-Lipid Interactions. TRENDS IN PLANT SCIENCE 2017; 22:1027-1040. [PMID: 28993119 DOI: 10.1016/j.tplants.2017.09.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/26/2017] [Accepted: 09/07/2017] [Indexed: 05/22/2023]
Abstract
Phospholipids are essential components of biological membranes and signal transduction cascades in plants. In recent years, plant phospholipid research was greatly advanced by the characterization of numerous mutants affected in phospholipid biosynthesis and the discovery of a number of functionally important phospholipid-binding proteins. It is now accepted that most phospholipids to some extent have regulatory functions, including those that serve as constituents of biological membranes. Phospholipids are more than an inert end product of lipid biosynthesis. This review article summarizes recent advances on phospholipid biosynthesis with a particular focus on polar head group synthesis, followed by a short overview on protein-phospholipid interactions as an emerging regulatory mechanism of phospholipid function in arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taiwan 11529, Taiwan; http://ipmb.sinica.edu.tw/index.html/?q=node/972&language=en.
| |
Collapse
|
22
|
Sturtevant D, Dueñas ME, Lee YJ, Chapman KD. Three-dimensional visualization of membrane phospholipid distributions in Arabidopsis thaliana seeds: A spatial perspective of molecular heterogeneity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:268-281. [PMID: 27919665 DOI: 10.1016/j.bbalip.2016.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 11/29/2022]
Abstract
Arabidopsis thaliana has been widely used as a model plant to study acyl lipid metabolism. Seeds of A. thaliana are quite small (approximately 500×300μm and weigh ~20μg), making lipid compositional analyses of single seeds difficult to achieve. Here we have used matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to map and visualize the three-dimensional spatial distributions of two common membrane phospholipid classes, phosphatidylcholine (PC) and phosphatidylinositol (PI), in single A. thaliana seeds. The 3D images revealed distinct differences in distribution of several molecular species of both phospholipids among different seed tissues. Using data from these 3D reconstructions, the PC and PI mol% lipid profiles were calculated for the embryonic axis, cotyledons, and peripheral endosperm, and these data agreed well with overall quantification of these lipids in bulk seed extracts analyzed by conventional electrospray ionization-mass spectrometry (ESI-MS). In addition, MALDI-MSI was used to profile PC and PI molecular species in seeds of wild type, fad2-1, fad3-2, fad6-1, and fae1-1 acyl lipid mutants. The resulting distributions revealed previously unobserved changes in spatial distribution of several lipid molecular species, and were used to suggest new insights into biochemical heterogeneity of seed lipid metabolism. These studies highlight the value of mass spectrometry imaging to provide unprecedented spatial and chemical resolution of metabolites directly in samples even as small as a single A. thaliana seeds, and allow for expanded imaging of plant metabolites to improve our understanding of plant lipid metabolism from a spatial perspective.
Collapse
Affiliation(s)
- Drew Sturtevant
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
| | - Maria Emilia Dueñas
- Ames Laboratory, US Department of Energy, Ames, IA 50011, USA; Department of Chemistry, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | - Young-Jin Lee
- Ames Laboratory, US Department of Energy, Ames, IA 50011, USA; Department of Chemistry, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | - Kent D Chapman
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|