1
|
Mohanta R, Maiti P, Sharangi AB, Roy S, Hazra S, Chakraborty S, Ghorai S. Directed mutagenesis in fruit crops. 3 Biotech 2025; 15:104. [PMID: 40177007 PMCID: PMC11958931 DOI: 10.1007/s13205-025-04268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Abstract
Fruit crops are rich source of important vitamins, minerals, and dietary fibres. They are essential for global agriculture with respect to nutritional security. Globally, there is a rapid decline in the genetic base of fruit crops warranting breeding strategies to overcome the challenge. Applied mutagenesis has emerged as a viable approach for the focused enhancement of fruit crops utilizing precise genetic alterations to increase a variety of desirable characteristics. However, traditional mutagenesis using physical and chemical mutagens are majorly random in nature. Directed mutagenesis with advancements in genetic engineering and molecular technology allows precise manipulation of genes, which facilitates the efficient and precise knockout of target genes and the targeted insertion or modification of specific DNA sequences within the genome via homologous recombination (HR)-mediated gene replacement. This review presents an in-depth exploration of several directed mutagenesis techniques including CRISPR-Cas9, TILLING, TALEN, MutMap, and MutMap + emphasizing their transformative applications in fruit crops. It also discusses about space mutagenesis. These advanced techniques empower researchers to precisely introduce specific mutations into the genome, skilfully altering gene expression and reshaping protein function with remarkable precision. This review highlights successful examples of directed mutagenesis in a variety of fruit crops such as apples, grapes, citrus, and strawberries and elucidates the impact of directed mutagenesis on traits such as fruit size, colour, flavour, shelf-life, and resistance to diseases and environmental stresses.
Collapse
Affiliation(s)
- Rajdeep Mohanta
- Department of Agriculture, Brainware University, Barasat, Kolkata, 700125 West Bengal India
| | - Payal Maiti
- Department of Post-Harvest Management, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252 West Bengal India
| | - Amit Baran Sharangi
- Department of Plantation Spices Medicinal & Aromatic Crops, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252 West Bengal India
| | - Sourav Roy
- Department of Agriculture, Brainware University, Barasat, Kolkata, 700125 West Bengal India
| | - Soham Hazra
- Department of Agriculture, Brainware University, Barasat, Kolkata, 700125 West Bengal India
| | - Souvik Chakraborty
- Department of Post-Harvest Management, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252 West Bengal India
| | - Subhadwip Ghorai
- Department of Agriculture, Brainware University, Barasat, Kolkata, 700125 West Bengal India
| |
Collapse
|
2
|
Ebrahimi V, Hashemi A. CRISPR-based gene editing in plants: Focus on reagents and their delivery tools. BIOIMPACTS : BI 2024; 15:30019. [PMID: 39963563 PMCID: PMC11830140 DOI: 10.34172/bi.30019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2025]
Abstract
Introduction CRISPR-Cas9 technology has revolutionized plant genome editing, providing precise and efficient methods for genetic modification. This study focuses on the advancements and delivery of CRISPR-Cas9 in plant gene editing. Methods A comprehensive search in scientific databases, including PubMed, ScienceDirect, and Google Scholar, was conducted to gather information on CRISPR-Cas9 gene editing and its delivery in precise gene modification in plants. Results The evolving landscape of CRISPR nucleases has led to the development of innovative technologies, enhancing plant research. However, successful editing is contingent on efficient delivery of genome engineering reagents. CRISPR-based gene editing in plants utilizes diverse delivery methods: Agrobacterium-mediated transformation for bacterial transfer, biolistic transformation for physical gene insertion, electroporation for direct gene entry, expression of developmental regulators for gene expression modulation, and tobacco rattle virus as a viral vector, each offering distinct advantages for precise and efficient genetic modification in plants. Conclusion CRISPR-Cas9 gene editing stands as a pivotal advancement in plant genetics, offering precise gene manipulation with applications in agriculture and biotechnology. The continuous refinement of reagent delivery tools reinforces CRISPR-Cas9's transformative role in plant genome editing, with significant implications for broader scientific applications.
Collapse
Affiliation(s)
- Vida Ebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Singh PK, Devanna BN, Dubey H, Singh P, Joshi G, Kumar R. The potential of genome editing to create novel alleles of resistance genes in rice. Front Genome Ed 2024; 6:1415244. [PMID: 38933684 PMCID: PMC11201548 DOI: 10.3389/fgeed.2024.1415244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Rice, a staple food for a significant portion of the global population, faces persistent threats from various pathogens and pests, necessitating the development of resilient crop varieties. Deployment of resistance genes in rice is the best practice to manage diseases and reduce environmental damage by reducing the application of agro-chemicals. Genome editing technologies, such as CRISPR-Cas, have revolutionized the field of molecular biology, offering precise and efficient tools for targeted modifications within the rice genome. This study delves into the application of these tools to engineer novel alleles of resistance genes in rice, aiming to enhance the plant's innate ability to combat evolving threats. By harnessing the power of genome editing, researchers can introduce tailored genetic modifications that bolster the plant's defense mechanisms without compromising its essential characteristics. In this study, we synthesize recent advancements in genome editing methodologies applicable to rice and discuss the ethical considerations and regulatory frameworks surrounding the creation of genetically modified crops. Additionally, it explores potential challenges and future prospects for deploying edited rice varieties in agricultural landscapes. In summary, this study highlights the promise of genome editing in reshaping the genetic landscape of rice to confront emerging challenges, contributing to global food security and sustainable agriculture practices.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Department of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, Punjab, India
| | | | - Himanshu Dubey
- Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, India
| | - Prabhakar Singh
- Botany Department, Banaras Hindu University, Varanasi, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal (A Central University), Tehri Garhwal, Uttarakhand, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
4
|
Capdeville N, Schindele P, Puchta H. Increasing deletion sizes and the efficiency of CRISPR/Cas9-mediated mutagenesis by SunTag-mediated TREX1 recruitment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:277-287. [PMID: 38113345 DOI: 10.1111/tpj.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Previously, it has been shown that mutagenesis frequencies can be improved by directly fusing the human exonuclease TREX2 to Cas9, resulting in a strong increase in the frequency of smaller deletions at the cut site. Here, we demonstrate that, by using the SunTag system for recruitment of TREX2, the mutagenesis efficiency can be doubled in comparison to the direct fusion in Arabidopsis thaliana. Therefore, we also tested the efficiency of the system for targeted deletion formation by recruiting two other 3'-5' exonucleases, namely the human TREX1 and E. coli ExoI. It turns out that SunTag-mediated recruitment of TREX1 not only improved the general mutation induction efficiency slightly in comparison to TREX2, but that, more importantly, the mean size of the induced deletions was also enhanced, mainly via an increase of deletions of 25 bp or more. EcExoI also yielded a higher amount of larger deletions. However, only in the case of TREX1 and TREX2, the effect was predominately SunTag-dependent, indicating efficient target-specific recruitment. Using SunTag-mediated TREX1 recruitment at other genomic sites, we were able to obtain similar deletion patterns. Thus, we were able to develop an attractive novel editing tool that is especially useful for obtaining deletions in the range from 20 to 40 bp around the cut site. Such sizes are often required for the manipulation of cis-regulatory elements. This feature is closing an existing gap as previous approaches, based on single nucleases or paired nickases or nucleases, resulted in either shorter or longer deletions, respectively.
Collapse
Affiliation(s)
- Niklas Capdeville
- Department of Molecular Biology, Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institute for Plant Sciences, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Patrick Schindele
- Department of Molecular Biology, Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institute for Plant Sciences, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Holger Puchta
- Department of Molecular Biology, Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institute for Plant Sciences, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| |
Collapse
|
5
|
Gong J, Song L, Zhang Z, Dong J, Zhang S, Zhang W, Dong X, Hu Y, Liu Y. Correlations between root phosphorus acquisition and foliar phosphorus allocation reveal how grazing promotes plant phosphorus utilization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108467. [PMID: 38412704 DOI: 10.1016/j.plaphy.2024.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Overgrazing and phosphorus (P) deficiency are two major factors limiting the sustainable development of grassland ecosystems. Exploring plant P utilization and acquisition strategies under grazing can provide a solid basis for determining a reasonable grazing intensity. Both foliar P allocation and root P acquisition are crucial mechanisms for plants to adapt to environmental P availability; however, their changing characteristics and correlation under grazing remain unknown. Here, we investigated foliar P fractions, root P-acquisition traits and gene expression, as well as rhizosphere and bulk soil properties of two dominant plant species, Leymus chinensis (a rhizomatous grass) and Stipa grandis (a bunchgrass), in a field grazing intensity gradient site in Inner Mongolia. Grazing induced different degrees of compensatory growth in the two dominant plant species, increased rhizosphere P availability, and alleviated plant P limitation. Under grazing, the foliar metabolite P of L. chinensis increased, whereas the nucleic acid P of S. grandis increased. Increased P fractions in L. chinensis were positively correlated with increased root exudates and rapid inorganic P absorption. For S. grandis, increased foliar P fractions were positively correlated with more fine roots, more root exudates, and up-regulated expression of genes involved in defense and P metabolism. Overall, efficient root P mobilization and uptake traits, as well as increases in leaf metabolic activity-related P fractions, supported plant compensatory growth under grazing, a process that differed between tiller types. The highest plant productivity and leaf metabolic activity-related P concentrations under medium grazing intensity clarify the underlying basis for sustainable livestock production.
Collapse
Affiliation(s)
- Jirui Gong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Liangyuan Song
- Institute of Land and Urban-Rural Development, Zhejiang University of Finance & Economics, Hangzhou, 310018, China.
| | - Zihe Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Jiaojiao Dong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Siqi Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Weiyuan Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xuede Dong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yuxia Hu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yingying Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
6
|
Mathur S, Singh D, Ranjan R. Recent advances in plant translational genomics for crop improvement. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:335-382. [PMID: 38448140 DOI: 10.1016/bs.apcsb.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The growing population, climate change, and limited agricultural resources put enormous pressure on agricultural systems. A plateau in crop yields is occurring and extreme weather events and urbanization threaten the livelihood of farmers. It is imperative that immediate attention is paid to addressing the increasing food demand, ensuring resilience against emerging threats, and meeting the demand for more nutritious, safer food. Under uncertain conditions, it is essential to expand genetic diversity and discover novel crop varieties or variations to develop higher and more stable yields. Genomics plays a significant role in developing abundant and nutrient-dense food crops. An alternative to traditional breeding approach, translational genomics is able to improve breeding programs in a more efficient and precise manner by translating genomic concepts into practical tools. Crop breeding based on genomics offers potential solutions to overcome the limitations of conventional breeding methods, including improved crop varieties that provide more nutritional value and are protected from biotic and abiotic stresses. Genetic markers, such as SNPs and ESTs, contribute to the discovery of QTLs controlling agronomic traits and stress tolerance. In order to meet the growing demand for food, there is a need to incorporate QTLs into breeding programs using marker-assisted selection/breeding and transgenic technologies. This chapter primarily focuses on the recent advances that are made in translational genomics for crop improvement and various omics techniques including transcriptomics, metagenomics, pangenomics, single cell omics etc. Numerous genome editing techniques including CRISPR Cas technology and their applications in crop improvement had been discussed.
Collapse
Affiliation(s)
- Shivangi Mathur
- Plant Molecular Biology Laboratory, Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Agra, India
| | - Deeksha Singh
- Plant Molecular Biology Laboratory, Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Agra, India
| | - Rajiv Ranjan
- Plant Molecular Biology Laboratory, Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Agra, India.
| |
Collapse
|
7
|
Makebe A, Shimelis H, Mashilo J. Selection of M5 mutant lines of wheat ( Triticum aestivum L.) for agronomic traits and biomass allocation under drought stress and non-stressed conditions. FRONTIERS IN PLANT SCIENCE 2024; 15:1314014. [PMID: 38419777 PMCID: PMC10899435 DOI: 10.3389/fpls.2024.1314014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Introduction In the face of climate changes and limited water availability for irrigated crop production, enhanced drought tolerance and adaptation is vital to improve wheat productivity. The objective of this study was to determine the responses of newly bred and advanced mutant lines of wheat based on agronomic traits and biomass allocation under drought-stressed and non-stressed environments for production and breeding. Methods Fifty-three mutant lines, including the parental check and six check varieties, were evaluated under non-stressed (NS) and drought stressed (DS) conditions in the field and controlled environments using a 20 x 3 alpha lattice design with two replicates. The following agronomic data were collected: days to 50% heading (DTH), days to maturity (DTM), plant height (PH), number of productive tillers (PTN), shoot biomass (SB), root biomass (RB), total biomass (TB), root: shoot ratio (RSR), spike length (SL), thousand seeds weight (TSW) and grain yield (GY). Data were analyzed and summarized using various statistical procedures and drought tolerance indices were computed based on grain yield under NS and DS conditions. Results Significant (P < 0.05) differences were recorded among the mutant lines for most assessed traits under NS and DS conditions. Grain yield positively and significantly (p < 0.001) correlated with PTN (r = 0.85), RB (r = 0.75), SB (r = 0.80), SL (r =0.73), TB (r = 0.65), and TSW (r = 0.67) under DS condition. Principal component analysis revealed three components contributing to 78.55% and 77.21% of the total variability for the assessed agronomic traits under DS and NS conditions, respectively. The following traits: GY, RB, SB, and PTN explained most of the variation with high loading scores under DS condition. Geometric mean productivity (GMP), mean productivity (MP), harmonic mean (HM), and stress tolerance index (STI) were identified as the best drought tolerance indices for the identification of tolerant lines with positive correlations with GY under NS and DS conditions. Discussion Among the advanced lines tested, LMA16, LMA37, LMA47, LMA2, and LMA42 were selected as the superior lines with high performance and drought tolerance. The selected lines are recommended for multi-environment trails and release for production in water-limited environments in South Africa.
Collapse
Affiliation(s)
- Athenkosi Makebe
- African Centre for Crop Improvement (ACCI), University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Hussein Shimelis
- African Centre for Crop Improvement (ACCI), University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Jacob Mashilo
- African Centre for Crop Improvement (ACCI), University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Limpopo Department of Agriculture and Rural Development, Bela-Bela, South Africa
| |
Collapse
|
8
|
Kim JH, Yu J, Kim JY, Park YJ, Bae S, Kang KK, Jung YJ. Phenotypic characterization of pre-harvest sprouting resistance mutants generated by the CRISPR/Cas9-geminiviral replicon system in rice. BMB Rep 2024; 57:79-85. [PMID: 38303561 PMCID: PMC10910094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 02/03/2024] Open
Abstract
Pre-harvest sprouting is a critical phenomenon involving germination of seeds in the mother plant before harvest under relative humid conditions and reduced dormancy. In this paper, we generated HDR mutant lines with one region SNP (C/T) and an insertion of 6 bp (GGT/GGTGGCGGC) in OsERF1 genes for pre-harvest sprouting (PHS) resistance using CRISPR/Cas9 and a geminiviral replicon system. The incidence of HDR was 2.6% in transformed calli. T1 seeds were harvested from 12 HDR-induced calli and named ERF1-hdr line. Molecular stability, key agronomic properties, physiological properties, and biochemical properties of target genes in the ERF1-hdr line were investigated for three years. The ERF1-hdr line showed significantly enhanced seed dormancy and pre-harvest sprouting resistance. qRT-PCR analysis suggested that enhanced ABA signaling resulted in a stronger phenotype of PHS resistance. These results indicate that efficient HDR can be achieved through SNP/InDel replacement using a single and modular configuration applicable to different rice targets and other crops. This work demonstrates the potential to replace all genes with elite alleles within one generation and greatly expands our ability to improve agriculturally important traits. [BMB Reports 2024; 57(2): 79-85].
Collapse
Affiliation(s)
- Jong Hee Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea
| | - Jihyeon Yu
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jin Young Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
| | - Yong Jin Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Korea
| | - Sangsu Bae
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kwon Kyoo Kang
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea
| | - Yu Jin Jung
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea
| |
Collapse
|
9
|
Bearth A, Otten CD, Cohen AS. Consumers' perceptions and acceptance of genome editing in agriculture: Insights from the United States of America and Switzerland. Food Res Int 2024; 178:113982. [PMID: 38309884 DOI: 10.1016/j.foodres.2024.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/05/2024]
Abstract
The terms "New Genomic Techniques" (NGTs) or "Genome Editing" refer to various methods that allow finding, cleaving, and repairing specific sequences in the genome. These techniques could contribute to managing various challenges in plant breeding and agriculture. Aside from regulatory uncertainties, the lack of consumer acceptance has frequently been cited as a significant barrier to the widespread use of NGTs in plant breeding and agriculture across the planet. This study was based on an anonymous online survey (N = 1202). It investigated what consumers from two countries that differ in gene technology regulation, namely the United States of America and Switzerland, thought about three specific applications of NGTs in plant breeding (i.e., blight-resistant potato, gluten-free wheat, cold-resistant soybean). The study highlights the importance of the affect heuristic for acceptance, as half of the participants in both countries expressed positive feelings regarding the three applications, a quarter of the participants expressed negative, and the remaining participants expressed torn or neutral emotions. Some evidence was provided that the regulatory context might have acted as a risk cue, as participants in Switzerland expressed more negative feelings, perceptions, and lower acceptance than participants from the United States of America. Lastly, our findings underscore the importance of a collaboration between the life sciences and social sciences in balancing technological innovations and public perceptions and acceptance, which have been shown in this study to be impacted by affect, values, and context.
Collapse
Affiliation(s)
- Angela Bearth
- Consumer Behavior, Institute for Environmental Decisions, ETH Zurich, Switzerland.
| | | | - Alex Segrè Cohen
- Center for Science Communication Research, School of Journalism and Communication, University of Oregon, United States
| |
Collapse
|
10
|
Chanchal DK, Chaudhary JS, Kumar P, Agnihotri N, Porwal P. CRISPR-Based Therapies: Revolutionizing Drug Development and Precision Medicine. Curr Gene Ther 2024; 24:193-207. [PMID: 38310456 DOI: 10.2174/0115665232275754231204072320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 02/05/2024]
Abstract
With the discovery of CRISPR-Cas9, drug development and precision medicine have undergone a major change. This review article looks at the new ways that CRISPR-based therapies are being used and how they are changing the way medicine is done. CRISPR technology's ability to precisely and flexibly edit genes has opened up new ways to find, validate, and develop drug targets. Also, it has made way for personalized gene therapies, precise gene editing, and advanced screening techniques, all of which hold great promise for treating a wide range of diseases. In this article, we look at the latest research and clinical trials that show how CRISPR could be used to treat genetic diseases, cancer, infectious diseases, and other hard-to-treat conditions. However, ethical issues and problems with regulations are also discussed in relation to CRISPR-based therapies, which shows how important it is to use them safely and responsibly. As CRISPR continues to change how drugs are made and used, this review shines a light on the amazing things that have been done and what the future might hold in this rapidly changing field.
Collapse
Affiliation(s)
- Dilip Kumar Chanchal
- Department of Pharmacy, Smt. Vidyawati College of Pharmacy, Jhansi, Uttar Pradesh, India
- Glocal School of Pharmacy, Glocal University Mirzapur Pole, Saharanpur - 247121, Uttar Pradesh, India
| | | | - Pushpendra Kumar
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, Uttar Pradesh, India
| | - Neha Agnihotri
- Department of Pharmacy, Maharana Pratap College of Pharmacy, Kothi, Mandhana, Kanpur-209217, Uttar Pradesh, India
| | - Prateek Porwal
- Glocal School of Pharmacy, Glocal University Mirzapur Pole, Saharanpur - 247121, Uttar Pradesh, India
| |
Collapse
|
11
|
Puchta H, Houben A. Plant chromosome engineering - past, present and future. THE NEW PHYTOLOGIST 2024; 241:541-552. [PMID: 37984056 DOI: 10.1111/nph.19414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Spontaneous chromosomal rearrangements (CRs) play an essential role in speciation, genome evolution and crop domestication. To be able to use the potential of CRs for breeding, plant chromosome engineering was initiated by fragmenting chromosomes by X-ray irradiation. With the rise of the CRISPR/Cas system, it became possible to induce double-strand breaks (DSBs) in a highly efficient manner at will at any chromosomal position. This has enabled a completely new level of predesigned chromosome engineering. The genetic linkage between specific genes can be broken by inducing chromosomal translocations. Natural inversions, which suppress genetic exchange, can be reverted for breeding. In addition, various approaches for constructing minichromosomes by downsizing regular standard A or supernumerary B chromosomes, which could serve as future vectors in plant biotechnology, have been developed. Recently, a functional synthetic centromere could be constructed. Also, different ways of genome haploidization have been set up, some based on centromere manipulations. In the future, we expect to see even more complex rearrangements, which can be combined with previously developed engineering technologies such as recombinases. Chromosome engineering might help to redefine genetic linkage groups, change the number of chromosomes, stack beneficial genes on mini cargo chromosomes, or set up genetic isolation to avoid outcrossing.
Collapse
Affiliation(s)
- Holger Puchta
- Joseph Gottlieb Kölreuter Institute for Plant Sciences (JKIP) - Molecular Biology, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| |
Collapse
|
12
|
Jagram N, Dasgupta I. Principles and practice of virus induced gene silencing for functional genomics in plants. Virus Genes 2023; 59:173-187. [PMID: 36266497 DOI: 10.1007/s11262-022-01941-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/05/2022] [Indexed: 10/24/2022]
Abstract
Virus induced gene silencing (VIGS) has, of late, emerged as an important tool for transient silencing of genes in plants. This is now being increasingly used to determine functions of novel genes in a wide variety of plants, many of which are important crops yielding food and fiber or are sources of products having pharmaceutical uses. The technology for VIGS comprises the development of vectors derived from viruses, choosing the optimal orientation and size of the gene to be targeted and adopting the most suitable method of inoculation. This review gives a brief overview of the main aspects of VIGS technology as is being practiced. It also discusses the challenges the technology faces and the possible way ahead to improve its robustness, so that the technology finds wider applications.
Collapse
Affiliation(s)
- Neelam Jagram
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
13
|
Szurman-Zubrzycka M, Jędrzejek P, Szarejko I. How Do Plants Cope with DNA Damage? A Concise Review on the DDR Pathway in Plants. Int J Mol Sci 2023; 24:ijms24032404. [PMID: 36768727 PMCID: PMC9916837 DOI: 10.3390/ijms24032404] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
DNA damage is induced by many factors, some of which naturally occur in the environment. Because of their sessile nature, plants are especially exposed to unfavorable conditions causing DNA damage. In response to this damage, the DDR (DNA damage response) pathway is activated. This pathway is highly conserved between eukaryotes; however, there are some plant-specific DDR elements, such as SOG1-a transcription factor that is a central DDR regulator in plants. In general, DDR signaling activates transcriptional and epigenetic regulators that orchestrate the cell cycle arrest and DNA repair mechanisms upon DNA damage. The cell cycle halts to give the cell time to repair damaged DNA before replication. If the repair is successful, the cell cycle is reactivated. However, if the DNA repair mechanisms fail and DNA lesions accumulate, the cell enters the apoptotic pathway. Thereby the proper maintenance of DDR is crucial for plants to survive. It is particularly important for agronomically important species because exposure to environmental stresses causing DNA damage leads to growth inhibition and yield reduction. Thereby, gaining knowledge regarding the DDR pathway in crops may have a huge agronomic impact-it may be useful in breeding new cultivars more tolerant to such stresses. In this review, we characterize different genotoxic agents and their mode of action, describe DDR activation and signaling and summarize DNA repair mechanisms in plants.
Collapse
|
14
|
Mabuza LM, Mchunu NP, Crampton BG, Swanevelder DZH. Accelerated Breeding for Helianthus annuus (Sunflower) through Doubled Haploidy: An Insight on Past and Future Prospects in the Era of Genome Editing. PLANTS (BASEL, SWITZERLAND) 2023; 12:485. [PMID: 36771570 PMCID: PMC9921946 DOI: 10.3390/plants12030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The aim of any breeding process is to fully express the targeted, superior/desirable parent characteristic in the progeny. Hybrids are often used in this dynamic, and complex process for which homozygous parents-which may require up to eight generations of back crossing and selection-are required. Doubled haploid (DH) technologies can facilitate the production of true breeding lines faster and in a more efficient manner than the traditional back crossing and selection strategies. Sunflower is the third most important oilseed crop in the world and has no available double haploid induction procedure/technique that can be efficiently used in breeding programs. A reproducible and efficient doubled haploid induction method would be a valuable tool in accelerating the breeding of new elite sunflower varieties. Although several attempts have been made, the establishment of a sunflower doubled haploid induction protocol has remained a challenge owing recalcitrance to in vitro culture regeneration. Approaches for haploid development in other crops are often cultivar specific, difficult to reproduce, and rely on available tissue culture protocols-which on their own are also cultivar and/or species specific. As an out-crossing crop, the lack of a double haploid system limits sunflower breeding and associated improvement processes, thereby delaying new hybrid and trait developments. Significant molecular advances targeting genes, such as the centromeric histone 3 (CenH3) and Matrilineal (MTL) gene with CRISPR/Cas9, and the successful use of viral vectors for the delivery of CRISPR/Cas9 components into plant cells eliminating the in vitro culture bottleneck, have the potential to improve double haploid technology in sunflower. In this review, the different strategies, their challenges, and opportunities for achieving doubled haploids in sunflower are explored.
Collapse
Affiliation(s)
- Londiwe M. Mabuza
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Onderstepoort, Pretoria 0110, South Africa
- Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Nokuthula P. Mchunu
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Onderstepoort, Pretoria 0110, South Africa
- Strategy, Planning and Partnerships, National Research Foundation, Pretoria 0184, South Africa
| | - Bridget G. Crampton
- Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Dirk Z. H. Swanevelder
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Onderstepoort, Pretoria 0110, South Africa
| |
Collapse
|
15
|
Editing the genome of common cereals (Rice and Wheat): techniques, applications, and industrial aspects. Mol Biol Rep 2023; 50:739-747. [PMID: 36309609 DOI: 10.1007/s11033-022-07664-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/25/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023]
Abstract
Gene editing techniques have made a significant contribution to the development of better crops. Gene editing enables precise changes in the genome of crops, which can introduce new possibilities for altering the crops' traits. Since the last three decades, various gene editing techniques such as meganucleases, zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspersed short palindromic repeats (CRISPR)/Cas (CRISPR-associated proteins) have been discovered. In this review, we discuss various gene editing techniques and their applications to common cereals. Further, we elucidate the future of gene-edited crops, their regulatory features, and industrial aspects globally. To achieve this, we perform a comprehensive literature survey using databases such as PubMed, Web of Science, SCOPUS, Google Scholar etc. For the literature search, we used keywords such as gene editing, crop genome modification, CRISPR/Cas, ZFN, TALEN, meganucleases etc. With the advent of the CRISPR/Cas technology in the last decade, the future of gene editing has transitioned into a new dimension. The functionality of CRISPR/Cas in both DNA and RNA has increased through the use of various Cas enzymes and their orthologs. Constant research efforts in this direction have improved the gene editing process for crops by minimizing its off-target effects. Scientists also use computational tools, which help them to design experiments and analyze the results of gene editing experiments in advance. Gene editing has diverse potential applications. In the future, gene editing will open new avenues for solving more agricultural issues and boosting crop production, which may have great industrial prospects.
Collapse
|
16
|
Kim JH, Yu J, Kim HK, Kim JY, Kim MS, Cho YG, Bae S, Kang KK, Jung YJ. Genome Editing of Golden SNP-Carrying Lycopene Epsilon-Cyclase (LcyE) Gene Using the CRSPR-Cas9/HDR and Geminiviral Replicon System in Rice. Int J Mol Sci 2022; 23:ijms231810383. [PMID: 36142294 PMCID: PMC9499184 DOI: 10.3390/ijms231810383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Lycopene epsilon-cyclase (LcyE) is a key enzyme in the carotenoid biosynthetic pathway of higher plants. Using the CRSPR/Cas9 and the geminiviral replicon, we optimized a method for targeted mutagenesis and golden SNP replacement of the LcyE gene in rice. We have exploited the geminiviral replicon amplification as a means to provide a large amount of donor template for the repair of a CRISPR-Cas-induced DNA double-strand break (DSB) in the target gene via homology-directed repair (HDR). Mutagenesis experiments performed on the Donggin variety achieved precise modification of the LcyE loci with an efficiency of up to 90%. In HDR experiments, our target was the LcyE allele (LcyE-H523L) derived from anther culture containing a golden SNP replacement. The phenotype of the homologous recombination (HR) mutant obtained through the geminiviral replicon-based template delivery system was tangerine color, and the frequency was 1.32% of the transformed calli. In addition, the total carotenoid content of the LcyEsg2-HDR1 and LcyEsg2-HDR2 lines was 6.8–9.6 times higher than that of the wild-type (WT) calli, respectively. The reactive oxygen species content was lower in the LcyEsg2-HDR1 and LcyEsg2-HDR2 lines. These results indicate that efficient HDR can be achieved in the golden SNP replacement using a single and modular configuration applicable to different rice targets and other crops. This work demonstrates the potential to replace all genes with elite alleles within one generation and greatly expands our ability to improve agriculturally important traits.
Collapse
Affiliation(s)
- Jong Hee Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
| | - Jihyeon Yu
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea
| | - Hee Kyoung Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
| | - Jin Young Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
| | - Me-Sun Kim
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Korea
| | - Yong-Gu Cho
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Korea
| | - Sangsu Bae
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kwon Kyoo Kang
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea
| | - Yu Jin Jung
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea
- Correspondence: ; Tel.: +82-31-670-5101
| |
Collapse
|
17
|
Renzi JP, Coyne CJ, Berger J, von Wettberg E, Nelson M, Ureta S, Hernández F, Smýkal P, Brus J. How Could the Use of Crop Wild Relatives in Breeding Increase the Adaptation of Crops to Marginal Environments? FRONTIERS IN PLANT SCIENCE 2022; 13:886162. [PMID: 35783966 PMCID: PMC9243378 DOI: 10.3389/fpls.2022.886162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/11/2022] [Indexed: 06/01/2023]
Abstract
Alongside the use of fertilizer and chemical control of weeds, pests, and diseases modern breeding has been very successful in generating cultivars that have increased agricultural production several fold in favorable environments. These typically homogeneous cultivars (either homozygous inbreds or hybrids derived from inbred parents) are bred under optimal field conditions and perform well when there is sufficient water and nutrients. However, such optimal conditions are rare globally; indeed, a large proportion of arable land could be considered marginal for agricultural production. Marginal agricultural land typically has poor fertility and/or shallow soil depth, is subject to soil erosion, and often occurs in semi-arid or saline environments. Moreover, these marginal environments are expected to expand with ongoing climate change and progressive degradation of soil and water resources globally. Crop wild relatives (CWRs), most often used in breeding as sources of biotic resistance, often also possess traits adapting them to marginal environments. Wild progenitors have been selected over the course of their evolutionary history to maintain their fitness under a diverse range of stresses. Conversely, modern breeding for broad adaptation has reduced genetic diversity and increased genetic vulnerability to biotic and abiotic challenges. There is potential to exploit genetic heterogeneity, as opposed to genetic uniformity, in breeding for the utilization of marginal lands. This review discusses the adaptive traits that could improve the performance of cultivars in marginal environments and breeding strategies to deploy them.
Collapse
Affiliation(s)
- Juan Pablo Renzi
- Instituto Nacional de Tecnología Agropecuaria, Hilario Ascasubi, Argentina
- CERZOS, Departamento de Agronomía, Universidad Nacional del Sur (CONICET), Bahía Blanca, Argentina
| | | | - Jens Berger
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Wembley, WA, Australia
| | - Eric von Wettberg
- Department of Plant and Soil Science, Gund Institute for Environment, University of Vermont, Burlington, VT, United States
- Department of Applied Mathematics, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Matthew Nelson
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Wembley, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
| | - Soledad Ureta
- CERZOS, Departamento de Agronomía, Universidad Nacional del Sur (CONICET), Bahía Blanca, Argentina
| | - Fernando Hernández
- CERZOS, Departamento de Agronomía, Universidad Nacional del Sur (CONICET), Bahía Blanca, Argentina
| | - Petr Smýkal
- Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Jan Brus
- Department of Geoinformatics, Faculty of Sciences, Palacký University, Olomouc, Czechia
| |
Collapse
|
18
|
Mekonnen TW, Gerrano AS, Mbuma NW, Labuschagne MT. Breeding of Vegetable Cowpea for Nutrition and Climate Resilience in Sub-Saharan Africa: Progress, Opportunities, and Challenges. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11121583. [PMID: 35736733 PMCID: PMC9230997 DOI: 10.3390/plants11121583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 05/08/2023]
Abstract
Currently, the world population is increasing, and humanity is facing food and nutritional scarcity. Climate change and variability are a major threat to global food and nutritional security, reducing crop productivity in the tropical and subtropical regions of the globe. Cowpea has the potential to make a significant contribution to global food and nutritional security. In addition, it can be part of a sustainable food system, being a genetic resource for future crop improvement, contributing to resilience and improving agricultural sustainability under climate change conditions. In malnutrition prone regions of sub-Saharan Africa (SSA) countries, cowpea has become a strategic dryland legume crop for addressing food insecurity and malnutrition. Therefore, this review aims to assess the contribution of cowpea to SSA countries as a climate-resilient crop and the existing production challenges and perspectives. Cowpea leaves and immature pods are rich in diverse nutrients, with high levels of protein, vitamins, macro and micronutrients, minerals, fiber, and carbohydrates compared to its grain. In addition, cowpea is truly a multifunctional crop for maintaining good health and for reducing non-communicable human diseases. However, as a leafy vegetable, cowpea has not been researched and promoted sufficiently because it has not been promoted as a food security crop due to its low yield potential, susceptibility to biotic and abiotic stresses, quality assurance issues, policy regulation, and cultural beliefs (it is considered a livestock feed). The development of superior cowpea as a leafy vegetable can be approached in different ways, such as conventional breeding and gene stacking, speed breeding, mutation breeding, space breeding, demand-led breeding, a pan-omics approach, and local government policies. The successful breeding of cowpea genotypes that are high-yielding with a good nutritional value as well as having resistance to biotics and tolerant to abiotic stress could also be used to address food security and malnutrition-related challenges in sub-Saharan Africa.
Collapse
Affiliation(s)
- Tesfaye Walle Mekonnen
- Department of Plant Sciences, University of the Free State, Bloemfontein 9301, South Africa; (N.W.M.); (M.T.L.)
- Correspondence: ; Tel.: +27-796540514
| | - Abe Shegro Gerrano
- Agricultural Research Council-Vegetable, Industrial and Medicinal Plants, Pretoria 0001, South Africa;
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| | - Ntombokulunga Wedy Mbuma
- Department of Plant Sciences, University of the Free State, Bloemfontein 9301, South Africa; (N.W.M.); (M.T.L.)
| | - Maryke Tine Labuschagne
- Department of Plant Sciences, University of the Free State, Bloemfontein 9301, South Africa; (N.W.M.); (M.T.L.)
| |
Collapse
|
19
|
Uranga M, Daròs JA. Tools and targets: The dual role of plant viruses in CRISPR-Cas genome editing. THE PLANT GENOME 2022:e20220. [PMID: 35698891 DOI: 10.1002/tpg2.20220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
The recent emergence of tools based on the clustered, regularly interspaced, short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins have revolutionized targeted genome editing, thus holding great promise to both basic plant science and precision crop breeding. Conventional approaches for the delivery of editing components rely on transformation technologies or transient delivery to protoplasts, both of which are time-consuming, laborious, and can raise legal concerns. Alternatively, plant RNA viruses can be used as transient delivery vectors of CRISPR-Cas reaction components, following the so-called virus-induced genome editing (VIGE). During the last years, researchers have been able to engineer viral vectors for the delivery of CRISPR guide RNAs and Cas nucleases. Considering that each viral vector is limited to its molecular biology properties and a specific host range, here we review recent advances for improving the VIGE toolbox with a special focus on strategies to achieve tissue-culture-free editing in plants. We also explore the utility of CRISPR-Cas technology to enhance biotic resistance with a special focus on plant virus diseases. This can be achieved by either targeting the viral genome or modifying essential host susceptibility genes that mediate in the infection process. Finally, we discuss the challenges and potential that VIGE holds in future breeding technologies.
Collapse
Affiliation(s)
- Mireia Uranga
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - University. Politècnica de València, Valencia, 46022, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - University. Politècnica de València, Valencia, 46022, Spain
| |
Collapse
|
20
|
Parsaeimehr A, Ebirim RI, Ozbay G. CRISPR-Cas technology a new era in genomic engineering. BIOTECHNOLOGY REPORTS 2022; 34:e00731. [PMID: 35686011 PMCID: PMC9171425 DOI: 10.1016/j.btre.2022.e00731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/01/2022]
Abstract
CRISPR-Cas systems offer a flexible and easy-to-use molecular platform to precisely modify and control organisms' genomes in a variety of fields, from agricultural biotechnology to therapeutics. With CRISPR technology, crop genomes can be precisely edited in a shorter and more efficient approach compared to traditional breeding or classic mutagenesis. CRISPR-Cas system can be used to manage the fermentation process by addressing phage resistance, antimicrobial activity, and genome editing. CRISPR-Cas technology has opened up a new era in gene therapy and other therapeutic fields and given hope to thousands of patients with genetic diseases. Anti-CRISPR molecules are powerful tools for regulating the CRISPR-Cas systems.
The CRISPR-Cas systems have offered a flexible, easy-to-use platform to precisely modify and control the genomes of organisms in various fields, ranging from agricultural biotechnology to therapeutics. This system is extensively used in the study of infectious, progressive, and life-threatening genetic diseases for the improvement of quality and quantity of major crops and in the development of sustainable methods for the generation of biofuels. As CRISPR-Cas technology continues to evolve, it is becoming more controllable and precise with the addition of molecular regulators, which will provide benefits for everyone and save many lives. Studies on the constant growth of CRISPR technology are important due to its rapid development. In this paper, we present the current applications and progress of CRISPR-Cas genome editing systems in several fields of research, we further highlight the applications of anti-CRISPR molecules to regulate CRISPR-Cas gene editing systems, and we discuss ethical considerations in CRISPR-Cas applications.
Collapse
|
21
|
Hamdan MF, Mohd Noor SN, Abd-Aziz N, Pua TL, Tan BC. Green Revolution to Gene Revolution: Technological Advances in Agriculture to Feed the World. PLANTS (BASEL, SWITZERLAND) 2022; 11:1297. [PMID: 35631721 PMCID: PMC9146367 DOI: 10.3390/plants11101297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/26/2022]
Abstract
Technological applications in agriculture have evolved substantially to increase crop yields and quality to meet global food demand. Conventional techniques, such as seed saving, selective breeding, and mutation breeding (variation breeding), have dramatically increased crop production, especially during the 'Green Revolution' in the 1990s. However, newer issues, such as limited arable lands, climate change, and ever-increasing food demand, pose challenges to agricultural production and threaten food security. In the following 'Gene Revolution' era, rapid innovations in the biotechnology field provide alternative strategies to further improve crop yield, quality, and resilience towards biotic and abiotic stresses. These innovations include the introduction of DNA recombinant technology and applications of genome editing techniques, such as transcription activator-like effector (TALEN), zinc-finger nucleases (ZFN), and clustered regularly interspaced short palindromic repeats/CRISPR associated (CRISPR/Cas) systems. However, the acceptance and future of these modern tools rely on the regulatory frameworks governing their development and production in various countries. Herein, we examine the evolution of technological applications in agriculture, focusing on the motivations for their introduction, technical challenges, possible benefits and concerns, and regulatory frameworks governing genetically engineered product development and production.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Siti Nurfadhlina Mohd Noor
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
| | - Nazrin Abd-Aziz
- Innovation Centre in Agritechnology for Advanced Bioprocessing (ICA), Universiti Teknologi Malaysia, Pagoh 84600, Malaysia;
| | - Teen-Lee Pua
- Topplant Laboratories Sdn. Bhd., Jalan Ulu Beranang, Negeri Sembilan 71750, Malaysia;
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
22
|
Das D, Singha DL, Paswan RR, Chowdhury N, Sharma M, Reddy PS, Chikkaputtaiah C. Recent advancements in CRISPR/Cas technology for accelerated crop improvement. PLANTA 2022; 255:109. [PMID: 35460444 DOI: 10.1007/s00425-022-03894-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Precise genome engineering approaches could be perceived as a second paradigm for targeted trait improvement in crop plants, with the potential to overcome the constraints imposed by conventional CRISPR/Cas technology. The likelihood of reduced agricultural production due to highly turbulent climatic conditions increases as the global population expands. The second paradigm of stress-resilient crops with enhanced tolerance and increased productivity against various stresses is paramount to support global production and consumption equilibrium. Although traditional breeding approaches have substantially increased crop production and yield, effective strategies are anticipated to restore crop productivity even further in meeting the world's increasing food demands. CRISPR/Cas, which originated in prokaryotes, has surfaced as a coveted genome editing tool in recent decades, reshaping plant molecular biology in unprecedented ways and paving the way for engineering stress-tolerant crops. CRISPR/Cas is distinguished by its efficiency, high target specificity, and modularity, enables precise genetic modification of crop plants, allowing for the creation of allelic variations in the germplasm and the development of novel and more productive agricultural practices. Additionally, a slew of advanced biotechnologies premised on the CRISPR/Cas methodologies have augmented fundamental research and plant synthetic biology toolkits. Here, we describe gene editing tools, including CRISPR/Cas and its imitative tools, such as base and prime editing, multiplex genome editing, chromosome engineering followed by their implications in crop genetic improvement. Further, we comprehensively discuss the latest developments of CRISPR/Cas technology including CRISPR-mediated gene drive, tissue-specific genome editing, dCas9 mediated epigenetic modification and programmed self-elimination of transgenes in plants. Finally, we highlight the applicability and scope of advanced CRISPR-based techniques in crop genetic improvement.
Collapse
Affiliation(s)
- Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Dhanawantari L Singha
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Ricky Raj Paswan
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Naimisha Chowdhury
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Monica Sharma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Palakolanu Sudhakar Reddy
- International Crop Research Institute for the Semi Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
23
|
Genome Editing: A Promising Approach for Achieving Abiotic Stress Tolerance in Plants. Int J Genomics 2022; 2022:5547231. [PMID: 35465040 PMCID: PMC9033345 DOI: 10.1155/2022/5547231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
The susceptibility of crop plants towards abiotic stresses is highly threatening to assure global food security as it results in almost 50% annual yield loss. To address this issue, several strategies like plant breeding and genetic engineering have been used by researchers from time to time. However, these approaches are not sufficient to ensure stress resilience due to the complexity associated with the inheritance of abiotic stress adaptive traits. Thus, researchers were prompted to develop novel techniques with high precision that can address the challenges connected to the previous strategies. Genome editing is the latest approach that is in the limelight for improving the stress tolerance of plants. It has revolutionized crop research due to its versatility and precision. The present review is an update on the different genome editing tools used for crop improvement so far and the various challenges associated with them. It also highlights the emerging potential of genome editing for developing abiotic stress-resilient crops.
Collapse
|
24
|
Gong Z, Cheng M, Botella JR. Non-GM Genome Editing Approaches in Crops. Front Genome Ed 2022; 3:817279. [PMID: 34977860 PMCID: PMC8715957 DOI: 10.3389/fgeed.2021.817279] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
CRISPR/Cas-based genome editing technologies have the potential to fast-track large-scale crop breeding programs. However, the rigid cell wall limits the delivery of CRISPR/Cas components into plant cells, decreasing genome editing efficiency. Established methods, such as Agrobacterium tumefaciens-mediated or biolistic transformation have been used to integrate genetic cassettes containing CRISPR components into the plant genome. Although efficient, these methods pose several problems, including 1) The transformation process requires laborious and time-consuming tissue culture and regeneration steps; 2) many crop species and elite varieties are recalcitrant to transformation; 3) The segregation of transgenes in vegetatively propagated or highly heterozygous crops, such as pineapple, is either difficult or impossible; and 4) The production of a genetically modified first generation can lead to public controversy and onerous government regulations. The development of transgene-free genome editing technologies can address many problems associated with transgenic-based approaches. Transgene-free genome editing have been achieved through the delivery of preassembled CRISPR/Cas ribonucleoproteins, although its application is limited. The use of viral vectors for delivery of CRISPR/Cas components has recently emerged as a powerful alternative but it requires further exploration. In this review, we discuss the different strategies, principles, applications, and future directions of transgene-free genome editing methods.
Collapse
Affiliation(s)
- Zheng Gong
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Ming Cheng
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Jose R Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
25
|
Jo MH, Kim B, Ju JH, Heo SY, Ahn KH, Lee HJ, Yeom HS, Jang H, Kim MS, Kim CH, Oh BR. Tremella fuciformis TFCUV5 Mycelial Culture-derived Exopolysaccharide Production and Its Anti-aging Effects on Skin Cells. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0361-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Fernie AR, Alseekh S, Liu J, Yan J. Using precision phenotyping to inform de novo domestication. PLANT PHYSIOLOGY 2021; 186:1397-1411. [PMID: 33848336 PMCID: PMC8260140 DOI: 10.1093/plphys/kiab160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 05/09/2023]
Abstract
An update on the use of precision phenotyping to assess the potential of lesser cultivated species as candidates for de novo domestication or similar development for future agriculture.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Centre of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Saleh Alseekh
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Centre of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| |
Collapse
|
27
|
Biswas S, Zhang D, Shi J. CRISPR/Cas systems: opportunities and challenges for crop breeding. PLANT CELL REPORTS 2021; 40:979-998. [PMID: 33977326 DOI: 10.1007/s00299-021-02708-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/28/2021] [Indexed: 05/27/2023]
Abstract
Increasing crop production to meet the demands of a growing population depends largely on crop improvement through new plant-breeding techniques (NPBT) such as genome editing. CRISPR/Cas systems are NPBTs that enable efficient target-specific gene editing in crops, which is supposed to accelerate crop breeding in a way that is different from genetically modified (GM) technology. Herein, we review the applications of CRISPR/Cas systems in crop breeding focusing on crop domestication, heterosis, haploid induction, and synthetic biology, and summarize the screening methods of CRISPR/Cas-induced mutations in crops. We highlight the importance of molecular characterization of CRISPR/Cas-edited crops, and pay special attentions to emerging highly specific genome-editing tools such as base editors and prime editors. We also discuss future improvements of CRISPR/Cas systems for crop improvement.
Collapse
Affiliation(s)
- Sukumar Biswas
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
28
|
Massel K, Lam Y, Wong ACS, Hickey LT, Borrell AK, Godwin ID. Hotter, drier, CRISPR: the latest edit on climate change. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1691-1709. [PMID: 33420514 DOI: 10.1007/s00122-020-03764-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/30/2020] [Indexed: 05/23/2023]
Abstract
Integrating CRISPR/Cas9 genome editing into modern breeding programs for crop improvement in cereals. Global climate trends in many agricultural regions have been rapidly changing over the past decades, and major advances in global food systems are required to ensure food security in the face of these emerging challenges. With increasing climate instability due to warmer temperatures and rising CO2 levels, the productivity of global agriculture will continue to be negatively impacted. To combat these growing concerns, creative approaches will be required, utilising all the tools available to produce more robust and tolerant crops with increased quality and yields under more extreme conditions. The integration of genome editing and transgenics into current breeding strategies is one promising solution to accelerate genetic gains through targeted genetic modifications, producing crops that can overcome the shifting climate realities. This review focuses on how revolutionary genome editing tools can be directly implemented into breeding programs for cereal crop improvement to rapidly counteract many of the issues affecting agriculture production in the years to come.
Collapse
Affiliation(s)
- Karen Massel
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Yasmine Lam
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Albert C S Wong
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lee T Hickey
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew K Borrell
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ian D Godwin
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
29
|
Mushtaq M, Ahmad Dar A, Skalicky M, Tyagi A, Bhagat N, Basu U, Bhat BA, Zaid A, Ali S, Dar TUH, Rai GK, Wani SH, Habib-Ur-Rahman M, Hejnak V, Vachova P, Brestic M, Çığ A, Çığ F, Erman M, EL Sabagh A. CRISPR-Based Genome Editing Tools: Insights into Technological Breakthroughs and Future Challenges. Genes (Basel) 2021; 12:797. [PMID: 34073848 PMCID: PMC8225059 DOI: 10.3390/genes12060797] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Genome-editing (GE) is having a tremendous influence around the globe in the life science community. Among its versatile uses, the desired modifications of genes, and more importantly the transgene (DNA)-free approach to develop genetically modified organism (GMO), are of special interest. The recent and rapid developments in genome-editing technology have given rise to hopes to achieve global food security in a sustainable manner. We here discuss recent developments in CRISPR-based genome-editing tools for crop improvement concerning adaptation, opportunities, and challenges. Some of the notable advances highlighted here include the development of transgene (DNA)-free genome plants, the availability of compatible nucleases, and the development of safe and effective CRISPR delivery vehicles for plant genome editing, multi-gene targeting and complex genome editing, base editing and prime editing to achieve more complex genetic engineering. Additionally, new avenues that facilitate fine-tuning plant gene regulation have also been addressed. In spite of the tremendous potential of CRISPR and other gene editing tools, major challenges remain. Some of the challenges are related to the practical advances required for the efficient delivery of CRISPR reagents and for precision genome editing, while others come from government policies and public acceptance. This review will therefore be helpful to gain insights into technological advances, its applications, and future challenges for crop improvement.
Collapse
Affiliation(s)
- Muntazir Mushtaq
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India; (M.M.); (A.A.D.)
| | - Aejaz Ahmad Dar
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India; (M.M.); (A.A.D.)
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.S.); (V.H.); (P.V.); (M.B.)
| | - Anshika Tyagi
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India;
| | - Nancy Bhagat
- School of Biotechnology, University of Jammu, Jammu 180006, India;
| | - Umer Basu
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India;
| | | | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany Aligarh Muslim University, Aigarh 202002, India;
| | - Sajad Ali
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India;
| | | | - Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India; (M.M.); (A.A.D.)
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu 192101, India
| | - Muhammad Habib-Ur-Rahman
- Department of Crop Science, Institute of Crop Science and Resource Conservation (INRES), University Bonn, 53115 Bonn, Germany;
| | - Vaclav Hejnak
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.S.); (V.H.); (P.V.); (M.B.)
| | - Pavla Vachova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.S.); (V.H.); (P.V.); (M.B.)
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.S.); (V.H.); (P.V.); (M.B.)
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia
| | - Arzu Çığ
- Department of Horticulture, Faculty of Agriculture, Siirt University, Siirt 56100, Turkey;
| | - Fatih Çığ
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt 56100, Turkey; (F.Ç.); (M.E.)
| | - Murat Erman
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt 56100, Turkey; (F.Ç.); (M.E.)
| | - Ayman EL Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt 56100, Turkey; (F.Ç.); (M.E.)
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
30
|
Omotayo AO, Aremu AO. Marama bean [Tylosema esculentum (Burch.) A. Schreib.]: an indigenous plant with potential for food, nutrition, and economic sustainability. Food Funct 2021; 12:2389-2403. [PMID: 33646215 DOI: 10.1039/d0fo01937b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Developing countries need to explore undervalued indigenous plants to fully enhance their food and nutrition security, health, and economic viability. This review explores the nutritional, phytochemical, and economic potential of marama bean (Tylosema esculentum, Fabaceae), a non-nodulating indigenous legume that can be cultivated in and is well-adapted to dry or low moisture conditions. Marama bean is popularly referred to as 'green gold' due to the considerable value derived from its above ground and underground organs. The seeds have nutritional value comparable to legumes such as groundnut and soybean. In addition, the seeds are a rich source of phytochemicals such as phenolic acids, phytosterols, flavonoids, behenic acid and griffonilide while carbohydrates are abundant in the tubers. Based on the existing literature, marama bean remains poorly explored, mainly anecdotal with limited scientific evidence available to support its nutritional and medicinal uses as well as economic benefits. This has been ascribed to a shortage of clear research goals and limited resources specifically directed to this underutilized indigenous plant. From an economic and commercial perspective, the high phytochemical content suggests the possibility of developing a functional health drink and associated value-added products. However, efficient cultivation protocols for marama bean, especially to ensure the sustainable supply of the plant material, remain crucial. Furthermore, novel approaches, especially the use of molecular techniques that can facilitate rapid selection of desired traits in marama, are recommended. These anticipated improved agronomical traits will enhance the commercial and economical potential of marama and also contribute to rural-urban food-nutrition sustainability globally.
Collapse
Affiliation(s)
- Abiodun Olusola Omotayo
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2790, North West Province, South Africa.
| | | |
Collapse
|
31
|
Alotaibi F, Alharbi S, Alotaibi M, Al Mosallam M, Motawei M, Alrajhi A. Wheat omics: Classical breeding to new breeding technologies. Saudi J Biol Sci 2021; 28:1433-1444. [PMID: 33613071 PMCID: PMC7878716 DOI: 10.1016/j.sjbs.2020.11.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/26/2022] Open
Abstract
Wheat is an important cereal crop, and its significance is more due to compete for dietary products in the world. Many constraints facing by the wheat crop due to environmental hazardous, biotic, abiotic stress and heavy matters factors, as a result, decrease the yield. Understanding the molecular mechanism related to these factors is significant to figure out genes regulate under specific conditions. Classical breeding using hybridization has been used to increase the yield but not prospered at the desired level. With the development of newly emerging technologies in biological sciences i.e., marker assisted breeding (MAB), QTLs mapping, mutation breeding, proteomics, metabolomics, next-generation sequencing (NGS), RNA_sequencing, transcriptomics, differential expression genes (DEGs), computational resources and genome editing techniques i.e. (CRISPR cas9; Cas13) advances in the field of omics. Application of new breeding technologies develops huge data; considerable development is needed in bioinformatics science to interpret the data. However, combined omics application to address physiological questions linked with genetics is still a challenge. Moreover, viroid discovery opens the new direction for research, economics, and target specification. Comparative genomics important to figure gene of interest processes are further discussed about considering the identification of genes, genomic loci, and biochemical pathways linked with stress resilience in wheat. Furthermore, this review extensively discussed the omics approaches and their effective use. Integrated plant omics technologies have been used viroid genomes associated with CRISPR and CRISPR-associated Cas13a proteins system used for engineering of viroid interference along with high-performance multidimensional phenotyping as a significant limiting factor for increasing stress resistance in wheat.
Collapse
Affiliation(s)
- Fahad Alotaibi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Saif Alharbi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Majed Alotaibi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Mobarak Al Mosallam
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | | | - Abdullah Alrajhi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| |
Collapse
|
32
|
Capdeville N, Merker L, Schindele P, Puchta H. Sophisticated CRISPR/Cas tools for fine-tuning plant performance. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153332. [PMID: 33383400 DOI: 10.1016/j.jplph.2020.153332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 05/03/2023]
Abstract
Over the last years, the discovery of various natural and the development of a row of engineered CRISPR/Cas nucleases have made almost every site of plant genomes accessible for the induction of specific changes. Newly developed tools open up a wide range of possibilities for the induction of genetic variability, from changing a single bp to Mbps, and thus to fine-tune plant performance. Whereas early approaches focused on targeted mutagenesis, recently developed tools enable the induction of precise and predefined genomic modifications. The use of base editors allows the substitution of single nucleotides, whereas the use of prime editors and gene targeting methods enables the induction of larger sequence modifications from a few bases to several kbp. Recently, through CRISPR/Cas-mediated chromosome engineering, it became possible to induce heritable inversions and translocations in the Mbp range. Thus, a novel way of breaking and fixing genetic linkages has come into reach for breeders. In addition, sequence-specific recruitment of various factors involved in transcriptional and post-transcriptional regulation has been shown to provide an additional class of methods for the fine tuning of plant performance. In this review, we provide an overview of the most recent progress in the field of CRISPR/Cas-based tool development for plant genome engineering and try to evaluate the importance of these developments for breeding and biotechnological applications.
Collapse
Affiliation(s)
- Niklas Capdeville
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Molecular Biology and Biochemistry, Fritz-Haber-Weg 4, 76135, Karlsruhe, Germany
| | - Laura Merker
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Molecular Biology and Biochemistry, Fritz-Haber-Weg 4, 76135, Karlsruhe, Germany
| | - Patrick Schindele
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Molecular Biology and Biochemistry, Fritz-Haber-Weg 4, 76135, Karlsruhe, Germany
| | - Holger Puchta
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Molecular Biology and Biochemistry, Fritz-Haber-Weg 4, 76135, Karlsruhe, Germany.
| |
Collapse
|
33
|
Pramanik D, Shelake RM, Kim MJ, Kim JY. CRISPR-Mediated Engineering across the Central Dogma in Plant Biology for Basic Research and Crop Improvement. MOLECULAR PLANT 2021; 14:127-150. [PMID: 33152519 DOI: 10.1016/j.molp.2020.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 05/03/2023]
Abstract
The central dogma (CD) of molecular biology is the transfer of genetic information from DNA to RNA to protein. Major CD processes governing genetic flow include the cell cycle, DNA replication, chromosome packaging, epigenetic changes, transcription, posttranscriptional alterations, translation, and posttranslational modifications. The CD processes are tightly regulated in plants to maintain genetic integrity throughout the life cycle and to pass genetic materials to next generation. Engineering of various CD processes involved in gene regulation will accelerate crop improvement to feed the growing world population. CRISPR technology enables programmable editing of CD processes to alter DNA, RNA, or protein, which would have been impossible in the past. Here, an overview of recent advancements in CRISPR tool development and CRISPR-based CD modulations that expedite basic and applied plant research is provided. Furthermore, CRISPR applications in major thriving areas of research, such as gene discovery (allele mining and cryptic gene activation), introgression (de novo domestication and haploid induction), and application of desired traits beneficial to farmers or consumers (biotic/abiotic stress-resilient crops, plant cell factories, and delayed senescence), are described. Finally, the global regulatory policies, challenges, and prospects for CRISPR-mediated crop improvement are discussed.
Collapse
Affiliation(s)
- Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| | - Mi Jung Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
34
|
Hoffie RE, Otto I, Hisano H, Kumlehn J. Site-Directed Mutagenesis in Barley Using RNA-Guided Cas Endonucleases During Microspore-Derived Generation of Doubled Haploids. Methods Mol Biol 2021; 2287:199-214. [PMID: 34270031 DOI: 10.1007/978-1-0716-1315-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
In plant research and breeding, haploid technology is employed upon crossing, induced mutagenesis or genetic engineering to generate populations of meiotic recombinants that are themselves genetically fixed. Thanks to the speed and efficiency in producing true-breeding lines, haploid technology has become a major driver of modern crop improvement. In the present study, we used embryogenic pollen cultures of winter barley ( Hordeum vulgare ) for Cas9 endonuclease-mediated targeted mutagenesis in haploid cells, which facilitates the generation of homozygous primary mutant plants. To this end, microspores were extracted from immature anthers, induced to undergo cell proliferation and embryogenic development in vitro, and were then inoculated with Agrobacterium for the delivery of T-DNAs comprising expression units for Cas9 endonuclease and target gene-specific guide RNAs (gRNAs). Amongst the regenerated plantlets, mutants were identified by PCR amplification of the target regions followed by sequencing of the amplicons. This approach also enabled us to discriminate between homozygous and heterozygous or chimeric mutants. The heritability of induced mutations and their homozygous state were experimentally confirmed by progeny analyses. The major advantage of the method lies in the preferential production of genetically fixed primary mutants, which facilitates immediate phenotypic analyses and, relying on that, a particularly efficient preselection of valuable lines for detailed investigations using their progenies.
Collapse
Affiliation(s)
- Robert Eric Hoffie
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ingrid Otto
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Jochen Kumlehn
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
| |
Collapse
|
35
|
Turnbull C, Lillemo M, Hvoslef-Eide TAK. Global Regulation of Genetically Modified Crops Amid the Gene Edited Crop Boom - A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:630396. [PMID: 33719302 PMCID: PMC7943453 DOI: 10.3389/fpls.2021.630396] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/02/2021] [Indexed: 05/02/2023]
Abstract
Products derived from agricultural biotechnology is fast becoming one of the biggest agricultural trade commodities globally, clothing us, feeding our livestock, and fueling our eco-friendly cars. This exponential growth occurs despite asynchronous regulatory schemes around the world, ranging from moratoriums and prohibitions on genetically modified (GM) organisms, to regulations that treat both conventional and biotech novel plant products under the same regulatory framework. Given the enormous surface area being cultivated, there is no longer a question of acceptance or outright need for biotech crop varieties. Recent recognition of the researchers for the development of a genome editing technique using CRISPR/Cas9 by the Nobel Prize committee is another step closer to developing and cultivating new varieties of agricultural crops. By employing precise, efficient, yet affordable genome editing techniques, new genome edited crops are entering country regulatory schemes for commercialization. Countries which currently dominate in cultivating and exporting GM crops are quickly recognizing different types of gene-edited products by comparing the products to conventionally bred varieties. This nuanced legislative development, first implemented in Argentina, and soon followed by many, shows considerable shifts in the landscape of agricultural biotechnology products. The evolution of the law on gene edited crops demonstrates that the law is not static and must adjust to the mores of society, informed by the experiences of 25 years of cultivation and regulation of GM crops. The crux of this review is a consolidation of the global legislative landscape on GM crops, as it stands, building on earlier works by specifically addressing how gene edited crops will fit into the existing frameworks. This work is the first of its kind to synthesize the applicable regulatory documents across the globe, with a focus on GM crop cultivation, and provides links to original legislation on GM and gene edited crops.
Collapse
|
36
|
Chen G, Zhou Y, Kishchenko O, Stepanenko A, Jatayev S, Zhang D, Borisjuk N. Gene editing to facilitate hybrid crop production. Biotechnol Adv 2020; 46:107676. [PMID: 33285253 DOI: 10.1016/j.biotechadv.2020.107676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 11/18/2022]
Abstract
Capturing heterosis (hybrid vigor) is a promising way to increase productivity in many crops; hybrid crops often have superior yields, disease resistance, and stress tolerance compared with their parental inbred lines. The full utilization of heterosis faces a number of technical problems related to the specifics of crop reproductive biology, such as difficulties with generating and maintaining male-sterile lines and the low efficiency of natural cross-pollination for some genetic combinations. Innovative technologies, such as development of artificial in vitro systems for hybrid production and apomixis-based systems for maintenance of the resulting heterotic progeny, may substantially facilitate the production of hybrids. Genome editing using specifically targeted nucleases, such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (CRISPR/Cas9) systems, which recognize targets by RNA:DNA complementarity, has recently become an integral part of research and development in life science. In this review, we summarize the progress of genome editing technologies for facilitating the generation of mutant male sterile lines, applications of haploids for hybrid production, and the use of apomixis for the clonal propagation of elite hybrid lines.
Collapse
Affiliation(s)
- Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Yuzhen Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.
| | - Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China; Institute of Cell Biology & Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine.
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China; Institute of Cell Biology & Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine.
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia.
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.
| |
Collapse
|
37
|
le Roux MSL, Burger NFV, Vlok M, Kunert KJ, Cullis CA, Botha AM. Wheat Line "RYNO3936" Is Associated With Delayed Water Stress-Induced Leaf Senescence and Rapid Water-Deficit Stress Recovery. FRONTIERS IN PLANT SCIENCE 2020; 11:1053. [PMID: 32760414 PMCID: PMC7372113 DOI: 10.3389/fpls.2020.01053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Random mutagenesis was applied to produce a new wheat mutant (RYNO3926) with superior characteristics regarding tolerance to water deficit stress induced at late booting stage. The mutant also displays rapid recovery from water stress conditions. Under water stress conditions mutant plants reached maturity faster and produced more seeds than its wild type wheat progenitor. Wild-type Tugela DN plants died within 7 days after induction of water stress induced at late booting stage, while mutant plants survived by maintaining a higher relative moisture content (RMC), increased total chlorophyll, and a higher photosynthesis rate and stomatal conductance. Analysis of the proteome of mutant plants revealed that they better regulate post-translational modification (SUMOylation) and have increased expression of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) proteins. Mutant plants also expressed unique proteins associated with dehydration tolerance including abscisic stress-ripening protein, cold induced protein, cold-responsive protein, dehydrin, Group 3 late embryogenesis, and a lipoprotein (LAlv9) belonging to the family of lipocalins. Overall, our results suggest that our new mutant RYNO3936 has a potential for inclusion in future breeding programs to improve drought tolerance under dryland conditions.
Collapse
Affiliation(s)
| | | | - Maré Vlok
- Proteomics Unit, Central Analytical Facilities, University of Stellenbosch, Stellenbosch, South Africa
| | - Karl J. Kunert
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Christopher A. Cullis
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Anna-Maria Botha
- Department of Genetics, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
38
|
Yasumoto S, Sawai S, Lee HJ, Mizutani M, Saito K, Umemoto N, Muranaka T. Targeted genome editing in tetraploid potato through transient TALEN expression by Agrobacterium infection. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:205-211. [PMID: 32821228 PMCID: PMC7434673 DOI: 10.5511/plantbiotechnology.20.0525a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Genome editing using site-specific nucleases, such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat-CRISPR-associated protein 9 (CRISPR-Cas9), is a powerful technology for crop breeding. For plant genome editing, the genome-editing reagents are usually expressed in plant cells from stably integrated transgenes within the genome. This requires crossing processes to remove foreign nucleotides from the genome to generate null segregants. However, in highly heterozygous plants such as potato, the progeny lines have different agronomic traits from the parent cultivar and do not necessarily become elite lines. Agrobacteria can transfer exogenous genes on T-DNA into plant cells. This has been used both to transform plants stably and to express the genes transiently in plant cells. Here, we infected potato, with Agrobacterium tumefaciens harboring TALEN-expression vector targeting sterol side chain reductase 2 (SSR2) gene and regenerated shoots without selection. We obtained regenerated lines with disrupted-SSR2 gene and without transgene of the TALEN gene, revealing that their disruption should be caused by transient gene expression. The strategy using transient gene expression by Agrobacterium that we call Agrobacterial mutagenesis, developed here should accelerate the use of genome-editing technology to modify heterozygous plant genomes.
Collapse
Affiliation(s)
- Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Satoru Sawai
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hyoung Jae Lee
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- E-mail: Tel: +81-6-6879-7423 Fax: +81-6-6879-7426
| |
Collapse
|
39
|
Fraser PD, Aharoni A, Hall RD, Huang S, Giovannoni JJ, Sonnewald U, Fernie AR. Metabolomics should be deployed in the identification and characterization of gene-edited crops. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:897-902. [PMID: 31923321 DOI: 10.1111/tpj.14679] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 05/23/2023]
Abstract
Gene-editing techniques are currently revolutionizing biology, allowing far greater precision than previous mutagenic and transgenic approaches. They are becoming applicable to a wide range of plant species and biological processes. Gene editing can rapidly improve a range of crop traits, including disease resistance, abiotic stress tolerance, yield, nutritional quality and additional consumer traits. Unlike transgenic approaches, however, it is not facile to forensically detect gene-editing events at the molecular level, as no foreign DNA exists in the elite line. These limitations in molecular detection approaches are likely to focus more attention on the products generated from the technology than on the process in itself. Rapid advances in sequencing and genome assembly increasingly facilitate genome sequencing as a means of characterizing new varieties generated by gene-editing techniques. Nevertheless, subtle edits such as single base changes or small deletions may be difficult to distinguish from normal variation within a genotype. Given these emerging scenarios, downstream 'omics' technologies reflective of edited affects, such as metabolomics, need to be used in a more prominent manner to fully assess compositional changes in novel foodstuffs. To achieve this goal, metabolomics or 'non-targeted metabolite analysis' needs to make significant advances to deliver greater representation across the metabolome. With the emergence of new edited crop varieties, we advocate: (i) concerted efforts in the advancement of 'omics' technologies, such as metabolomics, and (ii) an effort to redress the use of the technology in the regulatory assessment for metabolically engineered biotech crops.
Collapse
Affiliation(s)
- Paul D Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Robert D Hall
- Wageningen Research, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, the Netherlands
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, the Netherlands
- Netherlands Metabolomics Centre, Einsteinweg 55, Leiden, the Netherlands
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100084, China
| | - James J Giovannoni
- USDA-ARS, Robert W. Holley Center and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Uwe Sonnewald
- Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
40
|
Capdeville N, Schindele P, Puchta H. Application of CRISPR/Cas-mediated base editing for directed protein evolution in plants. SCIENCE CHINA-LIFE SCIENCES 2020; 63:613-616. [DOI: 10.1007/s11427-020-1655-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 02/04/2023]
|
41
|
Genome-edited plants in the field. Curr Opin Biotechnol 2020; 61:1-6. [DOI: 10.1016/j.copbio.2019.08.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
|
42
|
Raybould A. Problem formulation and phenotypic characterisation for the development of novel crops. Transgenic Res 2020; 28:135-145. [PMID: 31321696 DOI: 10.1007/s11248-019-00147-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phenotypic characterisation provides important information about novel crops that helps their developers to make technical and commercial decisions. Phenotypic characterisation comprises two activities. Product characterisation checks that the novel crop has the qualities of a viable product-the intended traits have been introduced and work as expected, and no unintended changes have been made that will adversely affect the performance of the final product. Risk assessment evaluates whether the intended and unintended changes are likely to harm human health or the environment. Product characterisation follows the principles of problem formulation, namely that the characteristics required in the final product are defined and criteria to decide whether the novel crop will have these properties are set. The hypothesis that the novel crop meets the criteria are tested during product development. If the hypothesis is corroborated, development continues, and if the hypothesis is falsified, the product is redesigned or its development is halted. Risk assessment should follow the same principles. Criteria that indicate the crop poses unacceptable risk should be set, and the hypothesis that the crop does not possess those properties should be tested. However, risk assessment, particularly when considering unintended changes introduced by new plant breeding methods such as gene editing, often ignores these principles. Instead, phenotypic characterisation seeks to catalogue all unintended changes by profiling methods and then proceeds to work out whether any of the changes are important. This paper argues that profiling is an inefficient and ineffective method of phenotypic characterisation for risk assessment. It discusses reasons why profiling is favoured and corrects some misconceptions about problem formulation.
Collapse
Affiliation(s)
- Alan Raybould
- Syngenta Crop Protection AG, Rosentalstrasse 67, 4002, Basel, Switzerland.
| |
Collapse
|
43
|
Ku HK, Ha SH. Improving Nutritional and Functional Quality by Genome Editing of Crops: Status and Perspectives. FRONTIERS IN PLANT SCIENCE 2020; 11:577313. [PMID: 33193521 PMCID: PMC7644509 DOI: 10.3389/fpls.2020.577313] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/15/2020] [Indexed: 05/07/2023]
Abstract
Genome-editing tools including meganucleases, zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats (CRISPR) system have been applied to improve the quality of staple, oilseed, and horticultural crops with great accuracy and efficiency compared to conventional breeding. In particular, the CRISPR method has proven to be a feasible, cost-effective and versatile tool allowing precise and efficient editing of plant genomes in recent years, showing great potential in crop improvement. Until now, various genome-edited crops with enhanced commercial value have been developed by not only global companies but also small laboratories in universities, suggesting low entry barriers with respect to manpower and capital. In this study, we review the current applications of genome editing technologies to improve the nutritional and functional quality and preferred traits of various crops. Combining this rapidly advancing genome-editing technology and conventional breeding will greatly extend the potential of genome-edited crops and their commercialization.
Collapse
Affiliation(s)
| | - Sun-Hwa Ha
- *Correspondence: Sun-Hwa Ha, ; orcid.org/0000-0002-0260-7645
| |
Collapse
|
44
|
Erpen-Dalla Corte L, M. Mahmoud L, S. Moraes T, Mou Z, W. Grosser J, Dutt M. Development of Improved Fruit, Vegetable, and Ornamental Crops Using the CRISPR/Cas9 Genome Editing Technique. PLANTS (BASEL, SWITZERLAND) 2019; 8:E601. [PMID: 31847196 PMCID: PMC6963220 DOI: 10.3390/plants8120601] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
Horticultural crops, including fruit, vegetable, and ornamental plants are an important component of the agriculture production systems and play an important role in sustaining human life. With a steady growth in the world's population and the consequent need for more food, sustainable and increased fruit and vegetable crop production is a major challenge to guarantee future food security. Although conventional breeding techniques have significantly contributed to the development of important varieties, new approaches are required to further improve horticultural crop production. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has emerged as a valuable genome-editing tool able to change DNA sequences at precisely chosen loci. The CRISPR/Cas9 system was developed based on the bacterial adaptive immune system and comprises of an endonuclease guided by one or more single-guide RNAs to generate double-strand breaks. These breaks can then be repaired by the natural cellular repair mechanisms, during which genetic mutations are introduced. In a short time, the CRISPR/Cas9 system has become a popular genome-editing technique, with numerous examples of gene mutation and transcriptional regulation control in both model and crop plants. In this review, various aspects of the CRISPR/Cas9 system are explored, including a general presentation of the function of the CRISPR/Cas9 system in bacteria and its practical application as a biotechnological tool for editing plant genomes, particularly in horticultural crops.
Collapse
Affiliation(s)
| | - Lamiaa M. Mahmoud
- Pomology Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt;
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA;
| | - Tatiana S. Moraes
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba 13416-000, SP, Brazil;
| | - Zhonglin Mou
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32603, USA;
| | - Jude W. Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA;
| | - Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA;
| |
Collapse
|
45
|
Razzaq A, Saleem F, Kanwal M, Mustafa G, Yousaf S, Imran Arshad HM, Hameed MK, Khan MS, Joyia FA. Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox. Int J Mol Sci 2019; 20:E4045. [PMID: 31430902 PMCID: PMC6720679 DOI: 10.3390/ijms20164045] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
Increasing agricultural productivity via modern breeding strategies is of prime interest to attain global food security. An array of biotic and abiotic stressors affect productivity as well as the quality of crop plants, and it is a primary need to develop crops with improved adaptability, high productivity, and resilience against these biotic/abiotic stressors. Conventional approaches to genetic engineering involve tedious procedures. State-of-the-art OMICS approaches reinforced with next-generation sequencing and the latest developments in genome editing tools have paved the way for targeted mutagenesis, opening new horizons for precise genome engineering. Various genome editing tools such as transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and meganucleases (MNs) have enabled plant scientists to manipulate desired genes in crop plants. However, these approaches are expensive and laborious involving complex procedures for successful editing. Conversely, CRISPR/Cas9 is an entrancing, easy-to-design, cost-effective, and versatile tool for precise and efficient plant genome editing. In recent years, the CRISPR/Cas9 system has emerged as a powerful tool for targeted mutagenesis, including single base substitution, multiplex gene editing, gene knockouts, and regulation of gene transcription in plants. Thus, CRISPR/Cas9-based genome editing has demonstrated great potential for crop improvement but regulation of genome-edited crops is still in its infancy. Here, we extensively reviewed the availability of CRISPR/Cas9 genome editing tools for plant biotechnologists to target desired genes and its vast applications in crop breeding research.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan
| | - Mehak Kanwal
- Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box 128, Faisalabad 38000, Pakistan
| | - Ghulam Mustafa
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan
| | - Sumaira Yousaf
- Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box 128, Faisalabad 38000, Pakistan
| | | | - Muhammad Khalid Hameed
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Sarwar Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan
| | - Faiz Ahmad Joyia
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan.
| |
Collapse
|
46
|
Mushtaq M, Sakina A, Wani SH, Shikari AB, Tripathi P, Zaid A, Galla A, Abdelrahman M, Sharma M, Singh AK, Salgotra RK. Harnessing Genome Editing Techniques to Engineer Disease Resistance in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:550. [PMID: 31134108 PMCID: PMC6514154 DOI: 10.3389/fpls.2019.00550] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/10/2019] [Indexed: 05/21/2023]
Abstract
Modern genome editing (GE) techniques, which include clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system, transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs) and LAGLIDADG homing endonucleases (meganucleases), have so far been used for engineering disease resistance in crops. The use of GE technologies has grown very rapidly in recent years with numerous examples of targeted mutagenesis in crop plants, including gene knockouts, knockdowns, modifications, and the repression and activation of target genes. CRISPR/Cas9 supersedes all other GE techniques including TALENs and ZFNs for editing genes owing to its unprecedented efficiency, relative simplicity and low risk of off-target effects. Broad-spectrum disease resistance has been engineered in crops by GE of either specific host-susceptibility genes (S gene approach), or cleaving DNA of phytopathogens (bacteria, virus or fungi) to inhibit their proliferation. This review focuses on different GE techniques that can potentially be used to boost molecular immunity and resistance against different phytopathogens in crops, ultimately leading to the development of promising disease-resistant crop varieties.
Collapse
Affiliation(s)
- Muntazir Mushtaq
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Aafreen Sakina
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Asif B. Shikari
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prateek Tripathi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Aravind Galla
- Department of Entomology, University of Arkansas, Fayetteville, AR, United States
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, Japan
- Botany Department, Faculty of Sciences, Aswan University, Aswan, Egypt
| | - Manmohan Sharma
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Anil Kumar Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Romesh Kumar Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| |
Collapse
|
47
|
Fernie AR, Yan J. De Novo Domestication: An Alternative Route toward New Crops for the Future. MOLECULAR PLANT 2019; 12:615-631. [PMID: 30999078 DOI: 10.1016/j.molp.2019.03.016] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 05/19/2023]
Abstract
Current global agricultural production must feed over 7 billion people. However, productivity varies greatly across the globe and is under threat from both increased competitions for land and climate change and associated environmental deterioration. Moreover, the increase in human population size and dietary changes are putting an ever greater burden on agriculture. The majority of this burden is met by the cultivation of a very small number of species, largely in locations that differ from their origin of domestication. Recent technological advances have raised the possibility of de novo domestication of wild plants as a viable solution for designing ideal crops while maintaining food security and a more sustainable low-input agriculture. Here we discuss how the discovery of multiple key domestication genes alongside the development of technologies for accurate manipulation of several target genes simultaneously renders de novo domestication a route toward crops for the future.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
48
|
Wolter F, Schindele P, Puchta H. Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC PLANT BIOLOGY 2019; 19:176. [PMID: 31046670 PMCID: PMC6498546 DOI: 10.1186/s12870-019-1775-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/11/2019] [Indexed: 05/21/2023]
Abstract
Classical plant breeding was extremely successful in generating high yielding crop varieties. Yet, in modern crops, the long domestication process has impoverished the genetic diversity available for breeding. This is limiting further improvements of elite germplasm by classical approaches. The CRISPR/Cas system now enables promising new opportunities to create genetic diversity for breeding in an unprecedented way. Due to its multiplexing ability, multiple targets can be modified simultaneously in an efficient way, enabling immediate pyramiding of multiple beneficial traits into an elite background within one generation. By targeting regulatory elements, a selectable range of transcriptional alleles can be generated, enabling precise fine-tuning of desirable traits. In addition, by targeting homologues of so-called domestication genes within one generation, it is now possible to catapult neglected, semi-domesticated and wild plants quickly into the focus of mainstream agriculture. This further enables the use of the enormous genetic diversity present in wild species or uncultured varieties of crops as a source of allele-mining, widely expanding the crop germplasm pool.
Collapse
Affiliation(s)
- Felix Wolter
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76049 Karlsruhe, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76049 Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76049 Karlsruhe, Germany
| |
Collapse
|
49
|
CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors. Genome Biol 2019; 20:73. [PMID: 31036069 PMCID: PMC6489355 DOI: 10.1186/s13059-019-1680-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/25/2019] [Indexed: 12/31/2022] Open
Abstract
Increasing genetic diversity via directed evolution holds great promise to accelerate trait development and crop improvement. We developed a CRISPR/Cas-based directed evolution platform in plants to evolve the rice (Oryza sativa) SF3B1 spliceosomal protein for resistance to splicing inhibitors. SF3B1 mutant variants, termed SF3B1-GEX1A-Resistant (SGR), confer variable levels of resistance to splicing inhibitors. Studies of the structural basis of the splicing inhibitor binding to SGRs corroborate the resistance phenotype. This directed evolution platform can be used to interrogate and evolve the molecular functions of key biomolecules and to engineer crop traits for improved performance and adaptation under climate change conditions.
Collapse
|
50
|
Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:667-697. [PMID: 30835493 DOI: 10.1146/annurev-arplant-050718-100049] [Citation(s) in RCA: 687] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Enhanced agricultural production through innovative breeding technology is urgently needed to increase access to nutritious foods worldwide. Recent advances in CRISPR/Cas genome editing enable efficient targeted modification in most crops, thus promising to accelerate crop improvement. Here, we review advances in CRISPR/Cas9 and its variants and examine their applications in plant genome editing and related manipulations. We highlight base-editing tools that enable targeted nucleotide substitutions and describe the various delivery systems, particularly DNA-free methods, that have linked genome editing with crop breeding. We summarize the applications of genome editing for trait improvement, development of techniques for fine-tuning gene regulation, strategies for breeding virus resistance, and the use of high-throughput mutant libraries. We outline future perspectives for genome editing in plant synthetic biology and domestication, advances in delivery systems, editing specificity, homology-directed repair, and gene drives. Finally, we discuss the challenges and opportunities for precision plant breeding and its bright future in agriculture.
Collapse
Affiliation(s)
- Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Rui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Huawei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
- University of Chinese Academy of Sciences, Beijing, China 100864
| |
Collapse
|