1
|
Cañon-Tafur LA, Mateus-Maldonado JF, Lozano-Puentes HS, Herrera-Acosta CD, Sánchez-Matiz JJ, Díaz-Ariza LA, Costa GM, Jiménez-Borrego LC, Carrascal-Camacho AK, Pedroza-Rodríguez AM. Guadua angustifolia biochar/TiO 2 composite and biochar as bio-based materials with environmental and agricultural application. Sci Rep 2025; 15:246. [PMID: 39747351 PMCID: PMC11697128 DOI: 10.1038/s41598-024-81761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
Globally, the companies that make commercial use of bamboo culms produce different kinds of solid waste rich in lignocellulosic biomass, which in some cases is not used and is discarded in landfills or incinerated in the open air; losing the possibility of recovering them and using them in other productive sectors. The research objective were to produce a biochar from Guadua agustifolia Kunth sawdust, evaluate its potential environmental and agricultural use, obtain a biochar/TiO2 composite to inactivate Escherichia coli and use the biochar as a soil conditioner in medicinal plants producing phenolic compounds and flavonoids. Biochar composite (produced at 300 °C for 1 h) involved TiO2 at 450 °C for 1 h for inactivation of E. coli (initial concentration: 6.5 ± 0.3 Log10 CFU mL- 1). For agriculture, 2% biochar was used to evaluate B. pilosa L. and G. angustifolia plant growth for 90 days. The biochar/TiO2 composite had a high photocatalytic activity on E. coli, generating a final count of 1.97 ± 0.2 Log10 CFU mL- 1 after 60 min. Biochar (2%) increased the total phenol and flavonoid content in the medicinal plant B. pilosa L. and total phenols in G. angustifolia, tested at the nursery stage. This study provides new information on the conversion and use of G. angustifolia sawdust as an alternative for new bio-based materials with environmental and agricultural applications. In addition, obtaining biochar and composite could positively impact the bamboo production chain in Colombia because of renewable and globally accepted alternatives that help capture gaseous emissions causing the greenhouse effect.
Collapse
Affiliation(s)
- Luis A Cañon-Tafur
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
- Laboratorio de Películas Delgadas y Nanofotónica, Departamento de Física, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Juan F Mateus-Maldonado
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
- Laboratorio Asociaciones Suelo, Planta Microorganismo (LAMIC), Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Hair Santiago Lozano-Puentes
- Laboratorio Asociaciones Suelo, Planta Microorganismo (LAMIC), Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
- Laboratorio de Fitoquímica, Grupo de Investigación Fitoquímica (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Carlos D Herrera-Acosta
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Juan J Sánchez-Matiz
- Laboratorio Asociaciones Suelo, Planta Microorganismo (LAMIC), Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Lucía A Díaz-Ariza
- Laboratorio Asociaciones Suelo, Planta Microorganismo (LAMIC), Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Geison Modesti Costa
- Laboratorio de Fitoquímica, Grupo de Investigación Fitoquímica (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Luis C Jiménez-Borrego
- Laboratorio de Películas Delgadas y Nanofotónica, Departamento de Física, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Ana K Carrascal-Camacho
- Laboratorio de Microbiología de Alimentos. Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Aura M Pedroza-Rodríguez
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia.
| |
Collapse
|
2
|
de Vries S, Feussner I. Biotic interactions, evolutionary forces and the pan-plant specialized metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230362. [PMID: 39343027 PMCID: PMC11449213 DOI: 10.1098/rstb.2023.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 10/01/2024] Open
Abstract
Plant specialized metabolism has a complex evolutionary history. Some aspects are conserved across the green lineage, but many metabolites are unique to certain lineages. The network of specialized metabolism continuously diversified, simplified or reshaped during the evolution of streptophytes. Many routes of pan-plant specialized metabolism are involved in plant defence. Biotic interactions are recalled as major drivers of lineage-specific metabolomic diversification. However, the consequences of this diversity of specialized metabolism in the context of plant terrestrialization and land plant diversification into the major lineages of bryophytes, lycophytes, ferns, gymnosperms and angiosperms remain only little explored. Overall, this hampers conclusions on the evolutionary scenarios that shaped specialized metabolism. Recent efforts have brought forth new streptophyte model systems, an increase in genetically accessible species from distinct major plant lineages, and new functional data from a diversity of land plants on specialized metabolic pathways. In this review, we will integrate the recent data on the evolution of the plant immune system with the molecular data of specialized metabolism and its recognition. Based on this we will provide a contextual framework of the pan-plant specialized metabolism, the evolutionary aspects that shape it and the impact on adaptation to the terrestrial environment.This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, Goettingen 37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, Goettingen 37077, Germany
| |
Collapse
|
3
|
Yang L, Qian X, Zhao Z, Wang Y, Ding G, Xing X. Mechanisms of rhizosphere plant-microbe interactions: molecular insights into microbial colonization. FRONTIERS IN PLANT SCIENCE 2024; 15:1491495. [PMID: 39606666 PMCID: PMC11600982 DOI: 10.3389/fpls.2024.1491495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024]
Abstract
The rhizosphere, as the "frontline" of plant life, connects plant roots, rhizosphere microorganisms, and surrounding soil, plays a crucial role in plant growth and health, particularly in sustainable agriculture. Despite the well-established contribution of plant-microbe interactions to plant health, the specific molecular mechanisms remain insufficiently understood. This review aims to summarize the physiological adjustments and signal modulation that both plants and microorganisms undergo within this unique ecological niche to ensure successful colonization. By analyzing key processes such as chemotaxis, root attachment, immune evasion, and biofilm formation, we uncover how plants precisely modulate root exudates to either recruit or repel specific microorganisms, thereby shaping their colonization patterns. These findings provide new insights into the complexity of plant-microbe interactions and suggest potential directions for future research in sustainable agriculture.
Collapse
Affiliation(s)
| | | | | | | | - Gang Ding
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoke Xing
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Markova O, Garipova S, Chistoedova A, Matyunina V, Lubyanova A, Lastochkina O, Garipov A, Shpirnaya I, Pusenkova L. Predicting Field Effectiveness of Endophytic Bacillus subtilis Inoculants for Common Bean Using Morphometric and Biochemical Markers. PLANTS (BASEL, SWITZERLAND) 2024; 13:1769. [PMID: 38999609 PMCID: PMC11244252 DOI: 10.3390/plants13131769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
According to four field experiments, after the inoculation of Phaseolus vulgaris L. cultivar Ufimskaya with the commercial strain Bacillus subtilis 26D and the promising strain B. subtilis 10-4, it was found that inoculation with B. subtilis 10-4 improved seed productivity (SP) by 31-41% per plant, but only in dry years. In contrast, all 4 years of inoculation with B. subtilis 26D were ineffective or neutral. It was intended to determine the growing and biochemical characteristics of inoculated 7-day-old plants, which correlate with the field SP of bacterial preparations. The SP of inoculated plants (average of 4 years) correlated with root length (0.83), MDA content (-0.98), and catalase (CAT) activity in roots (-0.96) of week-old seedlings. High correlation coefficients between the H2O2 content in the roots and SP (0.89 and 0.77), as well as between the H2O2 content in shoots and SP (0.98 and 0.56), were observed only in two dry years, when the influence of bacteria was detected. These physiological indicators were identified as potential markers for predicting the effectiveness of the endophytic symbiosis between bean plants and B. subtilis strains. The findings may be used to develop effective microbial-based, eco-friendly technologies for bean production.
Collapse
Affiliation(s)
- Oksana Markova
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Svetlana Garipova
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Aelita Chistoedova
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Viktoriia Matyunina
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Alsu Lubyanova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya 71, 450054 Ufa, Russia
| | - Oksana Lastochkina
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya 71, 450054 Ufa, Russia
| | - Arsenii Garipov
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Irina Shpirnaya
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Lyudmila Pusenkova
- Bashkir Research Institute of Agriculture-Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, R. Zorge Str. 19, 450059 Ufa, Russia
| |
Collapse
|
5
|
Voller F, Ardanuy A, Taylor AFS, Johnson D. Maintenance of host specialisation gradients in ectomycorrhizal symbionts. THE NEW PHYTOLOGIST 2024; 242:1426-1435. [PMID: 37984824 DOI: 10.1111/nph.19395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023]
Abstract
Many fungi that form ectomycorrhizas exhibit a degree of host specialisation, and individual trees are frequently colonised by communities of mycorrhizal fungi comprising species that fall on a gradient of specialisation along genetic, functional and taxonomic axes of variation. By contrast, arbuscular mycorrhizal fungi exhibit little specialisation. Here, we propose that host tree root morphology is a key factor that gives host plants fine-scale control over colonisation and therefore opportunities for driving specialisation and speciation of ectomycorrhizal fungi. A gradient in host specialisation is likely driven by four proximate mechanistic 'filters' comprising partner availability, signalling recognition, competition for colonisation, and symbiotic function (trade, rewards and sanctions), and the spatially restricted colonisation seen in heterorhizic roots enables these mechanisms, especially symbiotic function, to be more effective in driving the evolution of specialisation. We encourage manipulation experiments that integrate molecular genetics and isotope tracers to test these mechanisms, alongside mathematical simulations of eco-evolutionary dynamics in mycorrhizal symbioses.
Collapse
Affiliation(s)
- Fay Voller
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| | - Agnès Ardanuy
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
- Université de Toulouse, INRAE, UMR DYNAFOR, Castanet-Tolosan, 31320, France
| | - Andy F S Taylor
- Ecological Sciences Group, James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - David Johnson
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| |
Collapse
|
6
|
Feng X, Zheng J, Irisarri I, Yu H, Zheng B, Ali Z, de Vries S, Keller J, Fürst-Jansen JMR, Dadras A, Zegers JMS, Rieseberg TP, Dhabalia Ashok A, Darienko T, Bierenbroodspot MJ, Gramzow L, Petroll R, Haas FB, Fernandez-Pozo N, Nousias O, Li T, Fitzek E, Grayburn WS, Rittmeier N, Permann C, Rümpler F, Archibald JM, Theißen G, Mower JP, Lorenz M, Buschmann H, von Schwartzenberg K, Boston L, Hayes RD, Daum C, Barry K, Grigoriev IV, Wang X, Li FW, Rensing SA, Ben Ari J, Keren N, Mosquna A, Holzinger A, Delaux PM, Zhang C, Huang J, Mutwil M, de Vries J, Yin Y. Genomes of multicellular algal sisters to land plants illuminate signaling network evolution. Nat Genet 2024; 56:1018-1031. [PMID: 38693345 PMCID: PMC11096116 DOI: 10.1038/s41588-024-01737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/25/2024] [Indexed: 05/03/2024]
Abstract
Zygnematophyceae are the algal sisters of land plants. Here we sequenced four genomes of filamentous Zygnematophyceae, including chromosome-scale assemblies for three strains of Zygnema circumcarinatum. We inferred traits in the ancestor of Zygnematophyceae and land plants that might have ushered in the conquest of land by plants: expanded genes for signaling cascades, environmental response, and multicellular growth. Zygnematophyceae and land plants share all the major enzymes for cell wall synthesis and remodifications, and gene gains shaped this toolkit. Co-expression network analyses uncover gene cohorts that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.
Collapse
Affiliation(s)
- Xuehuan Feng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jinfang Zheng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Zhejiang Lab, Hangzhou, China
| | - Iker Irisarri
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany
- Section Phylogenomics, Centre for Molecular biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Zoological Museum Hamburg, Hamburg, Germany
| | - Huihui Yu
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE, USA
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Yunnan, China
| | - Bo Zheng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Zahin Ali
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Sophie de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, France
| | - Janine M R Fürst-Jansen
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Armin Dadras
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Jaccoline M S Zegers
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Tim P Rieseberg
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Amra Dhabalia Ashok
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Tatyana Darienko
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Maaike J Bierenbroodspot
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Lydia Gramzow
- University of Jena, Matthias Schleiden Institute/Genetics, Jena, Germany
| | - Romy Petroll
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Institute for Mediterranean and Subtropical Horticulture 'La Mayora', Málaga, Spain
| | - Orestis Nousias
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tang Li
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Elisabeth Fitzek
- Computational Biology, Department of Biology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - W Scott Grayburn
- Northern Illinois University, Molecular Core Lab, Department of Biological Sciences, DeKalb, IL, USA
| | - Nina Rittmeier
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Innsbruck, Austria
| | - Charlotte Permann
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Innsbruck, Austria
| | - Florian Rümpler
- University of Jena, Matthias Schleiden Institute/Genetics, Jena, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Günter Theißen
- University of Jena, Matthias Schleiden Institute/Genetics, Jena, Germany
| | - Jeffrey P Mower
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE, USA
| | - Maike Lorenz
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Experimental Phycology and Culture Collection of Algae at Goettingen University, Goettingen, Germany
| | - Henrik Buschmann
- University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, Mittweida, Germany
| | - Klaus von Schwartzenberg
- Universität Hamburg, Institute of Plant Science and Microbiology, Microalgae and Zygnematophyceae Collection Hamburg and Aquatic Ecophysiology and Phycology, Hamburg, Germany
| | - Lori Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Richard D Hayes
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Xiyin Wang
- North China University of Science and Technology, Tangshan, China
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- University of Freiburg, Centre for Biological Signalling Studies (BIOSS), Freiburg, Germany
| | - Julius Ben Ari
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Noa Keren
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Assaf Mosquna
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Innsbruck, Austria
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, France
| | - Chi Zhang
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE, USA
- University of Nebraska-Lincoln, School of Biological Sciences, Lincoln, NE, USA
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC, USA
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Marek Mutwil
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Jan de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany.
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany.
- University of Goettingen, Goettingen Center for Molecular Biosciences, Goettingen, Germany.
| | - Yanbin Yin
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
7
|
Zhao C, Onyino J, Gao X. Current Advances in the Functional Diversity and Mechanisms Underlying Endophyte-Plant Interactions. Microorganisms 2024; 12:779. [PMID: 38674723 PMCID: PMC11052469 DOI: 10.3390/microorganisms12040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Plant phenotype is a complex entity largely controlled by the genotype and various environmental factors. Importantly, co-evolution has allowed plants to coexist with the biotic factors in their surroundings. Recently, plant endophytes as an external plant phenotype, forming part of the complex plethora of the plant microbial assemblage, have gained immense attention from plant scientists. Functionally, endophytes impact the plant in many ways, including increasing nutrient availability, enhancing the ability of plants to cope with both abiotic and biotic stress, and enhancing the accumulation of important plant secondary metabolites. The current state of research has been devoted to evaluating the phenotypic impacts of endophytes on host plants, including their direct influence on plant metabolite accumulation and stress response. However, there is a knowledge gap in how genetic factors influence the interaction of endophytes with host plants, pathogens, and other plant microbial communities, eventually controlling the extended microbial plant phenotype. This review will summarize how host genetic factors can impact the abundance and functional diversity of the endophytic microbial community, how endophytes influence host gene expression, and the host-endophyte-pathogen disease triangle. This information will provide novel insights into how breeders could specifically target the plant-endophyte extended phenotype for crop improvement.
Collapse
Affiliation(s)
- Caihong Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Johnmark Onyino
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiquan Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Sena L, Mica E, Valè G, Vaccino P, Pecchioni N. Exploring the potential of endophyte-plant interactions for improving crop sustainable yields in a changing climate. FRONTIERS IN PLANT SCIENCE 2024; 15:1349401. [PMID: 38571718 PMCID: PMC10988515 DOI: 10.3389/fpls.2024.1349401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
Climate change poses a major threat to global food security, significantly reducing crop yields as cause of abiotic stresses, and for boosting the spread of new and old pathogens and pests. Sustainable crop management as a route to mitigation poses the challenge of recruiting an array of solutions and tools for the new aims. Among these, the deployment of positive interactions between the micro-biotic components of agroecosystems and plants can play a highly significant role, as part of the agro-ecological revolution. Endophytic microorganisms have emerged as a promising solution to tackle this challenge. Among these, Arbuscular Mycorrhizal Fungi (AMF) and endophytic bacteria and fungi have demonstrated their potential to alleviate abiotic stresses such as drought and heat stress, as well as the impacts of biotic stresses. They can enhance crop yields in a sustainable way also by other mechanisms, such as improving the nutrient uptake, or by direct effects on plant physiology. In this review we summarize and update on the main types of endophytes, we highlight several studies that demonstrate their efficacy in improving sustainable yields and explore possible avenues for implementing crop-microbiota interactions. The mechanisms underlying these interactions are highly complex and require a comprehensive understanding. For this reason, omic technologies such as genomics, transcriptomics, proteomics, and metabolomics have been employed to unravel, by a higher level of information, the complex network of interactions between plants and microorganisms. Therefore, we also discuss the various omic approaches and techniques that have been used so far to study plant-endophyte interactions.
Collapse
Affiliation(s)
- Lorenzo Sena
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Erica Mica
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Giampiero Valè
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Patrizia Vaccino
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Nicola Pecchioni
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Foggia, Italy
| |
Collapse
|
9
|
Guo J, Ning H, Li Y, Xu Q, Shen Q, Ling N, Guo S. Assemblages of rhizospheric and root endospheric mycobiota and their ecological associations with functional traits of rice. mBio 2024; 15:e0273323. [PMID: 38319112 PMCID: PMC10936437 DOI: 10.1128/mbio.02733-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
The soil-root interface harbors complex fungal communities that play vital roles in the fitness of host plants. However, little is known about the assembly rules and potential functions of rhizospheric and endospheric mycobiota. A greenhouse experiment was conducted to explore the fungal communities inhabiting the rhizosphere and roots of 87 rice cultivars at the tillering stage via amplicon sequencing of the fungal internal transcribed spacer 1 region. The potential relationships between these communities and host plant functional traits were also investigated using Procrustes analysis, generalized additive model fitting, and correlation analysis. The fungal microbiota exhibited greater richness, higher diversity, and lower structural variability in the rhizosphere than in the root endosphere. Compared with the root endosphere, the rhizosphere supported a larger coabundance network, with greater connectivity and stronger cohesion. Null model-based analyses revealed that dispersal limitation was primarily responsible for rhizosphere fungal community assembly, while ecological drift was the dominant process in the root endosphere. The community composition of fungi in the rhizosphere was shown to be more related to plant functional traits, such as the root/whole plant biomass, root:shoot biomass ratio, root/shoot nitrogen (N) content, and root/shoot/whole plant N accumulation, than to that in the root endosphere. Overall, at the early stage of rice growth, diverse and complex rhizospheric fungal communities are shaped by stochastic-based processes and exhibit stronger associations with plant functional traits. IMPORTANCE The assembly processes and functions of root-associated mycobiota are among the most fascinating yet elusive topics in microbial ecology. Our results revealed that stochastic forces (dispersal limitation or ecological drift) act on fungal community assembly in both the rice rhizosphere and root endosphere at the early stage of plant growth. In addition, high covariations between the rhizosphere fungal community compositions and plant functional trait profiles were clearly demonstrated in the present study. This work provides empirical evidence of the root-associated fungal assembly principles and ecological relationships of plant functional traits with rhizospheric and root endospheric mycobiota, thereby potentially providing novel perspectives for enhancing plant performance.
Collapse
Affiliation(s)
- Junjie Guo
- State Key Lab of Biocontrol, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Huiling Ning
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yong Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qicheng Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ning Ling
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Bernasconi A, Lorrain C, Flury P, Alassimone J, McDonald BA, Sánchez-Vallet A. Virulent strains of Zymoseptoria tritici suppress the host immune response and facilitate the success of avirulent strains in mixed infections. PLoS Pathog 2023; 19:e1011767. [PMID: 37972205 PMCID: PMC10721197 DOI: 10.1371/journal.ppat.1011767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/14/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
Plants interact with a plethora of pathogenic microorganisms in nature. Pathogen-plant interaction experiments focus mainly on single-strain infections, typically ignoring the complexity of multi-strain infections even though mixed infections are common and critical for the infection outcome. The wheat pathogen Zymoseptoria tritici forms highly diverse fungal populations in which several pathogen strains often colonize the same leaf. Despite the importance of mixed infections, the mechanisms governing interactions between a mixture of pathogen strains within a plant host remain largely unexplored. Here we demonstrate that avirulent pathogen strains benefit from being in mixed infections with virulent strains. We show that virulent strains suppress the wheat immune response, allowing avirulent strains to colonize the apoplast and to reproduce. Our experiments indicate that virulent strains in mixed infections can suppress the plant immune system, probably facilitating the persistence of avirulent pathogen strains in fields planted with resistant host plants.
Collapse
Affiliation(s)
- Alessio Bernasconi
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Cécile Lorrain
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Priska Flury
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Julien Alassimone
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Bruce A. McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Andrea Sánchez-Vallet
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Centro de Biotecnología y Genómica de Plantas (CBGP/Universidad Politécnica de Madrid-Instituto Nacional de Investigación Agraria y Alimentaria/Centro Superior de Investigaciones Científicas (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón (Madrid) Spain
| |
Collapse
|
11
|
Kumar V, Nautiyal CS. Endophytes Modulate Plant Genes: Present Status and Future Perspectives. Curr Microbiol 2023; 80:353. [PMID: 37740026 DOI: 10.1007/s00284-023-03466-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023]
Abstract
Interactions among endophytes and plants are widespread and can vary from neutral or positive or negative. Plants are continually in a functionally dynamic state due to interactions with diverse endophytic microorganisms, which produce various metabolic substances. Through quorum sensing, these substances not only help endophytes to outcompete other host-associated pathogens or microbes but also allow them to overcome the plant immune system. Manifold interactions between endophytic microbiota cause a reflective impact on the host plant functioning and the development of 'endobiomes,' by synthesizing chemicals that fill the gap between host and endophytes. Despite the advances in the field, specific mechanisms for the endophytes' precise methods to modulate plant genome and their effects on host plants remain poorly understood. Deeper genomic exploration can provide a locked away understanding of the competencies of endophytes and their conceivable function in host growth and health. Endophytes also can modify host metabolites, which could manipulate plants' growth, adaptation, and proliferation, and can be a more exciting and puzzling topic that must be properly investigated. The consequence of the interaction of endophytes on the host genome was analyzed as it can help unravel the gray areas of endophytes about which very little or no knowledge exists. This review discusses the recent advances in understanding the future challenges in the emerging research investigating how endosymbionts affect the host's metabolism and gene expression as an effective strategy for imparting resistance to biotic and abiotic challenges.
Collapse
Affiliation(s)
- Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jollygrant, Dehradun-248016, Uttrakhand, India.
| | - Chandra S Nautiyal
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jollygrant, Dehradun-248016, Uttrakhand, India
| |
Collapse
|
12
|
Jha P, Kaur T, Chhabra I, Panja A, Paul S, Kumar V, Malik T. Endophytic fungi: hidden treasure chest of antimicrobial metabolites interrelationship of endophytes and metabolites. Front Microbiol 2023; 14:1227830. [PMID: 37497538 PMCID: PMC10366620 DOI: 10.3389/fmicb.2023.1227830] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Endophytic fungi comprise host-associated fungal communities which thrive within the tissues of host plants and produce a diverse range of secondary metabolites with various bioactive attributes. The metabolites such as phenols, polyketides, saponins, alkaloids help to mitigate biotic and abiotic stresses, fight against pathogen attacks and enhance the plant immune system. We present an overview of the association of endophytic fungal communities with a plant host and discuss molecular mechanisms induced during their symbiotic interaction. The overview focuses on the secondary metabolites (especially those of terpenoid nature) secreted by endophytic fungi and their respective function. The recent advancement in multi-omics approaches paved the way for identification of these metabolites and their characterization via comparative analysis of extensive omics datasets. This study also elaborates on the role of diverse endophytic fungi associated with key agricultural crops and hence important for sustainability of agriculture.
Collapse
Affiliation(s)
- Priyanka Jha
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tamanna Kaur
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | | | - Avirup Panja
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| | - Sushreeta Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| | - Vijay Kumar
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tabarak Malik
- Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
13
|
Enebe MC, Erasmus M. Susceptibility and plant immune control-a case of mycorrhizal strategy for plant colonization, symbiosis, and plant immune suppression. Front Microbiol 2023; 14:1178258. [PMID: 37476663 PMCID: PMC10355322 DOI: 10.3389/fmicb.2023.1178258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Plants and microbes (mycorrhizal fungi to be precise) have evolved together over the past millions of years into an association that is mutualist. The plants supply the fungi with photosynthates and shelter, while the fungi reciprocate by enhancing nutrient and water uptake by the plants as well as, in some cases, control of soil-borne pathogens, but this fungi-plant association is not always beneficial. We argue that mycorrhizal fungi, despite contributing to plant nutrition, equally increase plant susceptibility to pathogens and herbivorous pests' infestation. Understanding of mycorrhizal fungi strategies for suppressing plant immunity, the phytohormones involved and the signaling pathways that aid them will enable the harnessing of tripartite (consisting of three biological systems)-plant-mycorrhizal fungi-microbe interactions for promoting sustainable production of crops.
Collapse
Affiliation(s)
- Matthew Chekwube Enebe
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein, South Africa
| | | |
Collapse
|
14
|
Aparicio Chacón MV, Van Dingenen J, Goormachtig S. Characterization of Arbuscular Mycorrhizal Effector Proteins. Int J Mol Sci 2023; 24:9125. [PMID: 37298075 PMCID: PMC10252856 DOI: 10.3390/ijms24119125] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Plants are colonized by various fungi with both pathogenic and beneficial lifestyles. One type of colonization strategy is through the secretion of effector proteins that alter the plant's physiology to accommodate the fungus. The oldest plant symbionts, the arbuscular mycorrhizal fungi (AMF), may exploit effectors to their benefit. Genome analysis coupled with transcriptomic studies in different AMFs has intensified research on the effector function, evolution, and diversification of AMF. However, of the current 338 predicted effector proteins from the AM fungus Rhizophagus irregularis, only five have been characterized, of which merely two have been studied in detail to understand which plant proteins they associate with to affect the host physiology. Here, we review the most recent findings in AMF effector research and discuss the techniques used for the functional characterization of effector proteins, from their in silico prediction to their mode of action, with an emphasis on high-throughput approaches for the identification of plant targets of the effectors through which they manipulate their hosts.
Collapse
Affiliation(s)
- María V. Aparicio Chacón
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
15
|
Gómez-Godínez LJ, Aguirre-Noyola JL, Martínez-Romero E, Arteaga-Garibay RI, Ireta-Moreno J, Ruvalcaba-Gómez JM. A Look at Plant-Growth-Promoting Bacteria. PLANTS (BASEL, SWITZERLAND) 2023; 12:1668. [PMID: 37111891 PMCID: PMC10145503 DOI: 10.3390/plants12081668] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Bacteria have been used to increase crop yields. For their application on crops, bacteria are provided in inoculant formulations that are continuously changing, with liquid- and solid-based products. Bacteria for inoculants are mainly selected from natural isolates. In nature, microorganisms that favor plants exhibit various strategies to succeed and prevail in the rhizosphere, such as biological nitrogen fixation, phosphorus solubilization, and siderophore production. On the other hand, plants have strategies to maintain beneficial microorganisms, such as the exudation of chemoattractanst for specific microorganisms and signaling pathways that regulate plant-bacteria interactions. Transcriptomic approaches are helpful in attempting to elucidate plant-microorganism interactions. Here, we present a review of these issues.
Collapse
Affiliation(s)
- Lorena Jacqueline Gómez-Godínez
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - José Luis Aguirre-Noyola
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Ramón Ignacio Arteaga-Garibay
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - Javier Ireta-Moreno
- Centro de Investigación Regional Pacífico Centro, Centro Altos Jalisco, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 2470, Jalisco, Mexico
| | - José Martín Ruvalcaba-Gómez
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Jalisco, Mexico
| |
Collapse
|
16
|
Bhunjun CS, Phukhamsakda C, Hyde KD, McKenzie EHC, Saxena RK, Li Q. Do all fungi have ancestors with endophytic lifestyles? FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-023-00516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
17
|
Feng X, Zheng J, Irisarri I, Yu H, Zheng B, Ali Z, de Vries S, Keller J, Fürst-Jansen JM, Dadras A, Zegers JM, Rieseberg TP, Ashok AD, Darienko T, Bierenbroodspot MJ, Gramzow L, Petroll R, Haas FB, Fernandez-Pozo N, Nousias O, Li T, Fitzek E, Grayburn WS, Rittmeier N, Permann C, Rümpler F, Archibald JM, Theißen G, Mower JP, Lorenz M, Buschmann H, von Schwartzenberg K, Boston L, Hayes RD, Daum C, Barry K, Grigoriev IV, Wang X, Li FW, Rensing SA, Ari JB, Keren N, Mosquna A, Holzinger A, Delaux PM, Zhang C, Huang J, Mutwil M, de Vries J, Yin Y. Chromosome-level genomes of multicellular algal sisters to land plants illuminate signaling network evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526407. [PMID: 36778228 PMCID: PMC9915684 DOI: 10.1101/2023.01.31.526407] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The filamentous and unicellular algae of the class Zygnematophyceae are the closest algal relatives of land plants. Inferring the properties of the last common ancestor shared by these algae and land plants allows us to identify decisive traits that enabled the conquest of land by plants. We sequenced four genomes of filamentous Zygnematophyceae (three strains of Zygnema circumcarinatum and one strain of Z. cylindricum) and generated chromosome-scale assemblies for all strains of the emerging model system Z. circumcarinatum. Comparative genomic analyses reveal expanded genes for signaling cascades, environmental response, and intracellular trafficking that we associate with multicellularity. Gene family analyses suggest that Zygnematophyceae share all the major enzymes with land plants for cell wall polysaccharide synthesis, degradation, and modifications; most of the enzymes for cell wall innovations, especially for polysaccharide backbone synthesis, were gained more than 700 million years ago. In Zygnematophyceae, these enzyme families expanded, forming co-expressed modules. Transcriptomic profiling of over 19 growth conditions combined with co-expression network analyses uncover cohorts of genes that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.
Collapse
Affiliation(s)
- Xuehuan Feng
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| | - Jinfang Zheng
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| | - Iker Irisarri
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
- Section Phylogenomics, Centre for Molecular biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Zoological Museum Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Huihui Yu
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE 68588, USA
| | - Bo Zheng
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| | - Zahin Ali
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Sophie de Vries
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, 31326, France
| | - Janine M.R. Fürst-Jansen
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Armin Dadras
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Jaccoline M.S. Zegers
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tim P. Rieseberg
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Amra Dhabalia Ashok
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Maaike J. Bierenbroodspot
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Lydia Gramzow
- University of Jena, Matthias Schleiden Institute / Genetics, 07743, Jena, Germany
| | - Romy Petroll
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Fabian B. Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (UMA-CSIC)
| | - Orestis Nousias
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| | - Tang Li
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| | - Elisabeth Fitzek
- Computational Biology, Department of Biology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - W. Scott Grayburn
- Northern Illinois University, Molecular Core Lab, Department of Biological Sciences, DeKalb, IL 60115, USA
| | - Nina Rittmeier
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Sternwartestraße 15, A-6020 Innsbruck, Austria
| | - Charlotte Permann
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Sternwartestraße 15, A-6020 Innsbruck, Austria
| | - Florian Rümpler
- University of Jena, Matthias Schleiden Institute / Genetics, 07743, Jena, Germany
| | - John M. Archibald
- Dalhousie University, Department of Biochemistry and Molecular Biology, 5850 College Street, Halifax NS B3H 4R2, Canada
| | - Günter Theißen
- University of Jena, Matthias Schleiden Institute / Genetics, 07743, Jena, Germany
| | - Jeffrey P. Mower
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE 68588, USA
| | - Maike Lorenz
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Experimental Phycology and Culture Collection of Algae at Goettingen University (EPSAG), Nikolausberger Weg 18, 37073 Goettingen, Germany
| | - Henrik Buschmann
- University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, Technikumplatz 17, 09648 Mittweida, Germany
| | - Klaus von Schwartzenberg
- Universität Hamburg, Institute of Plant Science and Microbiology, Microalgae and Zygnematophyceae Collection Hamburg (MZCH) and Aquatic Ecophysiology and Phycology, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Lori Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Richard D. Hayes
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chris Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V. Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Xiyin Wang
- North China University of Science and Technology
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Cornell University, Plant Biology Section, Ithaca, NY, USA
| | - Stefan A. Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- University of Freiburg, Centre for Biological Signalling Studies (BIOSS), Freiburg, Germany
| | - Julius Ben Ari
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot 7610000, Israel
| | - Noa Keren
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot 7610000, Israel
| | - Assaf Mosquna
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot 7610000, Israel
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Sternwartestraße 15, A-6020 Innsbruck, Austria
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, 31326, France
| | - Chi Zhang
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE 68588, USA
- University of Nebraska-Lincoln, School of Biological Sciences, Lincoln, NE 68588, USA
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Marek Mutwil
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jan de Vries
- University of Goettingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | - Yanbin Yin
- University of Nebraska-Lincoln, Department of Food Science and Technology, Lincoln, NE 68588, USA
| |
Collapse
|
18
|
Uniting the Role of Endophytic Fungi against Plant Pathogens and Their Interaction. J Fungi (Basel) 2023; 9:jof9010072. [PMID: 36675893 PMCID: PMC9860820 DOI: 10.3390/jof9010072] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
Endophytic fungi are used as the most common microbial biological control agents (MBCAs) against phytopathogens and are ubiquitous in all plant parts. Most of the fungal species have roles against a variety of plant pathogens. Fungal endophytes provide different services to be used as pathogen control agents, using an important aspect in the form of enhanced plant growth and induced systemic resistance, produce a variety of antifungal secondary metabolites (lipopeptides, antibiotics and enzymes) through colonization, and compete with other pathogenic microorganisms for growth factors (space and nutrients). The purpose of this review is to highlight the biological control potential of fungal species with antifungal properties against different fungal plant pathogens. We focused on the introduction, biology, isolation, identification of endophytic fungi, and their antifungal activity against fungal plant pathogens. The endosymbionts have developed specific genes that exhibited endophytic behavior and demonstrated defensive responses against pathogens such as antibiosis, parasitism, lytic enzyme and competition, siderophore production, and indirect responses by induced systemic resistance (ISR) in the host plant. Finally, different microscopic detection techniques to study microbial interactions (endophytic and pathogenic fungal interactions) in host plants are briefly discussed.
Collapse
|
19
|
Bhatt K, Suyal DC, Kumar S, Singh K, Goswami P. New insights into engineered plant-microbe interactions for pesticide removal. CHEMOSPHERE 2022; 309:136635. [PMID: 36183882 DOI: 10.1016/j.chemosphere.2022.136635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Over the past decades, rapid industrialization along with the overutilization of organic pollutants/pesticides has altered the environmental circumstances. Moreover, various anthropogenic, xenobiotics and natural activities also affected plants, soil, and human health, in both direct and indirect ways. To counter this, several conventional methods are currently practiced, but are uneconomical, noxious, and is yet inefficient for large-scale application. Plant-microbe interactions are mediated naturally in an ecosystem and are practiced in several areas. Plant growth promoting rhizobacteria (PGPR) possess certain attributes affecting plant and soil consequently performing decontamination activity via a direct and indirect mechanism. PGPR also harbors indispensable genes stimulating the mineralization of several organic and inorganic compounds. This makes microbes potential candidates for contributing to sustainably remediating the harmful pesticide contaminants. There is a limited piece of information about the plant-microbe interaction pertaining predict and understand the overall interaction concerning a sustainable environment. Therefore, this review focuses on the plant-microbe interaction in the rhizosphere and inside the plant's tissues, along with the utilization augmenting the crop productivity, reduction in plant stress along with decontamination of pesticides/organic pollutants in soil for sustainable environmental management.
Collapse
Affiliation(s)
- Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA.
| | - Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| | - Saurabh Kumar
- ICAR-Research Complex for Eastern Region, Patna, 800014, Bihar, India
| | - Kuldeep Singh
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, India
| | - Priya Goswami
- Department of Biotechnology, Mangalayatan University, Uttar Pradesh, India
| |
Collapse
|
20
|
Kumari M, Qureshi KA, Jaremko M, White J, Singh SK, Sharma VK, Singh KK, Santoyo G, Puopolo G, Kumar A. Deciphering the role of endophytic microbiome in postharvest diseases management of fruits: Opportunity areas in commercial up-scale production. FRONTIERS IN PLANT SCIENCE 2022; 13:1026575. [PMID: 36466226 PMCID: PMC9716317 DOI: 10.3389/fpls.2022.1026575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
As endophytes are widely distributed in the plant's internal compartments and despite having enormous potential as a biocontrol agent against postharvest diseases of fruits, the fruit-endophyte-pathogen interactions have not been studied detail. Therefore, this review aims to briefly discuss the colonization patterns of endophytes and pathogens in the host tissue, the diversity and distribution patterns of endophytes in the carposphere of fruits, and host-endophyte-pathogen interactions and the molecular mechanism of the endophytic microbiome in postharvest disease management in fruits. Postharvest loss management is one of the major concerns of the current century. It is considered a critical challenge to food security for the rising global population. However, to manage the postharvest loss, still, a large population relies on chemical fungicides, which affect food quality and are hazardous to health and the surrounding environment. However, the scientific community has searched for alternatives for the last two decades. In this context, endophytic microorganisms have emerged as an economical, sustainable, and viable option to manage postharvest pathogens with integral colonization properties and eliciting a defense response against pathogens. This review extensively summarizes recent developments in endophytic interactions with harvested fruits and pathogens-the multiple biocontrol traits of endophytes and colonization and diversity patterns of endophytes. In addition, the upscale commercial production of endophytes for postharvest disease treatment is discussed.
Collapse
Affiliation(s)
- Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (R.S.R.C.), Division of Biological and Environmental Sciences and Engineering (B.E.S.E.), King Abdullah University of Science and Technology (K.A.U.S.T.), Thuwal, Saudi Arabia
| | - James White
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Vijay Kumar Sharma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Gerardo Puopolo
- Center Agriculture Food Environment, University of Trento, Trentino, TN, Italy
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| |
Collapse
|
21
|
Sobrino-Plata J, Martínez-Arias C, Ormeño-Moncalvillo S, Fernández I, Collada C, Gil L, Pieterse CMJ, Martín JA. No priming, just fighting-endophytic yeast attenuates the defense response and the stress induced by Dutch elm disease in Ulmus minor Mill. TREE PHYSIOLOGY 2022; 42:2086-2099. [PMID: 35708521 DOI: 10.1093/treephys/tpac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
One century after the first report of Dutch elm disease (DED), there is still no practical solution for this problem threatening European and American elms (Ulmus spp.). The long breeding cycles needed to select resistant genotypes and the lack of efficient treatments keep disease incidence at high levels. In this work, the expression of defense-related genes to the causal agent of DED, Ophiostoma novo-ulmi Brasier, was analyzed in in vitro clonal plantlets from two DED-resistant and two DED-susceptible Ulmus minor Mill. trees. In addition, the effect of the inoculation of an endophytic pink-pigmented yeast (Cystobasidium sp.) on the plant's defense system was tested both individually and in combination with O. novo-ulmi. The multifactorial nature of the resistance to DED was confirmed, as no common molecular response was found in the two resistant genotypes. However, the in vitro experimental system allowed discrimination of the susceptible from the resistant genotypes, showing higher levels of oxidative damage and phenolic compounds in the susceptible genotypes after pathogen inoculation. Inoculation of the endophyte before O. novo-ulmi attenuated the plant molecular response induced by the pathogen and moderated oxidative stress levels. Niche competition, endophyte-pathogen antagonism and molecular crosstalk between the host and the endophyte are discussed as possible mechanisms of stress reduction. In sum, our results confirm the complex and heterogeneous nature of DED resistance mechanisms and highlight the possibility of using certain endophytic yeasts as biological tools to improve tree resilience against biotic stress.
Collapse
Affiliation(s)
- J Sobrino-Plata
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Jose Antonio Novais 10, 28040 Madrid, Spain
- Departamento de Genética, Fisiología y Microbiología, Facultad de CC. Biológicas, Universidad Complutense de Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain
| | - C Martínez-Arias
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Jose Antonio Novais 10, 28040 Madrid, Spain
| | - S Ormeño-Moncalvillo
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Jose Antonio Novais 10, 28040 Madrid, Spain
| | - I Fernández
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - C Collada
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Jose Antonio Novais 10, 28040 Madrid, Spain
| | - L Gil
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Jose Antonio Novais 10, 28040 Madrid, Spain
| | - C M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - J A Martín
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Jose Antonio Novais 10, 28040 Madrid, Spain
| |
Collapse
|
22
|
Byregowda R, Prasad SR, Oelmüller R, Nataraja KN, Prasanna Kumar MK. Is Endophytic Colonization of Host Plants a Method of Alleviating Drought Stress? Conceptualizing the Hidden World of Endophytes. Int J Mol Sci 2022; 23:ijms23169194. [PMID: 36012460 PMCID: PMC9408852 DOI: 10.3390/ijms23169194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
In the wake of changing climatic conditions, plants are frequently exposed to a wide range of biotic and abiotic stresses at various stages of their development, all of which negatively affect their growth, development, and productivity. Drought is one of the most devastating abiotic stresses for most cultivated crops, particularly in arid and semiarid environments. Conventional breeding and biotechnological approaches are used to generate drought-tolerant crop plants. However, these techniques are costly and time-consuming. Plant-colonizing microbes, notably, endophytic fungi, have received increasing attention in recent years since they can boost plant growth and yield and can strengthen plant responses to abiotic stress. In this review, we describe these microorganisms and their relationship with host plants, summarize the current knowledge on how they “reprogram” the plants to promote their growth, productivity, and drought tolerance, and explain why they are promising agents in modern agriculture.
Collapse
Affiliation(s)
- Roopashree Byregowda
- Department of Seed Science and Technology, University of Agricultural Sciences, Bangalore 560065, India
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
| | | | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
- Correspondence:
| | - Karaba N. Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore 560065, India
| | - M. K. Prasanna Kumar
- Department of Plant Pathology, University of Agricultural Sciences, Bangalore 560065, India
| |
Collapse
|
23
|
Verma A, Shameem N, Jatav HS, Sathyanarayana E, Parray JA, Poczai P, Sayyed RZ. Fungal Endophytes to Combat Biotic and Abiotic Stresses for Climate-Smart and Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:953836. [PMID: 35865289 PMCID: PMC9294639 DOI: 10.3389/fpls.2022.953836] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 05/14/2023]
Abstract
The agricultural sustainability concept considers higher food production combating biotic and abiotic stresses, socio-economic well-being, and environmental conservation. On the contrary, global warming-led climatic changes have appalling consequences on agriculture, generating shifting rainfall patterns, high temperature, CO2, drought, etc., prompting abiotic stress conditions for plants. Such stresses abandon the plants to thrive, demoting food productivity and ultimately hampering food security. Though environmental issues are natural and cannot be regulated, plants can still be enabled to endure these abnormal abiotic conditions, reinforcing the stress resilience in an eco-friendly fashion by incorporating fungal endophytes. Endophytic fungi are a group of subtle, non-pathogenic microorganisms establishing a mutualistic association with diverse plant species. Their varied association with the host plant under dynamic environments boosts the endogenic tolerance mechanism of the host plant against various stresses via overall modulations of local and systemic mechanisms accompanied by higher antioxidants secretion, ample enough to scavenge Reactive Oxygen Species (ROS) hence, coping over-expression of defensive redox regulatory system of host plant as an aversion to stressed condition. They are also reported to ameliorate plants toward biotic stress mitigation and elevate phytohormone levels forging them worthy enough to be used as biocontrol agents and as biofertilizers against various pathogens, promoting crop improvement and soil improvement, respectively. This review summarizes the present-day conception of the endophytic fungi, their diversity in various crops, and the molecular mechanism behind abiotic and biotic resistance prompting climate-resilient aided sustainable agriculture.
Collapse
Affiliation(s)
- Anamika Verma
- Amity Institute of Horticulture Studies and Research, Amity University Uttar Pradesh, Noida, India
| | - Nowsheen Shameem
- Department of Environmental Science, S.P. College, Srinagar, India
| | - Hanuman Singh Jatav
- Department of Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University, Jaipur, India
| | | | - Javid A. Parray
- Department of Environmental Science, Government Degree College Eidgah, Srinagar, India
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s SI Patil Arts, GB Patel Science and STKV Sangh Commerce College, Shahada, India
| |
Collapse
|
24
|
Rani S, Kumar P, Dahiya P, Maheshwari R, Dang AS, Suneja P. Endophytism: A Multidimensional Approach to Plant-Prokaryotic Microbe Interaction. Front Microbiol 2022; 13:861235. [PMID: 35633681 PMCID: PMC9135327 DOI: 10.3389/fmicb.2022.861235] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Plant growth and development are positively regulated by the endophytic microbiome via both direct and indirect perspectives. Endophytes use phytohormone production to promote plant health along with other added benefits such as nutrient acquisition, nitrogen fixation, and survival under abiotic and biotic stress conditions. The ability of endophytes to penetrate the plant tissues, reside and interact with the host in multiple ways makes them unique. The common assumption that these endophytes interact with plants in a similar manner as the rhizospheric bacteria is a deterring factor to go deeper into their study, and more focus was on symbiotic associations and plant–pathogen reactions. The current focus has shifted on the complexity of relationships between host plants and their endophytic counterparts. It would be gripping to inspect how endophytes influence host gene expression and can be utilized to climb the ladder of “Sustainable agriculture.” Advancements in various molecular techniques have provided an impetus to elucidate the complexity of endophytic microbiome. The present review is focused on canvassing different aspects concerned with the multidimensional interaction of endophytes with plants along with their application.
Collapse
Affiliation(s)
- Simran Rani
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pradeep Kumar
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Priyanka Dahiya
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Rajat Maheshwari
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Amita Suneja Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pooja Suneja
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
25
|
Distinguishing Allies from Enemies—A Way for a New Green Revolution. Microorganisms 2022; 10:microorganisms10051048. [PMID: 35630490 PMCID: PMC9144042 DOI: 10.3390/microorganisms10051048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
Plants are continually interacting in different ways and levels with microbes, resulting in direct or indirect effects on plant development and fitness. Many plant–microbe interactions are beneficial and promote plant growth and development, while others have harmful effects and cause plant diseases. Given the permanent and simultaneous contact with beneficial and harmful microbes, plants should avoid being infected by pathogens while promoting mutualistic relationships. The way plants perceive multiple microbes and trigger plant responses suggests a common origin of both types of interaction. Despite the recent advances in this topic, the exploitation of mutualistic relations has still not been fully achieved. The holistic view of different agroecosystem factors, including biotic and abiotic aspects, as well as agricultural practices, must also be considered. This approach could pave the way for a new green revolution that will allow providing food to a growing human population in the context of threat such as that resulting from climate change.
Collapse
|
26
|
Large differences in carbohydrate degradation and transport potential among lichen fungal symbionts. Nat Commun 2022; 13:2634. [PMID: 35551185 PMCID: PMC9098629 DOI: 10.1038/s41467-022-30218-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Lichen symbioses are thought to be stabilized by the transfer of fixed carbon from a photosynthesizing symbiont to a fungus. In other fungal symbioses, carbohydrate subsidies correlate with reductions in plant cell wall-degrading enzymes, but whether this is true of lichen fungal symbionts (LFSs) is unknown. Here, we predict genes encoding carbohydrate-active enzymes (CAZymes) and sugar transporters in 46 genomes from the Lecanoromycetes, the largest extant clade of LFSs. All LFSs possess a robust CAZyme arsenal including enzymes acting on cellulose and hemicellulose, confirmed by experimental assays. However, the number of genes and predicted functions of CAZymes vary widely, with some fungal symbionts possessing arsenals on par with well-known saprotrophic fungi. These results suggest that stable fungal association with a phototroph does not in itself result in fungal CAZyme loss, and lends support to long-standing hypotheses that some lichens may augment fixed CO2 with carbon from external sources. Lichen symbioses are thought to be stabilized by the transfer of fixed carbon from a photosynthesizing symbiont to a fungus. Here, Resl et al. show that, contrary to other fungal symbioses, fungal association with a phototroph in lichens does not result in loss of fungal enzymes for plant cell-wall degradation.
Collapse
|
27
|
The microscopic mechanism between endophytic fungi and host plants: From recognition to building stable mutually beneficial relationships. Microbiol Res 2022; 261:127056. [DOI: 10.1016/j.micres.2022.127056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022]
|
28
|
Gilbert S, Poulev A, Chrisler W, Acosta K, Orr G, Lebeis S, Lam E. Auxin-Producing Bacteria from Duckweeds Have Different Colonization Patterns and Effects on Plant Morphology. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060721. [PMID: 35336603 PMCID: PMC8950272 DOI: 10.3390/plants11060721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/30/2022] [Accepted: 02/20/2022] [Indexed: 05/30/2023]
Abstract
The role of auxin in plant-microbe interaction has primarily been studied using indole-3-acetic acid (IAA)-producing pathogenic or plant-growth-promoting bacteria. However, the IAA biosynthesis pathway in bacteria involves indole-related compounds (IRCs) and intermediates with less known functions. Here, we seek to understand changes in plant response to multiple plant-associated bacteria taxa and strains that differ in their ability to produce IRCs. We had previously studied 47 bacterial strains isolated from several duckweed species and determined that 79% of these strains produced IRCs in culture, such as IAA, indole lactic acid (ILA), and indole. Using Arabidopsis thaliana as our model plant with excellent genetic tools, we performed binary association assays on a subset of these strains to evaluate morphological responses in the plant host and the mode of bacterial colonization. Of the 21 tested strains, only four high-quantity IAA-producing Microbacterium strains caused an auxin root phenotype. Compared to the commonly used colorimetric Salkowski assay, auxin concentration determined by LC-MS was a superior indicator of a bacteria's ability to cause an auxin root phenotype. Studies with the auxin response mutant axr1-3 provided further genetic support for the role of auxin signaling in mediating the root morphology response to IAA-producing bacteria strains. Interestingly, our microscopy results also revealed new evidence for the role of the conserved AXR1 gene in endophytic colonization of IAA-producing Azospirillum baldaniorum Sp245 via the guard cells.
Collapse
Affiliation(s)
- Sarah Gilbert
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (S.G.); (A.P.); (K.A.)
| | - Alexander Poulev
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (S.G.); (A.P.); (K.A.)
| | - William Chrisler
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (W.C.); (G.O.)
| | - Kenneth Acosta
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (S.G.); (A.P.); (K.A.)
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (W.C.); (G.O.)
| | - Sarah Lebeis
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;
| | - Eric Lam
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (S.G.); (A.P.); (K.A.)
| |
Collapse
|
29
|
Villalobos Solis MI, Engle NL, Spangler MK, Cottaz S, Fort S, Maeda J, Ané JM, Tschaplinski TJ, Labbé JL, Hettich RL, Abraham PE, Rush TA. Expanding the Biological Role of Lipo-Chitooligosaccharides and Chitooligosaccharides in Laccaria bicolor Growth and Development. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:808578. [PMID: 37746234 PMCID: PMC10512320 DOI: 10.3389/ffunb.2022.808578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 09/26/2023]
Abstract
The role of lipo-chitooligosaccharides (LCOs) as signaling molecules that mediate the establishment of symbiotic relationships between fungi and plants is being redefined. New evidence suggests that the production of these molecular signals may be more of a common trait in fungi than what was previously thought. LCOs affect different aspects of growth and development in fungi. For the ectomycorrhizal forming fungi, Laccaria bicolor, the production and effects of LCOs have always been studied with a symbiotic plant partner; however, there is still no scientific evidence describing the effects that these molecules have on this organism. Here, we explored the physiological, molecular, and metabolomic changes in L. bicolor when grown in the presence of exogenous sulfated and non-sulfated LCOs, as well as the chitooligomers, chitotetraose (CO4), and chitooctaose (CO8). Physiological data from 21 days post-induction showed reduced fungal growth in response to CO and LCO treatments compared to solvent controls. The underlying molecular changes were interrogated by proteomics, which revealed substantial alterations to biological processes related to growth and development. Moreover, metabolite data showed that LCOs and COs caused a downregulation of organic acids, sugars, and fatty acids. At the same time, exposure to LCOs resulted in the overproduction of lactic acid in L. bicolor. Altogether, these results suggest that these signals might be fungistatic compounds and contribute to current research efforts investigating the emerging impacts of these molecules on fungal growth and development.
Collapse
Affiliation(s)
| | - Nancy L. Engle
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Margaret K. Spangler
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Sylvain Cottaz
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Sébastien Fort
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Junko Maeda
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Jesse L. Labbé
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert L. Hettich
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Paul E. Abraham
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Tomás A. Rush
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
30
|
Chen XL, Sun MC, Chong SL, Si JP, Wu LS. Transcriptomic and Metabolomic Approaches Deepen Our Knowledge of Plant-Endophyte Interactions. FRONTIERS IN PLANT SCIENCE 2022; 12:700200. [PMID: 35154169 PMCID: PMC8828500 DOI: 10.3389/fpls.2021.700200] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/22/2021] [Indexed: 05/10/2023]
Abstract
In natural systems, plant-symbiont-pathogen interactions play important roles in mitigating abiotic and biotic stresses in plants. Symbionts have their own special recognition ways, but they may share some similar characteristics with pathogens based on studies of model microbes and plants. Multi-omics technologies could be applied to study plant-microbe interactions, especially plant-endophyte interactions. Endophytes are naturally occurring microbes that inhabit plants, but do not cause apparent symptoms in them, and arise as an advantageous source of novel metabolites, agriculturally important promoters, and stress resisters in their host plants. Although biochemical, physiological, and molecular investigations have demonstrated that endophytes confer benefits to their hosts, especially in terms of promoting plant growth, increasing metabolic capabilities, and enhancing stress resistance, plant-endophyte interactions consist of complex mechanisms between the two symbionts. Further knowledge of these mechanisms may be gained by adopting a multi-omics approach. The involved interaction, which can range from colonization to protection against adverse conditions, has been investigated by transcriptomics and metabolomics. This review aims to provide effective means and ways of applying multi-omics studies to solve the current problems in the characterization of plant-microbe interactions, involving recognition and colonization. The obtained results should be useful for identifying the key determinants in such interactions and would also provide a timely theoretical and material basis for the study of interaction mechanisms and their applications.
Collapse
Affiliation(s)
| | | | | | | | - Ling-shang Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
31
|
Abiotic Stress and Belowground Microbiome: The Potential of Omics Approaches. Int J Mol Sci 2022; 23:ijms23031091. [PMID: 35163015 PMCID: PMC8835006 DOI: 10.3390/ijms23031091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, the worldwide agriculture is experiencing a transition process toward more sustainable production, which requires the reduction of chemical inputs and the preservation of microbiomes’ richness and biodiversity. Plants are no longer considered as standalone entities, and the future of agriculture should be grounded on the study of plant-associated microorganisms and all their potentiality. Moreover, due to the climate change scenario and the resulting rising incidence of abiotic stresses, an innovative and environmentally friendly technique in agroecosystem management is required to support plants in facing hostile environments. Plant-associated microorganisms have shown a great attitude as a promising tool to improve agriculture sustainability and to deal with harsh environments. Several studies were carried out in recent years looking for some beneficial plant-associated microbes and, on the basis of them, it is evident that Actinomycetes and arbuscular mycorrhizal fungi (AMF) have shown a considerable number of positive effects on plants’ fitness and health. Given the potential of these microorganisms and the effects of climate change, this review will be focused on their ability to support the plant during the interaction with abiotic stresses and on multi-omics techniques which can support researchers in unearthing the hidden world of plant–microbiome interactions. These associated microorganisms can increase plants’ endurance of abiotic stresses through several mechanisms, such as growth-promoting traits or priming-mediated stress tolerance. Using a multi-omics approach, it will be possible to deepen these mechanisms and the dynamic of belowground microbiomes, gaining fundamental information to exploit them as staunch allies and innovative weapons against crop abiotic enemies threatening crops in the ongoing global climate change context.
Collapse
|
32
|
Rolli E, de Zélicourt A, Alzubaidy H, Karampelias M, Parween S, Rayapuram N, Han B, Froehlich K, Abulfaraj AA, Alhoraibi H, Mariappan K, Andrés-Barrao C, Colcombet J, Hirt H. The Lys-motif receptor LYK4 mediates Enterobacter sp. SA187 triggered salt tolerance in Arabidopsis thaliana. Environ Microbiol 2021; 24:223-239. [PMID: 34951090 PMCID: PMC9304150 DOI: 10.1111/1462-2920.15839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Root endophytes establish beneficial interactions with plants, improving holobiont resilience and fitness, but how plant immunity accommodates beneficial microbes is poorly understood. The multi-stress tolerance-inducing endophyte Enterobacter sp. SA187 triggers a canonical immune response in Arabidopsis only at high bacterial dosage (>108 CFUs ml-1 ), suggesting that SA187 is able to evade or suppress the plant defence system at lower titres. Although SA187 flagellin epitopes are recognized by the FLS2 receptor, SA187-triggered salt tolerance functions independently of the FLS2 system. In contrast, overexpression of the chitin receptor components LYK4 and LYK5 compromised the beneficial effect of SA187 on Arabidopsis, while it was enhanced in lyk4 mutant plants. Transcriptome analysis revealed that the role of LYK4 is intertwined with a function in remodelling defence responses with growth and root developmental processes. LYK4 interferes with modification of plant ethylene homeostasis by Enterobacter SA187 to boost salt stress resistance. Collectively, these results contribute to unlock the crosstalk between components of the plant immune system and beneficial microbes and point to a new role for the Lys-motif receptor LYK4 in beneficial plant-microbe interaction.
Collapse
Affiliation(s)
- Eleonora Rolli
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Axel de Zélicourt
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Hanin Alzubaidy
- DARWIN21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Michael Karampelias
- DARWIN21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sabiha Parween
- DARWIN21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Naganand Rayapuram
- DARWIN21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Baoda Han
- DARWIN21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Katja Froehlich
- DARWIN21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Aala A Abulfaraj
- Department of Biological Sciences, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanna Alhoraibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kiruthiga Mariappan
- DARWIN21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Cristina Andrés-Barrao
- DARWIN21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jean Colcombet
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Heribert Hirt
- DARWIN21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Amoozadeh S, Johnston J, Meisrimler CN. Exploiting Structural Modelling Tools to Explore Host-Translocated Effector Proteins. Int J Mol Sci 2021; 22:12962. [PMID: 34884778 PMCID: PMC8657640 DOI: 10.3390/ijms222312962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Oomycete and fungal interactions with plants can be neutral, symbiotic or pathogenic with different impact on plant health and fitness. Both fungi and oomycetes can generate so-called effector proteins in order to successfully colonize the host plant. These proteins modify stress pathways, developmental processes and the innate immune system to the microbes' benefit, with a very different outcome for the plant. Investigating the biological and functional roles of effectors during plant-microbe interactions are accessible through bioinformatics and experimental approaches. The next generation protein modeling software RoseTTafold and AlphaFold2 have made significant progress in defining the 3D-structure of proteins by utilizing novel machine-learning algorithms using amino acid sequences as their only input. As these two methods rely on super computers, Google Colabfold alternatives have received significant attention, making the approaches more accessible to users. Here, we focus on current structural biology, sequence motif and domain knowledge of effector proteins from filamentous microbes and discuss the broader use of novel modelling strategies, namely AlphaFold2 and RoseTTafold, in the field of effector biology. Finally, we compare the original programs and their Colab versions to assess current strengths, ease of access, limitations and future applications.
Collapse
Affiliation(s)
- Sahel Amoozadeh
- School of Biological Science, University of Canterbury, Christchurch 8041, New Zealand;
| | - Jodie Johnston
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand;
| | | |
Collapse
|
34
|
Lenz RR, Louie KB, Søndreli KL, Galanie SS, Chen JG, Muchero W, Bowen BP, Northen TR, LeBoldus JM. Metabolomic Patterns of Septoria Canker Resistant and Susceptible Populus trichocarpa Genotypes 24 Hours Postinoculation. PHYTOPATHOLOGY 2021; 111:2052-2066. [PMID: 33881913 DOI: 10.1094/phyto-02-21-0053-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sphaerulina musiva is an economically and ecologically important fungal pathogen that causes Septoria stem canker and leaf spot disease of Populus species. To bridge the gap between genetic markers and structural barriers previously found to be linked to Septoria canker disease resistance in poplar, we used hydrophilic interaction liquid chromatography and tandem mass spectrometry to identify and quantify metabolites involved with signaling and cell wall remodeling. Fluctuations in signaling molecules, organic acids, amino acids, sterols, phenolics, and saccharides in resistant and susceptible P. trichocarpa inoculated with S. musiva were observed. The patterns of 222 metabolites in the resistant host implicate systemic acquired resistance (SAR), cell wall apposition, and lignin deposition as modes of resistance to this hemibiotrophic pathogen. This pattern is consistent with the expected response to the biotrophic phase of S. musiva colonization during the first 24 h postinoculation. The fungal pathogen metabolized key regulatory signals of SAR, other phenolics, and precursors of lignin biosynthesis that were depleted in the susceptible host. This is the first study to characterize metabolites associated with the response to initial colonization by S. musiva between resistant and susceptible hosts.
Collapse
Affiliation(s)
- Ryan R Lenz
- Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Katherine B Louie
- Metabolomics Technology, DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Kelsey L Søndreli
- Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | | | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Benjamin P Bowen
- Metabolomics Technology, DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Trent R Northen
- Metabolomics Technology, DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Jared M LeBoldus
- Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
- Forest Resources, Engineering, and Management Department, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
35
|
Rincón VMV, Neelam DK. An overview on endophytic bacterial diversity habitat in vegetables and fruits. Folia Microbiol (Praha) 2021; 66:715-725. [PMID: 34259998 DOI: 10.1007/s12223-021-00896-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/30/2021] [Indexed: 01/02/2023]
Abstract
Nowadays, scientific research revolution is going on in many areas, and the human health is one of them. However, in the earlier studies, it was observed that most of the people health in the world affects by consumptions of contaminated food which is dangerous for human health and country economy. Recent studies showed that the fresh vegetables and fruits are the major habitat for endophytic bacterial communities. Salmonella and Escherichia coli both are the very common bacteria founds in fresh vegetables and fruits. Generally, many people eat vegetables and fruits without cooking (in the form of salad). The continued assumption of such food increases the health risk factor for foodborne diseases. So, from the last decades, many researchers working to understand about the relationship of endophytic microbes with plants either isolated bacteria are pathogenic or nonpathogenic. Moreover, most of the endophytes were identified by using 16S rRNA sequencing method. Hence, this review elaborates on the differences and similarities between nonpathogenic and pathogenic endophytes in terms of host plant response, colonization strategy, and genome content. Furthermore, it is emphasized on the environmental effects and biotic interactions within plant microbiota that influence pathogenesis and the pathogenesis.
Collapse
Affiliation(s)
| | - Deepesh Kumar Neelam
- Department of Microbiology, Faculty of Science, JECRC University, Ramchandrapura Industrial Area, Vidhani, Sitapura Extension, Jaipur, Rajasthan, 303905, India.
| |
Collapse
|
36
|
Lu H, Wei T, Lou H, Shu X, Chen Q. A Critical Review on Communication Mechanism within Plant-Endophytic Fungi Interactions to Cope with Biotic and Abiotic Stresses. J Fungi (Basel) 2021; 7:719. [PMID: 34575757 PMCID: PMC8466524 DOI: 10.3390/jof7090719] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/28/2022] Open
Abstract
Endophytic fungi infect plant tissues by evading the immune response, potentially stimulating stress-tolerant plant growth. The plant selectively allows microbial colonization to carve endophyte structures through phenotypic genes and metabolic signals. Correspondingly, fungi develop various adaptations through symbiotic signal transduction to thrive in mycorrhiza. Over the past decade, the regulatory mechanism of plant-endophyte interaction has been uncovered. Currently, great progress has been made on plant endosphere, especially in endophytic fungi. Here, we systematically summarize the current understanding of endophytic fungi colonization, molecular recognition signal pathways, and immune evasion mechanisms to clarify the transboundary communication that allows endophytic fungi colonization and homeostatic phytobiome. In this work, we focus on immune signaling and recognition mechanisms, summarizing current research progress in plant-endophyte communication that converge to improve our understanding of endophytic fungi.
Collapse
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Tianyu Wei
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Hanghang Lou
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Xiaoli Shu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| |
Collapse
|
37
|
Novel Microdialysis Technique Reveals a Dramatic Shift in Metabolite Secretion during the Early Stages of the Interaction between the Ectomycorrhizal Fungus Pisolithus microcarpus and Its Host Eucalyptus grandis. Microorganisms 2021; 9:microorganisms9091817. [PMID: 34576712 PMCID: PMC8465077 DOI: 10.3390/microorganisms9091817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022] Open
Abstract
The colonisation of tree roots by ectomycorrhizal (ECM) fungi is the result of numerous signalling exchanges between organisms, many of which occur before physical contact. However, information is lacking about these exchanges and the compounds that are secreted by each organism before contact. This is in part due to a lack of low disturbance sampling methods with sufficient temporal and spatial resolution to capture these exchanges. Using a novel in situ microdialysis approach, we sampled metabolites released from Eucalyptus grandis and Pisolithus microcarpus independently and during indirect contact over a 48-h time-course using UPLC-MS. A total of 560 and 1530 molecular features (MFs; ESI- and ESI+ respectively) were identified with significant differential abundance from control treatments. We observed that indirect contact between organisms altered the secretion of MFs to produce a distinct metabolomic profile compared to either organism independently. Many of these MFs were produced within the first hour of contact and included several phenylpropanoids, fatty acids and organic acids. These findings show that the secreted metabolome, particularly of the ECM fungus, can rapidly shift during the early stages of pre-symbiotic contact and highlight the importance of observing these early interactions in greater detail. We present microdialysis as a useful tool for examining plant–fungal signalling with high temporal resolution and with minimal experimental disturbance.
Collapse
|
38
|
Martínez-Arias C, Sobrino-Plata J, Gil L, Rodríguez-Calcerrada J, Martín JA. Priming of Plant Defenses against Ophiostoma novo-ulmi by Elm ( Ulmus minor Mill.) Fungal Endophytes. J Fungi (Basel) 2021; 7:687. [PMID: 34575725 PMCID: PMC8469682 DOI: 10.3390/jof7090687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/28/2022] Open
Abstract
Some fungal endophytes of forest trees are recognized as beneficial symbionts against stresses. In previous works, two elm endophytes from the classes Cystobasidiomycetes and Eurotiomycetes promoted host resistance to abiotic stress, and another elm endophyte from Dothideomycetes enhanced host resistance to Dutch elm disease (DED). Here, we hypothesize that the combined effect of these endophytes activate the plant immune and/or antioxidant system, leading to a defense priming and/or increased oxidative protection when exposed to the DED pathogen Ophiostoma novo-ulmi. To test this hypothesis, the short-term defense gene activation and antioxidant response were evaluated in DED-susceptible (MDV1) and DED-resistant (VAD2 and MDV2.3) Ulmus minor genotypes inoculated with O. novo-ulmi, as well as two weeks earlier with a mixture of the above-mentioned endophytes. Endophyte inoculation induced a generalized transient defense activation mediated primarily by salicylic acid (SA). Subsequent pathogen inoculation resulted in a primed defense response of variable intensity among genotypes. Genotypes MDV1 and VAD2 displayed a defense priming driven by SA, jasmonic acid (JA), and ethylene (ET), causing a reduced pathogen spread in MDV1. Meanwhile, the genotype MDV2.3 showed lower defense priming but a stronger and earlier antioxidant response. The defense priming stimulated by elm fungal endophytes broadens our current knowledge of the ecological functions of endophytic fungi in forest trees and opens new prospects for their use in the biocontrol of plant diseases.
Collapse
Affiliation(s)
- Clara Martínez-Arias
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (J.S.-P.); (L.G.); (J.R.-C.); (J.A.M.)
| | | | | | | | | |
Collapse
|
39
|
Peng L, Shan X, Yang Y, Wang Y, Druzhinina IS, Pan X, Jin W, He X, Wang X, Zhang X, Martin FM, Yuan Z. Facultative symbiosis with a saprotrophic soil fungus promotes potassium uptake in American sweetgum trees. PLANT, CELL & ENVIRONMENT 2021; 44:2793-2809. [PMID: 33764571 DOI: 10.1111/pce.14053] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Several species of soil free-living saprotrophs can sometimes establish biotrophic symbiosis with plants, but the basic biology of this association remains largely unknown. Here, we investigate the symbiotic interaction between a common soil saprotroph, Clitopilus hobsonii (Agaricomycetes), and the American sweetgum (Liquidambar styraciflua). The colonized root cortical cells were found to contain numerous microsclerotia-like structures. Fungal colonization led to increased plant growth and facilitated potassium uptake, particularly under potassium limitation (0.05 mM K+ ). The expression of plant genes related to potassium uptake was not altered by the symbiosis, but colonized roots contained the transcripts of three fungal genes with homology to K+ transporters (ACU and HAK) and channel (SKC). Heterologously expressed ChACU and ChSKC restored the growth of a yeast K+ -uptake-defective mutant. Upregulation of ChACU transcript under low K+ conditions (0 and 0.05 mM K+ ) compared to control (5 mM K+ ) was demonstrated in planta and in vitro. Colonized plants displayed a larger accumulation of soluble sugars under 0.05 mM K+ than non-colonized plants. The present study suggests reciprocal benefits of this novel tree-fungus symbiosis under potassium limitation mainly through an exchange of additional carbon and potassium between both partners.
Collapse
Affiliation(s)
- Long Peng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xiaoliang Shan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Yuzhan Yang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Yuchen Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Irina S Druzhinina
- Fungal Genomics Group, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xueyu Pan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Wei Jin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xinghua He
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xinyu Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xiaoguo Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Francis M Martin
- INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, Champenoux, France
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
40
|
Gourion B, Ratet P. Avoidance of detrimental defense responses in beneficial plant-microbe interactions. Curr Opin Biotechnol 2021; 70:266-272. [PMID: 34252756 DOI: 10.1016/j.copbio.2021.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022]
Abstract
In the environment microbes interact with plants and provide them with benefits that include protection against biotic and abiotic stresses as well as improved nutrition. However, plants are also exposed to parasites and pathogens. To manage appropriate responses, evolution has resulted in improved tolerance of plants to beneficial microbes while keeping the ability to recognize detrimental ones and to develop defense responses. Here we review the mechanisms involved in these interactions. We also discuss how the interactions might be handled to improve crop resistance to pathogens without losing the ability to establish beneficial interactions.
Collapse
Affiliation(s)
- Benjamin Gourion
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France.
| |
Collapse
|
41
|
Antifungal Properties, Abiotic Stress Resistance, and Biocontrol Ability of Bacillus mojavensis PS17. Curr Microbiol 2021; 78:3124-3132. [PMID: 34173840 DOI: 10.1007/s00284-021-02578-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Plant-protecting Bacillus sp. strains used as biocontrol agents frequently produce metabolites inhibiting phytopathogenic fungi. Recently, the search for a novel biocontrol agent with a wide spectrum of disease control drew attention to Bacillus subtilis and their related species, including Bacillus mojavensis. In this study, we determined the antifungal properties of the endophytic B. mojavensis PS17 isolated from wheat seeds. Metabolites produced by B. mojavensis PS-17 inhibit the growth of Fusarium graminearum, Fusarium oxysporum, Fusarium chlamydosporum, Ascochyta pisi, Alternaria alternate, Sclerotinia sclerotiorum, Verticillium dahliaee, and Epicoccum nigrum strains. B. mojavensis strain PS17 produces several hydrolytic enzymes, such as chitinase, β-glucanase, cellulase, lipase, and protease. Additionally, strain B. mojavensis PS17 demonstrates drought tolerance under osmotic pressure of -2.2 MPa and a moderate halotolerance in 5% (w/v) of NaCl. B. mojavensis PS17 on tomato seedlings was able to reduce lesions of Forl ZUM2407 by 48.11% ± 1.07, showing the potentials of B. mojavensis PS17 to be adapted as a biocontrol agent for agricultural use.
Collapse
|
42
|
Bacterial Endophytes: The Hidden Actor in Plant Immune Responses against Biotic Stress. PLANTS 2021; 10:plants10051012. [PMID: 34069509 PMCID: PMC8161118 DOI: 10.3390/plants10051012] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Bacterial endophytes constitute an essential part of the plant microbiome and are described to promote plant health by different mechanisms. The close interaction with the host leads to important changes in the physiology of the plant. Although beneficial bacteria use the same entrance strategies as bacterial pathogens to colonize and enter the inner plant tissues, the host develops strategies to select and allow the entrance to specific genera of bacteria. In addition, endophytes may modify their own genome to adapt or avoid the defense machinery of the host. The present review gives an overview about bacterial endophytes inhabiting the phytosphere, their diversity, and the interaction with the host. Direct and indirect defenses promoted by the plant-endophyte symbiont exert an important role in controlling plant defenses against different stresses, and here, more specifically, is discussed the role against biotic stress. Defenses that should be considered are the emission of volatiles or antibiotic compounds, but also the induction of basal defenses and boosting plant immunity by priming defenses. The primed defenses may encompass pathogenesis-related protein genes (PR family), antioxidant enzymes, or changes in the secondary metabolism.
Collapse
|
43
|
Abstract
One of the most important events in an animal's life history is the initial colonization by its microbial symbionts, yet little is known about this event's immediate impacts on the extent of host gene expression or the molecular mechanisms controlling it. MicroRNAs (miRNAs) are short, noncoding RNAs that bind to target mRNAs, rapidly shaping gene expression by posttranscriptional control of mRNA translation and decay. Here, we show that, in the experimentally tractable binary squid-vibrio symbiosis, colonization of the light organ induces extensive changes in the miRNA transcriptome. Examination of the squid genome revealed the presence of evolutionarily conserved genes encoding elements essential for the production and processing of miRNAs. At 24 h postcolonization, 215 host miRNAs were detected in the light organ, 26 of which were differentially expressed in response to the symbionts. A functional enrichment analysis of genes potentially targeted by downregulation of certain miRNAs at the initiation of symbiosis revealed two major gene ontology (GO) term categories, neurodevelopment and tissue remodeling. This symbiont-induced downregulation is predicted to promote these activities in host tissues and is consistent with the well-described tissue remodeling that occurs at the onset of the association. Conversely, predicted targets of upregulated miRNAs, including the production of mucus, are consistent with attenuation of immune responses by symbiosis. Taken together, our data provide evidence that, at the onset of symbiosis, host miRNAs in the light organ drive alterations in gene expression that (i) orchestrate the symbiont-induced development of host tissues, and (ii) facilitate the partnership by dampening the immune response.IMPORTANCE Animals often acquire their microbiome from the environment at each generation, making the initial interaction of the partners a critical event in the establishment and development of a stable, healthy symbiosis. However, the molecular nature of these earliest interactions is generally difficult to study and poorly understood. We report that, during the initial 24 h of the squid-vibrio association, a differential expression of host miRNAs is triggered by the presence of the microbial partner. Predicted mRNA targets of these miRNAs were associated with regulatory networks that drive tissue remodeling and immune suppression, two major symbiosis-induced developmental outcomes in this and many other associations. These results implicate regulation by miRNAs as key to orchestrating the critical transcriptional responses that occur very early during the establishment of a symbiosis. Animals with more complex microbiota may have similar miRNA-driven responses as their association is initiated, supporting an evolutionary conservation of symbiosis-induced developmental mechanisms.
Collapse
|
44
|
Affiliation(s)
- Benjamin J Cole
- Lawrence Berkeley National Laboratory and DOE Joint Genome Institute, Berkeley, CA, USA.
| | - Susannah G Tringe
- Lawrence Berkeley National Laboratory and DOE Joint Genome Institute, Berkeley, CA, USA.
| |
Collapse
|
45
|
Cheng JHT, Bredow M, Monaghan J, diCenzo GC. Proteobacteria Contain Diverse flg22 Epitopes That Elicit Varying Immune Responses in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:504-510. [PMID: 33560865 DOI: 10.1094/mpmi-11-20-0314-sc] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bacterial flagellin protein is a potent microbe-associated molecular pattern. Immune responses are triggered by a 22-amino-acid epitope derived from flagellin, known as flg22, upon detection by the pattern recognition receptor FLAGELLIN-SENSING2 (FLS2) in multiple plant species. However, increasing evidence suggests that flg22 epitopes of several bacterial species are not universally immunogenic to plants. We investigated whether flg22 immunogenicity systematically differs between classes of the phylum Proteobacteria, using a dataset of 2,470 flg22 sequences. To predict which species encode highly immunogenic flg22 epitopes, we queried a custom motif (11[ST]xx[DN][DN]xAGxxI21) in the flg22 sequences, followed by sequence conservation analysis and protein structural modeling. These data led us to hypothesize that most flg22 epitopes of the γ- and β-Proteobacteria are highly immunogenic, whereas most flg22 epitopes of the α-, δ-, and ε-Proteobacteria are weakly to moderately immunogenic. To test this hypothesis, we generated synthetic peptides representative of the flg22 epitopes of each proteobacterial class, and we monitored their ability to elicit an immune response in Arabidopsis thaliana. The flg22 peptides of γ- and β-Proteobacteria triggered strong oxidative bursts, whereas peptides from the ε-, δ-, and α-Proteobacteria triggered moderate, weak, or no response, respectively. These data suggest flg22 immunogenicity is not highly conserved across the phylum Proteobacteria. We postulate that sequence divergence of each taxonomic class was present prior to the evolution of FLS2, and that the ligand specificity of A. thaliana FLS2 was driven by the flg22 epitopes of the γ- and β-Proteobacteria, a monophyletic group containing many common phytopathogens.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Janis H T Cheng
- Department of Biology, Queen's University, Kingston ON, K7L 3N6, Canada
| | - Melissa Bredow
- Department of Biology, Queen's University, Kingston ON, K7L 3N6, Canada
| | | | - George C diCenzo
- Department of Biology, Queen's University, Kingston ON, K7L 3N6, Canada
| |
Collapse
|
46
|
Endophytic Bacteria from the Sahara Desert Protect Tomato Plants Against Botrytis cinerea Under Different Experimental Conditions. Curr Microbiol 2021; 78:2367-2379. [PMID: 33835232 DOI: 10.1007/s00284-021-02483-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
Bacteria endophytes are living microorganisms that live inside plant tissues without visible harmful symptoms, providing a mutualistic interaction. In this study, different bacterial endophytic strains were isolated from different plants primed to live in an arid area, namely, the Sahara Desert. Up to 27 of these strains were selected based on their ability to inhibit Botrytis cinerea growth in dual-culture assay and by bacterial volatiles. The results presented in this study show the capacity of most of the bacterial strains to protect Solanum lycopersicum against the pathogenic fungus B. cinerea, under different experimental conditions. Five of these strains induced susceptibility in tomato plants and no callose accumulation upon fungal infection, pointing to callose deposition as a protective mechanism mediated by endophytic bacteria. Moreover, there was a significant correlation between the bacterial strains inducing callose and the level of protection against B. cinerea. On the other hand, hormone production by bacteria does not explain the relationship between protection and the differences between the phenotypic results obtained in vitro and those obtained in plant experiments. Induced resistance is highly specific in the inducer-plant-stress interaction.
Collapse
|
47
|
Bell CA, Magkourilou E, Urwin PE, Field KJ. The influence of competing root symbionts on below-ground plant resource allocation. Ecol Evol 2021; 11:2997-3003. [PMID: 33841761 PMCID: PMC8019053 DOI: 10.1002/ece3.7292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
Plants typically interact with multiple above- and below-ground organisms simultaneously, with their symbiotic relationships spanning a continuum ranging from mutualism, such as with arbuscular mycorrhizal fungi (AMF), to parasitism, including symbioses with plant-parasitic nematodes (PPN).Although research is revealing the patterns of plant resource allocation to mutualistic AMF partners under different host and environmental constraints, the root ecosystem, with multiple competing symbionts, is often ignored. Such competition is likely to heavily influence resource allocation to symbionts.Here, we outline and discuss the competition between AMF and PPN for the finite supply of host plant resources, highlighting the need for a more holistic understanding of the influence of below-ground interactions on plant resource allocation. Based on recent developments in our understanding of other symbiotic systems such as legume-rhizobia and AMF-aphid-plant, we propose hypotheses for the distribution of plant resources between contrasting below-ground symbionts and how such competition may affect the host.We identify relevant knowledge gaps at the physiological and molecular scales which, if resolved, will improve our understanding of the true ecological significance and potential future exploitation of AMF-PPN-plant interactions in order to optimize plant growth. To resolve these outstanding knowledge gaps, we propose the application of well-established methods in isotope tracing and nutrient budgeting to monitor the movement of nutrients between symbionts. By combining these approaches with novel time of arrival experiments and experimental systems involving multiple plant hosts interlinked by common mycelial networks, it may be possible to reveal the impact of multiple, simultaneous colonizations by competing symbionts on carbon and nutrient flows across ecologically important scales.
Collapse
Affiliation(s)
| | | | - Peter E. Urwin
- Faculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Katie J. Field
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
48
|
|
49
|
Adigun OA, Nadeem M, Pham TH, Jewell LE, Cheema M, Thomas R. Recent advances in bio-chemical, molecular and physiological aspects of membrane lipid derivatives in plant pathology. PLANT, CELL & ENVIRONMENT 2021; 44:1-16. [PMID: 33034375 DOI: 10.1111/pce.13904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Plant pathogens pose a significant threat to the food industry and food security accounting for 10-40% crop losses annually on a global scale. Economic losses from plant diseases are estimated at $300B for major food crops and are associated with reduced food availability and accessibility and also high food costs. Although strategies exist to reduce the impact of diseases in plants, many of these introduce harmful chemicals to our food chain. Therefore, it is important to understand and utilize plants' immune systems to control plant pathogens to enable more sustainable agriculture. Lipids are core components of cell membranes and as such are part of the first line of defense against pathogen attack. Recent developments in omics technologies have advanced our understanding of how plant membrane lipid biosynthesis, remodelling and/or signalling modulate plant responses to infection. Currently, there is limited information available in the scientific literature concerning lipid signalling targets and their biochemical and physiological consequences in response to plant pathogens. This review focusses on the functions of membrane lipid derivatives and their involvement in plant responses to pathogens as biotic stressors. We describe major plant defense systems including systemic-acquired resistance, basal resistance, hypersensitivity and the gene-for-gene concept in this context.
Collapse
Affiliation(s)
- Oludoyin Adeseun Adigun
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Muhammad Nadeem
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Thu Huong Pham
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Linda Elizabeth Jewell
- St. John's Research and Development Centre, Agriculture and Agri-Food Canada, 204 Brookfield Rd, St. John's, Newfoundland and Labrador, A1E 6J5, Canada
| | - Mumtaz Cheema
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Raymond Thomas
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| |
Collapse
|
50
|
Plant–Microbe Interaction. BIOLOGY 2020; 10:biology10010015. [PMID: 33396600 PMCID: PMC7823258 DOI: 10.3390/biology10010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
|