1
|
Goldfarb M, Boesel J, Wilczewski‐Shirai K, Reinhart P, Scherger T, Webb C, Newlun M, Rouhier K. Synthesis of β-Alanine From Isoleucine and Propionate Catabolism via Aminotransferases. PLANT DIRECT 2024; 8:e70030. [PMID: 39703930 PMCID: PMC11655180 DOI: 10.1002/pld3.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/10/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024]
Abstract
In plants, the nonproteinogenic amino acid β-alanine plays a role in response to hypoxia, flooding, drought, heat, and heavy metal stress conditions. It is also a key intermediate in the synthesis of essential molecules including vitamin B5 and coenzyme A (CoA) through the condensation reaction with pantoate. While the syntheses of pantoate, vitamin B5, and CoA appear to be conserved across plants and bacteria, the synthesis of β-alanine is not. Bacteria and fungi use aspartate, whereas plants can use uracil, spermidine, or propionate to synthesize β-alanine. Given that these three precursors can be formed from the metabolism of glutamine, arginine, isoleucine, and valine, the synthesis of β-alanine could be linked to numerous pathways. Studies of valine catabolism in Arabidopsis suggested that some branched-chain amino acids could in fact serve as precursors for the synthesis of β-alanine. Using GC-MS and isotopically labeled isoleucine and propionate, we linked their metabolism to the synthesis of β-alanine via a proposed transamination of malonate semialdehyde. We then identified three aminotransferases that each catalyzed this final reversible transamination reaction. These results affirm our hypothesis that isoleucine metabolism is also linked to the synthesis of β-alanine via the transamination of metabolic intermediates.
Collapse
Affiliation(s)
| | | | | | | | | | - Chloe Webb
- Department of ChemistryKenyon CollegeGambierOhioUSA
| | | | | |
Collapse
|
2
|
Joshi K, Ahmed S, Ge L, Avestakh A, Oloyede B, Phuntumart V, Kalinoski A, Morris PF. Spatial organization of putrescine synthesis in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112232. [PMID: 39214468 DOI: 10.1016/j.plantsci.2024.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Three plant pathways for the synthesis of putrescine have been described to date. These are the synthesis of putrescine from ornithine, by ornithine decarboxylase (ODC); the synthesis of putrescine from arginine by arginine decarboxylase, agmatine iminohydrolase (AIH) and N-carbamoylputrescine amidohydrolase (NLP1); and arginine decarboxylase and agmatinase. To address how these pathways are organized in plants, we have used transient expression analysis of these genes in the leaves of Nicotiana benthamiana. Brassicas do not have ODC, but the single ODC gene from rice and one of the soybean genes, were localized to the ER. Transient expression of the rice agmatinase gene showed that it was localized to the mitochondria. In A. thaliana there are five isoforms of AIH and three isoforms of NLP1. Stable GFP-tagged transformants of the longest isoforms of AIH and NLP1 showed that both proteins were localized to the ER, but in tissues with chloroplasts, the localization was concentrated to lamellae adjacent to chloroplasts. Transient expression analyses showed that four of the isoforms of AIH and all of the isoforms of NLP1 were localized to the ER. However, AIH.4 was localized to the chloroplast. Combining these results with other published data, reveal that putrescine synthesis is excluded from the cytoplasm and is spatially localized to the chloroplast, ER, and likely the mitochondria. Synthesis of putrescine in the ER may facilitate cell to cell transport via plasmodesmata, or secretion via vesicles. Differential expression of these pathways may enable putrescine-mediated activation of hormone-responsive genes.
Collapse
Affiliation(s)
- Kumud Joshi
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Sheaza Ahmed
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Lingxiao Ge
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Arefeh Avestakh
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Babatunde Oloyede
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Vipaporn Phuntumart
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Andrea Kalinoski
- Department of Surgery, University of Toledo, 3000 Arlington Ave., Toledo, USA
| | - Paul F Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| |
Collapse
|
3
|
Lee CP, Le XH, Gawryluk RMR, Casaretto JA, Rothstein SJ, Millar AH. EARLY NODULIN93 acts via cytochrome c oxidase to alter respiratory ATP production and root growth in plants. THE PLANT CELL 2024; 36:4716-4731. [PMID: 39179507 PMCID: PMC11530774 DOI: 10.1093/plcell/koae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/24/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
EARLY NODULIN 93 (ENOD93) has been genetically associated with biological nitrogen fixation in legumes and nitrogen use efficiency in cereals, but its precise function is unknown. We show that hidden Markov models define ENOD93 as a homolog of the N-terminal domain of RESPIRATORY SUPERCOMPLEX FACTOR 2 (RCF2). RCF2 regulates cytochrome oxidase (CIV), influencing the generation of a mitochondrial proton motive force in yeast (Saccharomyces cerevisiae). Knockout of ENOD93 in Arabidopsis (Arabidopsis thaliana) causes a short root phenotype and early flowering. ENOD93 is associated with a protein complex the size of CIV in mitochondria, but neither CIV abundance nor its activity changed in ruptured organelles of enod93. However, a progressive loss of ADP-dependent respiration rate was observed in intact enod93 mitochondria, which could be recovered in complemented lines. Mitochondrial membrane potential was higher in enod93 in a CIV-dependent manner, but ATP synthesis and ADP depletion rates progressively decreased. The respiration rate of whole enod93 seedlings was elevated, and root ADP content was nearly double that in wild type without a change in ATP content. We propose that ENOD93 and HYPOXIA-INDUCED GENE DOMAIN 2 (HIGD2) are the functional equivalent of yeast RCF2 but have remained undiscovered in many eukaryotic lineages because they are encoded by 2 distinct genes.
Collapse
Affiliation(s)
- Chun Pong Lee
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Xuyen H Le
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Ryan M R Gawryluk
- Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - José A Casaretto
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Steven J Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - A Harvey Millar
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
4
|
Moseler A, Wagner S, Meyer AJ. Protein persulfidation in plants: mechanisms and functions beyond a simple stress response. Biol Chem 2024:hsz-2024-0038. [PMID: 39303198 DOI: 10.1515/hsz-2024-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Posttranslational modifications (PTMs) can modulate the activity, localization and interactions of proteins and (re)define their biological function. Understanding how changing environments can alter cellular processes thus requires detailed knowledge about the dynamics of PTMs in time and space. A PTM that gained increasing attention in the last decades is protein persulfidation, where a cysteine thiol (-SH) is covalently bound to sulfane sulfur to form a persulfide (-SSH). The precise cellular mechanisms underlying the presumed persulfide signaling in plants are, however, only beginning to emerge. In the mitochondrial matrix, strict regulation of persulfidation and H2S homeostasis is of prime importance for maintaining mitochondrial bioenergetic processes because H2S is a highly potent poison for cytochrome c oxidase. This review summarizes the current knowledge about protein persulfidation and corresponding processes in mitochondria of the model plant Arabidopsis. These processes will be compared to the respective processes in non-plant models to underpin similarities or highlight apparent differences. We provide an overview of mitochondrial pathways that contribute to H2S and protein persulfide generation and mechanisms for H2S fixation and de-persulfidation. Based on current proteomic data, we compile a plant mitochondrial persulfidome and discuss how persulfidation may regulate protein function.
Collapse
Affiliation(s)
- Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Stephan Wagner
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| |
Collapse
|
5
|
Vera-Vives AM, Novel P, Zheng K, Tan SL, Schwarzländer M, Alboresi A, Morosinotto T. Mitochondrial respiration is essential for photosynthesis-dependent ATP supply of the plant cytosol. THE NEW PHYTOLOGIST 2024; 243:2175-2186. [PMID: 39073122 DOI: 10.1111/nph.19989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/29/2024] [Indexed: 07/30/2024]
Abstract
Plants rely on solar energy to synthesize ATP and NADPH for photosynthetic carbon fixation and all cellular need. Mitochondrial respiration is essential in plants, but this may be due to heterotrophic bottlenecks during plant development or because it is also necessary in photosynthetically active cells. In this study, we examined in vivo changes of cytosolic ATP concentration in response to light, employing a biosensing strategy in the moss Physcomitrium patens and revealing increased cytosolic ATP concentration caused by photosynthetic activity. Plants depleted of respiratory Complex I showed decreased cytosolic ATP accumulation, highlighting a critical role of mitochondrial respiration in light-dependent ATP supply of the cytosol. Consistently, targeting mitochondrial ATP production directly, through the construction of mutants deficient in mitochondrial ATPase (complex V), led to drastic growth reduction, despite only minor alterations in photosynthetic electron transport activity. Since P. patens is photoautotrophic throughout its development, we conclude that heterotrophic bottlenecks cannot account for the indispensable role of mitochondrial respiration in plants. Instead, our results support that mitochondrial respiration is essential for ATP provision to the cytosol in photosynthesizing cells. Mitochondrial respiration provides metabolic integration, ensuring supply of cytosolic ATP essential for supporting plant growth and development.
Collapse
Affiliation(s)
- Antoni M Vera-Vives
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, Padova, 35131, Italy
| | - Piero Novel
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, Padova, 35131, Italy
| | - Ke Zheng
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, Münster, D-48143, Germany
| | - Shun-Ling Tan
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, Padova, 35131, Italy
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, Münster, D-48143, Germany
| | - Alessandro Alboresi
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, Padova, 35131, Italy
| | - Tomas Morosinotto
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, Padova, 35131, Italy
| |
Collapse
|
6
|
Ditz N, Braun HP, Eubel H. Protein assemblies in the Arabidopsis thaliana chloroplast compartment. FRONTIERS IN PLANT SCIENCE 2024; 15:1380969. [PMID: 39220006 PMCID: PMC11362043 DOI: 10.3389/fpls.2024.1380969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/30/2024] [Indexed: 09/04/2024]
Abstract
Introduction Equipped with a photosynthetic apparatus that uses the energy of solar radiation to fuel biosynthesis of organic compounds, chloroplasts are the metabolic factories of mature leaf cells. The first steps of energy conversion are catalyzed by a collection of protein complexes, which can dynamically interact with each other for optimizing metabolic efficiency under changing environmental conditions. Materials and methods For a deeper insight into the organization of protein assemblies and their roles in chloroplast adaption to changing environmental conditions, an improved complexome profiling protocol employing a MS-cleavable cross-linker is used to stabilize labile protein assemblies during the organelle isolation procedure. Results and discussion Changes in protein:protein interaction patterns of chloroplast proteins in response to four different light intensities are reported. High molecular mass assemblies of central chloroplast electron transfer chain components as well as the PSII repair machinery react to different light intensities. In addition, the chloroplast encoded RNA-polymerase complex was found to migrate at a molecular mass of ~8 MDa, well above its previously reported molecular mass. Complexome profiling data produced during the course of this study can be interrogated by interested readers via a web-based online resource (https://complexomemap.de/projectsinteraction-chloroplasts).
Collapse
Affiliation(s)
| | | | - Holger Eubel
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
7
|
Moreno SR, Ugalde JM. A double-feature mitochondrial proteome exploration show. PLANT PHYSIOLOGY 2024; 195:1091-1093. [PMID: 38324674 PMCID: PMC11142345 DOI: 10.1093/plphys/kiae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Affiliation(s)
- Sebastián R Moreno
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - José Manuel Ugalde
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Institute of Crop Science and Resource Conservation (INRES)-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| |
Collapse
|
8
|
Rugen N, Senkler M, Braun HP. Deep proteomics reveals incorporation of unedited proteins into mitochondrial protein complexes in Arabidopsis. PLANT PHYSIOLOGY 2024; 195:1180-1199. [PMID: 38060994 PMCID: PMC11142381 DOI: 10.1093/plphys/kiad655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/12/2023] [Indexed: 06/02/2024]
Abstract
The mitochondrial proteome consists of numerous types of proteins which either are encoded and synthesized in the mitochondria, or encoded in the cell nucleus, synthesized in the cytoplasm and imported into the mitochondria. Their synthesis in the mitochondria, but not in the nucleus, relies on the editing of the primary transcripts of their genes at defined sites. Here, we present an in-depth investigation of the mitochondrial proteome of Arabidopsis (Arabidopsis thaliana) and a public online platform for the exploration of the data. For the analysis of our shotgun proteomic data, an Arabidopsis sequence database was created comprising all available protein sequences from the TAIR10 and Araport11 databases, supplemented with sequences of proteins translated from edited and nonedited transcripts of mitochondria. Amino acid sequences derived from partially edited transcripts were also added to analyze proteins encoded by the mitochondrial genome. Proteins were digested in parallel with six different endoproteases to obtain maximum proteome coverage. The resulting peptide fractions were finally analyzed using liquid chromatography coupled to ion mobility spectrometry and tandem mass spectrometry. We generated a "deep mitochondrial proteome" of 4,692 proteins. 1,339 proteins assigned to mitochondria by the SUBA5 database (https://suba.live) accounted for >80% of the total protein mass of our fractions. The coverage of proteins by identified peptides was particularly high compared to single-protease digests, allowing the exploration of differential splicing and RNA editing events at the protein level. We show that proteins translated from nonedited transcripts can be incorporated into native mitoribosomes and the ATP synthase complex. We present a portal for the use of our data, based on "proteomaps" with directly linked protein data. The portal is available at www.proteomeexplorer.de.
Collapse
Affiliation(s)
- Nils Rugen
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Michael Senkler
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
9
|
Negroni YL, Doro I, Tamborrino A, Luzzi I, Fortunato S, Hensel G, Khosravi S, Maretto L, Stevanato P, Lo Schiavo F, de Pinto MC, Krupinska K, Zottini M. The Arabidopsis Mitochondrial Nucleoid-Associated Protein WHIRLY2 Is Required for a Proper Response to Salt Stress. PLANT & CELL PHYSIOLOGY 2024; 65:576-589. [PMID: 38591870 PMCID: PMC11094760 DOI: 10.1093/pcp/pcae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
In the last years, plant organelles have emerged as central coordinators of responses to internal and external stimuli, which can induce stress. Mitochondria play a fundamental role as stress sensors being part of a complex communication network between the organelles and the nucleus. Among the different environmental stresses, salt stress poses a significant challenge and requires efficient signaling and protective mechanisms. By using the why2 T-DNA insertion mutant and a novel knock-out mutant prepared by CRISPR/Cas9-mediated genome editing, this study revealed that WHIRLY2 is crucial for protecting mitochondrial DNA (mtDNA) integrity during salt stress. Loss-of-function mutants show an enhanced sensitivity to salt stress. The disruption of WHIRLY2 causes the impairment of mtDNA repair that results in the accumulation of aberrant recombination products, coinciding with severe alterations in nucleoid integrity and overall mitochondria morphology besides a compromised redox-dependent response and misregulation of antioxidant enzymes. The results of this study revealed that WHIRLY2-mediated structural features in mitochondria (nucleoid compactness and cristae) are important for an effective response to salt stress.
Collapse
Affiliation(s)
- Yuri L Negroni
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Irene Doro
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Alberto Tamborrino
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Irene Luzzi
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Stefania Fortunato
- Department of Biosciences, Biotechnology and Environment, University of Bari, Campus Universitario, Via Orabona, 4, Bari 70125, Italy
| | - Götz Hensel
- Plant Reproductive Biology, Department of Physiology and Cell Biology, IPK, Corrensstraße 3, Seeland, Gatersleben D-06466, Germany
| | - Solmaz Khosravi
- Plant Reproductive Biology, Department of Physiology and Cell Biology, IPK, Corrensstraße 3, Seeland, Gatersleben D-06466, Germany
| | - Laura Maretto
- Department of Agronomy, Food, Natural Resources, Animal and Environment, University of Padova, Viale Università 16, Legnaro, Padova 35020, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animal and Environment, University of Padova, Viale Università 16, Legnaro, Padova 35020, Italy
| | - Fiorella Lo Schiavo
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Maria Concetta de Pinto
- Department of Biosciences, Biotechnology and Environment, University of Bari, Campus Universitario, Via Orabona, 4, Bari 70125, Italy
| | - Karin Krupinska
- Botanisches Institut, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel D-24098, Germany
| | - Michela Zottini
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| |
Collapse
|
10
|
Kalvelage J, Wöhlbrand L, Senkler J, Schumacher J, Ditz N, Bischof K, Winklhofer M, Klingl A, Braun HP, Rabus R. Conspicuous chloroplast with light harvesting-photosystem I/II megacomplex in marine Prorocentrum cordatum. PLANT PHYSIOLOGY 2024; 195:306-325. [PMID: 38330164 PMCID: PMC11181951 DOI: 10.1093/plphys/kiae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 02/10/2024]
Abstract
Marine photosynthetic (micro)organisms drive multiple biogeochemical cycles and display a large diversity. Among them, the bloom-forming, free-living dinoflagellate Prorocentrum cordatum CCMP 1329 (formerly P. minimum) stands out with its distinct cell biological features. Here, we obtained insights into the structural properties of the chloroplast and the photosynthetic machinery of P. cordatum using microscopic and proteogenomic approaches. High-resolution FIB/SEM analysis revealed a single large chloroplast (∼40% of total cell volume) with a continuous barrel-like structure, completely lining the inner face of the cell envelope and enclosing a single reticular mitochondrium, the Golgi apparatus, as well as diverse storage inclusions. Enriched thylakoid membrane fractions of P. cordatum were comparatively analyzed with those of the well-studied model-species Arabidopsis (Arabidopsis thaliana) using 2D BN DIGE. Strikingly, P. cordatum possessed a large photosystem-light harvesting megacomplex (>1.5 MDa), which is dominated by photosystems I and II (PSI, PSII), chloroplast complex I, and chlorophyll a-b binding light harvesting complex proteins. This finding parallels the absence of grana in its chloroplast and distinguishes from the predominant separation of PSI and PSII complexes in A. thaliana, indicating a different mode of flux balancing. Except for the core elements of the ATP synthase and the cytb6f-complex, the composition of the other complexes (PSI, PSII, and pigment-binding proteins, PBPs) of P. cordatum differed markedly from those of A. thaliana. Furthermore, a high number of PBPs was detected, accounting for a large share of the total proteomic data (∼65%) and potentially providing P. cordatum with flexible adaptation to changing light regimes.
Collapse
Affiliation(s)
- Jana Kalvelage
- School of Mathematics and Science, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Lars Wöhlbrand
- School of Mathematics and Science, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Jennifer Senkler
- Faculty of Natural Sciences, Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Julian Schumacher
- School of Mathematics and Science, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Noah Ditz
- Faculty of Natural Sciences, Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Kai Bischof
- Faculty Biology/Chemistry, University of Bremen & MARUM, 28359 Bremen, Germany
| | - Michael Winklhofer
- School of Mathematics and Science, Institute of Biology and Environmental Sciences (IBU), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Andreas Klingl
- Faculty of Biology, Botany, Ludwig-Maximilians-Universität LMU München, 82152 Planegg-Martinsried, Germany
| | - Hans-Peter Braun
- Faculty of Natural Sciences, Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Ralf Rabus
- School of Mathematics and Science, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
11
|
Yang F, Vincis Pereira Sanglard L, Lee CP, Ströher E, Singh S, Oh GGK, Millar AH, Small I, Colas des Francs-Small C. Mitochondrial atp1 mRNA knockdown by a custom-designed pentatricopeptide repeat protein alters ATP synthase. PLANT PHYSIOLOGY 2024; 194:2631-2647. [PMID: 38206203 PMCID: PMC10980415 DOI: 10.1093/plphys/kiae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Spontaneous mutations are rare in mitochondria and the lack of mitochondrial transformation methods has hindered genetic analyses. We show that a custom-designed RNA-binding pentatricopeptide repeat (PPR) protein binds and specifically induces cleavage of ATP synthase subunit1 (atp1) mRNA in mitochondria, significantly decreasing the abundance of the Atp1 protein and the assembled F1Fo ATP synthase in Arabidopsis (Arabidopsis thaliana). The transformed plants are characterized by delayed vegetative growth and reduced fertility. Five-fold depletion of Atp1 level was accompanied by a decrease in abundance of other ATP synthase subunits and lowered ATP synthesis rate of isolated mitochondria, but no change to mitochondrial electron transport chain complexes, adenylates, or energy charge in planta. Transcripts for amino acid transport and a variety of stress response processes were differentially expressed in lines containing the PPR protein, indicating changes to achieve cellular homeostasis when ATP synthase was highly depleted. Leaves of ATP synthase-depleted lines showed higher respiratory rates and elevated steady-state levels of numerous amino acids, most notably of the serine family. The results show the value of using custom-designed PPR proteins to influence the expression of specific mitochondrial transcripts to carry out reverse genetic studies on mitochondrial gene functions and the consequences of ATP synthase depletion on cellular functions in Arabidopsis.
Collapse
Affiliation(s)
- Fei Yang
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, P. R. China
| | - Lilian Vincis Pereira Sanglard
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Chun-Pong Lee
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Elke Ströher
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Swati Singh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Glenda Guec Khim Oh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
12
|
Marzec M. Uncovering the mechanism of mitochondrial translation initiation in plants. TRENDS IN PLANT SCIENCE 2024; 29:269-271. [PMID: 38016866 DOI: 10.1016/j.tplants.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Mitochondrial translation differs significantly from that conducted in bacteria and plastids. Recent research conducted by Tran and colleagues has unveiled the plant-specific mechanisms of mitochondrial translation initiation. The authors identified two Arabidopsis thaliana (arabidopsis) mTRAN proteins that may bind to the 5' untranslated region (UTR) of mitochondrial mRNAs by recognising newly discovered A/U-rich motifs.
Collapse
Affiliation(s)
- Marek Marzec
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
13
|
Zheng Y, Cabassa-Hourton C, Eubel H, Chevreux G, Lignieres L, Crilat E, Braun HP, Lebreton S, Savouré A. Pyrroline-5-carboxylate metabolism protein complex detected in Arabidopsis thaliana leaf mitochondria. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:917-934. [PMID: 37843921 DOI: 10.1093/jxb/erad406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/14/2023] [Indexed: 10/18/2023]
Abstract
Proline dehydrogenase (ProDH) and pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) catalyse the oxidation of proline into glutamate via the intermediates P5C and glutamate-semialdehyde (GSA), which spontaneously interconvert. P5C and GSA are also intermediates in the production of glutamate from ornithine and α-ketoglutarate catalysed by ornithine δ-aminotransferase (OAT). ProDH and P5CDH form a fused bifunctional PutA enzyme in Gram-negative bacteria and are associated in a bifunctional substrate-channelling complex in Thermus thermophilus; however, the physical proximity of ProDH and P5CDH in eukaryotes has not been described. Here, we report evidence of physical proximity and interactions between Arabidopsis ProDH, P5CDH, and OAT in the mitochondria of plants during dark-induced leaf senescence when all three enzymes are expressed. Pairwise interactions and localization of the three enzymes were investigated using bimolecular fluorescence complementation with confocal microscopy in tobacco and sub-mitochondrial fractionation in Arabidopsis. Evidence for a complex composed of ProDH, P5CDH, and OAT was revealed by co-migration of the proteins in native conditions upon gel electrophoresis. Co-immunoprecipitation coupled with mass spectrometry analysis confirmed the presence of the P5C metabolism complex in Arabidopsis. Pull-down assays further demonstrated a direct interaction between ProDH1 and P5CDH. P5C metabolism complexes might channel P5C among the constituent enzymes and directly provide electrons to the respiratory electron chain via ProDH.
Collapse
Affiliation(s)
- Yao Zheng
- Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France
| | - Cécile Cabassa-Hourton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France
| | - Holger Eubel
- Institute of Plant Genetics, Leibniz Universität Hannover, Germany
| | - Guillaume Chevreux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Laurent Lignieres
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Emilie Crilat
- Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France
| | - Hans-Peter Braun
- Institute of Plant Genetics, Leibniz Universität Hannover, Germany
| | - Sandrine Lebreton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France
| | - Arnould Savouré
- Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France
| |
Collapse
|
14
|
Fuchs P, Feixes-Prats E, Arruda P, Feitosa-Araújo E, Fernie AR, Grefen C, Lichtenauer S, Linka N, de Godoy Maia I, Meyer AJ, Schilasky S, Sweetlove LJ, Wege S, Weber APM, Millar AH, Keech O, Florez-Sarasa I, Barreto P, Schwarzländer M. PLANT UNCOUPLING MITOCHONDRIAL PROTEIN 2 localizes to the Golgi. PLANT PHYSIOLOGY 2024; 194:623-628. [PMID: 37820040 DOI: 10.1093/plphys/kiad540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 10/13/2023]
Abstract
In contrast to its close homolog PLANT UNCOUPLING MITOCHONDRIAL PROTEIN 1 (UCP1), which is an abundant carrier protein in the mitochondria, UCP2 localizes to the Golgi.
Collapse
Affiliation(s)
- Philippe Fuchs
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Elisenda Feixes-Prats
- Centre for Research in Agricultural Genomics (CRAG), Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, 13083-875 Campinas, Brazil
| | - Elias Feitosa-Araújo
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, D-48143 Münster, Germany
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, D-14476 Postdam-Golm, Germany
| | - Christopher Grefen
- Institute of Molecular and Cellular Botany, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, D-48143 Münster, Germany
| | - Nicole Linka
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Ivan de Godoy Maia
- Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, Brazil
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Sören Schilasky
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Lee J Sweetlove
- Department of Biology, South Parks Road, University of Oxford, OX1 3RB Oxford, UK
| | - Stefanie Wege
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 6009 Perth, Western Australia, Australia
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden
| | - Igor Florez-Sarasa
- Centre for Research in Agricultural Genomics (CRAG), Campus UAB Bellaterra, 08193 Barcelona, Spain
- Institut de Recerca i Tecnología Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Pedro Barreto
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, D-48143 Münster, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, D-48143 Münster, Germany
| |
Collapse
|
15
|
Fernie AR, Yan J, Aharoni A, Ma J. Editorial: The past, present and future of The Plant Journal Resource Articles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:967-973. [PMID: 37943112 DOI: 10.1111/tpj.16515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetics, Huazhong Agricultural District, Wuhan, China
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jianxian Ma
- Purdue University, 915 S. University St, West Lafayette, IN, USA
| |
Collapse
|
16
|
Ukolova IV, Borovskii GB. OXPHOS Organization and Activity in Mitochondria of Plants with Different Life Strategies. Int J Mol Sci 2023; 24:15229. [PMID: 37894910 PMCID: PMC10607765 DOI: 10.3390/ijms242015229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The study of the supramolecular organization of the mitochondrial oxidative phosphorylation system (OXPHOS) in various eukaryotes has led to the accumulation of a considerable amount of data on the composition, stoichiometry, and architecture of its constituent superstructures. However, the link between the features of system arrangement and the biological characteristics of the studied organisms has been poorly explored. Here, we report a comparative investigation into supramolecular and functional OXPHOS organization in the mitochondria of etiolated shoots of winter wheat (Triticum aestivum L.), maize (Zea mays L.), and pea (Pisum sativum L.). Investigations based on BN-PAGE, in-gel activity assays, and densitometric analysis revealed both similarities and specific OXPHOS features apparently related to the life strategies of each species. Frost-resistant winter wheat was distinguished by highly stable basic I1III2IVa/b respirasomes and V2 dimers, highly active complex I, and labile complex IV, which were probably essential for effective OXPHOS adaptation during hypothermia. Maize, a C4 plant, had the highly stable dimers IV2 and V2, less active complex I, and active alternative NAD(P)H dehydrogenases. The latter fact could contribute to successful chloroplast-mitochondrial cooperation, which is essential for highly efficient photosynthesis in this species. The pea OXPHOS contained detergent-resistant high-molecular respirasomes I1-2III2IVn, highly active complexes IV and V, and stable succinate dehydrogenase, suggesting an active energy metabolism in organelles of this plant. The results and conclusions are in good agreement with the literature data on the respiratory activity of mitochondria from these species and are summarized in a proposed scheme of organization of OXPHOS fragments.
Collapse
Affiliation(s)
- Irina V. Ukolova
- Laboratory of Physiological Genetics, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia;
| | | |
Collapse
|
17
|
Stutts L, Latimer S, Batyrshina Z, Dickinson G, Alborn H, Block AK, Basset GJ. The evolution of strictly monofunctional naphthoquinol C-methyltransferases is vital in cyanobacteria and plastids. THE PLANT CELL 2023; 35:3686-3696. [PMID: 37477936 PMCID: PMC10533327 DOI: 10.1093/plcell/koad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/22/2023]
Abstract
Prenylated quinones are membrane-associated metabolites that serve as vital electron carriers for respiration and photosynthesis. The UbiE (EC 2.1.1.201)/MenG (EC 2.1.1.163) C-methyltransferases catalyze pivotal ring methylations in the biosynthetic pathways of many of these quinones. In a puzzling evolutionary pattern, prokaryotic and eukaryotic UbiE/MenG homologs segregate into 2 clades. Clade 1 members occur universally in prokaryotes and eukaryotes, excluding cyanobacteria, and include mitochondrial COQ5 enzymes required for ubiquinone biosynthesis; Clade 2 members are specific to cyanobacteria and plastids. Functional complementation of an Escherichia coli ubiE/menG mutant indicated that Clade 1 members display activity with both demethylbenzoquinols and demethylnaphthoquinols, independently of the quinone profile of their original taxa, while Clade 2 members have evolved strict substrate specificity for demethylnaphthoquinols. Expression of the gene-encoding bifunctional Arabidopsis (Arabidopsis thaliana) COQ5 in the cyanobacterium Synechocystis or its retargeting to Arabidopsis plastids resulted in synthesis of a methylated variant of plastoquinone-9 that does not occur in nature. Accumulation of methylplastoquinone-9 was acutely cytotoxic, leading to the emergence of suppressor mutations in Synechocystis and seedling lethality in Arabidopsis. These data demonstrate that in cyanobacteria and plastids, co-occurrence of phylloquinone and plastoquinone-9 has driven the evolution of monofunctional demethylnaphthoquinol methyltransferases and explains why plants cannot capture the intrinsic bifunctionality of UbiE/MenG to simultaneously synthesize their respiratory and photosynthetic quinones.
Collapse
Affiliation(s)
- Lauren Stutts
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Scott Latimer
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Zhaniya Batyrshina
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Gabriella Dickinson
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Hans Alborn
- Center for Medical, Agricultural and Veterinary Entomology, ARS, USDA, Gainesville, FL 32608, USA
| | - Anna K Block
- Center for Medical, Agricultural and Veterinary Entomology, ARS, USDA, Gainesville, FL 32608, USA
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
18
|
Zhang Y, Jaime SM, Bulut M, Graf A, Fernie AR. The conditional mitochondrial protein complexome in the Arabidopsis thaliana root and shoot. PLANT COMMUNICATIONS 2023; 4:100635. [PMID: 37291828 PMCID: PMC10504587 DOI: 10.1016/j.xplc.2023.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/23/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Protein complexes are important for almost all biological processes. Hence, to fully understand how cells work, it is also necessary to characterize protein complexes and their dynamics in response to various cellular cues. Moreover, the dynamics of protein interaction play crucial roles in regulating the (dis)association of protein complexes and, in turn, regulating biological processes such as metabolism. Here, mitochondrial protein complexes were investigated by blue native PAGE and size-exclusion chromatography under conditions of oxidative stress in order to monitor their dynamic (dis)associations. Rearrangements of enzyme interactions and changes in protein complex abundance were observed in response to oxidative stress induced by menadione treatment. These included changes in enzymatic protein complexes involving γ-amino butyric acid transaminase (GABA-T), Δ-ornithine aminotransferase (Δ-OAT), or proline dehydrogenase 1 (POX1) that are expected to affect proline metabolism. Menadione treatment also affected interactions between several enzymes of the tricarboxylic acid (TCA) cycle and the abundance of complexes of the oxidative phosphorylation pathway. In addition, we compared the mitochondrial complexes of roots and shoots. Considerable differences between the two tissues were observed in the mitochondrial import/export apparatus, the formation of super-complexes in the oxidative phosphorylation pathway, and specific interactions between enzymes of the TCA cycle that we postulate may be related to the metabolic/energetic requirements of roots and shoots.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Silvia Martínez Jaime
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mustafa Bulut
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alexander Graf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
19
|
Tran HC, Schmitt V, Lama S, Wang C, Launay-Avon A, Bernfur K, Sultan K, Khan K, Brunaud V, Liehrmann A, Castandet B, Levander F, Rasmusson AG, Mireau H, Delannoy E, Van Aken O. An mTRAN-mRNA interaction mediates mitochondrial translation initiation in plants. Science 2023; 381:eadg0995. [PMID: 37651534 DOI: 10.1126/science.adg0995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/02/2023] [Indexed: 09/02/2023]
Abstract
Plant mitochondria represent the largest group of respiring organelles on the planet. Plant mitochondrial messenger RNAs (mRNAs) lack Shine-Dalgarno-like ribosome-binding sites, so it is unknown how plant mitoribosomes recognize mRNA. We show that "mitochondrial translation factors" mTRAN1 and mTRAN2 are land plant-specific proteins, required for normal mitochondrial respiration chain biogenesis. Our studies suggest that mTRANs are noncanonical pentatricopeptide repeat (PPR)-like RNA binding proteins of the mitoribosomal "small" subunit. We identified conserved Adenosine (A)/Uridine (U)-rich motifs in the 5' regions of plant mitochondrial mRNAs. mTRAN1 binds this motif, suggesting that it is a mitoribosome homing factor to identify mRNAs. We demonstrate that mTRANs are likely required for translation of all plant mitochondrial mRNAs. Plant mitochondrial translation initiation thus appears to use a protein-mRNA interaction that is divergent from bacteria or mammalian mitochondria.
Collapse
Affiliation(s)
| | | | - Sbatie Lama
- Department of Biology, Lund University, Lund, Sweden
| | - Chuande Wang
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Alexandra Launay-Avon
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Katja Bernfur
- Department of Chemistry, Lund University, Lund, Sweden
| | - Kristin Sultan
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Kasim Khan
- Department of Biology, Lund University, Lund, Sweden
| | - Véronique Brunaud
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Arnaud Liehrmann
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Université Paris-Saclay, CNRS, Université d'Évry, Laboratoire de Mathématiques et Modélisation d'Évry, 91037 Évry-Courcouronnes, France
| | - Benoît Castandet
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | | | - Hakim Mireau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Etienne Delannoy
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | | |
Collapse
|
20
|
Smirnov D, Konstantinovskiy N, Prokisch H. Integrative omics approaches to advance rare disease diagnostics. J Inherit Metab Dis 2023; 46:824-838. [PMID: 37553850 DOI: 10.1002/jimd.12663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Over the past decade high-throughput DNA sequencing approaches, namely whole exome and whole genome sequencing became a standard procedure in Mendelian disease diagnostics. Implementation of these technologies greatly facilitated diagnostics and shifted the analysis paradigm from variant identification to prioritisation and evaluation. The diagnostic rates vary widely depending on the cohort size, heterogeneity and disease and range from around 30% to 50% leaving the majority of patients undiagnosed. Advances in omics technologies and computational analysis provide an opportunity to increase these unfavourable rates by providing evidence for disease-causing variant validation and prioritisation. This review aims to provide an overview of the current application of several omics technologies including RNA-sequencing, proteomics, metabolomics and DNA-methylation profiling for diagnostics of rare genetic diseases in general and inborn errors of metabolism in particular.
Collapse
Affiliation(s)
- Dmitrii Smirnov
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
| | - Nikita Konstantinovskiy
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
| |
Collapse
|
21
|
Caubrière D, Moseler A, Rouhier N, Couturier J. Diversity and roles of cysteine desulfurases in photosynthetic organisms. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3345-3360. [PMID: 36861318 DOI: 10.1093/jxb/erad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/22/2023] [Indexed: 06/08/2023]
Abstract
As sulfur is part of many essential protein cofactors such as iron-sulfur clusters, molybdenum cofactors, or lipoic acid, its mobilization from cysteine represents a fundamental process. The abstraction of the sulfur atom from cysteine is catalysed by highly conserved pyridoxal 5'-phosphate-dependent enzymes called cysteine desulfurases. The desulfuration of cysteine leads to the formation of a persulfide group on a conserved catalytic cysteine and the concomitant release of alanine. Sulfur is then transferred from cysteine desulfurases to different targets. Numerous studies have focused on cysteine desulfurases as sulfur-extracting enzymes for iron-sulfur cluster synthesis in mitochondria and chloroplasts but also for molybdenum cofactor sulfuration in the cytosol. Despite this, knowledge about the involvement of cysteine desulfurases in other pathways is quite rudimentary, particularly in photosynthetic organisms. In this review, we summarize current understanding of the different groups of cysteine desulfurases and their characteristics in terms of primary sequence, protein domain architecture, and subcellular localization. In addition, we review the roles of cysteine desulfurases in different fundamental pathways and highlight the gaps in our knowledge to encourage future work on unresolved issues especially in photosynthetic organisms.
Collapse
Affiliation(s)
| | - Anna Moseler
- Institute of Crop Science and Resource Conservation (INRES) - Chemical Signalling, University of Bonn, 53113 Bonn, Germany
| | | | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
- Institut Universitaire de France, F-75000, Paris, France
| |
Collapse
|
22
|
Best C, Mizrahi R, Edris R, Tang H, Zer H, Colas des Francs-Small C, Finkel OM, Zhu H, Small ID, Ostersetzer-Biran O. MSP1 encodes an essential RNA-binding pentatricopeptide repeat factor required for nad1 maturation and complex I biogenesis in Arabidopsis mitochondria. THE NEW PHYTOLOGIST 2023; 238:2375-2392. [PMID: 36922396 DOI: 10.1111/nph.18880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/23/2023] [Indexed: 05/19/2023]
Abstract
Mitochondrial biogenesis relies on nuclearly encoded factors, which regulate the expression of the organellar-encoded genes. Pentatricopeptide repeat (PPR) proteins constitute a major gene family in angiosperms that are pivotal in many aspects of mitochondrial (mt)RNA metabolism (e.g. trimming, splicing, or stability). Here, we report the analysis of MITOCHONDRIA STABILITY/PROCESSING PPR FACTOR1 (MSP1, At4g20090), a canonical PPR protein that is necessary for mitochondrial functions and embryo development. Loss-of-function allele of MSP1 leads to seed abortion. Here, we employed an embryo-rescue method for the molecular characterization of msp1 mutants. Our analyses reveal that msp1 embryogenesis fails to proceed beyond the heart/torpedo stage as a consequence of a nad1 pre-RNA processing defect, resulting in the loss of respiratory complex I activity. Functional complementation confirmed that msp1 phenotypes result from a disruption of the MSP1 gene. In Arabidopsis, the maturation of nad1 involves the processing of three RNA fragments, nad1.1, nad1.2, and nad1.3. Based on biochemical analyses and mtRNA profiles of wild-type and msp1 plants, we concluded that MSP1 facilitates the generation of the 3' terminus of nad1.1 transcript, a prerequisite for nad1 exons a-b splicing. Our data substantiate the importance of mtRNA metabolism for the biogenesis of the respiratory system during early plant life.
Collapse
Affiliation(s)
- Corinne Best
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ron Mizrahi
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Rana Edris
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Hui Tang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hagit Zer
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Omri M Finkel
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Hongliang Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ian D Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
23
|
Ghifari AS, Saha S, Murcha MW. The biogenesis and regulation of the plant oxidative phosphorylation system. PLANT PHYSIOLOGY 2023; 192:728-747. [PMID: 36806687 DOI: 10.1093/plphys/kiad108] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 06/01/2023]
Abstract
Mitochondria are central organelles for respiration in plants. At the heart of this process is oxidative phosphorylation (OXPHOS) system, which generates ATP required for cellular energetic needs. OXPHOS complexes comprise of multiple subunits that originated from both mitochondrial and nuclear genome, which requires careful orchestration of expression, translation, import, and assembly. Constant exposure to reactive oxygen species due to redox activity also renders OXPHOS subunits to be more prone to oxidative damage, which requires coordination of disassembly and degradation. In this review, we highlight the composition, assembly, and activity of OXPHOS complexes in plants based on recent biochemical and structural studies. We also discuss how plants regulate the biogenesis and turnover of OXPHOS subunits and the importance of OXPHOS in overall plant respiration. Further studies in determining the regulation of biogenesis and activity of OXPHOS will advances the field, especially in understanding plant respiration and its role to plant growth and development.
Collapse
Affiliation(s)
- Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Saurabh Saha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| |
Collapse
|
24
|
Abstract
Proteins are workhorses in the cell; they form stable and more often dynamic, transient protein-protein interactions, assemblies, and networks and have an intimate interplay with DNA and RNA. These network interactions underlie fundamental biological processes and play essential roles in cellular function. The proximity-dependent biotinylation labeling approach combined with mass spectrometry (PL-MS) has recently emerged as a powerful technique to dissect the complex cellular network at the molecular level. In PL-MS, by fusing a genetically encoded proximity-labeling (PL) enzyme to a protein or a localization signal peptide, the enzyme is targeted to a protein complex of interest or to an organelle, allowing labeling of proximity proteins within a zoom radius. These biotinylated proteins can then be captured by streptavidin beads and identified and quantified by mass spectrometry. Recently engineered PL enzymes such as TurboID have a much-improved enzymatic activity, enabling spatiotemporal mapping with a dramatically increased signal-to-noise ratio. PL-MS has revolutionized the way we perform proteomics by overcoming several hurdles imposed by traditional technology, such as biochemical fractionation and affinity purification mass spectrometry. In this review, we focus on biotin ligase-based PL-MS applications that have been, or are likely to be, adopted by the plant field. We discuss the experimental designs and review the different choices for engineered biotin ligases, enrichment, and quantification strategies. Lastly, we review the validation and discuss future perspectives.
Collapse
Affiliation(s)
- Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Ruben Shrestha
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
| | - Sumudu S Karunadasa
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
| | - Pei-Qiao Xie
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
25
|
Wei Q, Chen B, Wang J, Huang M, Gui Y, Sayyed A, Tan BC. PHB3 Is Required for the Assembly and Activity of Mitochondrial ATP Synthase in Arabidopsis. Int J Mol Sci 2023; 24:ijms24108787. [PMID: 37240131 DOI: 10.3390/ijms24108787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondrial ATP synthase is a multiprotein complex, which consists of a matrix-localized F1 domain (F1-ATPase) and an inner membrane-embedded Fo domain (Fo-ATPase). The assembly process of mitochondrial ATP synthase is complex and requires the function of many assembly factors. Although extensive studies on mitochondrial ATP synthase assembly have been conducted on yeast, much less study has been performed on plants. Here, we revealed the function of Arabidopsis prohibitin 3 (PHB3) in mitochondrial ATP synthase assembly by characterizing the phb3 mutant. The blue native PAGE (BN-PAGE) and in-gel activity staining assays showed that the activities of ATP synthase and F1-ATPase were significantly decreased in the phb3 mutant. The absence of PHB3 resulted in the accumulation of the Fo-ATPase and F1-ATPase intermediates, whereas the abundance of the Fo-ATPase subunit a was decreased in the ATP synthase monomer. Furthermore, we showed that PHB3 could interact with the F1-ATPase subunits β and δ in the yeast two-hybrid system (Y2H) and luciferase complementation imaging (LCI) assay and with Fo-ATPase subunit c in the LCI assay. These results indicate that PHB3 acts as an assembly factor required for the assembly and activity of mitochondrial ATP synthase.
Collapse
Affiliation(s)
- Qingqing Wei
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Baoyin Chen
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Junjun Wang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Manna Huang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yuanye Gui
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Aqib Sayyed
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
26
|
Ren Z, Fan K, Zhen S, Zhang J, Liu Y, Fu J, Qi C, Wei Q, Du Y, Tatar W, Zhang X, Wang G, Rasmusson AG, Wang J, Liu Y. Tetratricopeptide-containing SMALL KERNEL 11 is essential for the assembly of cytochrome c oxidase in maize mitochondria. PLANT PHYSIOLOGY 2023; 192:170-187. [PMID: 36722259 DOI: 10.1093/plphys/kiad062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 05/03/2023]
Abstract
Assembly of the functional complexes of the mitochondrial respiratory chain requires sophisticated and efficient regulatory mechanisms. In plants, the subunit composition and assembly factors involved in the biogenesis of cytochrome c oxidase (complex IV) are substantially less defined than in mammals and yeast. In this study, we cloned maize (Zea mays) Small kernel 11 (Smk11) via map-based cloning. Smk11 encodes a mitochondria-localized tetratricopeptide repeat protein. Disruption of Smk11 severely affected the assembly and activity of mitochondrial complex IV, leading to delayed plant growth and seed development. Protein interactions studies revealed that SMK11 might interact with four putative complex IV assembly factors, Inner membrane peptidase 1A (ZmIMP1A), MYB domain protein 3R3 (ZmMYB3R-3), cytochrome c oxidase 23 (ZmCOX23), and mitochondrial ferredoxin 1 (ZmMFDX1), among which ZmMFDX1 might interact with subunits ZmCOX6a and ZmCOX-X1; ZmMYB3R-3 might also interact with ZmCOX6a. The mutation of SMK11 perturbed the normal assembly of these subunits, leading to the inactivation of complex IV. The results of this study revealed that SMK11 serves as an accessory assembly factor required for the normal assembly of subunits into complex IV, which will accelerate the elucidation of the assembly of complex IV in plant mitochondria.
Collapse
Affiliation(s)
- Zhenjing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaijian Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sihan Zhen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
| | - Jie Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunlai Qi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qianhan Wei
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
| | - Yao Du
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
| | - Wurinile Tatar
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaofeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Jianhua Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
27
|
High-Throughput Proteome Profiling of Plasma and Native Plasma Complexes Using Native Chromatography. Methods Mol Biol 2023; 2628:53-79. [PMID: 36781779 DOI: 10.1007/978-1-0716-2978-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
We describe a high-throughput method for co-fractionation mass spectrometry (CF-MS) profiling for native plasma protein profiling. CF-MS allows the profiling of endogenous protein complexes between samples. Proteins often interact with other proteins and form macromolecular complexes that are different in disease states as well as cell states and cell types. This protocol describes an example for the sample preparation of 954 individual size exclusion chromatography (SEC) fractions, derived from 18 plasma samples that were separated into 53 fractions. Eighteen plasma samples were chosen based on the TMTpro multiplexing, but this methodology can be adapted for fewer or larger numbers of samples as appropriate. Our automated sample preparation method allows for high-throughput native plasma profiling, and we provide detailed methods for both a label-free and an isobaric labeling approach, discuss the merits of each approach, and detail the advantages of combining these strategies for comprehensive native plasma proteome profiling.
Collapse
|
28
|
Casey C, Köcher T, Champion C, Jandrasits K, Mosiolek M, Bonnot C, Dolan L. Reduced coenzyme Q synthesis confers non-target site resistance to the herbicide thaxtomin A. PLoS Genet 2023; 19:e1010423. [PMID: 36608112 PMCID: PMC9851558 DOI: 10.1371/journal.pgen.1010423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/19/2023] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Herbicide resistance in weeds is a growing threat to global crop production. Non-target site resistance is problematic because a single resistance allele can confer tolerance to many herbicides (cross resistance), and it is often a polygenic trait so it can be difficult to identify the molecular mechanisms involved. Most characterized molecular mechanisms of non-target site resistance are caused by gain-of-function mutations in genes from a few key gene families-the mechanisms of resistance caused by loss-of-function mutations remain unclear. In this study, we first show that the mechanism of non-target site resistance to the herbicide thaxtomin A conferred by loss-of-function of the gene PAM16 is conserved in Marchantia polymorpha, validating its use as a model species with which to study non-target site resistance. To identify mechanisms of non-target site resistance caused by loss-of-function mutations, we generated 107 UV-B mutagenized M. polymorpha spores and screened for resistance to the herbicide thaxtomin A. We isolated 13 thaxtomin A-resistant mutants and found that 3 mutants carried candidate resistance-conferring SNPs in the MpRTN4IP1L gene. Mprtn4ip1l mutants are defective in coenzyme Q biosynthesis and accumulate higher levels of reactive oxygen species (ROS) than wild-type plants. Mutants are weakly resistant to thaxtomin A and cross resistant to isoxaben, suggesting that loss of MpRTN4IP1L function confers non-target site resistance. Mutants are also defective in thaxtomin A metabolism. We conclude that loss of MpRTN4IP1L function is a novel mechanism of non-target site herbicide resistance and propose that other mutations that increase ROS levels or decrease thaxtomin A metabolism could contribute to thaxtomin A resistance in the field.
Collapse
Affiliation(s)
- Chloe Casey
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Gregor Mendel Institute, Vienna, Austria
| | | | - Clément Champion
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | | | | | - Clémence Bonnot
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Liam Dolan
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Gregor Mendel Institute, Vienna, Austria
- * E-mail:
| |
Collapse
|
29
|
Sweetman C, Waterman CD, Wong DC, Day DA, Jenkins CL, Soole KL. Altering the balance between AOX1A and NDB2 expression affects a common set of transcripts in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:876843. [PMID: 36466234 PMCID: PMC9716356 DOI: 10.3389/fpls.2022.876843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Stress-responsive components of the mitochondrial alternative electron transport pathway have the capacity to improve tolerance of plants to abiotic stress, particularly the alternative oxidase AOX1A but also external NAD(P)H dehydrogenases such as NDB2, in Arabidopsis. NDB2 and AOX1A can cooperate to entirely circumvent the classical electron transport chain in Arabidopsis mitochondria. Overexpression of AOX1A or NDB2 alone can have slightly negative impacts on plant growth under optimal conditions, while simultaneous overexpression of NDB2 and AOX1A can reverse these phenotypic effects. We have taken a global transcriptomic approach to better understand the molecular shifts that occur due to overexpression of AOX1A alone and with concomitant overexpression of NDB2. Of the transcripts that were significantly up- or down- regulated in the AOX1A overexpression line compared to wild type (410 and 408, respectively), the majority (372 and 337, respectively) reverted to wild type levels in the dual overexpression line. Several mechanisms for the AOX1A overexpression phenotype are proposed based on the functional classification of these 709 genes, which can be used to guide future experiments. Only 28 genes were uniquely up- or down-regulated when NDB2 was overexpressed in the AOX1A overexpression line. On the other hand, many unique genes were deregulated in the NDB2 knockout line. Furthermore, several changes in transcript abundance seen in the NDB2 knockout line were consistent with changes in the AOX1A overexpression line. The results suggest that an imbalance in AOX1A:NDB2 protein levels caused by under- or over-expression of either component, triggers a common set of transcriptional responses that may be important in mitochondrial redox regulation. The most significant changes were transcripts associated with photosynthesis, secondary metabolism and oxidative stress responses.
Collapse
Affiliation(s)
- Crystal Sweetman
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | | | - Darren C.J. Wong
- College of Science, Australian National University, Canberra, ACT, Australia
| | - David A. Day
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Colin L.D. Jenkins
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Kathleen L. Soole
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
30
|
Ivanova A, O′Leary B, Signorelli S, Falconet D, Moyankova D, Whelan J, Djilianov D, Murcha MW. Mitochondrial activity and biogenesis during resurrection of Haberlea rhodopensis. THE NEW PHYTOLOGIST 2022; 236:943-957. [PMID: 35872573 PMCID: PMC9804507 DOI: 10.1111/nph.18396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2022] [Indexed: 06/01/2023]
Abstract
Haberlea rhodopensis is a resurrection plant that can tolerate extreme and prolonged periods of desiccation with a rapid restoration of physiological function upon rehydration. Specialized mechanisms are required to minimize cellular damage during desiccation and to maintain integrity for rapid recovery following rehydration. In this study we used respiratory activity measurements, electron microscopy, transcript, protein and blue native-PAGE analysis to investigate mitochondrial activity and biogenesis in fresh, desiccated and rehydrated detached H. rhodopensis leaves. We demonstrate that unlike photosynthesis, mitochondrial respiration was almost immediately activated to levels of fresh tissue upon rehydration. The abundance of transcripts and proteins involved in mitochondrial respiration and biogenesis were at comparable levels in fresh, desiccated and rehydrated tissues. Blue native-PAGE analysis revealed fully assembled and equally abundant OXPHOS complexes in mitochondria isolated from fresh, desiccated and rehydrated detached leaves. We observed a high abundance of alternative respiratory components which correlates with the observed high uncoupled respiration capacity in desiccated tissue. Our study reveals that during desiccation of vascular H. rhodopensis tissue, mitochondrial composition is conserved and maintained at a functional state allowing for an almost immediate activation to full capacity upon rehydration. Mitochondria-specific mechanisms were activated during desiccation which probably play a role in maintaining tolerance.
Collapse
Affiliation(s)
- Aneta Ivanova
- School of Molecular SciencesThe University of Western Australia35 Stirling Highway, CrawleyPerthWA6009Australia
- AgroBioInstituteAgricultural Academy8 Dragan Tzankov Blvd.1164SofiaBulgaria
| | - Brendan O′Leary
- School of Molecular SciencesThe University of Western Australia35 Stirling Highway, CrawleyPerthWA6009Australia
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food Canada107 Science PlaceSaskatoonSKK1A 0C5Canada
| | - Santiago Signorelli
- School of Molecular SciencesThe University of Western Australia35 Stirling Highway, CrawleyPerthWA6009Australia
- Department of Plant Biology, School of AgricultureUniversidad de la RepúblicaE. Garzón 780, Sayago12900MontevideoUruguay
| | - Denis Falconet
- Cell and Plant Physiology Laboratory, CNRS, CEA, INRAE, IRIGUniversité Grenoble Alpes38054GrenobleFrance
| | - Daniela Moyankova
- AgroBioInstituteAgricultural Academy8 Dragan Tzankov Blvd.1164SofiaBulgaria
| | - James Whelan
- Department of Animal, Plant and Soil Science, School of Life Science, The ARC Centre of Excellence in Plant Energy BiologyLa Trobe UniversityBundoora3086VICAustralia
| | - Dimitar Djilianov
- AgroBioInstituteAgricultural Academy8 Dragan Tzankov Blvd.1164SofiaBulgaria
| | - Monika W. Murcha
- School of Molecular SciencesThe University of Western Australia35 Stirling Highway, CrawleyPerthWA6009Australia
| |
Collapse
|
31
|
Ruberti C, Feitosa-Araujo E, Xu Z, Wagner S, Grenzi M, Darwish E, Lichtenauer S, Fuchs P, Parmagnani AS, Balcerowicz D, Schoenaers S, de la Torre C, Mekkaoui K, Nunes-Nesi A, Wirtz M, Vissenberg K, Van Aken O, Hause B, Costa A, Schwarzländer M. MCU proteins dominate in vivo mitochondrial Ca2+ uptake in Arabidopsis roots. THE PLANT CELL 2022; 34:4428-4452. [PMID: 35938694 PMCID: PMC9614509 DOI: 10.1093/plcell/koac242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Ca2+ signaling is central to plant development and acclimation. While Ca2+-responsive proteins have been investigated intensely in plants, only a few Ca2+-permeable channels have been identified, and our understanding of how intracellular Ca2+ fluxes is facilitated remains limited. Arabidopsis thaliana homologs of the mammalian channel-forming mitochondrial calcium uniporter (MCU) protein showed Ca2+ transport activity in vitro. Yet, the evolutionary complexity of MCU proteins, as well as reports about alternative systems and unperturbed mitochondrial Ca2+ uptake in knockout lines of MCU genes, leave critical questions about the in vivo functions of the MCU protein family in plants unanswered. Here, we demonstrate that MCU proteins mediate mitochondrial Ca2+ transport in planta and that this mechanism is the major route for fast Ca2+ uptake. Guided by the subcellular localization, expression, and conservation of MCU proteins, we generated an mcu triple knockout line. Using Ca2+ imaging in living root tips and the stimulation of Ca2+ transients of different amplitudes, we demonstrated that mitochondrial Ca2+ uptake became limiting in the triple mutant. The drastic cell physiological phenotype of impaired subcellular Ca2+ transport coincided with deregulated jasmonic acid-related signaling and thigmomorphogenesis. Our findings establish MCUs as a major mitochondrial Ca2+ entry route in planta and link mitochondrial Ca2+ transport with phytohormone signaling.
Collapse
Affiliation(s)
| | - Elias Feitosa-Araujo
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, D-48143, Germany
| | - Zhaolong Xu
- Department of Biosciences, University of Milano, Milan, I-20133, Italy
- Jiangsu Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | | | - Matteo Grenzi
- Department of Biosciences, University of Milano, Milan, I-20133, Italy
| | - Essam Darwish
- Department of Biology, Lund University, Lund, 22362, Sweden
- Agricultural Botany Department, Faculty of Agriculture, Plant Physiology Section, Cairo University, Giza, 12613, Egypt
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, D-48143, Germany
| | | | | | - Daria Balcerowicz
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
| | - Carolina de la Torre
- NGS Core Facility, Medical Faculty Mannheim, University of Heidelberg, Mannheim, D-68167, Germany
| | - Khansa Mekkaoui
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), D-06120, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Markus Wirtz
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, Heidelberg, D-69120, Germany
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
- Department of Agriculture, Plant Biochemistry and Biotechnology Lab, Hellenic Mediterranean University, Heraklion, 71410, Greece
| | | | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), D-06120, Germany
| | - Alex Costa
- Authors for correspondence: (A.C); (M.S.)
| | | |
Collapse
|
32
|
Dimitrova A, Sferra G, Scippa GS, Trupiano D. Network-Based Analysis to Identify Hub Genes Involved in Spatial Root Response to Mechanical Constrains. Cells 2022; 11:3121. [PMID: 36231084 PMCID: PMC9564363 DOI: 10.3390/cells11193121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Previous studies report that the asymmetric response, observed along the main poplar woody bent root axis, was strongly related to both the type of mechanical forces (compression or tension) and the intensity of force displacement. Despite a large number of targets that have been proposed to trigger this asymmetry, an understanding of the comprehensive and synergistic effect of the antistress spatially related pathways is still lacking. Recent progress in the bioinformatics area has the potential to fill these gaps through the use of in silico studies, able to investigate biological functions and pathway overlaps, and to identify promising targets in plant responses. Presently, for the first time, a comprehensive network-based analysis of proteomic signatures was used to identify functions and pivotal genes involved in the coordinated signalling pathways and molecular activities that asymmetrically modulate the response of different bent poplar root sectors and sides. To accomplish this aim, 66 candidate proteins, differentially represented across the poplar bent root sides and sectors, were grouped according to their abundance profile patterns and mapped, together with their first neighbours, on a high-confidence set of interactions from STRING to compose specific cluster-related subnetworks (I-VI). Successively, all subnetworks were explored by a functional gene set enrichment analysis to identify enriched gene ontology terms. Subnetworks were then analysed to identify the genes that are strongly interconnected with other genes (hub gene) and, thus, those that have a pivotal role in the bent root asymmetric response. The analysis revealed novel information regarding the response coordination, communication, and potential signalling pathways asymmetrically activated along the main root axis, delegated mainly to Ca2+ (for new lateral root formation) and ROS (for gravitropic response and lignin accumulation) signatures. Furthermore, some of the data indicate that the concave side of the bent sector, where the mechanical forces are most intense, communicates to the other (neighbour and distant) sectors, inducing spatially related strategies to ensure water uptake and accompanying cell modification. This information could be critical for understanding how plants maintain and improve their structural integrity-whenever and wherever it is necessary-in natural mechanical stress conditions.
Collapse
Affiliation(s)
| | | | | | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| |
Collapse
|
33
|
Hemono M, Salinas‐Giegé T, Roignant J, Vingadassalon A, Hammann P, Ubrig E, Ngondo P, Duchêne A. FRIENDLY (FMT) is an RNA binding protein associated with cytosolic ribosomes at the mitochondrial surface. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:309-321. [PMID: 36050837 PMCID: PMC9826127 DOI: 10.1111/tpj.15962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The spatial organization of protein synthesis in the eukaryotic cell is essential for maintaining the integrity of the proteome and the functioning of the cell. Translation on free polysomes or on ribosomes associated with the endoplasmic reticulum has been studied for a long time. More recent data have revealed selective translation of mRNAs in other compartments, in particular at the surface of mitochondria. Although these processes have been described in many organisms, particularky in plants, the mRNA targeting and localized translation mechanisms remain poorly understood. Here, the Arabidopsis thaliana Friendly (FMT) protein is shown to be a cytosolic RNA binding protein that associates with cytosolic ribosomes at the surface of mitochondria. FMT knockout delays seedling development and causes mitochondrial clustering. The mutation also disrupts the mitochondrial proteome, as well as the localization of nuclear transcripts encoding mitochondrial proteins at the surface of mitochondria. These data indicate that FMT participates in the localization of mRNAs and their translation at the surface of mitochondria.
Collapse
Affiliation(s)
- Mickaele Hemono
- Institut de biologie moléculaire des plantes, UPR 2357 du CNRS, Université de Strasbourg12 rue du Général Zimmer67084Strasbourg CedexFrance
| | - Thalia Salinas‐Giegé
- Institut de biologie moléculaire des plantes, UPR 2357 du CNRS, Université de Strasbourg12 rue du Général Zimmer67084Strasbourg CedexFrance
| | - Jeanne Roignant
- Institut de biologie moléculaire des plantes, UPR 2357 du CNRS, Université de Strasbourg12 rue du Général Zimmer67084Strasbourg CedexFrance
| | - Audrey Vingadassalon
- Institut de biologie moléculaire des plantes, UPR 2357 du CNRS, Université de Strasbourg12 rue du Général Zimmer67084Strasbourg CedexFrance
- Université des Antilles, COVACHIM M2E (EA 3592), UFR SEN, Campus de FouilloleF‐97 110Pointe‐à‐PitreFrance
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg‐EsplanadeInstitut de Biologie Moléculaire et CellulaireFR1589 du CNRS, 2 Allée Konrad Roentgen67084Strasbourg CedexFrance
| | - Elodie Ubrig
- Institut de biologie moléculaire des plantes, UPR 2357 du CNRS, Université de Strasbourg12 rue du Général Zimmer67084Strasbourg CedexFrance
| | - Patryk Ngondo
- Institut de biologie moléculaire des plantes, UPR 2357 du CNRS, Université de Strasbourg12 rue du Général Zimmer67084Strasbourg CedexFrance
- Institut de Biologie Moléculaire et Cellulaire, UPR 9002 du CNRS, Université de Strasbourg2 Allée Konrad Roentgen67 084Strasbourg CedexFrance
| | - Anne‐Marie Duchêne
- Institut de biologie moléculaire des plantes, UPR 2357 du CNRS, Université de Strasbourg12 rue du Général Zimmer67084Strasbourg CedexFrance
| |
Collapse
|
34
|
Scandola S, Mehta D, Li Q, Rodriguez Gallo MC, Castillo B, Uhrig RG. Multi-omic analysis shows REVEILLE clock genes are involved in carbohydrate metabolism and proteasome function. PLANT PHYSIOLOGY 2022; 190:1005-1023. [PMID: 35670757 PMCID: PMC9516735 DOI: 10.1093/plphys/kiac269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/12/2022] [Indexed: 06/01/2023]
Abstract
Plants are able to sense changes in their light environments, such as the onset of day and night, as well as anticipate these changes in order to adapt and survive. Central to this ability is the plant circadian clock, a molecular circuit that precisely orchestrates plant cell processes over the course of a day. REVEILLE (RVE) proteins are recently discovered members of the plant circadian circuitry that activate the evening complex and PSEUDO-RESPONSE REGULATOR genes to maintain regular circadian oscillation. The RVE8 protein and its two homologs, RVE 4 and 6 in Arabidopsis (Arabidopsis thaliana), have been shown to limit the length of the circadian period, with rve 4 6 8 triple-knockout plants possessing an elongated period along with increased leaf surface area, biomass, cell size, and delayed flowering relative to wild-type Col-0 plants. Here, using a multi-omics approach consisting of phenomics, transcriptomics, proteomics, and metabolomics we draw new connections between RVE8-like proteins and a number of core plant cell processes. In particular, we reveal that loss of RVE8-like proteins results in altered carbohydrate, organic acid, and lipid metabolism, including a starch excess phenotype at dawn. We further demonstrate that rve 4 6 8 plants have lower levels of 20S proteasome subunits and possess significantly reduced proteasome activity, potentially explaining the increase in cell-size observed in RVE8-like mutants. Overall, this robust, multi-omic dataset provides substantial insight into the far-reaching impact RVE8-like proteins have on the diel plant cell environment.
Collapse
Affiliation(s)
| | | | - Qiaomu Li
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | - Brigo Castillo
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
35
|
Hassan SH, Sferra G, Simiele M, Scippa GS, Morabito D, Trupiano D. Root and shoot biology of Arabidopsis halleri dissected by WGCNA: an insight into the organ pivotal pathways and genes of an hyperaccumulator. Funct Integr Genomics 2022; 22:1159-1172. [PMID: 36094581 DOI: 10.1007/s10142-022-00897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022]
Abstract
Arabidopsis halleri is a hyperaccumulating pseudo-metallophyte and an emerging model to explore molecular basis of metal tolerance and hyperaccumulation. In this regard, understanding of interacting genes can be a crucial aspect as these interactions regulate several biological functions at molecular level in response to multiple signals. In this current study, we applied a weighted gene co-expression network analysis (WGCNA) on root and shoot RNA-seq data of A. halleri to predict the related scale-free organ specific co-expression networks, for the first time. A total of 19,653 genes of root and 18,081 genes of shoot were grouped into 14 modules and subjected to GO and KEGG enrichment analysis. "Photosynthesis" and "photosynthesis-antenna proteins" were identified as the most enriched and common pathway to both root and shoot. Whereas "glucosinolate biosynthesis," "autophagy," and "SNARE interactions in vesicular transport" were specific to root, and "circadian rhythm" was found to be enriched only in shoot. Later, hub and bottleneck genes were identified in each module by using cytoHubba plugin based on Cytoscape and scoring the relevance of each gene to the topology of the network. The modules with the most significant differential expression pattern across control and treatment (Cd-Zn treatment) were selected and their hub and bottleneck genes were screened to validate their possible involvement in heavy metal stress. Moreover, we combined the analysis of co-expression modules together with protein-protein interactions (PPIs), confirming some genes as potential candidates in plant heavy metal stress and as biomarkers. The results from this analysis shed the light on the pivotal functions to the hyperaccumulative trait of A. halleri, giving perspective to new paths for future research on this species.
Collapse
Affiliation(s)
- Sayyeda Hira Hassan
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, Italy
| | - Gabriella Sferra
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, Italy.
| | - Melissa Simiele
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, Italy
| | | | - Domenico Morabito
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC-EA1207), Université d'Orléans, 45067, Orléans CEDEX 2, France
| | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, Italy
| |
Collapse
|
36
|
Hsieh WY, Wang HM, Chung YH, Lee KT, Liao HS, Hsieh MH. THIAMIN REQUIRING2 is involved in thiamin diphosphate biosynthesis and homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1383-1396. [PMID: 35791282 DOI: 10.1111/tpj.15895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The THIAMIN REQUIRING2 (TH2) protein comprising a mitochondrial targeting peptide followed by a transcription enhancement A and a haloacid dehalogenase domain is a thiamin monophosphate (TMP) phosphatase in the vitamin B1 biosynthetic pathway. The Arabidopsis th2-3 T-DNA insertion mutant was chlorotic and deficient in thiamin diphosphate (TDP). Complementation assays confirmed that haloacid dehalogenase domain alone was sufficient to rescue the th2-3 mutant. In pTH2:TH2-GFP/th2-3 complemented plants, the TH2-GFP was localized to the cytosol, mitochondrion, and nucleus, indicating that the vitamin B1 biosynthetic pathway extended across multi-subcellular compartments. Engineered TH2-GFP localized to the cytosol, mitochondrion, nucleus, and chloroplast, could complement the th2 mutant. Together, these results highlight the importance of intracellular TMP and thiamin trafficking in vitamin B1 biosynthesis. In an attempt to enhance the production of thiamin, we created various constructs to overexpress TH2-GFP in the cytosol, mitochondrion, chloroplast, and nucleus. Unexpectedly, overexpressing TH2-GFP resulted in an increase rather than a decrease in TMP. While studies on th2 mutants support TH2 as a TMP phosphatase, analyses of TH2-GFP overexpression lines implicating TH2 may also function as a TDP phosphatase in planta. We propose a working model that the TMP/TDP phosphatase activity of TH2 connects TMP, thiamin, and TDP into a metabolic cycle. The TMP phosphatase activity of TH2 is required for TDP biosynthesis, and the TDP phosphatase activity of TH2 may modulate TDP homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Mei Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
| | - Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
37
|
Sugita M. An Overview of Pentatricopeptide Repeat (PPR) Proteins in the Moss Physcomitrium patens and Their Role in Organellar Gene Expression. PLANTS 2022; 11:plants11172279. [PMID: 36079663 PMCID: PMC9459714 DOI: 10.3390/plants11172279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Pentatricopeptide repeat (PPR) proteins are one type of helical repeat protein that are widespread in eukaryotes. In particular, there are several hundred PPR members in flowering plants. The majority of PPR proteins are localized in the plastids and mitochondria, where they play a crucial role in various aspects of RNA metabolism at the post-transcriptional and translational steps during gene expression. Among the early land plants, the moss Physcomitrium (formerly Physcomitrella) patens has at least 107 PPR protein-encoding genes, but most of their functions remain unclear. To elucidate the functions of PPR proteins, a reverse-genetics approach has been applied to P. patens. To date, the molecular functions of 22 PPR proteins were identified as essential factors required for either mRNA processing and stabilization, RNA splicing, or RNA editing. This review examines the P. patens PPR gene family and their current functional characterization. Similarities and a diversity of functions of PPR proteins between P. patens and flowering plants and their roles in the post-transcriptional regulation of organellar gene expression are discussed.
Collapse
Affiliation(s)
- Mamoru Sugita
- Graduate School of Informatics, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
38
|
Brischigliaro M, Cabrera‐Orefice A, Sturlese M, Elurbe DM, Frigo E, Fernandez‐Vizarra E, Moro S, Huynen MA, Arnold S, Viscomi C, Zeviani M. CG7630 is the
Drosophila melanogaster
homolog of the cytochrome
c
oxidase subunit COX7B. EMBO Rep 2022; 23:e54825. [PMID: 35699132 PMCID: PMC9346487 DOI: 10.15252/embr.202254825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
The mitochondrial respiratory chain (MRC) is composed of four multiheteromeric enzyme complexes. According to the endosymbiotic origin of mitochondria, eukaryotic MRC derives from ancestral proteobacterial respiratory structures consisting of a minimal set of complexes formed by a few subunits associated with redox prosthetic groups. These enzymes, which are the “core” redox centers of respiration, acquired additional subunits, and increased their complexity throughout evolution. Cytochrome c oxidase (COX), the terminal component of MRC, has a highly interspecific heterogeneous composition. Mammalian COX consists of 14 different polypeptides, of which COX7B is considered the evolutionarily youngest subunit. We applied proteomic, biochemical, and genetic approaches to investigate the COX composition in the invertebrate model Drosophila melanogaster. We identified and characterized a novel subunit which is widely different in amino acid sequence, but similar in secondary and tertiary structures to COX7B, and provided evidence that this object is in fact replacing the latter subunit in virtually all protostome invertebrates. These results demonstrate that although individual structures may differ the composition of COX is functionally conserved between vertebrate and invertebrate species.
Collapse
Affiliation(s)
| | - Alfredo Cabrera‐Orefice
- Radboud Institute for Molecular Life Sciences Radboud University Medical Center Nijmegen The Netherlands
| | - Mattia Sturlese
- Molecular Modeling Section Department of Pharmaceutical and Pharmacological Sciences University of Padova Padova Italy
| | - Dei M Elurbe
- Centre for Molecular and Biomolecular Informatics Radboud University Medical Center Nijmegen The Netherlands
| | - Elena Frigo
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Erika Fernandez‐Vizarra
- Department of Biomedical Sciences University of Padova Padova Italy
- Veneto Institute of Molecular Medicine Padova Italy
| | - Stefano Moro
- Molecular Modeling Section Department of Pharmaceutical and Pharmacological Sciences University of Padova Padova Italy
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics Radboud University Medical Center Nijmegen The Netherlands
| | - Susanne Arnold
- Radboud Institute for Molecular Life Sciences Radboud University Medical Center Nijmegen The Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Carlo Viscomi
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Massimo Zeviani
- Veneto Institute of Molecular Medicine Padova Italy
- Department of Neurosciences University of Padova Padova Italy
| |
Collapse
|
39
|
Meyer EH, Letts JA, Maldonado M. Structural insights into the assembly and the function of the plant oxidative phosphorylation system. THE NEW PHYTOLOGIST 2022; 235:1315-1329. [PMID: 35588181 DOI: 10.1111/nph.18259] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/05/2022] [Indexed: 05/23/2023]
Abstract
One of the key functions of mitochondria is the production of ATP to support cellular metabolism and growth. The last step of mitochondrial ATP synthesis is performed by the oxidative phosphorylation (OXPHOS) system, an ensemble of protein complexes embedded in the inner mitochondrial membrane. In the last 25 yr, many structures of OXPHOS complexes and supercomplexes have been resolved in yeast, mammals, and bacteria. However, structures of plant OXPHOS enzymes only became available very recently. In this review, we highlight the plant-specific features revealed by the recent structures and discuss how they advance our understanding of the function and assembly of plant OXPHOS complexes. We also propose new hypotheses to be tested and discuss older findings to be re-evaluated. Further biochemical and structural work on the plant OXPHOS system will lead to a deeper understanding of plant respiration and its regulation, with significant agricultural, environmental, and societal implications.
Collapse
Affiliation(s)
- Etienne H Meyer
- Institute of Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - James A Letts
- Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Maria Maldonado
- Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
40
|
Sahrawy M, Fernández-Trijueque J, Vargas P, Serrato AJ. Comprehensive Expression Analyses of Plastidial Thioredoxins of Arabidopsis thaliana Indicate a Main Role of Thioredoxin m2 in Roots. Antioxidants (Basel) 2022; 11:antiox11071365. [PMID: 35883856 PMCID: PMC9311637 DOI: 10.3390/antiox11071365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Thioredoxins (TRXs) f and m are redox proteins that regulate key chloroplast processes. The existence of several isoforms of TRXs f and m indicates that these redox players have followed a specialization process throughout evolution. Current research efforts are focused on discerning the signalling role of the different TRX types and their isoforms in chloroplasts. Nonetheless, little is known about their function in non-photosynthetic plastids. For this purpose, we have carried out comprehensive expression analyses by using Arabidopsis thaliana TRXf (f1 and f2) and TRXm (m1, m2, m3 and m4) genes translationally fused to the green fluorescence protein (GFP). These analyses showed that TRX m has different localisation patterns inside chloroplasts, together with a putative dual subcellular localisation of TRX f1. Apart from mesophyll cells, these TRXs were also observed in reproductive organs, stomatal guard cells and roots. We also investigated whether photosynthesis, stomatal density and aperture or root structure were affected in the TRXs f and m loss-of-function Arabidopsis mutants. Remarkably, we immunodetected TRX m2 and the Calvin−Benson cycle fructose-1,6-bisphosphatase (cFBP1) in roots. After carrying out in vitro redox activation assays of cFBP1 by plastid TRXs, we propose that cFBP1 might be activated by TRX m2 in root plastids.
Collapse
|
41
|
Mizrahi R, Shevtsov-Tal S, Ostersetzer-Biran O. Group II Intron-Encoded Proteins (IEPs/Maturases) as Key Regulators of Nad1 Expression and Complex I Biogenesis in Land Plant Mitochondria. Genes (Basel) 2022; 13:genes13071137. [PMID: 35885919 PMCID: PMC9321910 DOI: 10.3390/genes13071137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are semi-autonomous organelles that produce much of the energy required for cellular metabolism. As descendants of a bacterial symbiont, most mitochondria harbor their own genetic system (mtDNA/mitogenome), with intrinsic machineries for transcription and protein translation. A notable feature of plant mitochondria involves the presence of introns (mostly group II-type) that reside in many organellar genes. The splicing of the mtRNAs relies on the activities of various protein cofactors, which may also link organellar functions with cellular or environmental signals. The splicing of canonical group II introns is aided by an ancient class of RT-like enzymes (IEPs/maturases, MATs) that are encoded by the introns themselves and act specifically on their host introns. The plant organellar introns are degenerated in structure and are generally also missing their cognate intron-encoded proteins. The factors required for plant mtRNA processing are mostly nuclearly-encoded, with the exception of a few degenerated MATs. These are in particular pivotal for the maturation of NADH-dehydrogenase transcripts. In the following review we provide an update on the non-canonical MAT factors in angiosperm mitochondria and summarize the current knowledge of their essential roles in regulating Nad1 expression and complex I (CI) biogenesis during embryogenesis and early plant life.
Collapse
|
42
|
Simon M, Durand S, Ricou A, Vrielynck N, Mayjonade B, Gouzy J, Boyer R, Roux F, Camilleri C, Budar F. APOK3, a pollen killer antidote in Arabidopsis thaliana. Genetics 2022; 221:6603116. [PMID: 35666201 DOI: 10.1093/genetics/iyac089] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/27/2022] [Indexed: 11/14/2022] Open
Abstract
The principles of heredity state that the two alleles carried by a heterozygote are equally transmitted to the progeny. However, genomic regions that escape this rule have been reported in many organisms. It is notably the case of genetic loci referred to as gamete killers, where one allele enhances its transmission by causing the death of the gametes that do not carry it. Gamete killers are of great interest, particularly to understand mechanisms of evolution and speciation. Although being common in plants, only a few, all in rice, have so far been deciphered to the causal genes. Here, we studied a pollen killer found in hybrids between two accessions of Arabidopsis thaliana. Exploring natural variation, we observed this pollen killer in many crosses within the species. Genetic analyses revealed that three genetically linked elements are necessary for pollen killer activity. Using mutants, we showed that this pollen killer works according to a poison-antidote model, where the poison kills pollen grains not producing the antidote. We identified the gene encoding the antidote, a chimeric protein addressed to mitochondria. De novo genomic sequencing in twelve natural variants with different behaviors regarding the pollen killer revealed a hyper variable locus, with important structural variations particularly in killer genotypes, where the antidote gene recently underwent duplications. Our results strongly suggest that the gene has newly evolved within A. thaliana. Finally, we identified in the protein sequence polymorphisms related to its antidote activity.
Collapse
Affiliation(s)
- Matthieu Simon
- Université Paris-Saclay,INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Stéphanie Durand
- Université Paris-Saclay,INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Anthony Ricou
- Université Paris-Saclay,INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Nathalie Vrielynck
- Université Paris-Saclay,INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | | | - Jérôme Gouzy
- LIPME,Université de Toulouse,INRAE,CNRS, 31326 Castanet-Tolosan, France
| | - Roxane Boyer
- INRAE, GeT-PlaGe, Genotoul, 31326 Castanet-Tolosan, France(doi : 10.15454/1.5572370921303193E12)
| | - Fabrice Roux
- LIPME,Université de Toulouse,INRAE,CNRS, 31326 Castanet-Tolosan, France
| | - Christine Camilleri
- Université Paris-Saclay,INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Françoise Budar
- Université Paris-Saclay,INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| |
Collapse
|
43
|
Proteolytic regulation of mitochondrial oxidative phosphorylation components in plants. Biochem Soc Trans 2022; 50:1119-1132. [PMID: 35587610 PMCID: PMC9246333 DOI: 10.1042/bst20220195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
Abstract
Mitochondrial function relies on the homeostasis and quality control of their proteome, including components of the oxidative phosphorylation (OXPHOS) pathway that generates energy in form of ATP. OXPHOS subunits are under constant exposure to reactive oxygen species due to their oxidation-reduction activities, which consequently make them prone to oxidative damage, misfolding, and aggregation. As a result, quality control mechanisms through turnover and degradation are required for maintaining mitochondrial activity. Degradation of OXPHOS subunits can be achieved through proteomic turnover or modular degradation. In this review, we present multiple protein degradation pathways in plant mitochondria. Specifically, we focus on the intricate turnover of OXPHOS subunits, prior to protein import via cytosolic proteasomal degradation and post import and assembly via intra-mitochondrial proteolysis involving multiple AAA+ proteases. Together, these proteolytic pathways maintain the activity and homeostasis of OXPHOS components.
Collapse
|
44
|
Gatica-Soria LM, Ceriotti LF, Garcia LE, Virginia Sanchez-Puerta M. Native and foreign mitochondrial and nuclear encoded proteins conform the OXPHOS complexes of a holoparasitic plant. Gene 2022; 817:146176. [PMID: 35031426 DOI: 10.1016/j.gene.2021.146176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022]
Abstract
The intimate contact between the holoparasitic plant Lophophytum mirabile (Balanophoraceae) and its host plant (Fabaceae) facilitates the exchange of genetic information, increasing the frequency of horizontal gene transfer (HGT). Lophophytum stands out because it acquired a large number of mitochondrial genes (greater than 20) from its legume host that replaced the majority of the native homologs. These foreign genes code for proteins that form multisubunit enzyme complexes, such as those in the oxidative phosphorylation system (OXPHOS) and cytochrome c maturation (ccm) system, together with dozens of nuclear-encoded subunits. However, the existence and the origin of the nuclear subunits that form the major part of the OXPHOS and ccm system in Lophophytum remain unknown. It was proposed that nuclear-encoding genes whose products interact with foreign mitochondrial proteins are also foreign, minimizing the incompatibilities that could arise in the assembly and functioning of these multiprotein complexes. We identified a nearly complete set of OXPHOS and ccm system subunits evolving under selective constraints in the transcriptome of Lophophytum, indicating that OXPHOS is functional and resembles that of free-living angiosperms. Maximum Likelihood phylogenetic analyses revealed a single case of HGT in the nuclear genes, which results in mosaic OXPHOS and ccm system in Lophophytum. These observations raise new questions about the evolution and physiology of this parasitic plant. A putative case of cooperation between two foreign (one mitochondrial and one nuclear) genes is presented.
Collapse
Affiliation(s)
- Leonardo M Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - Luis F Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina.
| |
Collapse
|
45
|
MISF2 Encodes an Essential Mitochondrial Splicing Cofactor Required for nad2 mRNA Processing and Embryo Development in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23052670. [PMID: 35269810 PMCID: PMC8910670 DOI: 10.3390/ijms23052670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/20/2022] Open
Abstract
Mitochondria play key roles in cellular energy metabolism in eukaryotes. Mitochondria of most organisms contain their own genome and specific transcription and translation machineries. The expression of angiosperm mtDNA involves extensive RNA-processing steps, such as RNA trimming, editing, and the splicing of numerous group II-type introns. Pentatricopeptide repeat (PPR) proteins are key players in plant organelle gene expression and RNA metabolism. In the present analysis, we reveal the function of the MITOCHONDRIAL SPLICING FACTOR 2 gene (MISF2, AT3G22670) and show that it encodes a mitochondria-localized PPR protein that is crucial for early embryo development in Arabidopsis. Molecular characterization of embryo-rescued misf2 plantlets indicates that the splicing of nad2 intron 1, and thus respiratory complex I biogenesis, are strongly compromised. Moreover, the molecular function seems conserved between MISF2 protein in Arabidopsis and its orthologous gene (EMP10) in maize, suggesting that the ancestor of MISF2/EMP10 was recruited to function in nad2 processing before the monocot-dicot divergence ~200 million years ago. These data provide new insights into the function of nuclear-encoded factors in mitochondrial gene expression and respiratory chain biogenesis during plant embryo development.
Collapse
|
46
|
Hooper CM, Castleden IR, Tanz SK, Grasso SV, Millar AH. Subcellular Proteomics as a Unified Approach of Experimental Localizations and Computed Prediction Data for Arabidopsis and Crop Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1346:67-89. [PMID: 35113396 DOI: 10.1007/978-3-030-80352-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In eukaryotic organisms, subcellular protein location is critical in defining protein function and understanding sub-functionalization of gene families. Some proteins have defined locations, whereas others have low specificity targeting and complex accumulation patterns. There is no single approach that can be considered entirely adequate for defining the in vivo location of all proteins. By combining evidence from different approaches, the strengths and weaknesses of different technologies can be estimated, and a location consensus can be built. The Subcellular Location of Proteins in Arabidopsis database ( http://suba.live/ ) combines experimental data sets that have been reported in the literature and is analyzing these data to provide useful tools for biologists to interpret their own data. Foremost among these tools is a consensus classifier (SUBAcon) that computes a proposed location for all proteins based on balancing the experimental evidence and predictions. Further tools analyze sets of proteins to define the abundance of cellular structures. Extending these types of resources to plant crop species has been complex due to polyploidy, gene family expansion and contraction, and the movement of pathways and processes within cells across the plant kingdom. The Crop Proteins of Annotated Location database ( http://crop-pal.org/ ) has developed a range of subcellular location resources including a species-specific voting consensus for 12 plant crop species that offers collated evidence and filters for current crop proteomes akin to SUBA. Comprehensive cross-species comparison of these data shows that the sub-cellular proteomes (subcellulomes) depend only to some degree on phylogenetic relationship and are more conserved in major biosynthesis than in metabolic pathways. Together SUBA and cropPAL created reference subcellulomes for plants as well as species-specific subcellulomes for cross-species data mining. These data collections are increasingly used by the research community to provide a subcellular protein location layer, inform models of compartmented cell function and protein-protein interaction network, guide future molecular crop breeding strategies, or simply answer a specific question-where is my protein of interest inside the cell?
Collapse
Affiliation(s)
- Cornelia M Hooper
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Ian R Castleden
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Sandra K Tanz
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Sally V Grasso
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - A Harvey Millar
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
47
|
Hartmann A, Berkowitz O, Whelan J, Narsai R. Cross-species transcriptomic analyses reveals common and opposite responses in Arabidopsis, rice and barley following oxidative stress and hormone treatment. BMC PLANT BIOLOGY 2022; 22:62. [PMID: 35120438 PMCID: PMC8815143 DOI: 10.1186/s12870-021-03406-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/14/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND For translational genomics, a roadmap is needed to know the molecular similarities or differences between species, such as model species and crop species. This knowledge is invaluable for the selection of target genes and pathways to alter downstream in response to the same stimuli. Here, the transcriptomic responses to six treatments including hormones (abscisic acid - ABA and salicylic acid - SA); treatments that cause oxidative stress (3-amino-1,2,4-triazole - 3AT, methyl viologen - MV); inhibit respiration (antimycin A - AA) or induce genetic damage (ultraviolet radiation -UV) were analysed and compared between Arabidopsis (Arabidopsis thaliana), barley (Hordeum vulgare) and rice (Oryza sativa). RESULTS Common and opposite responses were identified between species, with the number of differentially expressed genes (DEGs) varying greatly between treatments and species. At least 70% of DEGs overlapped with at least one other treatment within a species, indicating overlapping response networks. Remarkably, 15 to 34% of orthologous DEGs showed opposite responses between species, indicating diversity in responses, despite orthology. Orthologous DEGs with common responses to multiple treatments across the three species were correlated with experimental data showing the functional importance of these genes in biotic/abiotic stress responses. The mitochondrial dysfunction response was revealed to be highly conserved in all three species in terms of responsive genes and regulation via the mitochondrial dysfunction element. CONCLUSIONS The orthologous DEGs that showed a common response between species indicate conserved transcriptomic responses of these pathways between species. However, many genes, including prominent salt-stress responsive genes, were oppositely responsive in multiple-stresses, highlighting fundamental differences in the responses and regulation of these genes between species. This work provides a resource for translation of knowledge or functions between species.
Collapse
Affiliation(s)
- Andreas Hartmann
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
48
|
Cabrera-Orefice A, Potter A, Evers F, Hevler JF, Guerrero-Castillo S. Complexome Profiling-Exploring Mitochondrial Protein Complexes in Health and Disease. Front Cell Dev Biol 2022; 9:796128. [PMID: 35096826 PMCID: PMC8790184 DOI: 10.3389/fcell.2021.796128] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Complexome profiling (CP) is a state-of-the-art approach that combines separation of native proteins by electrophoresis, size exclusion chromatography or density gradient centrifugation with tandem mass spectrometry identification and quantification. Resulting data are computationally clustered to visualize the inventory, abundance and arrangement of multiprotein complexes in a biological sample. Since its formal introduction a decade ago, this method has been mostly applied to explore not only the composition and abundance of mitochondrial oxidative phosphorylation (OXPHOS) complexes in several species but also to identify novel protein interactors involved in their assembly, maintenance and functions. Besides, complexome profiling has been utilized to study the dynamics of OXPHOS complexes, as well as the impact of an increasing number of mutations leading to mitochondrial disorders or rearrangements of the whole mitochondrial complexome. Here, we summarize the major findings obtained by this approach; emphasize its advantages and current limitations; discuss multiple examples on how this tool could be applied to further investigate pathophysiological mechanisms and comment on the latest advances and opportunity areas to keep developing this methodology.
Collapse
Affiliation(s)
- Alfredo Cabrera-Orefice
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alisa Potter
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Felix Evers
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johannes F Hevler
- Biomolecular Mass Spectrometry and Proteomics, University of Utrecht, Utrecht, Netherlands.,Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, Netherlands.,Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Sergio Guerrero-Castillo
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
49
|
Sweetman C, Selinski J, Miller TK, Whelan J, Day DA. Legume Alternative Oxidase Isoforms Show Differential Sensitivity to Pyruvate Activation. FRONTIERS IN PLANT SCIENCE 2022; 12:813691. [PMID: 35111186 PMCID: PMC8801435 DOI: 10.3389/fpls.2021.813691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 05/29/2023]
Abstract
Alternative oxidase (AOX) is an important component of the plant respiratory pathway, enabling a route for electrons that bypasses the energy-conserving, ROS-producing complexes of the mitochondrial electron transport chain. Plants contain numerous isoforms of AOX, classified as either AOX1 or AOX2. AOX1 isoforms have received the most attention due to their importance in stress responses across a wide range of species. However, the propensity for at least one isoform of AOX2 to accumulate to very high levels in photosynthetic tissues of all legumes studied to date, suggests that this isoform has specialized roles, but we know little of its properties. Previous studies with sub-mitochondrial particles of soybean cotyledons and roots indicated that differential expression of GmAOX1, GmAOX2A, and GmAOX2D across tissues might confer different activation kinetics with pyruvate. We have investigated this using recombinantly expressed isoforms of soybean AOX in a previously described bacterial system (Selinski et al., 2016, Physiologia Plantarum 157, 264-279). Pyruvate activation kinetics were similar between the two GmAOX2 isoforms but differed substantially from those of GmAOX1, suggesting that selective expression of AOX1 and 2 could determine the level of AOX activity. However, this alone cannot completely explain the differences seen in sub-mitochondrial particles isolated from different legume tissues and possible reasons for this are discussed.
Collapse
Affiliation(s)
- Crystal Sweetman
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Troy K. Miller
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - James Whelan
- Department of Animal, Plant, and Soil Science, School of Soil Science, La Trobe University, Bundoora, VIC, Australia
| | - David A. Day
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
50
|
Assessment of Protein Synthesis in Mitochondria Isolated from Rosette Leaves and Liquid Culture Seedlings of Arabidopsis. Methods Mol Biol 2022; 2363:183-197. [PMID: 34545494 DOI: 10.1007/978-1-0716-1653-6_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mitochondria are subcellular organelles with their own genome and expression system, including translation machinery to make proteins. Several independent studies have shown that translation is an essential regulatory step in expression of the plant mitochondrial genome. Thus, the study of mitochondrial translation seems to be crucial for the comprehension of plant mitochondrial biogenesis and maintenance. In organello protein synthesis in isolated mitochondria is a direct method to visualize the translational products of this organellar genetic system. In this method, highly purified, functional mitochondria synthesize proteins in the presence of radiolabeled amino acids, such as methionine, and an energy regeneration system. The labeled, newly synthesized polypeptides are separated by SDS-polyacrylamide gel electrophoresis and are detected by autoradiography. Here we describe the detailed protocol for in organello labeling of translation products that was optimized for mitochondria isolated from rosette leaves and liquid culture seedlings of Arabidopsis thaliana plants.
Collapse
|