1
|
Aragón-Raygoza A, Strable J. Diverse roles of ethylene in maize growth and development, and its importance in shaping plant architecture. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1854-1865. [PMID: 39973110 PMCID: PMC12066121 DOI: 10.1093/jxb/eraf062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/18/2025] [Indexed: 02/21/2025]
Abstract
The gaseous plant hormone ethylene is a key developmental and growth regulator, and a pivotal endogenous response signal to abiotic and biotic interactions, including stress. Much of what is known about ethylene biosynthesis, perception, and signaling comes from decades of research primarily in Arabidopsis thaliana and other eudicot model systems. In contrast, detailed knowledge on the ethylene pathway and response to the hormone is markedly limited in maize (Zea mays L.), a global cereal crop that is a major source of calories for humans and livestock, as well as a key industrial biofeedstock. Recent reports of forward screens and targeted reverse genetics have provided important insight into conserved and unique differences of the ethylene pathway and downstream responses. Natural and edited allelic variation in the promoter regions and coding sequences of ethylene biosynthesis and signaling genes alters maize shoot and root architectures, and plays a crucial role in biomass and grain yields. This review discusses recent advances in ethylene research in maize, with an emphasis on the role of ethylene in regulating growth and development of the shoot and root systems, and ultimately how this crucial hormone impacts plant architecture and grain yield.
Collapse
Affiliation(s)
| | - Josh Strable
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
2
|
Chen B, Chai C, Duan M, Yang X, Cai Z, Jia J, Xia Q, Luo S, Yin L, Li Y, Huang N, Ma Q, Nian H, Cheng Y. Identification of quantitative trait loci for lodging and related agronomic traits in soybean (Glycine max [L.] Merr.). BMC Genomics 2024; 25:900. [PMID: 39350068 PMCID: PMC11440893 DOI: 10.1186/s12864-024-10794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Lodging, a crucial agronomic trait linked to soybean yield, poses a significant challenge in soybean production. Nevertheless, there has been less research on soybean lodging compared to other important agronomic traits, hindering progress in breeding high-yield soybeans. Our goals were to investigate lodging, pinpoint quantitative trait loci (QTL) linked to lodging, and forecast potential candidate genes linked to this trait. To achieve this, we employed a recombinant inbred line (RIL) population derived from a cross between Guizao 1 and B13 (GB) across various environments. RESULTS The lodging score of the RIL population was found to be significantly positively correlated with flowering time, maturity time, plant height, number of main stem nodes, stem diameter, and internode length, with correlation coefficients ranging from 0.457 to 0.783. A total of 84 QTLs associated with soybean lodging and related traits were identified using the GB population. The contribution of phenotypic variance ranged from 1.26 to 66.87%, with LOD scores ranging from 2.52 to 69.22. Additionally, within these QTLs, a stable major QTL associated with lodging was newly discovered in the GB population. Out of the ten major QTLs associated with other related traits, nine of them were situated within the qLD-4-1 interval of the major lodging score locus, displaying phenotypic variations ranging from 12.10 to 66.87%. Specific alterations in gene expression were revealed through the analysis of resequencing data from the two parental lines, potentially indicating their significant roles in lodging. Subsequently, it was determined through qRT-PCR that four genes are likely to be the major genes controlling soybean lodging. CONCLUSIONS This study's findings offer valuable insights into the genetic underpinnings of soybean lodging resistance traits. By comprehending the potential genetic factors associated with lodging, this research lays the groundwork for breeding high-yield soybeans with improved lodging resistance.
Collapse
Affiliation(s)
- Bo Chen
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Cheng Chai
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Mingming Duan
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Ximeng Yang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Zhandong Cai
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jia Jia
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Qiuju Xia
- Rice Molecular Breeding Institute, Granlux Associated Grains, Shenzhen, Guangdong, 518023, People's Republic of China
| | - Shilin Luo
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Lu Yin
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Yunxia Li
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Nianen Huang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Qibin Ma
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Hai Nian
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
| | - Yanbo Cheng
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
| |
Collapse
|
3
|
Meng J, Li W, Qi F, Yang T, Li N, Wan J, Li X, Jiang Y, Wang C, Huang M, Zhang Y, Chen Y, Teotia S, Tang G, Zhang Z, Tang J. Knockdown of microRNA390 Enhances Maize Brace Root Growth. Int J Mol Sci 2024; 25:6791. [PMID: 38928499 PMCID: PMC11203754 DOI: 10.3390/ijms25126791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Brace root architecture is a critical determinant of maize's stalk anchorage and nutrition uptake, influencing root lodging resistance, stress tolerance, and plant growth. To identify the key microRNAs (miRNAs) in control of maize brace root growth, we performed small RNA sequencing using brace root samples at emergence and growth stages. We focused on the genetic modulation of brace root development in maize through manipulation of miR390 and its downstream regulated auxin response factors (ARFs). In the present study, miR167, miR166, miR172, and miR390 were identified to be involved in maize brace root growth in inbred line B73. Utilizing short tandem target mimic (STTM) technology, we further developed maize lines with reduced miR390 expression and analyzed their root architecture compared to wild-type controls. Our findings show that STTM390 maize lines exhibit enhanced brace root length and increased whorl numbers. Gene expression analyses revealed that the suppression of miR390 leads to upregulation of its downstream regulated ARF genes, specifically ZmARF11 and ZmARF26, which may significantly alter root architecture. Additionally, loss-of-function mutants for ZmARF11 and ZmARF26 were characterized to further confirm the role of these genes in brace root growth. These results demonstrate that miR390, ZmARF11, and ZmARF26 play crucial roles in regulating maize brace root growth; the involved complicated molecular mechanisms need to be further explored. This study provides a genetic basis for breeding maize varieties with improved lodging resistance and adaptability to diverse agricultural environments.
Collapse
Affiliation(s)
- Juan Meng
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Weiya Li
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Feiyan Qi
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Tianxiao Yang
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA;
| | - Na Li
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Jiong Wan
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Xiaoqi Li
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Yajuan Jiang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Chenhui Wang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Meilian Huang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Yuanyuan Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Yongqiang Chen
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Sachin Teotia
- Department of Biotechnology, Sharda University, Greater Noida 201306, India;
| | - Guiliang Tang
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA;
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
4
|
Xie S, Luo H, Huang W, Jin W, Dong Z. Striking a growth-defense balance: Stress regulators that function in maize development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:424-442. [PMID: 37787439 DOI: 10.1111/jipb.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/01/2023] [Indexed: 10/04/2023]
Abstract
Maize (Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA), together with reactive oxygen species (ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which must be finely tuned to achieve high yields in crops while maintaining some level of defense. In this review, we provide an in-depth analysis of recent research on the developmental functions of stress regulators, focusing specifically on maize. By unraveling the contributions of these regulators to maize development, we present new avenues for enhancing maize cultivation and growth while highlighting the potential risks associated with manipulating stress regulators to enhance grain yields in the face of environmental challenges.
Collapse
Affiliation(s)
- Shiyi Xie
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Luo
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhaobin Dong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
5
|
Li J, Mintgen MAC, D'Haeyer S, Helfer A, Nelissen H, Inzé D, Dhondt S. PhenoWell®-A novel screening system for soil-grown plants. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:55-69. [PMID: 37288161 PMCID: PMC10243540 DOI: 10.1002/pei3.10098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/09/2023]
Abstract
As agricultural production is reaching its limits regarding outputs and land use, the need to further improve crop yield is greater than ever. The limited translatability from in vitro lab results into more natural growth conditions in soil remains problematic. Although considerable progress has been made in developing soil-growth assays to tackle this bottleneck, the majority of these assays use pots or whole trays, making them not only space- and resource-intensive, but also hampering the individual treatment of plants. Therefore, we developed a flexible and compact screening system named PhenoWell® in which individual seedlings are grown in wells filled with soil allowing single-plant treatments. The system makes use of an automated image-analysis pipeline that extracts multiple growth parameters from individual seedlings over time, including projected rosette area, relative growth rate, compactness, and stockiness. Macronutrient, hormone, salt, osmotic, and drought stress treatments were tested in the PhenoWell® system. The system is also optimized for maize with results that are consistent with Arabidopsis while different in amplitude. We conclude that the PhenoWell® system enables a high-throughput, precise, and uniform application of a small amount of solution to individually soil-grown plants, which increases the replicability and reduces variability and compound usage.
Collapse
Affiliation(s)
- Ji Li
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems BiologyVIBGhentBelgium
| | - Michael A. C. Mintgen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems BiologyVIBGhentBelgium
| | - Sam D'Haeyer
- Discovery SciencesVIBGhentBelgium
- Screening CoreVIBGhentBelgium
| | | | - Hilde Nelissen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems BiologyVIBGhentBelgium
| | - Dirk Inzé
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems BiologyVIBGhentBelgium
| | - Stijn Dhondt
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems BiologyVIBGhentBelgium
| |
Collapse
|
6
|
Zheng Z, Guo B, Dutta S, Roy V, Liu H, Schnable PS. The 2020 derecho revealed limited overlap between maize genes associated with root lodging and root system architecture. PLANT PHYSIOLOGY 2023:kiad194. [PMID: 36974884 DOI: 10.1093/plphys/kiad194] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/03/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
Roots anchor plants in soil, and the failure of anchorage (i.e., root lodging) is a major cause of crop yield loss. Anchorage is often assumed to be driven by root system architecture. We made use of a natural experiment to measure the overlap between the genetic regulation of root system architecture and anchorage. After one of the most devastating derechos ever recorded in August 2020, we phenotyped root lodging in a maize (Zea mays) diversity panel consisting of 369 genotypes grown in six environments affected by the derecho. Genome-wide association studies and transcriptome-wide association studies identified 118 candidate genes associated with root lodging. Thirty-four percent (40/118) of these were homologs of genes from Arabidopsis (Arabidopsis thaliana) that affect traits such as root morphology and lignin content, expected to affect root lodging. Finally, Gene Ontology enrichment analysis of the candidate genes and their predicted interaction partners at the transcriptional and translational levels revealed the complex regulatory networks of physiological and biochemical pathways underlying root lodging in maize. Limited overlap between genes associated with lodging resistance and root system architecture in this diversity panel suggests that anchorage depends in part on factors other than gross characteristics of root system architecture.
Collapse
Affiliation(s)
- Zihao Zheng
- Department of Agronomy, Iowa State University, Ames, IA 50011-1051, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011-3650, USA
| | - Bufei Guo
- Department of Statistics, Iowa State University, Ames, IA, 50011-1090, USA
| | - Somak Dutta
- Department of Statistics, Iowa State University, Ames, IA, 50011-1090, USA
| | - Vivekananda Roy
- Department of Statistics, Iowa State University, Ames, IA, 50011-1090, USA
| | - Huyu Liu
- Department of Agronomy, Iowa State University, Ames, IA 50011-1051, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011-3650, USA
| | - Patrick S Schnable
- Department of Agronomy, Iowa State University, Ames, IA 50011-1051, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011-3650, USA
| |
Collapse
|
7
|
Swain R, Sahoo S, Behera M, Rout GR. Instigating prevalent abiotic stress resilience in crop by exogenous application of phytohormones and nutrient. FRONTIERS IN PLANT SCIENCE 2023; 14:1104874. [PMID: 36844040 PMCID: PMC9947512 DOI: 10.3389/fpls.2023.1104874] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 05/29/2023]
Abstract
In recent times, the demand for food and feed for the ever-increasing population has achieved unparalleled importance, which cannot afford crop yield loss. Now-a-days, the unpleasant situation of abiotic stress triggers crop improvement by affecting the different metabolic pathways of yield and quality advances worldwide. Abiotic stress like drought, salinity, cold, heat, flood, etc. in plants diverts the energy required for growth to prevent the plant from shock and maintain regular homeostasis. Hence, the plant yield is drastically reduced as the energy is utilized for overcoming the stress in plants. The application of phytohormones like the classical auxins, cytokinins, ethylene, and gibberellins, as well as more recent members including brassinosteroids, jasmonic acids, etc., along with both macro and micronutrients, have enhanced significant attention in creating key benefits such as reduction of ionic toxicity, improving oxidative stress, maintaining water-related balance, and gaseous exchange modification during abiotic stress conditions. Majority of phytohormones maintain homeostasis inside the cell by detoxifying the ROS and enhancing the antioxidant enzyme activities which can enhance tolerance in plants. At the molecular level, phytohormones activate stress signaling pathways or genes regulated by abscisic acid (ABA), salicylic acid (SA), Jasmonic acid (JA), and ethylene. The various stresses primarily cause nutrient deficiency and reduce the nutrient uptake of plants. The application of plant nutrients like N, K, Ca, and Mg are also involved in ROS scavenging activities through elevating antioxidants properties and finally decreasing cell membrane leakage and increasing the photosynthetic ability by resynthesizing the chlorophyll pigment. This present review highlighted the alteration of metabolic activities caused by abiotic stress in various crops, the changes of vital functions through the application of exogenous phytohormones and nutrition, as well as their interaction.
Collapse
Affiliation(s)
- Rinny Swain
- Department of Agricultural Biotechnology, Crop Improvement Division, School of Agriculture, Gandhi University of Engineering and Technology (GIET) University, Rayagada, Odisha, India
| | - Smrutishree Sahoo
- Department of Genetics and Plant Breeding, Crop Improvement Division, School of Agriculture, GIET University, Rayagada, Odisha, India
| | - Mamata Behera
- Department of Genetics and Plant Breeding, Crop Improvement Division, School of Agriculture, GIET University, Rayagada, Odisha, India
| | - Gyana Ranjan Rout
- Department of Agricultural Biotechnology, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
8
|
Sparks EE. Maize plants and the brace roots that support them. THE NEW PHYTOLOGIST 2023; 237:48-52. [PMID: 36102037 DOI: 10.1111/nph.18489] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Brace roots are a unique but poorly understood set of organs found in some large cereal crops such as maize. These roots develop from aerial stem nodes and can remain aerial or grow into the ground. Despite their name, the function of these roots to brace the plant was only recently shown. In this article, I discuss the current understanding of brace root function and development, as well as the multitude of open questions that remain about these fascinating organs.
Collapse
Affiliation(s)
- Erin E Sparks
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, Newark, DE, 19713, USA
| |
Collapse
|
9
|
Ren W, Zhao L, Liang J, Wang L, Chen L, Li P, Liu Z, Li X, Zhang Z, Li J, He K, Zhao Z, Ali F, Mi G, Yan J, Zhang F, Chen F, Yuan L, Pan Q. Genome-wide dissection of changes in maize root system architecture during modern breeding. NATURE PLANTS 2022; 8:1408-1422. [PMID: 36396706 DOI: 10.1038/s41477-022-01274-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 10/12/2022] [Indexed: 05/12/2023]
Abstract
Appropriate root system architecture (RSA) can improve maize yields in densely planted fields, but little is known about its genetic basis in maize. Here we performed root phenotyping of 14,301 field-grown plants from an association mapping panel to study the genetic architecture of maize RSA. A genome-wide association study identified 81 high-confidence RSA-associated candidate genes and revealed that 28 (24.3%) of known root-related genes were selected during maize domestication and improvement. We found that modern maize breeding has selected for a steeply angled root system. Favourable alleles related to steep root system angle have continuously accumulated over the course of modern breeding, and our data pinpoint the root-related genes that have been selected in different breeding eras. We confirm that two auxin-related genes, ZmRSA3.1 and ZmRSA3.2, contribute to the regulation of root angle and depth in maize. Our genome-wide identification of RSA-associated genes provides new strategies and genetic resources for breeding maize suitable for high-density planting.
Collapse
Affiliation(s)
- Wei Ren
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Longfei Zhao
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiaxing Liang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Lifeng Wang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Limei Chen
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Pengcheng Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhigang Liu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaojie Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Zhihai Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Jieping Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Kunhui He
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Zheng Zhao
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Farhan Ali
- Cereal Crops Research Institute, Pirsabak, Nowshera, Pakistan
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China.
| | - Qingchun Pan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
| |
Collapse
|
10
|
Kumar J, Kumar A, Sen Gupta D, Kumar S, DePauw RM. Reverse genetic approaches for breeding nutrient-rich and climate-resilient cereal and food legume crops. Heredity (Edinb) 2022; 128:473-496. [PMID: 35249099 PMCID: PMC9178024 DOI: 10.1038/s41437-022-00513-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
In the last decade, advancements in genomics tools and techniques have led to the discovery of many genes. Most of these genes still need to be characterized for their associated function and therefore, such genes remain underutilized for breeding the next generation of improved crop varieties. The recent developments in different reverse genetic approaches have made it possible to identify the function of genes controlling nutritional, biochemical, and metabolic traits imparting drought, heat, cold, salinity tolerance as well as diseases and insect-pests. This article focuses on reviewing the current status and prospects of using reverse genetic approaches to breed nutrient-rich and climate resilient cereal and food legume crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| | - Ron M DePauw
- Advancing Wheat Technologies, 118 Strathcona Rd SW, Calgary, AB, T3H 1P3, Canada
| |
Collapse
|
11
|
Hostetler AN, Erndwein L, Ganji E, Reneau JW, Killian ML, Sparks EE. Maize brace root mechanics vary by whorl, genotype and reproductive stage. ANNALS OF BOTANY 2022; 129:657-668. [PMID: 35238341 PMCID: PMC9113123 DOI: 10.1093/aob/mcac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Root lodging is responsible for significant crop losses worldwide. During root lodging, roots fail by breaking, buckling or pulling out of the ground. In maize, above-ground roots, called brace roots, have been shown to reduce susceptibility to root lodging. However, the underlying structural-functional properties of brace roots that prevent root lodging are poorly defined. In this study, we quantified structural mechanical properties, geometry and bending moduli for brace roots from different whorls, genotypes and reproductive stages. METHODS Using 3-point bend tests, we show that brace root mechanics are variable by whorl, genotype and reproductive stage. KEY RESULTS Generally, we find that within each genotype and reproductive stage, the brace roots from the first whorl (closest to the ground) had higher structural mechanical properties and a lower bending modulus than brace roots from the second whorl. There was additional variation between genotypes and reproductive stages. Specifically, genotypes with higher structural mechanical properties also had a higher bending modulus, and senesced brace roots had lower structural mechanical properties than hydrated brace roots. CONCLUSIONS Collectively these results highlight the importance of considering whorl-of-origin, genotype and reproductive stage for the quantification of brace root mechanics, which is important for mitigating crop loss due to root mechanical failure.
Collapse
Affiliation(s)
- Ashley N Hostetler
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Lindsay Erndwein
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Elahe Ganji
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Beckman Institute for Advanced Science and Technology, the University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan W Reneau
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Megan L Killian
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Erin E Sparks
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| |
Collapse
|
12
|
Kořínková N, Fontana IM, Nguyen TD, Pouramini P, Bergougnoux V, Hensel G. Enhancing cereal productivity by genetic modification of root architecture. Biotechnol J 2022; 17:e2100505. [PMID: 35537849 DOI: 10.1002/biot.202100505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/03/2022] [Accepted: 04/23/2022] [Indexed: 11/06/2022]
Abstract
Food security is one of the main topics of today's agriculture, primarily due to increasingly challenging environmental conditions. As most of humankind has a daily intake of cereal grains, current breeding programs focus on these crop plants. Customised endonucleases have been included in the breeders' toolbox after successfully demonstrating their use. Due to technological restrictions, the main focus of the new technology was on above-ground plant organs. In contrast, the essential below ground components were given only limited attention. In the present review, the knowledge of the root system architecture in cereals and the role of phytohormones during their establishment is summarized, and the underlying molecular mechanisms are outlined. The review summarizes how the use of CRISPR-based genome editing methodology can improve the root system architecture to enhance crop production genetically. Finally, future research directions involving this knowledge and technical advances are suggested. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nikola Kořínková
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, CZ-78371.,Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371
| | - Irene M Fontana
- Leibniz Institute of Plant Genetics and Crop Plant Research, Plant Reproductive Biology, D-06466 Seeland OT, Gatersleben
| | - Thu D Nguyen
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, CZ-78371.,Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371
| | - Pouneh Pouramini
- Leibniz Institute of Plant Genetics and Crop Plant Research, Plant Reproductive Biology, D-06466 Seeland OT, Gatersleben
| | - Véronique Bergougnoux
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, CZ-78371
| | - Goetz Hensel
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, CZ-78371.,Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, D-40225, Dusseldorf
| |
Collapse
|
13
|
Hostetler AN, Erndwein L, Reneau JW, Stager A, Tanner HG, Cook D, Sparks EE. Multiple brace root phenotypes promote anchorage and limit root lodging in maize. PLANT, CELL & ENVIRONMENT 2022; 45:1573-1583. [PMID: 35141927 DOI: 10.1111/pce.14289] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/20/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Plant mechanical failure (lodging) causes global yield losses of 7%-66% in cereal crops. We have previously shown that the above-ground nodal roots (brace roots) in maize are critical for anchorage. However, it is unknown how brace root phenotypes vary across genotypes and the functional consequence of this variation. This study quantifies the contribution of brace roots to anchorage, brace root traits, plant height, and root lodging susceptibility in 52 maize inbred lines. We show that the contribution of brace roots to anchorage and root lodging susceptibility varies among genotypes and this contribution can be explained by plant architectural variation. Additionally, supervised machine learning models were developed and show that multiple plant architectural phenotypes can predict the contribution of brace roots to anchorage and root lodging susceptibility. Together these data define the plant architectures that are important in lodging resistance and show that the contribution of brace roots to anchorage is a good proxy for root lodging susceptibility.
Collapse
Affiliation(s)
- Ashley N Hostetler
- Department of Plant and Soil Sciences, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Lindsay Erndwein
- Department of Plant and Soil Sciences, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Jonathan W Reneau
- Department of Plant and Soil Sciences, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Adam Stager
- Department of Plant and Soil Sciences, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Herbert G Tanner
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Douglas Cook
- Department of Mechanical Engineering, Brigham Young University, Provo, Utah, USA
| | - Erin E Sparks
- Department of Plant and Soil Sciences, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
14
|
G. Viana W, Scharwies JD, Dinneny JR. Deconstructing the root system of grasses through an exploration of development, anatomy and function. PLANT, CELL & ENVIRONMENT 2022; 45:602-619. [PMID: 35092025 PMCID: PMC9303260 DOI: 10.1111/pce.14270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 05/16/2023]
Abstract
Well-adapted root systems allow plants to grow under resource-limiting environmental conditions and are important determinants of yield in agricultural systems. Important staple crops such as rice and maize belong to the family of grasses, which develop a complex root system that consists of an embryonic root system that emerges from the seed, and a postembryonic nodal root system that emerges from basal regions of the shoot after germination. While early seedling establishment is dependent on the embryonic root system, the nodal root system, and its associated branches, gains in importance as the plant matures and will ultimately constitute the bulk of below-ground growth. In this review, we aim to give an overview of the different root types that develop in cereal grass root systems, explore the different physiological roles they play by defining their anatomical features, and outline the genetic networks that control their development. Through this deconstructed view of grass root system function, we provide a parts-list of elements that function together in an integrated root system to promote survival and crop productivity.
Collapse
Affiliation(s)
| | | | - José R. Dinneny
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
15
|
Genome-Wide Association Study of Root System Architecture in Maize. Genes (Basel) 2022; 13:genes13020181. [PMID: 35205226 PMCID: PMC8872597 DOI: 10.3390/genes13020181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 01/05/2023] Open
Abstract
Roots are important plant organs for the absorption of water and nutrients. To date, there have been few genome-wide association studies of maize root system architecture (RSA) in the field. The genetic basis of maize RSA is poorly understood, and the maize RSA-related genes that have been cloned are very limited. Here, 421 maize inbred lines of an association panel were planted to measure the root systems at the maturity stage, and a genome-wide association study was performed. There was a strong correlation among eight RSA traits, and the RSA traits were highly correlated with the aboveground plant architecture traits (e.g., plant height and ear leaf length, r = 0.13–0.25, p < 0.05). The RSA traits of the stiff stalk subgroup (SS) showed lower values than those of the non-stiff stalk subgroup (NSS) and tropical/subtropical subgroup (TST). Using the RSA traits, the genome-wide association study identified 63 SNPs and 189 candidate genes. Among them, nine candidate genes co-localized between RSA and aboveground architecture traits. A further co-expression analysis identified 88 candidate genes having high confidence levels. Furthermore, we identified four highly reliable RSA candidate genes, GRMZM2G099797, GRMZM2G354338, GRMZM2G085042, and GRMZM5G812926. This research provides theoretical support for the genetic improvement of maize root systems, and it identified candidate genes that may act as genetic resources for breeding.
Collapse
|
16
|
An overview of recent advancement in phytohormones-mediated stress management and drought tolerance in crop plants. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.plgene.2020.100264] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Hostetler AN, Khangura RS, Dilkes BP, Sparks EE. Bracing for sustainable agriculture: the development and function of brace roots in members of Poaceae. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101985. [PMID: 33418403 DOI: 10.1016/j.pbi.2020.101985] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 05/28/2023]
Abstract
Optimization of crop production requires root systems to function in water uptake, nutrient use, and anchorage. In maize, two types of nodal roots-subterranean crown and aerial brace roots function in anchorage and water uptake and preferentially express multiple water and nutrient transporters. Brace root development shares genetic control with juvenile-to-adult phase change and flowering time. We present a comprehensive list of the genes known to alter brace roots and explore these as candidates for QTL studies in maize and sorghum. Brace root development and function may be conserved in other members of Poaceae, however research is limited. This work highlights the critical knowledge gap of aerial nodal root development and function and suggests new focus areas for breeding resilient crops.
Collapse
Affiliation(s)
- Ashley N Hostetler
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, United States
| | - Rajdeep S Khangura
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Brian P Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Erin E Sparks
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, United States.
| |
Collapse
|
18
|
Reneau JW, Khangura RS, Stager A, Erndwein L, Weldekidan T, Cook DD, Dilkes BP, Sparks EE. Maize brace roots provide stalk anchorage. PLANT DIRECT 2020; 4:e00284. [PMID: 33204937 PMCID: PMC7649601 DOI: 10.1002/pld3.284] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 05/16/2023]
Abstract
Mechanical failure, known as lodging, negatively impacts yield and grain quality in crops. Limiting crop loss from lodging requires an understanding of the plant traits that contribute to lodging-resistance. In maize, specialized aerial brace roots are reported to reduce root lodging. However, their direct contribution to plant biomechanics has not been measured. In this manuscript, we use a non-destructive field-based mechanical test on plants before and after the removal of brace roots. This precisely determines the contribution of brace roots to establish a rigid base (i.e. stalk anchorage) that limits plant deflection in maize. These measurements demonstrate that the more brace root whorls that contact the soil, the greater their overall contribution to anchorage, but that the contributions of each whorl to anchorage were not equal. Previous studies demonstrated that the number of nodes that produce brace roots is correlated with flowering time in maize. To determine if flowering time selection alters the brace root contribution to anchorage, a subset of the Hallauer's Tusón tropical population was analyzed. Despite significant variation in flowering time and anchorage, selection neither altered the number of brace root whorls in the soil nor the overall contribution of brace roots to anchorage. These results demonstrate that brace roots provide a rigid base in maize and that the contribution of brace roots to anchorage was not linearly related to flowering time.
Collapse
Affiliation(s)
- Jonathan W. Reneau
- Department of Plant and Soil Sciences and the Delaware Biotechnology InstituteUniversity of DelawareNewarkDEUSA
| | | | - Adam Stager
- Department of Plant and Soil Sciences and the Delaware Biotechnology InstituteUniversity of DelawareNewarkDEUSA
| | - Lindsay Erndwein
- Department of Plant and Soil Sciences and the Delaware Biotechnology InstituteUniversity of DelawareNewarkDEUSA
| | - Teclemariam Weldekidan
- Department of Plant and Soil Sciences and the Delaware Biotechnology InstituteUniversity of DelawareNewarkDEUSA
| | - Douglas D. Cook
- Department of Mechanical EngineeringBrigham Young UniversityProvoUTUSA
| | - Brian P. Dilkes
- Department of BiochemistryPurdue UniversityWest LafayetteINUSA
| | - Erin E. Sparks
- Department of Plant and Soil Sciences and the Delaware Biotechnology InstituteUniversity of DelawareNewarkDEUSA
| |
Collapse
|
19
|
Li H, Wang L, Liu M, Dong Z, Li Q, Fei S, Xiang H, Liu B, Jin W. Maize Plant Architecture Is Regulated by the Ethylene Biosynthetic Gene ZmACS7. PLANT PHYSIOLOGY 2020; 183:1184-1199. [PMID: 32321843 PMCID: PMC7333711 DOI: 10.1104/pp.19.01421] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/03/2020] [Indexed: 05/06/2023]
Abstract
Plant height and leaf angle are two crucial determinants of plant architecture in maize (Zea mays) and are closely related to lodging resistance and canopy photosynthesis at high planting density. These two traits are primarily regulated by several phytohormones. However, the mechanism of ethylene in regulating plant architecture in maize, especially plant height and leaf angle, is unclear. Here, we characterized a maize mutant, Semidwarf3 (Sdw3), which exhibits shorter stature and larger leaf angle than the wild type. Histological analysis showed that inhibition of longitudinal cell elongation in the internode and promotion in the auricle were mainly responsible for reduced plant height and enlarged leaf angle in the Sdw3 mutant. Through positional cloning, we identified a transposon insertion in the candidate gene ZmACS7, encoding 1-aminocyclopropane-1-carboxylic acid (ACC) Synthase 7 in ethylene biosynthesis of maize. The transposon alters the C terminus of ZmACS7. Transgenic analysis confirmed that the mutant ZmACS7 gene confers the phenotypes of the Sdw3 mutant. Enzyme activity and protein degradation assays indicated that the altered C terminus of ZmACS7 in the Sdw3 mutant increases this protein's stability but does not affect its catalytic activity. The ACC and ethylene contents are dramatically elevated in the Sdw3 mutant, leading to reduced plant height and increased leaf angle. In addition, we demonstrated that ZmACS7 plays crucial roles in root development, flowering time, and leaf number, indicating that ZmACS7 is an important gene with pleiotropic effects during maize growth and development.
Collapse
Affiliation(s)
- Hongchao Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, China
| | - Lijing Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Meishan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, China
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, China
| | - Qifang Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shulang Fei
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, China
| | - Hongtu Xiang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, China
| | - Baoshen Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, China
| |
Collapse
|
20
|
Shah L, Yahya M, Shah SMA, Nadeem M, Ali A, Ali A, Wang J, Riaz MW, Rehman S, Wu W, Khan RM, Abbas A, Riaz A, Anis GB, Si H, Jiang H, Ma C. Improving Lodging Resistance: Using Wheat and Rice as Classical Examples. Int J Mol Sci 2019; 20:E4211. [PMID: 31466256 PMCID: PMC6747267 DOI: 10.3390/ijms20174211] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/04/2019] [Accepted: 08/19/2019] [Indexed: 01/07/2023] Open
Abstract
One of the most chronic constraints to crop production is the grain yield reduction near the crop harvest stage by lodging worldwide. This is more prevalent in cereal crops, particularly in wheat and rice. Major factors associated with lodging involve morphological and anatomical traits along with the chemical composition of the stem. These traits have built up the remarkable relationship in wheat and rice genotypes either prone to lodging or displaying lodging resistance. In this review, we have made a comparison of our conceptual perceptions with foregoing published reports and proposed the fundamental controlling techniques that could be practiced to control the devastating effects of lodging stress. The management of lodging stress is, however, reliant on chemical, agronomical, and genetic factors that are reducing the risk of lodging threat in wheat and rice. But, still, there are many questions remain to be answered to elucidate the complex lodging phenomenon, so agronomists, breeders, physiologists, and molecular biologists require further investigation to address this challenging problem.
Collapse
Affiliation(s)
- Liaqat Shah
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Muhammad Yahya
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Syed Mehar Ali Shah
- Department of Plant Breeding and Genetics, University of Agriculture Peshawar, Peshawar 57000, Pakistan
| | - Muhammad Nadeem
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Ahmad Ali
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Asif Ali
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Jing Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Muhammad Waheed Riaz
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Shamsur Rehman
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Weixun Wu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
| | - Riaz Muhammad Khan
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
| | - Adil Abbas
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
| | - Aamir Riaz
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
| | - Galal Bakr Anis
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
- Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Kafrelsheikh 33717, Egypt
| | - Hongqi Si
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China.
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Chuanxi Ma
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
21
|
Correction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:1183. [PMID: 30912608 PMCID: PMC8097607 DOI: 10.1111/tpj.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|