1
|
Zhu L, Lv Y, Shi T, Huang J, Du Q, Tang G, Sun G, Prince O, Chen Q. Identification and quantitative trait locus mapping of Tartary buckwheat pre-harvest sprouting. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3483-3494. [PMID: 39821414 DOI: 10.1002/jsfa.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/10/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Tartary buckwheat (Fagopyrum tartaricum) is particularly vulnerable to pre-harvest sprouting (PHS) due to its extended flowering and fruiting cycle, especially during periods of prolonged rainfall. This susceptibility has significant adverse effects on yield, quality and post-harvest processing. In this study, a recombinant inbred lines (RILs) population (XJ-RILs) was developed from a cross between the PHS-susceptible Tartary buckwheat variety 'Xiaomiqiao' (female parent) and the highly PHS-resistant variety 'Jinqiaomai 2' (male parent). Key traits, including germination percentage, germination energy, germination index, field PHS (PHS-F) and simulated PHS (PHS-S), were evaluated, and a quantitative trait locus (QTL) mapping analysis was performed. RESULTS (i) PHS-S was strongly and significantly correlated with PHS-F. (ii) A total of 11 QTLs associated with seed germination and 14 QTLs related to PHS were identified. Notably, the major QTL cluster qPHS8-1 was consistently detected and mapped within the interval of 8.53-9.65 Mbp on chromosome Ft8. (iii) Genotyping of 221 XJ-RILs across eight chromosomes revealed five residual heterozygous lines carrying a heterozygous interval of qPHS8-1 cluster, with inbred line R56 being particularly suited for the fine mapping of qPHS8-1. CONCLUSION The PHS-S test, conducted on entire Tartary buckwheat spikes, is an effective and comprehensive method for assessing PHS resistance in this crop. QTL mapping identified qPHS8-1 as a major locus for PHS resistance, and inbred line R56 offers a promising resource for further fine mapping of this cluster. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liwei Zhu
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
- Applied Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Yong Lv
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
| | - Juan Huang
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
| | - Qianqian Du
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
| | - Guohong Tang
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
| | - Genlou Sun
- Applied Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Odika Prince
- Applied Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
| |
Collapse
|
2
|
Lu W, Cai G, Xing Y, Fu X, Zhou L, Tang Y, Xu R, Li Y, Wu L. SWG5 regulates grain size and weight via sugar metabolism-mediated signaling in rice. FRONTIERS IN PLANT SCIENCE 2025; 16:1552268. [PMID: 40201785 PMCID: PMC11977390 DOI: 10.3389/fpls.2025.1552268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/28/2025] [Indexed: 04/10/2025]
Abstract
Grain size significantly affects rice yield and quality. Although several genes that regulate grain size have been identified, their mechanisms remain unclear. In this study, we characterized the swg5 mutant, which has a smaller plant height, shorter panicles, and smaller grains compared to the wild type (WT). MutMap resequencing and gene knockout analysis identified SWG5, a gene encoding the kinesin-13a protein, a new allele of SRS3 that positively regulates grain length and weight. RNA sequencing analyses revealed that the SWG5 allele is involved in diterpenoid biosynthesis, amino sugar metabolism, and pentose-glucuronate interconversions. Furthermore, young panicles of the swg5 mutant exhibited decreased sucrose invertase activity as well as reduced sugar and starch content. These findings indicate that SWG5/SRS3 plays a significant role in sugar metabolism, influencing grain size and weight in rice. This research provides valuable insights into breeding rice varieties with improved yield and grain quality.
Collapse
Affiliation(s)
- Wenhui Lu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Gaoyi Cai
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Yannan Xing
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Xingzhe Fu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Lingling Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Yijun Tang
- Zunyi Normal College, Department of Resources and Environment, Zunyi, Guizhou, China
| | - Ran Xu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences (CAS) Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lian Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| |
Collapse
|
3
|
Fan X, Gao F, Liu Y, Huang W, Yang Y, Luo Z, Zhang J, Qi F, Lv J, Su X, Wang L, Song S, Ren G, Xing Y. The transcription factor CCT30 promotes rice preharvest sprouting by regulating sugar signalling to inhibit the ABA-mediated pathway. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:579-591. [PMID: 39622700 PMCID: PMC11772322 DOI: 10.1111/pbi.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 01/29/2025]
Abstract
Seed dormancy is an important adaptive trait in plants. Proper seed dormancy enables the avoidance of preharvest sprouting in the undesirable conditions like rainfall frequently. In this study, qPSR8, a major QTL for preharvest sprouting, was isolated, and a previously reported heading-date gene, CCT30, was verified as the candidate gene. The CCT30 knockout mutants (CCT30-CR) enhanced seed dormancy and ABA sensitivity as compared with the wild-type ZH11. Conversely, CCT30 overexpressing plants had opposite phenotype changes and had a decreased ABA content. The expression of ABA synthesis genes such as OsNCEDs and ABA signalling genes such as ABI3 and ABI5 were upregulated and sugar metabolism-related genes such as amylase genes were downregulated in CCT30-CR. Correspondingly, fewer free sugars, such as monosaccharides and oligosaccharides, accumulated in CCT30-CR. The freshly harvested seeds from CCT30-CR had no ability to transmit sugar signals when treated with 1% exogenous glucose. In addition, CCT30 interacted with the transcription factor OsbZIP37, which negatively regulates seed dormancy. Overall, CCT30 promotes preharvest sprouting by enhancing sugar signals that inhibit the ABA-mediated pathway, and CCT30 is a good gene for breeding rice varieties resistant to preharvest sprouting.
Collapse
Affiliation(s)
- Xiaowei Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Fangyuan Gao
- Environment‐Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Yuexin Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Wen Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Ying Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Zhengliang Luo
- Environment‐Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Jia Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Feixiang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Jianqun Lv
- Environment‐Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Xiangwen Su
- Environment‐Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Lei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Song Song
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Henan Agricultural UniversityZhengzhouChina
| | - Guangjun Ren
- Environment‐Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Yazhouwan National LaboratorySanyaChina
| |
Collapse
|
4
|
Cheng X, Zhang S, E Z, Yang Z, Cao S, Zhang R, Niu B, Li QF, Zhou Y, Huang XY, Liu QQ, Chen C. Maternally expressed FERTILIZATION-INDEPENDENT ENDOSPERM1 regulates seed dormancy and aleurone development in rice. THE PLANT CELL 2024; 37:koae304. [PMID: 39549266 DOI: 10.1093/plcell/koae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Seed dormancy, an essential trait for plant adaptation, is determined by the embryo itself and the surrounding tissues. Here, we found that rice (Oryza sativa) FERTILIZATION-INDEPENDENT ENDOSPERM1 (OsFIE1) regulates endosperm-imposed dormancy and the dorsal aleurone thickness in a manner dependent on the parent of origin. Maternally expressed OsFIE1 suppresses gibberellin (GA) biosynthesis in the endosperm by depositing trimethylation of lysine 27 on histone H3 (H3K27me3) marks on GA biosynthesis-related genes, thus inhibiting germination and aleurone differentiation. Knockout of rice GA 20-oxidase1 (OsGA20ox1) alleviated the phenotypic defects in osfie1. The aleurone-positive determinant Crinkly 4 (OsCR4) is another target of the OsFIE1-containing Polycomb repressive complex 2 (PRC2). We found that OsFIE1 plays an important role in genomic imprinting in the endosperm of germinating seeds, particularly for paternally expressed genes associated with H3K27me3. The increased aleurone thickness of osfie1 substantially improved grain nutritional quality, indicating that the osfie1 gene may be utilized for breeding nutrient-enriched rice. The findings provide insights into the essential roles of PRC2-mediated H3K27me3 methylation in the acquisition of seed dormancy and endosperm cell differentiation in rice.
Collapse
Affiliation(s)
- Xiaojun Cheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Su Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Zhiguo E
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311499, China
| | - Zongju Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Sijia Cao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Rui Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Baixiao Niu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Sanya 572022, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Yan Y, Zhu X, Qi H, Wang Y, Zhang H, He J. Rice seed storability: From molecular mechanisms to agricultural practices. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112215. [PMID: 39151802 DOI: 10.1016/j.plantsci.2024.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The storability of rice seeds is crucial for ensuring flexible planting options, agricultural seed security, and global food safety. With the intensification of global climate change and the constant fluctuations in agricultural production conditions, enhancing the storability of rice seeds has become particularly important. Seed storability is a complex quantitative trait regulated by both genetic and environmental factors. This article reviews the main regulatory mechanisms of rice seed storability, including the accumulation of seed storage proteins, late embryogenesis abundant (LEA) proteins, heat shock proteins, sugar signaling, hormonal regulation by gibberellins and abscisic acid, and the role of the ubiquitination pathway. Additionally, this article explores the improvement of storability using wild rice genes, molecular marker-assisted selection, and gene editing techniques such as CRISPR/Cas9 in rice breeding. By providing a comprehensive scientific foundation and practical guidance, this review aims to promote the development of rice varieties with enhanced storability to meet evolving agricultural demands.
Collapse
Affiliation(s)
- Yuntao Yan
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Xiaoya Zhu
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Hui Qi
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China; Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yan Wang
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Haiqing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Jiwai He
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China.
| |
Collapse
|
6
|
Shen J, Zhang L, Wang H, Guo J, Li Y, Tan Y, Shu Q, Qian Q, Yu H, Chen Y, Song S. The phosphatidylethanolamine-binding proteins OsMFT1 and OsMFT2 regulate seed dormancy in rice. THE PLANT CELL 2024; 36:3857-3874. [PMID: 39041489 PMCID: PMC11371141 DOI: 10.1093/plcell/koae211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Seed dormancy is crucial for optimal plant life-cycle timing. However, domestication has largely diminished seed dormancy in modern cereal cultivars, leading to challenges such as preharvest sprouting (PHS) and subsequent declines in yield and quality. Therefore, it is imperative to unravel the molecular mechanisms governing seed dormancy for the development of PHS-resistant varieties. In this study, we screened a mutant of BASIC HELIX-LOOP-HELIX TRANSCRIPTION FACTOR4 (OsbHLH004) with decreased seed dormancy and revealed that OsbHLH004 directly regulates the expression of 9-CIS-EPOXYCAROTENOID DIOXYGENASE3 (OsNCED3) and GIBBERELLIN 2-OXIDASE6 (OsGA2ox6) in rice (Oryza sativa). Additionally, we determined that two phosphatidylethanolamine-binding proteins, MOTHER OF FT AND TFL1 and 2 (OsMFT1 and OsMFT2; hereafter OsMFT1/2) interact with OsbHLH004 and Ideal Plant Architecture 1 (IPA1) to regulate their binding capacities on OsNCED3 and OsGA2ox6, thereby promoting seed dormancy. Intriguingly, FT-INTERACTING PROTEIN1 (OsFTIP1) interacts with OsMFT1/2 and affects their nucleocytoplasmic translocation into the nucleus, where OsMFT1/2-OsbHLH004 and OsMFT1/2-IPA1 antagonistically modulate the expression of OsNCED3 and OsGA2ox6. Our findings reveal that OsFTIP1-mediated inhibition of nuclear translocation of OsMFT1/2 and the dynamic transcriptional modulation of OsNCED3 and OsGA2ox6 by OsMFT1/2-OsbHLH004 and OsMFT1/2-IPA1 complexes in seed dormancy in rice.
Collapse
Affiliation(s)
- Jun Shen
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, Hainan 572000, China
| | - Liang Zhang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huanyu Wang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiazhuo Guo
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuchen Li
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yuanyuan Tan
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qingyao Shu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, Hainan 572000, China
| | - Qian Qian
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117543, Singapore
| | - Ying Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Shiyong Song
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, Hainan 572000, China
| |
Collapse
|
7
|
Guan L, Yin L, Liu Y, Yan J, Wang B, Luan M, Lan W. A plasma membrane-localized transporter remobilizes aleurone layer magnesium for seed germination in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38837713 DOI: 10.1111/tpj.16867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/07/2024]
Abstract
The aleurone layer in cereal grains acts as a major reservoir of essential mineral nutrients, significantly influencing seed germination. However, the molecular mechanism underlying the redistribution of nutrients from the aleurone layer in the germinating seed is still not well understood. Here, in rice, we identified a plasma membrane (PM) localized magnesium transporter, MAGNESIUM RELEASE TRANSPORTER 3 (MGR3), is critical for seed germination. OsMGR3 is predominantly expressed in the aleurone layer cells of endosperm, facilitating magnesium remobilization during germination. Non-invasive Micro-test Technology assay data demonstrated that the loss-of-function of OsMGR3 restrained magnesium efflux from the aleurone layer. In the embryo/endosperm grafting experiment, we observed that the mutation of OsMGR3 in the aleurone layer suppressed the growth and differentiation of the embryo during germination. Furthermore, magnesium fluorescence imaging revealed the osmgr3 mutant seeds showed impaired exportation of aleurone layer-stored magnesium to the embryo, consequently delaying germination. Importantly, we discovered that disrupting OsMGR3 could inhibit pre-harvest sprouting without affecting rice yield and quality. Therefore, the magnesium efflux transporter OsMGR3 in the aleurone layer represents a promising genetic target for future agronomic trait improvement.
Collapse
Affiliation(s)
- Liurong Guan
- School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Li Yin
- Institute of Future Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yingna Liu
- Institute of Future Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jun Yan
- Institute of Future Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bin Wang
- School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Mingda Luan
- Institute of Future Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenzhi Lan
- Institute of Future Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
8
|
Yan H, Zhang W, Wang Y, Jin J, Xu H, Fu Y, Shan Z, Wang X, Teng X, Li X, Wang Y, Hu X, Zhang W, Zhu C, Zhang X, Zhang Y, Wang R, Zhang J, Cai Y, You X, Chen J, Ge X, Wang L, Xu J, Jiang L, Liu S, Lei C, Zhang X, Wang H, Ren Y, Wan J. Rice LIKE EARLY STARVATION1 cooperates with FLOURY ENDOSPERM6 to modulate starch biosynthesis and endosperm development. THE PLANT CELL 2024; 36:1892-1912. [PMID: 38262703 PMCID: PMC11062441 DOI: 10.1093/plcell/koae006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
In cereal grains, starch is synthesized by the concerted actions of multiple enzymes on the surface of starch granules within the amyloplast. However, little is known about how starch-synthesizing enzymes access starch granules, especially for amylopectin biosynthesis. Here, we show that the rice (Oryza sativa) floury endosperm9 (flo9) mutant is defective in amylopectin biosynthesis, leading to grains exhibiting a floury endosperm with a hollow core. Molecular cloning revealed that FLO9 encodes a plant-specific protein homologous to Arabidopsis (Arabidopsis thaliana) LIKE EARLY STARVATION1 (LESV). Unlike Arabidopsis LESV, which is involved in starch metabolism in leaves, OsLESV is required for starch granule initiation in the endosperm. OsLESV can directly bind to starch by its C-terminal tryptophan (Trp)-rich region. Cellular and biochemical evidence suggests that OsLESV interacts with the starch-binding protein FLO6, and loss-of-function mutations of either gene impair ISOAMYLASE1 (ISA1) targeting to starch granules. Genetically, OsLESV acts synergistically with FLO6 to regulate starch biosynthesis and endosperm development. Together, our results identify OsLESV-FLO6 as a non-enzymatic molecular module responsible for ISA1 localization on starch granules, and present a target gene for use in biotechnology to control starch content and composition in rice endosperm.
Collapse
Affiliation(s)
- Haigang Yan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Jin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hancong Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yushuang Fu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuangzhuang Shan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuan Teng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongxiang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoqing Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenxiang Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Changyuan Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongqi Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoman You
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyuan Ge
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahuan Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
| | - Shijia Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
| |
Collapse
|
9
|
Lu Q, Zhao H, Zhang Z, Bai Y, Zhao H, Liu G, Liu M, Zheng Y, Zhao H, Gong H, Chen L, Deng X, Hong X, Liu T, Li B, Lu P, Wen F, Wang L, Li Z, Li H, Li H, Zhang L, Ma W, Liu C, Bai Y, Xin B, Chen J, E L, Lai J, Song W. Genomic variation in weedy and cultivated broomcorn millet accessions uncovers the genetic architecture of agronomic traits. Nat Genet 2024; 56:1006-1017. [PMID: 38658793 DOI: 10.1038/s41588-024-01718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Large-scale genomic variations are fundamental resources for crop genetics and breeding. Here we sequenced 1,904 genomes of broomcorn millet to an average of 40× sequencing depth and constructed a comprehensive variation map of weedy and cultivated accessions. Being one of the oldest cultivated crops, broomcorn millet has extremely low nucleotide diversity and remarkably rapid decay of linkage disequilibrium. Genome-wide association studies identified 186 loci for 12 agronomic traits. Many causative candidate genes, such as PmGW8 for grain size and PmLG1 for panicle shape, showed strong selection signatures during domestication. Weedy accessions contained many beneficial variations for the grain traits that are largely lost in cultivated accessions. Weedy and cultivated broomcorn millet have adopted different loci controlling flowering time for regional adaptation in parallel. Our study uncovers the unique population genomic features of broomcorn millet and provides an agronomically important resource for cereal crops.
Collapse
Affiliation(s)
- Qiong Lu
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Hainan Zhao
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
- Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing, People's Republic of China
| | - Zhengquan Zhang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Yuhe Bai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Haiming Zhao
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Guoqing Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, People's Republic of China
| | - Minxuan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yunxiao Zheng
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Haiyue Zhao
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Huihui Gong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Lingwei Chen
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Xizhen Deng
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Xiangde Hong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Tianxiang Liu
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Baichuan Li
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Ping Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Feng Wen
- Tongliao Agricultural and Animal Husbandry Research Institute, Tongliao, People's Republic of China
| | - Lun Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, People's Republic of China
| | - Zhijiang Li
- Institute of Crop Resources Research, Heilongjiang Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Hai Li
- High Latitude Crops Institute, Shanxi Agricultural University, Datong, People's Republic of China
| | - Haiquan Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, People's Republic of China
| | - Like Zhang
- National Agricultural Technology Extension & Service Center, Beijing, People's Republic of China
| | - Wenhui Ma
- National Agricultural Technology Extension & Service Center, Beijing, People's Republic of China
| | - Chunqing Liu
- National Agricultural Technology Extension & Service Center, Beijing, People's Republic of China
| | - Yan Bai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
- National Agricultural Technology Extension & Service Center, Beijing, People's Republic of China
| | - Beibei Xin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Lizhu E
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
- Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing, People's Republic of China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, People's Republic of China
- Sanya Institute of China Agricultural University, Sanya, People's Republic of China
| | - Weibin Song
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China.
- Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing, People's Republic of China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, People's Republic of China.
- Sanya Institute of China Agricultural University, Sanya, People's Republic of China.
| |
Collapse
|
10
|
Xie T, Hu W, Shen J, Xu J, Yang Z, Chen X, Zhu P, Chen M, Chen S, Zhang H, Cheng J. Allantoate Amidohydrolase OsAAH is Essential for Preharvest Sprouting Resistance in Rice. RICE (NEW YORK, N.Y.) 2024; 17:28. [PMID: 38622442 PMCID: PMC11018578 DOI: 10.1186/s12284-024-00706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/30/2024] [Indexed: 04/17/2024]
Abstract
Preharvest sprouting (PHS) is an undesirable trait that decreases yield and quality in rice production. Understanding the genes and regulatory mechanisms underlying PHS is of great significance for breeding PHS-resistant rice. In this study, we identified a mutant, preharvest sprouting 39 (phs39), that exhibited an obvious PHS phenotype in the field. MutMap+ analysis and transgenic experiments demonstrated that OsAAH, which encodes allantoate amidohydrolase, is the causal gene of phs39 and is essential for PHS resistance. OsAAH was highly expressed in roots and leaves at the heading stage and gradually increased and then weakly declined in the seed developmental stage. OsAAH protein was localized to the endoplasmic reticulum, with a function of hydrolyzing allantoate in vitro. Disruption of OsAAH increased the levels of ureides (allantoate and allantoin) and activated the tricarboxylic acid (TCA) cycle, and thus increased energy levels in developing seeds. Additionally, the disruption of OsAAH significantly increased asparagine, arginine, and lysine levels, decreased tryptophan levels, and decreased levels of indole-3-acetic acid (IAA) and abscisic acid (ABA). Our findings revealed that the OsAAH of ureide catabolism is involved in the regulation of rice PHS via energy and hormone metabolisms, which will help to facilitate the breeding of rice PHS-resistant varieties.
Collapse
Affiliation(s)
- Ting Xie
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Wenling Hu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiaxin Shen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiangyu Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zeyuan Yang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xinyi Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peiwen Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Mingming Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
- College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Sunlu Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Hongsheng Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Jinping Cheng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
11
|
Zhang C, Wang H, Tian X, Lin X, Han Y, Han Z, Sha H, Liu J, Liu J, Zhang J, Bu Q, Fang J. A transposon insertion in the promoter of OsUBC12 enhances cold tolerance during japonica rice germination. Nat Commun 2024; 15:2211. [PMID: 38480722 PMCID: PMC10937917 DOI: 10.1038/s41467-024-46420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Low-temperature germination (LTG) is an important agronomic trait for rice (Oryza sativa). Japonica rice generally has greater capacity for germination at low temperatures than the indica subpopulation. However, the genetic basis and molecular mechanisms underlying this complex trait are poorly understood. Here, we report that OsUBC12, encoding an E2 ubiquitin-conjugating enzyme, increases low-temperature germinability in japonica, owing to a transposon insertion in its promoter enhancing its expression. Natural variation analysis reveals that transposon insertion in the OsUBC12 promoter mainly occurs in the japonica lineage. The variation detected in eight representative two-line male sterile lines suggests the existence of this allele introgression by indica-japonica hybridization breeding, and varieties carrying the japonica OsUBC12 locus (transposon insertion) have higher low-temperature germinability than varieties without the locus. Further molecular analysis shows that OsUBC12 negatively regulate ABA signaling. OsUBC12-regulated seed germination and ABA signaling mainly depend on a conserved active site required for ubiquitin-conjugating enzyme activity. Furthermore, OsUBC12 directly associates with rice SUCROSE NON-FERMENTING 1-RELATED PROTEIN KINASE 1.1 (OsSnRK1.1), promoting its degradation. OsSnRK1.1 inhibits LTG by enhancing ABA signaling and acts downstream of OsUBC12. These findings shed light on the underlying mechanisms of UBC12 regulating LTG and provide genetic reference points for improving LTG in indica rice.
Collapse
Affiliation(s)
- Chuanzhong Zhang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaojie Tian
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Xinyan Lin
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Yunfei Han
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Zhongmin Han
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Hanjing Sha
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Jianfeng Liu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Qingyun Bu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Jun Fang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China.
- Yazhouwan National Laboratory, Sanya, 572024, China.
| |
Collapse
|
12
|
Guo N, Tang S, Wang Y, Chen W, An R, Ren Z, Hu S, Tang S, Wei X, Shao G, Jiao G, Xie L, Wang L, Chen Y, Zhao F, Sheng Z, Hu P. A mediator of OsbZIP46 deactivation and degradation negatively regulates seed dormancy in rice. Nat Commun 2024; 15:1134. [PMID: 38326370 PMCID: PMC10850359 DOI: 10.1038/s41467-024-45402-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Preharvest sprouting (PHS) is a deleterious phenotype that occurs frequently in rice-growing regions where the temperature and precipitation are high. It negatively affects yield, quality, and downstream grain processing. Seed dormancy is a trait related to PHS. Longer seed dormancy is preferred for rice production as it can prevent PHS. Here, we map QTLs associated with rice seed dormancy and clone Seed Dormancy 3.1 (SDR3.1) underlying one major QTL. SDR3.1 encodes a mediator of OsbZIP46 deactivation and degradation (MODD). We show that SDR3.1 negatively regulates seed dormancy by inhibiting the transcriptional activity of ABIs. In addition, we reveal two critical amino acids of SDR3.1 that are critical for the differences in seed dormancy between the Xian/indica and Geng/japonica cultivars. Further, SDR3.1 has been artificially selected during rice domestication. We propose a two-line model for the process of rice seed dormancy domestication from wild rice to modern cultivars. We believe the candidate gene and germplasm studied in this study would be beneficial for the genetic improvement of rice seed dormancy.
Collapse
Affiliation(s)
- Naihui Guo
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, P. R. China
| | - Shengjia Tang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Yakun Wang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
- National Nanfan Research Academy (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, P. R. China
| | - Wei Chen
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Ruihu An
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Zongliang Ren
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Shikai Hu
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Guiai Jiao
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Lihong Xie
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Ling Wang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Ying Chen
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Fengli Zhao
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China.
- Jiangxi Early-season Rice Research Center, Pingxiang, Jiangxi Province, 337000, P. R. China.
| | - Peisong Hu
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China.
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, P. R. China.
| |
Collapse
|
13
|
Kim JH, Yu J, Kim JY, Park YJ, Bae S, Kang KK, Jung YJ. Phenotypic characterization of pre-harvest sprouting resistance mutants generated by the CRISPR/Cas9-geminiviral replicon system in rice. BMB Rep 2024; 57:79-85. [PMID: 38303561 PMCID: PMC10910094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 02/03/2024] Open
Abstract
Pre-harvest sprouting is a critical phenomenon involving germination of seeds in the mother plant before harvest under relative humid conditions and reduced dormancy. In this paper, we generated HDR mutant lines with one region SNP (C/T) and an insertion of 6 bp (GGT/GGTGGCGGC) in OsERF1 genes for pre-harvest sprouting (PHS) resistance using CRISPR/Cas9 and a geminiviral replicon system. The incidence of HDR was 2.6% in transformed calli. T1 seeds were harvested from 12 HDR-induced calli and named ERF1-hdr line. Molecular stability, key agronomic properties, physiological properties, and biochemical properties of target genes in the ERF1-hdr line were investigated for three years. The ERF1-hdr line showed significantly enhanced seed dormancy and pre-harvest sprouting resistance. qRT-PCR analysis suggested that enhanced ABA signaling resulted in a stronger phenotype of PHS resistance. These results indicate that efficient HDR can be achieved through SNP/InDel replacement using a single and modular configuration applicable to different rice targets and other crops. This work demonstrates the potential to replace all genes with elite alleles within one generation and greatly expands our ability to improve agriculturally important traits. [BMB Reports 2024; 57(2): 79-85].
Collapse
Affiliation(s)
- Jong Hee Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea
| | - Jihyeon Yu
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jin Young Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
| | - Yong Jin Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Korea
| | - Sangsu Bae
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kwon Kyoo Kang
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea
| | - Yu Jin Jung
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea
| |
Collapse
|
14
|
Mao X, Zheng X, Sun B, Jiang L, Zhang J, Lyu S, Yu H, Chen P, Chen W, Fan Z, Li C, Liu Q. MKK3 Cascade Regulates Seed Dormancy Through a Negative Feedback Loop Modulating ABA Signal in Rice. RICE (NEW YORK, N.Y.) 2024; 17:2. [PMID: 38170405 PMCID: PMC10764673 DOI: 10.1186/s12284-023-00679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND With the increasing frequency of climatic anomalies, high temperatures and long-term rain often occur during the rice-harvesting period, especially for early rice crops in tropical and subtropical regions. Seed dormancy directly affects the resistance to pre-harvest sprouting (PHS). Therefore, in order to increase rice production, it is critical to enhance seed dormancy and avoid yield losses to PHS. The elucidation and utilization of the seed dormancy regulation mechanism is of great significance to rice production. Preliminary results indicated that the OsMKKK62-OsMKK3-OsMPK7/14 module might regulate ABA sensitivity and then control seed dormancy. The detailed mechanism is still unclear. RESULTS The overexpression of OsMKK3 resulted in serious PHS. The expression levels of OsMKK3 and OsMPK7 were upregulated by ABA and GA at germination stage. OsMKK3 and OsMPK7 are both located in the nucleus and cytoplasm. The dormancy level of double knockout mutant mkk3/mft2 was lower than that of mkk3, indicating that OsMFT2 functions in the downstream of MKK3 cascade in regulating rice seeds germination. Biochemical results showed that OsMPK7 interacted with multiple core ABA signaling components according to yeast two-hybrid screening and luciferase complementation experiments, suggesting that MKK3 cascade regulates ABA signaling by modulating the core ABA signaling components. Moreover, the ABA response and ABA responsive genes of mpk7/14 were significantly higher than those of wild-type ZH11 when subjected to ABA treatment. CONCLUSION MKK3 cascade mediates the negative feedback loop of ABA signal through the interaction between OsMPK7 and core ABA signaling components in rice.
Collapse
Affiliation(s)
- Xingxue Mao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Xiaoyu Zheng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Bingrui Sun
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Liqun Jiang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Jing Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Shuwei Lyu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Hang Yu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Pingli Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Wenfeng Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Zhilan Fan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China.
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China.
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| |
Collapse
|
15
|
Qu Y, Zhang Y, Zhang Z, Fan S, Qi Y, Wang F, Wang M, Feng M, Liu X, Ren H. Advance Research on the Pre-Harvest Sprouting Trait in Vegetable Crop Seeds. Int J Mol Sci 2023; 24:17171. [PMID: 38138999 PMCID: PMC10742742 DOI: 10.3390/ijms242417171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pre-harvest sprouting (PHS), the germination of seeds on the plant prior to harvest, poses significant challenges to agriculture. It not only reduces seed and grain yield, but also impairs the commodity quality of the fruit, ultimately affecting the success of the subsequent crop cycle. A deeper understanding of PHS is essential for guiding future breeding strategies, mitigating its impact on seed production rates and the commercial quality of fruits. PHS is a complex phenomenon influenced by genetic, physiological, and environmental factors. Many of these factors exert their influence on PHS through the intricate regulation of plant hormones responsible for seed germination. While numerous genes related to PHS have been identified in food crops, the study of PHS in vegetable crops is still in its early stages. This review delves into the regulatory elements, functional genes, and recent research developments related to PHS in vegetable crops. Meanwhile, this paper presents a novel understanding of PHS, aiming to serve as a reference for the study of this trait in vegetable crops.
Collapse
Affiliation(s)
- Yixin Qu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yaqi Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhongren Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shanshan Fan
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yu Qi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Fang Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mingqi Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Min Feng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xingwang Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572019, China
| | - Huazhong Ren
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572019, China
| |
Collapse
|
16
|
Xing M, Chen S, Zhang X, Xue H. Rice OsGA2ox9 regulates seed GA metabolism and dormancy. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2411-2413. [PMID: 37221989 PMCID: PMC10651142 DOI: 10.1111/pbi.14067] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 05/25/2023]
Affiliation(s)
- Mei‐Qing Xing
- Shanghai Collaborative Innovation Center of Agri‐Seeds, Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Su‐Hui Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Xiao‐Fan Zhang
- Shanghai Collaborative Innovation Center of Agri‐Seeds, Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hong‐Wei Xue
- Shanghai Collaborative Innovation Center of Agri‐Seeds, Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
17
|
Zhao F, Ma Q, Li Y, Jiang M, Zhou Z, Meng S, Peng Y, Zhang J, Ye N, Liu B. OsNAC2 regulates seed dormancy and germination in rice by inhibiting ABA catabolism. Biochem Biophys Res Commun 2023; 682:335-342. [PMID: 37837754 DOI: 10.1016/j.bbrc.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Seed dormancy and germination determine the beginning of the life cycle of plants, and the phytohormone ABA plays a crucial role in regulation of seed dormancy and germination. However, the upstream regulatory mechanism of ABA metabolism during dormancy releasing is still remain elusive. In this paper, we present a novel mechanism of OsNAC2 in controlling ABA metabolism and regulation of seed dormancy. OsNAC2 highly expressed during seed development and germination, and overexpression of OsNAC2 strengthened seed dormancy and suppressed germination. Moreover, exogenous phytohormone treatment showed that OsNAC2 acted upstream of GA signaling and downstream of ABA signaling. Additionally, overexpression of OsNAC2 inhibited ABA degradation and increased ABA content during early germination. Further molecular analysis revealed that OsNAC2 directly bound to the ABA metabolism genes promoter and inhibits their transcription in rice protoplasts. These finding could help us explain the genetic regulation mechanism of ABA metabolism during dormancy release and germination in rice.
Collapse
Affiliation(s)
- Fankai Zhao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Crop Physiological and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha, 410128, China
| | - Qun Ma
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; Agro-Tech Extension Center of Guangdong Province, Guangzhou, Guangdong, 510520, China
| | - Yingjiang Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Crop Physiological and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha, 410128, China
| | - Meihe Jiang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Crop Physiological and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha, 410128, China
| | - Zhongjing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Shuan Meng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Crop Physiological and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Peng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Crop Physiological and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha, 410128, China
| | - Jianhua Zhang
- Key Laboratory of Crop Physiological and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Nenghui Ye
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Crop Physiological and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; Agro-Tech Extension Center of Guangdong Province, Guangzhou, Guangdong, 510520, China.
| | - Bohan Liu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Crop Physiological and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
18
|
Lu X, Zhang D, Zhang Y, Liu X, Wang S, Liu X. The molybdenum cofactor biosynthesis gene, OsCNX1, is essential for seedling development and seed germination in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:77. [PMID: 37916037 PMCID: PMC10616024 DOI: 10.1007/s11032-023-01424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Pre-harvest sprouting (PHS) frequently occurs in rice due to the long spells of rainy weather, and causes severe yield loss and grain quality decrease. Here, we identified one PHS-related gene OsCNX1 cloned from rice PHS mutant, which encoded a molybdenum cofactor (MoCo) biosynthesis enzyme. Genetic complementation indicated OsCNX1 could rescue the PHS and seedling lethal phenotype of the mutant. Expression pattern showed that OsCNX1 was expressed in rice tissue including seedling shoot, culm, blade, and sheath of flag leaf, young panicle, and the seeds at different development stages. Overexpression of OsCNX1 significantly decreased the plant height, and the seed germination of the dormant seeds harvested from fresh panicles, comparing to the wild type (WT). In addition, 1492 differentially expressed genes (DEGs) were identified between OsCNX1-overexpressed line and WT by RNA-sequencing, which were mainly classified in plant-pathogen interaction, plant hormone signal transduction, and starch/sucrose metabolism. These results showed that OsCNX1 was not only necessary for rice seed germination, but also participated in plant development, indicating that OsCNX1 may be useful in rice breeding of PHS resistance and plant height. Supplementary information The online version contains supplementary material available at 10.1007/s11032-023-01424-x.
Collapse
Affiliation(s)
- Xiaoguang Lu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| | - Di Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| | - Yi Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| | - Xing Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| | - Sheng Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| | - Xin Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| |
Collapse
|
19
|
Tong N, Shu Q, Wang B, Peng L, Liu Z. Histology, physiology, and transcriptomic and metabolomic profiling reveal the developmental dynamics of annual shoots in tree peonies ( Paeonia suffruticosa Andr.). HORTICULTURE RESEARCH 2023; 10:uhad152. [PMID: 37701456 PMCID: PMC10493643 DOI: 10.1093/hr/uhad152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/23/2023] [Indexed: 09/14/2023]
Abstract
The development of tree peony annual shoots is characterized by "withering", which is related to whether there are bud points in the leaf axillaries of annual shoots. However, the mechanism of "withering" in tree peony is still unclear. In this study, Paeonia ostii 'Fengdan' and P. suffruticosa 'Luoyanghong' were used to investigate dynamic changes of annual shoots through anatomy, physiology, transcriptome, and metabolome. The results demonstrated that the developmental dynamics of annual shoots of the two cultivars were comparable. The withering degree of P. suffruticosa 'Luoyanghong' was higher than that of P. ostii 'Fengdan', and their upper internodes of annual flowering shoots had a lower degree of lignin deposition, cellulose, C/N ratio, showing no obvious sclerenchyma, than the bottom ones and the whole internodes of vegetative shoot, which resulted in the "withering" of upper internodes. A total of 36 phytohormone metabolites were detected, of which 33 and 31 were detected in P. ostii 'Fengdan' and P. suffruticosa 'Luoyanghong', respectively. In addition, 302 and 240 differentially expressed genes related to lignin biosynthesis, carbon and nitrogen metabolism, plant hormone signal transduction, and zeatin biosynthesis were screened from the two cultivars. Furtherly, 36 structural genes and 40 transcription factors associated with the development of annual shoots were highly co-expressed, and eight hub genes involved in this developmental process were identified. Consequently, this study explained the developmental dynamic on the varied annual shoots through multi-omics, providing a theoretical foundation for germplasm innovation and the mechanized harvesting of tree peony annual shoots.
Collapse
Affiliation(s)
- Ningning Tong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyan Shu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Baichen Wang
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Liping Peng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zheng'an Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
20
|
Guo D, Chen L, Liu S, Jiang W, Ye Q, Wu Z, Wang X, Hu X, Zhang Z, He H, Hu L. Curling Leaf 1, Encoding a MYB-Domain Protein, Regulates Leaf Morphology and Affects Plant Yield in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3127. [PMID: 37687373 PMCID: PMC10490398 DOI: 10.3390/plants12173127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
The leaf is the main site of photosynthesis and is an important component in shaping the ideal rice plant architecture. Research on leaf morphology and development will lay the foundation for high-yield rice breeding. In this study, we isolated and identified a novel curling leaf mutant, designated curling leaf 1 (cl1). The cl1 mutant exhibited an inward curling phenotype because of the defective development of sclerenchymatous cells on the abaxial side. Meanwhile, the cl1 mutant showed significant reductions in grain yield and thousand-grain weight due to abnormal leaf development. Through map-based cloning, we identified the CL1 gene, which encodes a MYB transcription factor that is highly expressed in leaves. Subcellular localization studies confirmed its typical nuclear localization. Transcriptome analysis revealed a significant differential expression of the genes involved in photosynthesis, leaf morphology, yield formation, and hormone metabolism in the cl1 mutant. Yeast two-hybrid assays demonstrated that CL1 interacts with alpha-tubulin protein SRS5 and AP2/ERF protein MFS. These findings provide theoretical foundations for further elucidating the mechanisms of CL1 in regulating leaf morphology and offer genetic resources for practical applications in high-yield rice breeding.
Collapse
Affiliation(s)
- Dandan Guo
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Lianghai Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shiqiang Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenxiang Jiang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Qing Ye
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Zheng Wu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Xiaoqing Wang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Xiafei Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Zelin Zhang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Lifang Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
| |
Collapse
|
21
|
Lee CM, Park HS, Baek MK, Jeong OY, Seo J, Kim SM. QTL mapping and improvement of pre-harvest sprouting resistance using japonica weedy rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1194058. [PMID: 37342139 PMCID: PMC10277695 DOI: 10.3389/fpls.2023.1194058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 06/22/2023]
Abstract
The stability of cultivation and production in terms of crop yield has been threatened by climate change due to global warming. Pre-harvest sprouting (PHS) is a threat to crops, especially staple foods, including rice, because of reductions in yield and quality. To address the problem of precocious germination before harvest, we performed quantitative trait loci (QTL) analysis for PHS using F8 RILs populations derived from japonica weedy rice in Korea. QTL analysis revealed that two stable QTLs, qPH7 and qPH2, associated with PHS resistance were identified on chromosomes 7 and 2, respectively, explaining approximately 38% of the phenotypic variation. The QTL effect in the tested lines significantly decreased the degree of PHS, based on the number of QTLs included. Through fine mapping for main QTL qPH7, the region for the PHS was found to be anchored within 23.575-23.785 Mbp on chromosome 7 using 13 cleaved amplified sequence (CAPS) markers. Among 15 open reading frames (ORFs) within the detected region, one ORF, Os07g0584366, exhibited upregulated expression in the resistant donor, which was approximately nine times higher than that of susceptible japonica cultivars under PHS-inducing conditions. Japonica lines with QTLs related to PHS resistance were developed to improve the characteristics of PHS and design practical PCR-based DNA markers for marker-assisted backcrosses of many other PHS-susceptible japonica cultivars.
Collapse
Affiliation(s)
- Chang-Min Lee
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Hyun-Su Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Man-Kee Baek
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - O-Young Jeong
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Jeonghwan Seo
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Suk-Man Kim
- Department of Ecological & Environmental System, Kyungpook National University, Sangju, Republic of Korea
| |
Collapse
|
22
|
Chen Y, Xiang Z, Liu M, Wang S, Zhang L, Cai D, Huang Y, Mao D, Fu J, Chen L. ABA biosynthesis gene OsNCED3 contributes to preharvest sprouting resistance and grain development in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1384-1401. [PMID: 36319615 DOI: 10.1111/pce.14480] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Preharvest sprouting (PHS) is an unfavorable trait in cereal crops and causes serious yield loss. However, the molecular mechanism underlying PHS remains largely elusive. Here, we identified a member of 9-cis-epoxycarotenoid dioxygenase family, OsNCED3, which regulates PHS and grain development in rice (Oryza sativa L.). OsNCED3 encodes a chloroplast-localized abscisic acid (ABA) biosynthetic enzyme highly expressed in the embryo of developing seeds. Disruption of OsNCED3 by CRISPR/Cas9-mediated mutagenesis led to a lower ABA and higher gibberellic acid (GA) levels (thus a skewed ABA/GA ratio) in the embryo, promoting embryos growth and breaking seed dormancy before seed maturity and harvest, thus decreased seed dormancy and enhanced PHS in rice. However, the overexpression of OsNCED3 enhanced PHS resistance by regulating proper ABA/GA ratio in the embryo. Intriguingly, the overexpression of OsNCED3 resulted in increased grain size and weight, whereas the disruption of OsNCED3 function decreased grain size and weight. Nucleotide diversity analyses suggested that OsNCED3 may be selected during japonica populations adaptation of seed dormancy and germination. Taken together, we have identified a new OsNCED regulator involved rice PHS and grain development, and provide a potential target gene for improving PHS resistance and grain development in rice.
Collapse
Affiliation(s)
- Yi Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhipan Xiang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Min Liu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Siyao Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lin Zhang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Dan Cai
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yuan Huang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Dandan Mao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jun Fu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, China
| | - Liangbi Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
23
|
Kim S, Huh SM, Han HJ, Lee GS, Hwang YS, Cho MH, Kim BG, Song JS, Chung JH, Nam MH, Ji H, Kim KH, Yoon IS. A rice seed-specific glycine-rich protein OsDOR1 interacts with GID1 to repress GA signaling and regulates seed dormancy. PLANT MOLECULAR BIOLOGY 2023; 111:523-539. [PMID: 36973492 DOI: 10.1007/s11103-023-01343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Seed dormancy is an important agronomic trait under the control of complex genetic and environmental interactions, which have not been yet comprehensively understood. From the field screening of rice mutant library generated by a Ds transposable element, we identified a pre-harvest sprouting (PHS) mutant dor1. This mutant has a single insertion of Ds element at the second exon of OsDOR1 (LOC_Os03g20770), which encodes a novel seed-specific glycine-rich protein. This gene successfully complemented the PHS phenotype of dor1 mutant and its ectopic expression enhanced seed dormancy. Here, we demonstrated that OsDOR1 protein binds to the GA receptor protein, OsGID1 in rice protoplasts, and interrupts with the formation OsGID1-OsSLR1 complex in yeast cells. Co-expression of OsDOR1 with OsGID1 in rice protoplasts attenuated the GA-dependent degradation of OsSLR1, the key repressor of GA signaling. We showed the endogenous OsSLR1 protein level in the dor1 mutant seeds is significantly lower than that of wild type. The dor1 mutant featured a hypersensitive GA-response of α-amylase gene expression during seed germination. Based on these findings, we suggest that OsDOR1 is a novel negative player of GA signaling operated in the maintenance of seed dormancy. Our findings provide a novel source of PHS resistance.
Collapse
Affiliation(s)
- Sooyeon Kim
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Sun Mi Huh
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
- Department of Medical and Biological Sciences, Institute of Convergence Science & Technology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hay Ju Han
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Gang Seob Lee
- Biosafety Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Yong-Sic Hwang
- Department of Systems Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Mi Hyun Cho
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Beom-Gi Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Ji Sun Song
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Joo Hee Chung
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul, 02841, Republic of Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul, 02841, Republic of Korea
| | - Hyeonso Ji
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Kyung-Hwan Kim
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - In Sun Yoon
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea.
| |
Collapse
|
24
|
Chen WQ, Liu DP, Li ZX, Chen K, Luo J, Xu JL. Transcriptome analysis of knockout mutants of rice seed dormancy gene OsVP1 and Sdr4. PLANT CELL REPORTS 2023; 42:309-319. [PMID: 36445461 DOI: 10.1007/s00299-022-02958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
OsVP1 and Sdr4 play an important role in regulating seed dormancy that involved in multiple metabolism and regulatory pathways. Seed dormancy and germination are critical agricultural traits influencing rice grain yield. Although there are some genes have identified previously, the comprehensive understanding based on transcriptome is still deficient. In this study, we generated mutants of two representative regulators of seed germination, Oryza sativa Viviparous1 (OsVP1) and Seed dormancy 4 (Sdr4), by CRISPR/Cas9 approach and named them cr-osvp1 and cr-sdr4. The weakened dormancy of mutants indicated that the functions of OsVP1 and Sdr4 are required for normal early seed dormancy. There were 4157 and 8285 differentially expressed genes (DEGs) were identified in cr-osvp1 vs. NIP and cr-sdr4 vs. NIP groups, respectively, with a large number of overlapped DEGs between two groups. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of common DEGs in two groups showed that genes related to carbohydrate metabolic, nucleoside metabolic, amylase activity and plant hormone signal transduction were involved in the dormancy regulation. These results suggest that OsVP1 and Sdr4 play an important role in regulating seed dormancy by multiple metabolism and regulatory pathways. The systematic analysis of the transcriptional level changes provides theoretical basis for the research of seed dormancy and germination in rice.
Collapse
Affiliation(s)
- Wen-Qiang Chen
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Da-Pu Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhi-Xin Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Kai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, Guangdong, China
| | - Ju Luo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
| | - Jian-Long Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, Guangdong, China.
| |
Collapse
|
25
|
Wang Z, Zhou Y, Ren XY, Wei K, Fan XL, Huang LC, Zhao DS, Zhang L, Zhang CQ, Liu QQ, Li QF. Co-Overexpression of Two Key Source Genes, OsBMY4 and OsISA3, Improves Multiple Key Traits of Rice Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:615-625. [PMID: 36537359 DOI: 10.1021/acs.jafc.2c06039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Optimized source-sink interactions are determinants of both rice yield and quality. However, most source genes have not been well studied in rice, a major grain crop. In this study, OsBMY4 and OsISA3, the key β-amylase and debranching enzymes that control transient starch degradation in rice leaves, were co-overexpressed in rice in order to accelerate starch degradation efficiency and increase the sugar supply for sink organs. Systematic analyses of the transgenic rice indicated that co-overexpression of OsBMY4 and OsISA3 not only promoted rice yield and quality, but also improved seed germination and stress tolerance. Moreover, since the OsBMY4 gene has not been characterized, we generated osbmy4 mutants using CRIPSR/Cas9 gene editing, which helped to reveal the roles of β-amylase in rice yield and quality. This study demonstrated that specific modulation of the expression of some key source genes improves the source-sink balance and leads to improvements in multiple key traits of rice seeds.
Collapse
Affiliation(s)
- Zhen Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yu Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xin-Yu Ren
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ke Wei
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiao-Lei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Li-Chun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Dong-Sheng Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
26
|
Ning L, Wang Y, Shi X, Zhou L, Ge M, Liang S, Wu Y, Zhang T, Zhao H. Nitrogen-dependent binding of the transcription factor PBF1 contributes to the balance of protein and carbohydrate storage in maize endosperm. THE PLANT CELL 2023; 35:409-434. [PMID: 36222567 PMCID: PMC9806651 DOI: 10.1093/plcell/koac302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Fluctuations in nitrogen (N) availability influence protein and starch levels in maize (Zea mays) seeds, yet the underlying mechanism is not well understood. Here, we report that N limitation impacted the expression of many key genes in N and carbon (C) metabolism in the developing endosperm of maize. Notably, the promoter regions of those genes were enriched for P-box sequences, the binding motif of the transcription factor prolamin-box binding factor 1 (PBF1). Loss of PBF1 altered accumulation of starch and proteins in endosperm. Under different N conditions, PBF1 protein levels remained stable but PBF1 bound different sets of target genes, especially genes related to the biosynthesis and accumulation of N and C storage products. Upon N-starvation, the absence of PBF1 from the promoters of some zein genes coincided with their reduced expression, suggesting that PBF1 promotes zein accumulation in the endosperm. In addition, PBF1 repressed the expression of sugary1 (Su1) and starch branching enzyme 2b (Sbe2b) under normal N supply, suggesting that, under N-deficiency, PBF1 redirects the flow of C skeletons for zein toward the formation of C compounds. Overall, our study demonstrates that PBF1 modulates C and N metabolism during endosperm development in an N-dependent manner.
Collapse
Affiliation(s)
| | | | - Xi Shi
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Ling Zhou
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Min Ge
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Shuaiqiang Liang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Yibo Wu
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Tifu Zhang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | | |
Collapse
|
27
|
Xu F, Tang J, Wang S, Cheng X, Wang H, Ou S, Gao S, Li B, Qian Y, Gao C, Chu C. Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nat Genet 2022; 54:1972-1982. [PMID: 36471073 DOI: 10.1038/s41588-022-01240-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022]
Abstract
Preharvest sprouting (PHS) due to lack of seed dormancy seriously threatens crop production worldwide. As a complex quantitative trait, breeding of crop cultivars with suitable seed dormancy is hindered by limited useful regulatory genes. Here by repeatable phenotypic characterization of fixed recombinant individuals, we report a quantitative genetic locus, Seed Dormancy 6 (SD6), from aus-type rice, encoding a basic helix-loop-helix (bHLH) transcription factor, which underlies the natural variation of seed dormancy. SD6 and another bHLH factor inducer of C-repeat binding factors expression 2 (ICE2) function antagonistically in controlling seed dormancy by directly regulating the ABA catabolism gene ABA8OX3, and indirectly regulating the ABA biosynthesis gene NCED2 via OsbHLH048, in a temperature-dependent manner. The weak-dormancy allele of SD6 is common in cultivated rice but undergoes negative selection in wild rice. Notably, by genome editing SD6 and its wheat homologs, we demonstrated that SD6 is a useful breeding target for alleviating PHS in cereals under field conditions.
Collapse
Affiliation(s)
- Fan Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Jiuyou Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shengxing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xi Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Hongru Wang
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Shujun Ou
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Shaopei Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Boshu Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | | | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China. .,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
28
|
Liu D, Zeng M, Wu Y, Du Y, Liu J, Luo S, Zeng Y. Comparative transcriptomic analysis provides insights into the molecular basis underlying pre-harvest sprouting in rice. BMC Genomics 2022; 23:771. [PMID: 36434522 PMCID: PMC9701047 DOI: 10.1186/s12864-022-08998-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Pre-harvest sprouting (PHS) is one of the most serious rice production constraints in areas where prolonged rainfall occurs during harvest. However, the molecular mechanisms of transcriptional regulation underlying PHS remain largely unknown. RESULTS In the current study, comparative transcriptome analyses were performed to characterize the similarities and differences between two rice varieties: PHS-sensitive Jiuxiangzhan (JXZ) and PHS-resistant Meixiangxinzhan (MXXZ). The physiological experimental results indicated that PHS causes a significant decrease in starch content and, in contrast, a significant increase in soluble sugar content and amylase activity. The extent of change in these physiological parameters in the sensitive variety JXZ was greater than that in the resistant variety MXXZ. A total of 9,602 DEGs were obtained from the transcriptome sequencing data, and 5,581 and 4,021 DEGs were identified in JXZ and MXXZ under high humidity conditions, respectively. The KEGG pathway enrichment analysis indicated that many DEGs under high humidity treatment were mainly linked to plant hormone signal transduction, carbon metabolism, starch and sucrose metabolism, and phenylpropanoid biosynthesis. Furthermore, the number of upregulated genes involved in these pathways was much higher in JXZ than in MXXZ, while the number of downregulated genes was higher in MXXZ than in JXZ. These results suggest that the physiological and biochemical processes of these pathways are more active in the PHS-sensitive JXZ than in the PHS-resistant MXXZ. CONCLUSION Based on these results, we inferred that PHS in rice results from altered phytohormone regulation, more active carbon metabolism and energy production, and enhanced phenylpropanoid biosynthesis. Our study provides a theoretical foundation for further elucidation of the complex regulatory mechanism of PHS in rice and the molecular breeding of PHS-resistant rice varieties.
Collapse
Affiliation(s)
- Dong Liu
- grid.411859.00000 0004 1808 3238Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Mingyang Zeng
- grid.411859.00000 0004 1808 3238Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Yan Wu
- grid.411859.00000 0004 1808 3238Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Yanli Du
- grid.411859.00000 0004 1808 3238Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Jianming Liu
- grid.411859.00000 0004 1808 3238Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Shaoqiang Luo
- grid.411859.00000 0004 1808 3238Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Yongjun Zeng
- grid.411859.00000 0004 1808 3238Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
| |
Collapse
|
29
|
Zhao B, Zhang H, Chen T, Ding L, Zhang L, Ding X, Zhang J, Qian Q, Xiang Y. Sdr4 dominates pre-harvest sprouting and facilitates adaptation to local climatic condition in Asian cultivated rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1246-1263. [PMID: 35442537 DOI: 10.1111/jipb.13266] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Pre-harvest sprouting (PHS), which reduces grain yield and quality, is controlled by seed dormancy genes. Because few dormancy-related genes have been cloned, the genetic basis of seed dormancy in rice (Oryza sativa L.) remains unclear. Here, we performed a genome-wide association study and linkage mapping to dissect the genetic basis of seed dormancy in rice. Our findings suggest that Seed Dormancy4 (Sdr4), a central modulator of seed dormancy, integrates the abscisic acid and gibberellic acid signaling pathways at the transcriptional level. Haplotype analysis revealed that three Sdr4 alleles in rice cultivars already existed in ancestral Oryza rufipogon accessions. Furthermore, like the semi-dwarf 1 (SD1) and Rc loci, Sdr4 underwent selection during the domestication and improvement of Asian cultivated rice. The distribution frequency of the Sdr4-n allele in different locations in Asia is negatively associated with local annual temperature and precipitation. Finally, we developed functional molecular markers for Sdr4, SD1, and Rc for use in molecular breeding. Our results provide clues about the molecular basis of Sdr4-regulated seed dormancy. Moreover, these findings provide guidance for utilizing the favorable alleles of Sdr4 and Rc to synergistically boost PHS resistance, yield, and quality in modern rice varieties.
Collapse
Affiliation(s)
- Bo Zhao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hui Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Tianxiao Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Ling Ding
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Liying Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xiali Ding
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jun Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yong Xiang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
30
|
Sreenivasulu N, Zhang C, Tiozon RN, Liu Q. Post-genomics revolution in the design of premium quality rice in a high-yielding background to meet consumer demands in the 21st century. PLANT COMMUNICATIONS 2022; 3:100271. [PMID: 35576153 PMCID: PMC9251384 DOI: 10.1016/j.xplc.2021.100271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 05/14/2023]
Abstract
The eating and cooking quality (ECQ) of rice is critical for determining its economic value in the marketplace and promoting consumer acceptance. It has therefore been of paramount importance in rice breeding programs. Here, we highlight advances in genetic studies of ECQ and discuss prospects for further enhancement of ECQ in rice. Innovations in gene- and genome-editing techniques have enabled improvements in rice ECQ. Significant genes and quantitative trait loci (QTLs) have been shown to regulate starch composition, thereby affecting amylose content and thermal and pasting properties. A limited number of genes/QTLs have been identified for other ECQ properties such as protein content and aroma. Marker-assisted breeding has identified rare alleles in diverse genetic resources that are associated with superior ECQ properties. The post-genomics-driven information summarized in this review is relevant for augmenting current breeding strategies to meet consumer preferences and growing population demands.
Collapse
Affiliation(s)
- Nese Sreenivasulu
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños 4030, Philippines.
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Rhowell N Tiozon
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños 4030, Philippines; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
31
|
Xiong M, Yu J, Wang J, Gao Q, Huang L, Chen C, Zhang C, Fan X, Zhao D, Liu QQ, Li QF. Brassinosteroids regulate rice seed germination through the BZR1-RAmy3D transcriptional module. PLANT PHYSIOLOGY 2022; 189:402-418. [PMID: 35139229 PMCID: PMC9070845 DOI: 10.1093/plphys/kiac043] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/07/2022] [Indexed: 05/03/2023]
Abstract
Seed dormancy and germination, two physiological processes unique to seed-bearing plants, are critical for plant growth and crop production. The phytohormone brassinosteroid (BR) regulates many aspects of plant growth and development, including seed germination. The molecular mechanisms underlying BR control of rice (Oryza sativa) seed germination are mostly unknown. We investigated the molecular regulatory cascade of BR in promoting rice seed germination and post-germination growth. Physiological assays indicated that blocking BR signaling, including introducing defects into the BR-insensitive 1 (BRI1) receptor or overexpressing the glycogen synthase kinase 2 (GSK2) kinase delayed seed germination and suppressed embryo growth. Our results also indicated that brassinazole-resistant 1 (BZR1) is the key downstream transcription factor that mediates BR regulation of seed germination by binding to the alpha-Amylase 3D (RAmy3D) promoter, which affects α-amylase expression and activity and the degradation of starch in the endosperm. The BZR1-RAmy3D module functions independently from the established Gibberellin MYB-alpha-amylase 1A (RAmy1A) module of the gibberellin (GA) pathway. We demonstrate that the BZR1-RAmy3D module also functions in embryo-related tissues. Moreover, RNA-sequencing (RNA-seq) analysis identified more potential BZR1-responsive genes, including those involved in starch and sucrose metabolism. Our study successfully identified the role of the BZR1-RAmy3D transcriptional module in regulating rice seed germination.
Collapse
Affiliation(s)
| | | | | | - Qiang Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Sate Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Lichun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Sate Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Chen Chen
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Sate Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xiaolei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Sate Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Dongsheng Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Sate Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | | | | |
Collapse
|
32
|
Matilla AJ. Exploring Breakthroughs in Three Traits Belonging to Seed Life. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040490. [PMID: 35214823 PMCID: PMC8875957 DOI: 10.3390/plants11040490] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 05/06/2023]
Abstract
Based on prior knowledge and with the support of new methodology, solid progress in the understanding of seed life has taken place over the few last years. This update reflects recent advances in three key traits of seed life (i.e., preharvest sprouting, genomic imprinting, and stored-mRNA). The first breakthrough refers to cloning of the mitogen-activated protein kinase-kinase 3 (MKK3) gene in barley and wheat. MKK3, in cooperation with ABA signaling, controls seed dormancy. This advance has been determinant in producing improved varieties that are resistant to preharvest sprouting. The second advance concerns to uniparental gene expression (i.e., imprinting). Genomic imprinting primarily occurs in the endosperm. Although great advances have taken place in the last decade, there is still a long way to go to complete the puzzle regarding the role of genomic imprinting in seed development. This trait is probably one of the most important epigenetic facets of developing endosperm. An example of imprinting regulation is polycomb repressive complex 2 (PRC2). The mechanism of PRC2 recruitment to target endosperm with specific genes is, at present, robustly studied. Further progress in the knowledge of recruitment of PRC2 epigenetic machinery is considered in this review. The third breakthrough referred to in this update involves stored mRNA. The role of the population of this mRNA in germination is far from known. Its relations to seed aging, processing bodies (P bodies), and RNA binding proteins (RBPs), and how the stored mRNA is targeted to monosomes, are aspects considered here. Perhaps this third trait is the one that will require greater experimental dedication in the future. In order to make progress, herein are included some questions that are needed to be answered.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
33
|
Zhang Q, Pritchard J, Mieog J, Byrne K, Colgrave ML, Wang JR, Ral JPF. Over-Expression of a Wheat Late Maturity Alpha-Amylase Type 1 Impact on Starch Properties During Grain Development and Germination. FRONTIERS IN PLANT SCIENCE 2022; 13:811728. [PMID: 35422830 PMCID: PMC9002352 DOI: 10.3389/fpls.2022.811728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/04/2022] [Indexed: 05/14/2023]
Abstract
The hydrolysis of starch is a complex process that requires synergistic action of multiple hydrolytic enzymes, including α-amylases. Wheat over-expression of TaAmy1, driven by seed specific promoter, resulted in a 20- to 230-fold total α-amylase activity in mature grains. Ectopic expression of TaAmy1 showed a significant elevated α-amylase activity in stem and leaf without consequences on transitory starch. In mature grain, overexpressed TaAMY1 was mainly located in the endosperm with high expression of TaAmy1. This is due to early developing grains having effect on starch granules from 18 days post-anthesis (DPA) and on soluble sugar accumulation from 30 DPA. While accumulation of TaAMY1 led to a high degree of damaged starch in grain, the dramatic alterations of starch visco-properties caused by the elevated levels of α-amylase essentially occurred during processing, thus suggesting a very small impact of related starch damage on grain properties. Abnormal accumulation of soluble sugar (α-gluco-oligosaccharide and sucrose) by TaAMY1 over-expression reduced the grain dormancy and enhanced abscisic acid (ABA) resistance. Germination study in the presence of α-amylase inhibitor suggested a very limited role of TaAMY1 in the early germination process and starch conversion into soluble sugars.
Collapse
Affiliation(s)
- Qin Zhang
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT, Australia
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jenifer Pritchard
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT, Australia
| | - Jos Mieog
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT, Australia
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Keren Byrne
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), St Lucia, QLD, Australia
| | - Michelle L. Colgrave
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), St Lucia, QLD, Australia
| | - Ji-Rui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jean-Philippe F. Ral
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT, Australia
- *Correspondence: Jean-Philippe F. Ral,
| |
Collapse
|
34
|
Wang Y, Zhang J, Sun M, He C, Yu K, Zhao B, Li R, Li J, Yang Z, Wang X, Duan H, Fu J, Liu S, Zhang X, Zheng J. Multi-Omics Analyses Reveal Systemic Insights into Maize Vivipary. PLANTS (BASEL, SWITZERLAND) 2021; 10:2437. [PMID: 34834800 PMCID: PMC8618366 DOI: 10.3390/plants10112437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Maize vivipary, precocious seed germination on the ear, affects yield and seed quality. The application of multi-omics approaches, such as transcriptomics or metabolomics, to classic vivipary mutants can potentially reveal the underlying mechanism. Seven maize vivipary mutants were selected for transcriptomic and metabolomic analyses. A suite of transporters and transcription factors were found to be upregulated in all mutants, indicating that their functions are required during seed germination. Moreover, vivipary mutants exhibited a uniform expression pattern of genes related to abscisic acid (ABA) biosynthesis, gibberellin (GA) biosynthesis, and ABA core signaling. NCED4 (Zm00001d007876), which is involved in ABA biosynthesis, was markedly downregulated and GA3ox (Zm00001d039634) was upregulated in all vivipary mutants, indicating antagonism between these two phytohormones. The ABA core signaling components (PYL-ABI1-SnRK2-ABI3) were affected in most of the mutants, but the expression of these genes was not significantly different between the vp8 mutant and wild-type seeds. Metabolomics analysis integrated with co-expression network analysis identified unique metabolites, their corresponding pathways, and the gene networks affected by each individual mutation. Collectively, our multi-omics analyses characterized the transcriptional and metabolic landscape during vivipary, providing a valuable resource for improving seed quality.
Collapse
Affiliation(s)
- Yiru Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
| | - Minghao Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Cheng He
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA; (C.H.); (S.L.)
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
| | - Rui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Jian Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Zongying Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
| | - Haiyang Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
- Collaborative Innovation Center of Henan Grain Crops, Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA; (C.H.); (S.L.)
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
| | - Jun Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| |
Collapse
|
35
|
Zhang Q, Pritchard J, Mieog J, Byrne K, Colgrave ML, Wang J, Ral JF. Overexpression of a wheat α-amylase type 2 impact on starch metabolism and abscisic acid sensitivity during grain germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:378-393. [PMID: 34312931 PMCID: PMC9290991 DOI: 10.1111/tpj.15444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 05/27/2023]
Abstract
Despite being of vital importance for seed establishment and grain quality, starch degradation remains poorly understood in organs such as cereal or legume seeds. In cereals, starch degradation requires the synergetic action of different isoforms of α-amylases. Ubiquitous overexpression of TaAmy2 resulted in a 2.0-437.6-fold increase of total α-amylase activity in developing leaf and harvested grains. These increases led to dramatic alterations of starch visco-properties and augmentation of soluble carbohydrate levels (mainly sucrose and α-gluco-oligosaccharide) in grain. Interestingly, the overexpression of TaAMY2 led to an absence of dormancy in ripened grain due to abscisic acid (ABA) insensitivity. Using an allosteric α-amylase inhibitor (acarbose), we demonstrated that ABA insensitivity was due to the increased soluble carbohydrate generated by the α-amylase excess. Independent from the TaAMY2 overexpression, inhibition of α-amylase during germination led to the accumulation of soluble α-gluco-oligosaccharides without affecting the first stage of germination. These findings support the hypotheses that (i) endosperm sugar may overcome ABA signalling and promote sprouting, and (ii) α-amylase may not be required for the initial stage of grain germination, an observation that questions the function of the amylolytic enzyme in the starch degradation process during germination.
Collapse
Affiliation(s)
- Qin Zhang
- Agriculture and foodCSIRO Agriculture and FoodCanberraACT2601Australia
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuan611130China
| | - Jenifer Pritchard
- Agriculture and foodCSIRO Agriculture and FoodCanberraACT2601Australia
| | - Jos Mieog
- Agriculture and foodCSIRO Agriculture and FoodCanberraACT2601Australia
- Present address:
Plant ScienceSouthern Cross UniversityLismoreACTAustralia
| | - Keren Byrne
- Agriculture and foodCSIRO Agriculture and FoodCanberraACT2601Australia
- CSIRO Agriculture and FoodSt. LuciaQLD4067Australia
| | - Michelle L. Colgrave
- Agriculture and foodCSIRO Agriculture and FoodCanberraACT2601Australia
- CSIRO Agriculture and FoodSt. LuciaQLD4067Australia
| | - Ji‐Rui Wang
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuan611130China
| | | |
Collapse
|
36
|
Huang L, Tan H, Zhang C, Li Q, Liu Q. Starch biosynthesis in cereal endosperms: An updated review over the last decade. PLANT COMMUNICATIONS 2021; 2:100237. [PMID: 34746765 PMCID: PMC8554040 DOI: 10.1016/j.xplc.2021.100237] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/08/2021] [Accepted: 08/27/2021] [Indexed: 05/13/2023]
Abstract
Starch is a vital energy source for living organisms and is a key raw material and additive in the food and non-food industries. Starch has received continuous attention in multiple research fields. The endosperm of cereals (e.g., rice, corn, wheat, and barley) is the most important site for the synthesis of storage starch. Around 2010, several excellent reviews summarized key progress in various fields of starch research, serving as important references for subsequent research. In the past 10 years, many achievements have been made in the study of starch synthesis and regulation in cereals. The present review provides an update on research progress in starch synthesis of cereal endosperms over the past decade, focusing on new enzymes and non-enzymatic proteins involved in starch synthesis, regulatory networks of starch synthesis, and the use of elite alleles of starch synthesis-related genes in cereal breeding programs. We also provide perspectives on future research directions that will further our understanding of cereal starch biosynthesis and regulation to support the rational design of ideal quality grain.
Collapse
Affiliation(s)
- Lichun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Tan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
37
|
Tai L, Wang HJ, Xu XJ, Sun WH, Ju L, Liu WT, Li WQ, Sun J, Chen KM. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2857-2876. [PMID: 33471899 DOI: 10.1093/jxb/erab024] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 05/22/2023]
Abstract
With the growth of the global population and the increasing frequency of natural disasters, crop yields must be steadily increased to enhance human adaptability to risks. Pre-harvest sprouting (PHS), a term mainly used to describe the phenomenon in which grains germinate on the mother plant directly before harvest, is a serious global problem for agricultural production. After domestication, the dormancy level of cultivated crops was generally lower than that of their wild ancestors. Although the shortened dormancy period likely improved the industrial performance of cereals such as wheat, barley, rice, and maize, the excessive germination rate has caused frequent PHS in areas with higher rainfall, resulting in great economic losses. Here, we systematically review the causes of PHS and its consequences, the major indicators and methods for PHS assessment, and emphasize the biological significance of PHS in crop production. Wheat quantitative trait loci functioning in the control of PHS are also comprehensively summarized in a meta-analysis. Finally, we use Arabidopsis as a model plant to develop more complete PHS regulatory networks for wheat. The integration of this information is conducive to the development of custom-made cultivated lines suitable for different demands and regions, and is of great significance for improving crop yields and economic benefits.
Collapse
Affiliation(s)
- Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong-Jin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiao-Jing Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei-Hang Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lan Ju
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
38
|
Liu YH, Jiang M, Li RQ, Huang JZ, Shu QY. OsKEAP1 Interacts with OsABI5 and Its Downregulation Increases the Transcription of OsABI5 and the ABA Response Genes in Germinating Rice Seeds. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10030527. [PMID: 33799872 PMCID: PMC8001349 DOI: 10.3390/plants10030527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 05/02/2023]
Abstract
Kelch-like ECH-associated protein 1 (KEAP1)-nuclear factor E2-related factor 2 (NRF2) is the key antioxidant system in animals. In a previous study, we identified a probable KEAP1 ortholog in rice, OsKEAP1, and demonstrated that the downregulation of OsKEAP1 could alter the redox system and impair plant growth, as well as increase the susceptibility to abscisic acid (ABA) in seed germination. However, no NRF2 orthologs have been identified in plants and the mechanism underlying the phenotype changes of downregulated oskeap1 mutants is yet unknown. An in silico search showed that OsABI5 is the gene that encodes a protein with the highest amino acid identity score (38.78%) to NRF2 in rice. In this study, we demonstrated that, via yeast two-hybrids analysis and bimolecular fluorescence complementation assays, OsKEAP1 interacted with OsABI5 via its Kelch repeat domain in the nucleus. In germinating seeds, the expression of OsKEAP1 was significantly downregulated in oskeap1-1 (39.5% that of the wild-type (WT)) and oskeap1-2 (64.5% that of WT), while the expression of OsABI5 was significantly increased only in oskeap1-1 (247.4% that of WT) but not in oskeap1-2 (104.8% that of WT). ABA (0.5 μM) treatment significantly increased the expression of OsKEAP1 and OsABI5 in both the oskeap1 mutants and WT, and 4 days post treatment, the transcription level of OsABI5 became significantly greater in oskeap1-1 (+87.2%) and oskeap1-2 (+55.0%) than that in the WT. The ABA-responsive genes (OsRab16A and three late embryogenesis abundant genes), which are known to be activated by OsABI5, became more responsive to ABA in both oskeap1 mutants than in the WT. The transcript abundances of genes that regulate OsABI5, e.g., OsSnRK2 (encodes a kinase that activates OsABI5), OsABI1, and OsABI2 (both encode proteins binding to OsSnRK2 and are involved in ABA signaling) were not significantly different between the two oskeap1 mutants and the WT. These results demonstrated that OsKEAP1 played a role in the ABA response in rice seed germination via regulating OsABI5, which is the key player in the ABA response. In-depth analyses of the components and their action mode of the KEAP1-NRF2 and ABA signaling pathways suggested that OsKEAP1 likely formed a complex with OsABI5 and OsKEG, and OsABI5 was ubiquitinated by OsKEG and subsequently degraded under physiological conditions; meanwhile, under oxidative stress or with increased an ABA level, OsABI5 was released from the complex, phosphorylated, and transactivated the ABA response genes. Therefore, OsKEAP1-OsABI5 bore some resemblance to KEAP1-NRF2 in terms of its function and working mechanism.
Collapse
Affiliation(s)
- Yan-Hua Liu
- National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-H.L.); (M.J.); (J.-Z.H.)
| | - Meng Jiang
- National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-H.L.); (M.J.); (J.-Z.H.)
| | - Rui-Qing Li
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China;
| | - Jian-Zhong Huang
- National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-H.L.); (M.J.); (J.-Z.H.)
- Key Laboratory for Nuclear Agricultural Sciences of Zhejiang Province and Ministry of Agriculture and Rural Affairs, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qing-Yao Shu
- National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-H.L.); (M.J.); (J.-Z.H.)
- Correspondence:
| |
Collapse
|
39
|
Bizouerne E, Buitink J, Vu BL, Vu JL, Esteban E, Pasha A, Provart N, Verdier J, Leprince O. Gene co-expression analysis of tomato seed maturation reveals tissue-specific regulatory networks and hubs associated with the acquisition of desiccation tolerance and seed vigour. BMC PLANT BIOLOGY 2021; 21:124. [PMID: 33648457 PMCID: PMC7923611 DOI: 10.1186/s12870-021-02889-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/11/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND During maturation seeds acquire several physiological traits to enable them to survive drying and disseminate the species. Few studies have addressed the regulatory networks controlling acquisition of these traits at the tissue level particularly in endospermic seeds such as tomato, which matures in a fully hydrated environment and does not undergo maturation drying. Using temporal RNA-seq analyses of the different seed tissues during maturation, gene network and trait-based correlations were used to explore the transcriptome signatures associated with desiccation tolerance, longevity, germination under water stress and dormancy. RESULTS During maturation, 15,173 differentially expressed genes were detected, forming a gene network representing 21 expression modules, with 3 being specific to seed coat and embryo and 5 to the endosperm. A gene-trait significance measure identified a common gene module between endosperm and embryo associated with desiccation tolerance and conserved with non-endospermic seeds. In addition to genes involved in protection such LEA and HSP and ABA response, the module included antioxidant and repair genes. Dormancy was released concomitantly with the increase in longevity throughout fruit ripening until 14 days after the red fruit stage. This was paralleled by an increase in SlDOG1-2 and PROCERA transcripts. The progressive increase in seed vigour was captured by three gene modules, one in common between embryo and endosperm and two tissue-specific. The common module was enriched with genes associated with mRNA processing in chloroplast and mitochondria (including penta- and tetratricopeptide repeat-containing proteins) and post-transcriptional regulation, as well several flowering genes. The embryo-specific module contained homologues of ABI4 and CHOTTO1 as hub genes associated with seed vigour, whereas the endosperm-specific module revealed a diverse set of processes that were related to genome stability, defence against pathogens and ABA/GA response genes. CONCLUSION The spatio-temporal co-expression atlas of tomato seed maturation will serve as a valuable resource for the in-depth understanding of the dynamics of gene expression associated with the acquisition of seed vigour at the tissue level.
Collapse
Affiliation(s)
- Elise Bizouerne
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Julia Buitink
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Benoît Ly Vu
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Joseph Ly Vu
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Eddi Esteban
- Department of Cell and Systems Biology / Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology / Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Nicholas Provart
- Department of Cell and Systems Biology / Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Jérôme Verdier
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Olivier Leprince
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France.
| |
Collapse
|
40
|
Genome-Wide Identification and Expression Analysis of OsbZIP09 Target Genes in Rice Reveal Its Mechanism of Controlling Seed Germination. Int J Mol Sci 2021; 22:ijms22041661. [PMID: 33562219 PMCID: PMC7915905 DOI: 10.3390/ijms22041661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 01/01/2023] Open
Abstract
Seed dormancy and germination are key events in plant development and are critical for crop production, and defects in seed germination or the inappropriate release of seed dormancy cause substantial losses in crop yields. Rice is the staple food for more than half of the world's population, and preharvest sprouting (PHS) is one of the most severe problems in rice production, due to a low level of seed dormancy, especially under warm and damp conditions. Therefore, PHS leads to yield loss and a decrease in rice quality and vitality. We reveal that mutation of OsbZIP09 inhibited rice PHS. Analysis of the expression of OsbZIP09 and its encoded protein sequence and structure indicated that OsbZIP09 is a typical bZIP transcription factor that contains conserved bZIP domains, and its expression is induced by ABA. Moreover, RNA sequencing (RNA-seq) and DNA affinity purification sequencing (DAP-seq) analyses were performed and 52 key direct targets of OsbZIP09 were identified, including OsLOX2 and Late Embryogenesis Abundant (LEA) family genes, which are involved in controlling seed germination. Most of these key targets showed consistent changes in expression in response to abscisic acid (ABA) treatment and OsbZIP09 mutation. The data characterize a number of key target genes that are directly regulated by OsbZIP09 and contribute to revealing the molecular mechanism that underlies how OsbZIP09 controls rice seed germination.
Collapse
|
41
|
Zhao J, He Y, Huang S, Wang Z. Advances in the Identification of Quantitative Trait Loci and Genes Involved in Seed Vigor in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:659307. [PMID: 34335643 PMCID: PMC8316977 DOI: 10.3389/fpls.2021.659307] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/22/2021] [Indexed: 05/08/2023]
Abstract
Seed vigor is a complex trait, including the seed germination, seedling emergence, and growth, as well as seed storability and stress tolerance, which is important for direct seeding in rice. Seed vigor is established during seed development, and its level is decreased during seed storage. Seed vigor is influenced by genetic and environmental factors during seed development, storage, and germination stages. A lot of factors, such as nutrient reserves, seed dying, seed dormancy, seed deterioration, stress conditions, and seed treatments, will influence seed vigor during seed development to germination stages. This review highlights the current advances on the identification of quantitative trait loci (QTLs) and regulatory genes involved in seed vigor at seed development, storage, and germination stages in rice. These identified QTLs and regulatory genes will contribute to the improvement of seed vigor by breeding, biotechnological, and treatment approaches.
Collapse
|
42
|
Luo X, Dai Y, Zheng C, Yang Y, Chen W, Wang Q, Chandrasekaran U, Du J, Liu W, Shu K. The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress. THE NEW PHYTOLOGIST 2021; 229:950-962. [PMID: 32916762 DOI: 10.1111/nph.16921] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/25/2020] [Indexed: 05/18/2023]
Abstract
Salinity stress enhances reactive oxygen species (ROS) accumulation by activating the transcription of NADPH oxidase genes such as RbohD, thus mediating plant developmental processes, including seed germination. However, how salinity triggers the expression of ROS-metabolism-related genes and represses seed germination has not yet been fully addressed. In this study, we show that Abscisic Acid-Insensitive 4 (ABI4), a key component in abscisic acid (ABA) signaling, directly combines with RbohD and Vitamin C Defective 2 (VTC2), the key genes involved in ROS production and scavenging, to modulate ROS metabolism during seed germination under salinity stress. Salinity-induced ABI4 enhances RbohD expression by physically interacting with its promoter, and subsequently promotes ROS accumulation, thus resulting in cell membrane damage and a decrease in seed vigor. Additional genetic evidence indicated that the rbohd mutant largely rescues the salt-hypersensitive phenotype of ABI4 overexpression seeds. Consistently, the abi4/vtc2 double mutant showed the salt-sensitive phenotype, similar to the vtc2 mutant, suggesting that both RbohD and VTC2 are epistatic to ABI4 genetically. Altogether, these results suggest that the salt-induced RbohD transcription and ROS accumulation is dependent on ABI4, and that the ABI4-RbohD/VTC2 regulatory module integrates both ROS metabolism and cell membrane integrity, ultimately repressing seed germination under salinity stress.
Collapse
Affiliation(s)
- Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yujia Dai
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chuan Zheng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yingzeng Yang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Qichao Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | | | - Junbo Du
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weiguo Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| |
Collapse
|
43
|
Gao S, Chu C. Gibberellin Metabolism and Signaling: Targets for Improving Agronomic Performance of Crops. PLANT & CELL PHYSIOLOGY 2020; 61:1902-1911. [PMID: 32761079 PMCID: PMC7758032 DOI: 10.1093/pcp/pcaa104] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/24/2020] [Indexed: 05/19/2023]
Abstract
Gibberellins (GAs) are a class of tetracyclic diterpenoid phytohormones that regulate many aspects of plant development, including seed germination, stem elongation, leaf expansion, pollen maturation, and the development of flowers, fruits and seeds. During the past decades, the primary objective of crop breeding programs has been to increase productivity or yields. 'Green Revolution' genes that can produce semidwarf, high-yielding crops were identified as GA synthesis or response genes, confirming the value of research on GAs in improving crop productivity. The manipulation of GA status either by genetic alteration or by exogenous application of GA or GA biosynthesis inhibitors is often used to optimize plant growth and yields. In this review, we summarize the roles of GAs in major aspects of crop growth and development and present the possible targets for the fine-tuning of GA metabolism and signaling as a promising strategy for crop improvement.
Collapse
Affiliation(s)
- Shaopei Gao
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education/Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding author: E-mail, ; Fax, +86 010 64806608
| |
Collapse
|
44
|
López-Marqués RL, Nørrevang AF, Ache P, Moog M, Visintainer D, Wendt T, Østerberg JT, Dockter C, Jørgensen ME, Salvador AT, Hedrich R, Gao C, Jacobsen SE, Shabala S, Palmgren M. Prospects for the accelerated improvement of the resilient crop quinoa. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5333-5347. [PMID: 32643753 PMCID: PMC7501820 DOI: 10.1093/jxb/eraa285] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/11/2020] [Indexed: 05/04/2023]
Abstract
Crops tolerant to drought and salt stress may be developed by two approaches. First, major crops may be improved by introducing genes from tolerant plants. For example, many major crops have wild relatives that are more tolerant to drought and high salinity than the cultivated crops, and, once deciphered, the underlying resilience mechanisms could be genetically manipulated to produce crops with improved tolerance. Secondly, some minor (orphan) crops cultivated in marginal areas are already drought and salt tolerant. Improving the agronomic performance of these crops may be an effective way to increase crop and food diversity, and an alternative to engineering tolerance in major crops. Quinoa (Chenopodium quinoa Willd.), a nutritious minor crop that tolerates drought and salinity better than most other crops, is an ideal candidate for both of these approaches. Although quinoa has yet to reach its potential as a fully domesticated crop, breeding efforts to improve the plant have been limited. Molecular and genetic techniques combined with traditional breeding are likely to change this picture. Here we analyse protein-coding sequences in the quinoa genome that are orthologous to domestication genes in established crops. Mutating only a limited number of such genes by targeted mutagenesis appears to be a promising route for accelerating the improvement of quinoa and generating a nutritious high-yielding crop that can meet the future demand for food production in a changing climate.
Collapse
Affiliation(s)
- Rosa L López-Marqués
- NovoCrops Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Correspondence: or
| | - Anton F Nørrevang
- NovoCrops Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Max Moog
- NovoCrops Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Davide Visintainer
- NovoCrops Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Toni Wendt
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, Copenhagen V, Denmark
| | - Jeppe T Østerberg
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, Copenhagen V, Denmark
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, Copenhagen V, Denmark
| | - Morten E Jørgensen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, Copenhagen V, Denmark
| | - Andrés Torres Salvador
- The Quinoa Company, Wageningen, The Netherlands
- Plant Biotechnology Laboratory (COCIBA), Universidad San Francisco de Quito USFQ, Cumbayá, Ecuador
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | | | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Michael Palmgren
- NovoCrops Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Correspondence: or
| |
Collapse
|
45
|
Zhou L, Lu Y, Zhang Y, Zhang C, Zhao L, Yao S, Sun X, Chen T, Zhu Z, Zhao Q, Zhao C, Liang W, Lu K, Wang C, Liu Q. Characteristics of grain quality and starch fine structure of japonica rice kernels following preharvest sprouting. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Song W, Hao Q, Cai M, Wang Y, Zhu X, Liu X, Huang Y, Nguyen T, Yang C, Yu J, Wu H, Chen L, Tian Y, Jiang L, Wan J. Rice OsBT1 regulates seed dormancy through the glycometabolism pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:469-476. [PMID: 32289640 DOI: 10.1016/j.plaphy.2020.03.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Seed dormancy and germination in rice (Oryza sativa L.) are complex and important agronomic traits that involve a number of physiological processes and energy. A mutant named h470 selected from a60Co-radiated indica cultivar N22 population had weakened dormancy that was insensitive to Gibberellin (GA) and Abscisic acid (ABA). The levels of GA4 and ABA were higher in h470 than in wild-type (WT) plants. The gene controlling seed dormancy in h470 was cloned by mut-map and transgenesis and confirmed to encode an ADP-glucose transporter protein. A 1 bp deletion in Os02g0202400 (OsBT1) caused the weaker seed dormancy in h470. Metabolomics analyses showed that most sugar components were higher in h470 seeds than the wild type. The mutation in h470 affected glycometabolism.
Collapse
Affiliation(s)
- Weihan Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qixian Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengying Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingjie Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunshuai Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Thanhliem Nguyen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing, 210095, China; Department of Biology and Agricultural Engineering, Quynhon University, Quynhon, Binhdinh, 590000, Viet Nam
| | - Chunyan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiangfeng Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongming Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liangming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
47
|
Zhang C, Zhou L, Lu Y, Yang Y, Feng L, Hao W, Li Q, Fan X, Zhao D, Liu Q. Changes in the physicochemical properties and starch structures of rice grains upon pre-harvest sprouting. Carbohydr Polym 2020; 234:115893. [DOI: 10.1016/j.carbpol.2020.115893] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 11/29/2022]
|
48
|
Genetic Dissection of Seed Dormancy using Chromosome Segment Substitution Lines in Rice ( Oryza sativa L.). Int J Mol Sci 2020; 21:ijms21041344. [PMID: 32079255 PMCID: PMC7072991 DOI: 10.3390/ijms21041344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 01/26/2023] Open
Abstract
Timing of germination determines whether a new plant life cycle can be initiated; therefore, appropriate dormancy and rapid germination under diverse environmental conditions are the most important features for a seed. However, the genetic architecture of seed dormancy and germination behavior remains largely elusive. In the present study, a linkage analysis for seed dormancy and germination behavior was conducted using a set of 146 chromosome segment substitution lines (CSSLs), of which each carries a single or a few chromosomal segments of Nipponbare (NIP) in the background of Zhenshan 97 (ZS97). A total of 36 quantitative trait loci (QTLs) for six germination parameters were identified. Among them, qDOM3.1 was validated as a major QTL for seed dormancy in a segregation population derived from the qDOM3.1 near-isogenic line, and further delimited into a genomic region of 90 kb on chromosome 3. Based on genetic analysis and gene expression profiles, the candidate genes were restricted to eight genes, of which four were responsive to the addition of abscisic acid (ABA). Among them, LOC_Os03g01540 was involved in the ABA signaling pathway to regulate seed dormancy. The results will facilitate cloning the major QTLs and understanding the genetic architecture for seed dormancy and germination in rice and other crops.
Collapse
|
49
|
An L, Tao Y, Chen H, He M, Xiao F, Li G, Ding Y, Liu Z. Embryo-Endosperm Interaction and Its Agronomic Relevance to Rice Quality. FRONTIERS IN PLANT SCIENCE 2020; 11:587641. [PMID: 33424883 PMCID: PMC7793959 DOI: 10.3389/fpls.2020.587641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/09/2020] [Indexed: 05/07/2023]
Abstract
Embryo-endosperm interaction is the dominant process controlling grain filling, thus being crucial for yield and quality formation of the three most important cereals worldwide, rice, wheat, and maize. Fundamental science of functional genomics has uncovered several key genetic programs for embryo and endosperm development, but the interaction or communication between the two tissues is largely elusive. Further, the significance of this interaction for grain filling remains open. This review starts with the morphological and developmental aspects of rice grain, providing a spatial and temporal context. Then, it offers a comprehensive and integrative view of this intercompartmental interaction, focusing on (i) apoplastic nutrient flow from endosperm to the developing embryo, (ii) dependence of embryo development on endosperm, (iii) regulation of endosperm development by embryo, and (iv) bidirectional dialogues between embryo and endosperm. From perspective of embryo-endosperm interaction, the mechanisms underlying the complex quality traits are explored, with grain chalkiness as an example. The review ends with three open questions with scientific and agronomic importance that should be addressed in the future. Notably, current knowledge and future prospects of this hot research topic are reviewed from a viewpoint of crop physiology, which should be helpful for bridging the knowledge gap between the fundamental plant sciences and the practical technologies.
Collapse
Affiliation(s)
- Lu An
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yang Tao
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hao Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Mingjie He
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Feng Xiao
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ganghua Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Zhenghui Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Zhenghui Liu,
| |
Collapse
|
50
|
Xu F, Tang J, Gao S, Cheng X, Du L, Chu C. Control of rice pre-harvest sprouting by glutaredoxin-mediated abscisic acid signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1036-1051. [PMID: 31436865 DOI: 10.1111/tpj.14501] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/27/2019] [Accepted: 08/07/2019] [Indexed: 05/18/2023]
Abstract
Pre-harvest sprouting (PHS) is one of the major problems in cereal production worldwide, which causes significant losses of both yield and quality; however, the molecular mechanism underlying PHS remains largely unknown. Here, we identified a dominant PHS mutant phs9-D. The corresponding gene PHS9 encodes a higher plant unique CC-type glutaredoxin and is specifically expressed in the embryo at the late embryogenesis stage, implying that PHS9 plays some roles in the late stage of seed development. Yeast two-hybrid screening showed that PHS9 could interact with OsGAP, which is an interaction partner of the abscicic acid (ABA) receptor OsRCAR1. PHS9- or OsGAP overexpression plants showed reduced ABA sensitivity in seed germination, whereas PHS9 or OsGAP knock-out mutant plants showed increased ABA sensitivity in seed germination, suggesting that PHS9 and OsGAP acted as negative regulators in ABA signaling during seed germination. Interestingly, the germination of PHS9 and OsGAP overexpression or knock-out plant seeds was weakly promoted by H2 O2 , implying that PHS9 and OsGAP could affect reactive oxygen species (ROS) signaling during seed germination. These results indicate that PHS9 plays an important role in the regulation of rice PHS through the integration of ROS signaling and ABA signaling.
Collapse
Affiliation(s)
- Fan Xu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jiuyou Tang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shaopei Gao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xi Cheng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Lin Du
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|