1
|
Shi H, Hua X, Zhao D, Xu J, Li M, Wan B, Li Z, Zhang Y, Yao J, Li S, Lan Y, Qi Y, Gao R, Zhang Y, Zhang K, Guo Y, Fan X, Tang H, Zhang J. Divergence in the effects of sugar feedback regulation on the major gene regulatory network and metabolism of photosynthesis in leaves between the two founding Saccharum species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70019. [PMID: 39985806 DOI: 10.1111/tpj.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/20/2025] [Indexed: 02/24/2025]
Abstract
Sugarcane is a crop that accumulates sucrose with high photosynthesis efficiency. Therefore, the feedback regulation of sucrose on photosynthesis is crucial for improving sugarcane yield. Saccharum spontaneum and Saccharum officinarum are the two founding Saccharum species for modern sugarcane hybrids. S. spontaneum exhibits a higher net photosynthetic rate but lower sucrose content than S. officinarum. However, the mechanism underlying the negative feedback regulation of photosynthesis by sucrose remains poorly understood. This study investigates the effects of exogenous sucrose treatment on S. spontaneum and S. officinarum. Exogenous sucrose treatment increases sucrose content in the leaf base but inhibits photosynthetic efficiency and the expression of photosynthesis-related pathway genes (including RBCS and PEPC) in both species. However, gene expression patterns differed significantly, with few differentially expressed genes (DEGs) shared between the two species, indicating a differential response to exogenous sucrose. The expression networks of key genes involved in sugar metabolism, sugar transport, and PEPC and RBCS showed divergence between two species. Additionally, DEGs involved in the pentose phosphate pathway and the metabolism of alanine, aspartate, and glutamate metabolism were uniquely enriched in S. spontaneum, potentially contributing to the differential changes in sucrose content in the tip between the two species. We propose a model of the mechanisms underlying the negative feedback regulation of photosynthesis by sucrose in the leaves of S. spontaneum and S. officinarum. Our findings enhance the understanding of sucrose feedback regulation on photosynthesis and provide insights into the divergent molecular mechanisms of sugar accumulation in Saccharum.
Collapse
Affiliation(s)
- Huihong Shi
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiuting Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| | - Dongxu Zhao
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Juanjuan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| | - Min Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| | - Beiyuan Wan
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhen Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| | - Yingying Zhang
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiayu Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| | - Shuangyu Li
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuhong Lan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| | - Yiying Qi
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruiting Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| | - Yixing Zhang
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kelun Zhang
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yijia Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| | - Xianwei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| | - Haibao Tang
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| |
Collapse
|
2
|
Zhang J, Qi Y, Hua X, Wang Y, Wang B, Qi Y, Huang Y, Yu Z, Gao R, Zhang Y, Wang T, Wang Y, Mei J, Zhang Q, Wang G, Pan H, Li Z, Li S, Liu J, Qi N, Feng X, Wu M, Chen S, Du C, Li Y, Xu Y, Fang Y, Ma P, Li Q, Sun Y, Feng X, Yao W, Zhang M, Chen B, Liu X, Ming R, Wang J, Deng Z, Tang H. The highly allo-autopolyploid modern sugarcane genome and very recent allopolyploidization in Saccharum. Nat Genet 2025; 57:242-253. [PMID: 39753769 DOI: 10.1038/s41588-024-02033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/12/2024] [Indexed: 01/18/2025]
Abstract
Modern sugarcane, a highly allo-autopolyploid organism, has a very complex genome. In the present study, the karyotype and genome architecture of modern sugarcane were investigated, resulting in a genome assembly of 97 chromosomes (8.84 Gb). The allopolyploid genome was divided into subgenomes from Saccharum officinarum (Soh) and S. spontaneum (Ssh), with Soh dominance in the Saccharum hybrid (S. hybrid). Genome shock affected transcriptome dynamics during allopolyploidization. Analysis of an inbreeding population with 192 individuals revealed the underlying genetic basis of transgressive segregation. Population genomics of 310 Saccharum accessions clarified the breeding history of modern sugarcane. Using the haplotype-resolved S. hybrid genome as a reference, genome-wide association studies identified a potential candidate gene for sugar content from S. spontaneum. These findings illuminate the complex genome evolution of allopolyploids, offering opportunities for genomic enhancements and innovative breeding strategies for sugarcane.
Collapse
Affiliation(s)
- Jisen Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China.
| | - Yiying Qi
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiuting Hua
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Yongjun Wang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baiyu Wang
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Yongwen Qi
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yumin Huang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zehuai Yu
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Ruiting Gao
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Yixing Zhang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianyou Wang
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Yuhao Wang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Mei
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, China
| | - Haoran Pan
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Li
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Shuangyu Li
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jia Liu
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nameng Qi
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoxi Feng
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingxing Wu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqi Chen
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cuicui Du
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yihan Li
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Yi Xu
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Yaxue Fang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Panpan Ma
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingyun Li
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yuanchang Sun
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomin Feng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wei Yao
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Xinlong Liu
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Ray Ming
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianping Wang
- Department of Agronomy, University of Florida, Gainesville, FL, USA
| | - Zuhu Deng
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibao Tang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Guo H, Guan Z, Liu Y, Chao K, Zhu Q, Zhou Y, Wu H, Pi E, Chen H, Zeng H. Comprehensive identification and expression analyses of sugar transporter genes reveal the role of GmSTP22 in salt stress resistance in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109095. [PMID: 39255613 DOI: 10.1016/j.plaphy.2024.109095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/02/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
The transport, compartmentation and allocation of sugar are critical for plant growth and development, as well as for stress resistance, but sugar transporter genes have not been comprehensively characterized in soybean. Here, we performed a genome-wide identification and expression analyses of sugar transporter genes in soybean in order to reveal their putative functions. A total of 122 genes encoding sucrose transporters (SUTs) and monosaccharide transporters (MSTs) were identified in soybean. They were classified into 8 subfamilies according to their phylogenetic relationships and their conserved motifs. Comparative genomics analysis indicated that whole genome duplication/segmental duplication and tandem duplication contributed to the expansion of sugar transporter genes in soybean. Expression analysis by retrieving transcriptome datasets suggested that most of these sugar transporter genes were expressed in various tissues, and a number of genes exhibited tissue-specific expression patterns. Several genes including GmSTP21, GmSFP8, and GmPLT5/6/7/8/9 were predominantly expressed in nodules, and GmPLT8 was significantly induced by rhizobia inoculation in root hairs. Transcript profiling and qRT-PCR analyses suggested that half of these sugar transporter genes were significantly induced or repressed under stresses like salt, drought, and cold. In addition, GmSTP22 was found to be localized in the plasma membrane, and its overexpression promoted plant growth and salt tolerance in transgenic Arabidopsis under the supplement with glucose or sucrose. This study provides insights into the evolutionary expansion, expression pattern and functional divergence of sugar transporter gene family, and will enable further understanding of their biological functions in the regulation of growth, yield formation and stress resistance of soybean.
Collapse
Affiliation(s)
- Hang Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhengxing Guan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuanyuan Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Kexin Chao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qiuqing Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yi Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Haicheng Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
4
|
Li B, Qu S, Kang J, Peng Y, Yang N, Ma B, Ruan YL, Ma F, Li M, Zhu L. The MdCBF1/2-MdTST1/2 module regulates sugar accumulation in response to low temperature in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:787-801. [PMID: 38206080 DOI: 10.1111/tpj.16633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Soluble sugar content is a key component in controlling fruit flavor, and its accumulation in fruit is largely determined by sugar metabolism and transportation. When the diurnal temperature range is greater, the fleshy fruits accumulated more soluble sugars and become more sweeter. However, the molecular mechanism underlying this response remains largely unknown. In this study, we verified that low-temperature treatment promoted soluble sugar accumulation in apple fruit and found that this was due to the upregulation of the Tonoplast Sugar Transporter genes MdTST1/2. A combined strategy using assay for transposase-accessible chromatin (ATAC) sequencing and gene expression and cis-acting elements analyses, we identified two C-repeat Binding Factors, MdCBF1 and MdCBF2, that were induced by low temperature and that might be upstream transcription factors of MdTST1/2. Further studies established that MdCBF1/2 could bind to the promoters of MdTST1/2 and activate their expression. Overexpression of MdCBF1 or MdCBF2 in apple calli and fruit significantly upregulated MdTST1/2 expression and increased the concentrations of glucose, fructose, and sucrose. Suppression of MdTST1 and/or MdTST2 in an MdCBF1/2-overexpression background abolished the positive effect of MdCBF1/2 on sugar accumulation. In addition, simultaneous silencing of MdCBF1/2 downregulated MdTST1/2 expression and apple fruits failed to accumulate more sugars under low-temperature conditions, indicating that MdCBF1/2-mediated sugar accumulation was dependent on MdTST1/2 expression. Hence, we concluded that the MdCBF1/2-MdTST1/2 module is crucial for sugar accumulation in apples in response to low temperatures. Our findings provide mechanistic components coordinating the relationship between low temperature and sugar accumulation as well as new avenues to improve fruit quality.
Collapse
Affiliation(s)
- Baiyun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shengtao Qu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiayi Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yunjing Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Nanxiang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yong-Ling Ruan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lingcheng Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
5
|
Mehdi F, Galani S, Wickramasinghe KP, Zhao P, Lu X, Lin X, Xu C, Liu H, Li X, Liu X. Current perspectives on the regulatory mechanisms of sucrose accumulation in sugarcane. Heliyon 2024; 10:e27277. [PMID: 38463882 PMCID: PMC10923725 DOI: 10.1016/j.heliyon.2024.e27277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024] Open
Abstract
Sugars transported from leaves (source) to stems (sink) energize cell growth, elongation, and maintenance. which are regulated by a variety of genes. This review reflects progress and prospects in the regulatory mechanism for maximum sucrose accumulation, including the role of sucrose metabolizing enzymes, sugar transporters and the elucidation of post-transcriptional control of sucrose-induced regulation of translation (SIRT) in the accumulation of sucrose. The current review suggests that SIRT is emerging as a significant mechanism controlling Scbzip44 activities in response to endogenous sugar signals (via the negative feedback mechanism). Sucrose-controlled upstream open reading frame (SC-uORF) exists at the 5' leader region of Scbzip44's main ORF, which inhibits sucrose accumulation through post-transcriptional regulatory mechanisms. Sucrose transporters (SWEET1a/4a/4b/13c, TST, SUT1, SUT4 and SUT5) are crucial for sucrose translocation from source to sink. Particularly, SWEET13c was found to be a major contributor to the efflux in the transportation of stems. Tonoplast sugar transporters (TSTs), which import sucrose into the vacuole, suggest their tissue-specific role from source to sink. Sucrose cleavage has generally been linked with invertase isozymes, whereas sucrose synthase (SuSy)-catalyzed metabolism has been associated with biosynthetic processes such as UDP-Glc, cellulose, hemicellulose and other polymers. However, other two key sucrose-metabolizing enzymes, such as sucrose-6-phosphate phosphohydrolase (S6PP) and sucrose phosphate synthase (SPS) isoforms, have been linked with sucrose biosynthesis. These findings suggest that manipulation of genes, such as overexpression of SPS genes and sucrose transporter genes, silencing of the SC-uORF of Scbzip44 (removing the 5' leader region of the main ORF that is called SIRT-Insensitive) and downregulation of the invertase genes, may lead to maximum sucrose accumulation. This review provides an overview of sugarcane sucrose-regulating systems and baseline information for the development of cultivars with higher sucrose accumulation.
Collapse
Affiliation(s)
- Faisal Mehdi
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Saddia Galani
- Dr.A. Q. Khan Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi Pakistan
| | - Kamal Priyananda Wickramasinghe
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
- Sugarcane Research Institute, Uda Walawa, 70190, Sri Lanka
| | - Peifang Zhao
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Xin Lu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Xiuqin Lin
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Chaohua Xu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Hongbo Liu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Xujuan Li
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Xinlong Liu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| |
Collapse
|
6
|
Khan Q, Qin Y, Guo DJ, Huang YY, Yang LT, Liang Q, Song XP, Xing YX, Li YR. Comparative Analysis of Sucrose-Regulatory Genes in High- and Low-Sucrose Sister Clones of Sugarcane. PLANTS (BASEL, SWITZERLAND) 2024; 13:707. [PMID: 38475553 DOI: 10.3390/plants13050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Sugarcane is a significant primitive source of sugar and energy worldwide. The progress in enhancing the sugar content in sugarcane cultivars remains limited due to an insufficient understanding of specific genes related to sucrose production. The present investigation examined the enzyme activities, levels of reducing and non-reducing sugars, and transcript expression using RT-qPCR to assess the gene expression associated with sucrose metabolism in a high-sucrose sugarcane clone (GXB9) in comparison to a low-sucrose sister clone (B9). Sucrose phosphate synthase (SPS), sucrose phosphate phosphatase (SPP), sucrose synthase (SuSy), cell wall invertase (CWI), soluble acid invertase (SAI), and neutral invertase (NI) are essential enzymes involved in sucrose metabolism in sugarcane. The activities of these enzymes were comparatively quantified and analyzed in immature and maturing internodes of the high- and low-sucrose clones. The results showed that the higher-sucrose-accumulating clone had greater sucrose concentrations than the low-sucrose-accumulating clone; however, maturing internodes had higher sucrose levels than immature internodes in both clones. Hexose concentrations were higher in immature internodes than in maturing internodes for both clones. The SPS and SPP enzymes activities were higher in the high-sucrose-storing clone than in the low-sucrose clone. SuSy activity was higher in the low-sucrose clone than in the high-sucrose clone; further, the degree of SuSy activity was higher in immature internodes than in maturing internodes for both clones. The SPS gene expression was considerably higher in mature internodes of the high-sucrose clones than the low-sucrose clone. Conversely, the SuSy gene exhibited up-regulated expression in the low-sucrose clone. The enhanced expression of SPS in the high-sucrose clone compared to the low-sucrose clone suggests that SPS plays a major role in the increased accumulation of sucrose. These findings provide the opportunity to improve sugarcane cultivars by regulating the activity of genes related to sucrose metabolism using transgenic techniques.
Collapse
Affiliation(s)
- Qaisar Khan
- Guangxi Key Laboratory of Sugarcane, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ying Qin
- Guangxi Key Laboratory of Sugarcane, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Dao-Jun Guo
- Guangxi Key Laboratory of Sugarcane, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yu-Yan Huang
- Guangxi Key Laboratory of Sugarcane, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Li-Tao Yang
- Guangxi Key Laboratory of Sugarcane, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Qiang Liang
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Xiu-Peng Song
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| | - Yong-Xiu Xing
- Guangxi Key Laboratory of Sugarcane, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yang-Rui Li
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Nanning 530003, China
| |
Collapse
|
7
|
Li M, Li H, Zhu Q, Liu D, Li Z, Chen H, Luo J, Gong P, Ismail AM, Zhang Z. Knockout of the sugar transporter OsSTP15 enhances grain yield by improving tiller number due to increased sugar content in the shoot base of rice (Oryza sativa L.). THE NEW PHYTOLOGIST 2024; 241:1250-1265. [PMID: 38009305 DOI: 10.1111/nph.19411] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/27/2023] [Indexed: 11/28/2023]
Abstract
Sugar transporter proteins (STPs) play critical roles in regulating plant stress tolerance, growth, and development. However, the role of STPs in regulating crop yield is poorly understood. This study elucidates the mechanism by which knockout of the sugar transporter OsSTP15 enhances grain yield via increasing the tiller number in rice. We found that OsSTP15 is specifically expressed in the shoot base and vascular bundle sheath of seedlings and encodes a plasma membrane-localized high-affinity glucose efflux transporter. OsSTP15 knockout enhanced sucrose and trehalose-6-phosphate (Tre6P) synthesis in leaves and improved sucrose transport to the shoot base by inducing the expression of sucrose transporters. Higher glucose, sucrose, and Tre6P contents were observed at the shoot base of stp15 plants. Transcriptome and metabolome analyses of the shoot base demonstrated that OsSTP15 knockout upregulated the expression of cytokinin (CK) synthesis- and signaling pathway-related genes and increased CK levels. These findings suggest that OsSTP15 knockout represses glucose export from the cytoplasm and simultaneously enhances sugar transport from source leaves to the shoot base by promoting the synthesis of sucrose and Tre6P in leaves. Subsequent accumulation of glucose, sucrose, and Tre6P in the shoot base promotes tillering by stimulating the CK signaling pathway.
Collapse
Affiliation(s)
- Mingjuan Li
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Hongye Li
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Qidong Zhu
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Dong Liu
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Zhen Li
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Haifei Chen
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Jinsong Luo
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Pan Gong
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Abdelbagi M Ismail
- Crop and Environmental Sciences Division, International Rice Research Institute, Metro Manila, 1301, Philippines
| | - Zhenhua Zhang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Hongqi Road, Changsha, Hunan, 410128, China
| |
Collapse
|
8
|
Yang L, Zhou Q, Sheng X, Chen X, Hua Y, Lin S, Luo Q, Yu B, Shao T, Wu Y, Chang J, Li Y, Tu M. Harnessing the Genetic Basis of Sorghum Biomass-Related Traits to Facilitate Bioenergy Applications. Int J Mol Sci 2023; 24:14549. [PMID: 37833996 PMCID: PMC10573072 DOI: 10.3390/ijms241914549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The extensive use of fossil fuels and global climate change have raised ever-increasing attention to sustainable development, global food security and the replacement of fossil fuels by renewable energy. Several C4 monocot grasses have excellent photosynthetic ability, stress tolerance and may rapidly produce biomass in marginal lands with low agronomic inputs, thus representing an important source of bioenergy. Among these grasses, Sorghum bicolor has been recognized as not only a promising bioenergy crop but also a research model due to its diploidy, simple genome, genetic diversity and clear orthologous relationship with other grass genomes, allowing sorghum research to be easily translated to other grasses. Although sorghum molecular genetic studies have lagged far behind those of major crops (e.g., rice and maize), recent advances have been made in a number of biomass-related traits to dissect the genetic loci and candidate genes, and to discover the functions of key genes. However, molecular and/or targeted breeding toward biomass-related traits in sorghum have not fully benefited from these pieces of genetic knowledge. Thus, to facilitate the breeding and bioenergy applications of sorghum, this perspective summarizes the bioenergy applications of different types of sorghum and outlines the genetic control of the biomass-related traits, ranging from flowering/maturity, plant height, internode morphological traits and metabolic compositions. In particular, we describe the dynamic changes of carbohydrate metabolism in sorghum internodes and highlight the molecular regulators involved in the different stages of internode carbohydrate metabolism, which affects the bioenergy utilization of sorghum biomass. We argue the way forward is to further enhance our understanding of the genetic mechanisms of these biomass-related traits with new technologies, which will lead to future directions toward tailored designing sorghum biomass traits suitable for different bioenergy applications.
Collapse
Affiliation(s)
- Lin Yang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Qin Zhou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Xuan Sheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiangqian Chen
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Yuqing Hua
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Shuang Lin
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Qiyun Luo
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Boju Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (B.Y.); (T.S.); (J.C.)
| | - Ti Shao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (B.Y.); (T.S.); (J.C.)
| | - Yixiao Wu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (B.Y.); (T.S.); (J.C.)
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (B.Y.); (T.S.); (J.C.)
| | - Min Tu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| |
Collapse
|
9
|
Koyamatsu D, Otsubo M, Ohira T, Sato MP, Suzuki-Masuko H, Shiota T, Takenaka Takano K, Ozeki M, Otsuka K, Ogura Y, Hayashi T, Watanabe M, Inaba T, Ito-Inaba Y. Molecular characterization of SrSTP14, a sugar transporter from thermogenic skunk cabbage, and its possible role in developing pollen. PHYSIOLOGIA PLANTARUM 2023; 175:e13957. [PMID: 37338180 DOI: 10.1111/ppl.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
In floral thermogenesis, sugars play an important role not only as energy providers but also as growth and development facilitators. Yet, the mechanisms underlying sugar translocation and transport in thermogenic plants remain to be studied. Asian skunk cabbage (Symplocarpus renifolius) is a species that can produce durable and intense heat in its reproductive organ, the spadix. Significant morphological and developmental changes in the stamen are well-characterized in this plant. In this study, we focused on the sugar transporters (STPs), SrSTP1 and SrSTP14, whose genes were identified by RNA-seq as the upregulated STPs during thermogenesis. Real-time PCR confirmed that mRNA expression of both STP genes was increased from the pre-thermogenic to the thermogenic stage in the spadix, where it is predominantly expressed in the stamen. SrSTP1 and SrSTP14 complemented the growth defects of a hexose transporter-deficient yeast strain, EBY4000, on media containing 0.02, 0.2, and 2% (w/v) glucose and galactose. Using a recently developed transient expression system in skunk cabbage leaf protoplasts, we revealed that SrSTP1 and SrSTP14-GFP fusion proteins were mainly localized to the plasma membrane. To dig further into the functional analysis of SrSTPs, tissue-specific localization of SrSTPs was investigated by in situ hybridization. Using probes for SrSTP14, mRNA expression was observed in the microspores within the developing anther at the thermogenic female stage. These results indicate that SrSTP1 and SrSTP14 transport hexoses (e.g., glucose and galactose) at the plasma membrane and suggest that SrSTP14 may play a role in pollen development through the uptake of hexoses into pollen precursor cells.
Collapse
Affiliation(s)
- Daiki Koyamatsu
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Miyabi Otsubo
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Tomonori Ohira
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Mitsuhiko P Sato
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | | | - Takuya Shiota
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki, Japan
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Kohei Takenaka Takano
- Natural Environment Division, Nagano Environmental Conservation Research Institute, Nagano, Japan
| | - Masaaki Ozeki
- Natural Environment Division, Nagano Environmental Conservation Research Institute, Nagano, Japan
| | - Koichi Otsuka
- Natural Environment Division, Nagano Environmental Conservation Research Institute, Nagano, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yasuko Ito-Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
10
|
Zhu L, Li Y, Wang C, Wang Z, Cao W, Su J, Peng Y, Li B, Ma B, Ma F, Ruan YL, Li M. The SnRK2.3-AREB1-TST1/2 cascade activated by cytosolic glucose regulates sugar accumulation across tonoplasts in apple and tomato. NATURE PLANTS 2023; 9:951-964. [PMID: 37291399 DOI: 10.1038/s41477-023-01443-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/12/2023] [Indexed: 06/10/2023]
Abstract
Soluble sugars are the core components of fruit quality, and the degree of sugar accumulation is largely determined by tonoplast-localized sugar transporters. We previously showed that two classes of tonoplast sugar transporters, MdERDL6 and MdTST1/2, coordinately regulate sugar accumulation in vacuoles. However, the mechanism underlying this coordination remains unknown. Here we discovered that two transcription factors, MdAREB1.1/1.2, regulate MdTST1/2 expression by binding their promoters in apple. The enhanced MdAREB1.1/1.2 expression in MdERDL6-1-overexpression plants resulted in an increase in MdTST1/2 expression and sugar concentration. Further studies established that MdSnRK2.3, whose expression could be regulated by expressing MdERDL6-1, could interact with and phosphorylate MdAREB1.1/1.2, thereby promoting the MdAREB1.1/1.2-mediated transcriptional activation of MdTST1/2. Finally, the orthologous SlAREB1.2 and SlSnRK2.3 exhibited similar functions in tomato fruit as in their apple counterparts. Together, our findings provide insights into the regulatory mechanism of tonoplast sugar transport exerted by SnRK2.3-AREB1-TST1/2 for fruit sugar accumulation.
Collapse
Affiliation(s)
- Lingcheng Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
- College of Life Science, Northwest A&F University, Xianyang, China
| | - Yanzhen Li
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Chengcheng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Zhiqi Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Wenjing Cao
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Jing Su
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Yunjing Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Baiyun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China.
| | - Yong-Ling Ruan
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China.
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China.
| |
Collapse
|
11
|
Jiang Q, Hua X, Shi H, Liu J, Yuan Y, Li Z, Li S, Zhou M, Yin C, Dou M, Qi N, Wang Y, Zhang M, Ming R, Tang H, Zhang J. Transcriptome dynamics provides insights into divergences of the photosynthesis pathway between Saccharum officinarum and Saccharum spontaneum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1278-1294. [PMID: 36648196 DOI: 10.1111/tpj.16110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Saccharum spontaneum and Saccharum officinarum contributed to the genetic background of modern sugarcane cultivars. Saccharum spontaneum has shown a higher net photosynthetic rate and lower soluble sugar than S. officinarum. Here, we analyzed 198 RNA-sequencing samples to investigate the molecular mechanisms for the divergences of photosynthesis and sugar accumulation between the two Saccharum species. We constructed gene co-expression networks based on differentially expressed genes (DEGs) both for leaf developmental gradients and diurnal rhythm. Our results suggested that the divergence of sugar accumulation may be attributed to the enrichment of major carbohydrate metabolism and the oxidative pentose phosphate pathway. Compared with S. officinarum, S. spontaneum DEGs showed a high enrichment of photosynthesis and contained more complex regulation of photosynthesis-related genes. Noticeably, S. spontaneum lacked gene interactions with sulfur assimilation stimulated by photorespiration. In S. spontaneum, core genes related to clock and photorespiration displayed a sensitive regulation by the diurnal rhythm and phase-shift. Small subunit of Rubisco (RBCS) displayed higher expression in the source tissues of S. spontaneum. Additionally, it was more sensitive under a diurnal rhythm, and had more complex gene networks than that in S. officinarum. This indicates that the differential regulation of RBCS Rubisco contributed to photosynthesis capacity divergence in both Saccharum species.
Collapse
Affiliation(s)
- Qing Jiang
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiuting Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| | - Huihong Shi
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jia Liu
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| | - Zhen Li
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuangyu Li
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meiqing Zhou
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chongyang Yin
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meijie Dou
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Nameng Qi
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongjun Wang
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| | - Ray Ming
- Department of Plant Biology, The University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Haibao Tang
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jisen Zhang
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| |
Collapse
|
12
|
Wenndt A, Boyles R, Ackerman A, Sapkota S, Repka A, Nelson R. Host Determinants of Fungal Species Composition and Symptom Manifestation in the Sorghum Grain Mold Disease Complex. PLANT DISEASE 2023; 107:315-325. [PMID: 36800304 DOI: 10.1094/pdis-03-22-0675-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sorghum grain mold (SGM) is an important multifungal disease complex affecting sorghum (Sorghum bicolor) production systems worldwide. SGM-affected sorghum grain can be contaminated with potent fumonisin mycotoxins produced by Fusarium verticillioides, a prevalent SGM-associated taxon. Historically, efforts to improve resistance to SGM have achieved only limited success. Classical approaches to evaluating SGM resistance are based solely on disease severity, which offers little insight regarding the distinct symptom manifestations within the disease complex. In this study, three novel phenotypes were developed to facilitate assessment of SGM symptom manifestation. A sorghum diversity panel composed of 390 accessions was inoculated with endogenous strains of F. verticillioides and evaluated for these phenotypes, as well as for the conventional panicle grain mold severity rating phenotype, in South Carolina, U.S.A., in 2017 and 2019. Distributions of phenotype values were examined, broad-sense heritability was estimated, and relationships to botanical race were explored. A typology of SGM symptom manifestations was developed to classify accessions using principal component analysis and k-means clustering, constituting a novel option for basing breeding decisions on SGM outcomes more nuanced than disease severity. Genome-wide association studies were performed using SGM trait data, resulting in the identification of 19 significant single nucleotide polymorphisms in linkage disequilibrium with a total of 86 gene models. Our findings provide a basis of exploratory evidence regarding the genetic architecture of SGM symptom manifestation and indicate that traits other than disease severity could be tractable targets for SGM resistance breeding.
Collapse
Affiliation(s)
- Anthony Wenndt
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Richard Boyles
- Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC 29506
| | - Arlyn Ackerman
- Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC 29506
| | - Sirjan Sapkota
- Advanced Plant Technology Program, Clemson University, Clemson, SC 29634
| | - Ace Repka
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Rebecca Nelson
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
13
|
Li Y, Liu W, Zhang X, Wang S, Yadegari R, Wang J. Editorial: Advances in crop biomass production based on multi-omics approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1155442. [PMID: 37152170 PMCID: PMC10154669 DOI: 10.3389/fpls.2023.1155442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Affiliation(s)
- Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
- *Correspondence: Yin Li,
| | - Weizhen Liu
- School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shouchuang Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Ramin Yadegari
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Xu X, Zeng W, Li Z, Wang Z, Luo Z, Li J, Li X, Yang J. Genome-wide identification and expression profiling of sugar transporter genes in tobacco. Gene 2022; 835:146652. [PMID: 35714802 DOI: 10.1016/j.gene.2022.146652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
Sugars are both nutrients and important signal molecules in higher plants. Sugar transporters (STs) are involved in sugar loading and unloading and facilitate sugar transport across membranes. Tobacco (Nicotiana tabacum) is a model plant and one of the most significant plants economically. In our research, 92 N. tabacum ST (NtST) genes were identified and classified into eight distinct subfamilies in the tobacco genome based on phylogenetic analysis. Exon-intron analysis revealed that each subfamily manifested closely associated gene architectural features based on a comparable number or length of exons. Tandem repetition and purifying selection were the main factors of NtST gene evolution. A search for cis-regulatory elements in the promoter sequences of the NtST gene families suggested that they are probably regulated by light, plant hormones, and abiotic stress factors. We performed a comprehensive expression study in different tissues, viarious abiotic and phytohormone stresses. The results revealed different expression patterns and the functional diversification of NtST genes. The resulting data showed that NtSFP1 was highly expressed all measured five tobacco tissues, and also regulated by the MeJA, and temperature stress. In addition, the virus-induced NibenSFP1 silencing in tobacco and detected dramatically enhanced glucose content, indicating the NtSFP1 might regulate the glucose content and involved in MeJA signaling way to response the temperature stress. In general, our findings provide useful information on understanding the roles of STs in phytohormone signaling way and abiotic stresses in N. tabacum.
Collapse
Affiliation(s)
- Xin Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Wanli Zeng
- Technology Center of Yunnan China Tobacco Industry Company, Kunming 650000, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Jing Li
- Technology Center of Yunnan China Tobacco Industry Company, Kunming 650000, China
| | - Xuemei Li
- Technology Center of Yunnan China Tobacco Industry Company, Kunming 650000, China.
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| |
Collapse
|
15
|
Wen S, Neuhaus HE, Cheng J, Bie Z. Contributions of sugar transporters to crop yield and fruit quality. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2275-2289. [PMID: 35139196 DOI: 10.1093/jxb/erac043] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/04/2022] [Indexed: 05/09/2023]
Abstract
The flux, distribution, and storage of soluble sugars regulate crop yield in terms of starch, oil, protein, and total carbohydrates, and affect the quality of many horticultural products. Sugar transporters contribute to phloem loading and unloading. The mechanisms of phloem loading have been studied in detail, but the complex and diverse mechanisms of phloem unloading and sugar storage in sink organs are less explored. Unloading and subsequent transport mechanisms for carbohydrates vary in different sink organs. Analyzing the transport and storage mechanisms of carbohydrates in important storage organs, such as cereal seeds, fruits, or stems of sugarcane, will provide information for genetic improvements to increase crop yield and fruit quality. This review discusses current research progress on sugar transporters involved in carbohydrate unloading and storage in sink organs. The roles of sugar transporters in crop yield and the accumulation of sugars are also discussed to highlight their contribution to efficient breeding.
Collapse
Affiliation(s)
- Suying Wen
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany
| | - Jintao Cheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| | - Zhilong Bie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| |
Collapse
|
16
|
Slawinski L, Israel A, Paillot C, Thibault F, Cordaux R, Atanassova R, Dédaldéchamp F, Laloi M. Early Response to Dehydration Six-Like Transporter Family: Early Origin in Streptophytes and Evolution in Land Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:681929. [PMID: 34552602 PMCID: PMC8450595 DOI: 10.3389/fpls.2021.681929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/09/2021] [Indexed: 05/23/2023]
Abstract
Carbon management by plants involves the activity of many sugar transporters, which play roles in sugar subcellular partitioning and reallocation at the whole organism scale. Among these transporters, the early response to dehydration six-like (ESL) monosaccharide transporters (MSTs) are still poorly characterized although they represent one of the largest sugar transporter subfamilies. In this study, we used an evolutionary genomic approach to infer the evolutionary history of this multigenic family. No ESL could be identified in the genomes of rhodophytes, chlorophytes, and the brown algae Ectocarpus siliculosus, whereas one ESL was identified in the genome of Klebsormidium nitens providing evidence for the early emergence of these transporters in Streptophytes. A phylogenetic analysis using the 519 putative ESL proteins identified in the genomes of 47 Embryophyta species and being representative of the plant kingdom has revealed that ESL protein sequences can be divided into three major groups. The first and second groups originated in the common ancestor of all spermaphytes [ζ: 340 million years ago (MYA)] and of angiosperms (ε: 170-235 MYA), respectively, and the third group originated before the divergence of rosids and asterids (γ/1R: 117 MYA). In some eudicots (Vitales, Malpighiales, Myrtales, Sapindales, Brassicales, Malvales, and Solanales), the ESL family presents remarkable expansions of gene copies associated with tandem duplications. The analysis of non-synonymous and synonymous substitutions for the dN/dS ratio of the ESL copies of the genus Arabidopsis has revealed that ESL genes are evolved under a purifying selection even though the progressive increase of dN/dS ratios in the three groups suggests subdiversification phenomena. To further explore the possible acquisition of novel functions by ESL MSTs, we identified the gene structure and promoter cis-acting elements for Arabidopsis thaliana ESL genes. The expression profiling of Arabidopsis ESL unraveled some gene copies that are almost constitutively expressed, whereas other gene copies display organ-preferential expression patterns. This study provides an evolving framework to better understand the roles of ESL transporters in plant development and response to environmental constraints.
Collapse
|