1
|
Jin X, Mizukami AG, Okuda S, Higashiyama T. Investigating vesicle-mediated regulation of pollen tube growth through BFA inhibition and AS-ODN targeting of TfRABA4D in Torenia fournieri. HORTICULTURE RESEARCH 2025; 12:uhaf018. [PMID: 40093377 PMCID: PMC11908828 DOI: 10.1093/hr/uhaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/05/2025] [Indexed: 03/19/2025]
Abstract
In flowering plants, pollen tube growth is essential for delivering immotile sperm cells during double fertilization, directly influencing seed yield. This process relies on vesicle-mediated trafficking to sustain tip growth and fertility. However, investigating pollen tube growth is challenging in non-model plants due to the lack of transgenic tools. Here, we developed a method to transiently inhibit vesicle activity in pollen tubes of the wishbone flower (Torenia fournieri), a classic plant for sexual reproduction studies, using brefeldin A (BFA) and antisense oligodeoxynucleotides (AS-ODNs) targeting key genes. BFA broadly disrupted vesicle gradient homeostasis in T. fournieri pollen tubes, leading to widespread changes in cell wall deposition, ROS distribution, and pollen tube morphology. To assess the role of specific genes, we designed AS-ODNs against TfANX, the sole ANXUR homolog in T. fournieri, which successfully penetrated cell membranes and suppressed TfANX expression. This inhibition impaired pollen tube tip growth, causing pollen tube leakage at the shank region and, in some cases, multiple leakages. Similarly, AS-ODN targeting TfRABA4D, a pollen-specific vesicle regulator, induced a bulging phenotype and disrupted pectin deposition and reduced ROS distribution, mirroring BFA effects. These findings elucidate vesicle-mediated regulation in pollen tube tip growth and introduce an accessible method for genetic manipulation in reproductive research of non-model plants.
Collapse
Affiliation(s)
- Xingyue Jin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Faculty of Science Building 2, The University of Tokyo, Hongo Campus 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akane G Mizukami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Faculty of Science Building 2, The University of Tokyo, Hongo Campus 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Division of Liberal Arts and Sciences, Aichi Gakuin University, 1-100 Kusumoto, Nisshin, Japan
| | - Satohiro Okuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Faculty of Science Building 2, The University of Tokyo, Hongo Campus 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Faculty of Science Building 2, The University of Tokyo, Hongo Campus 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Li H, Xu Y, Lin J, Feng B, Zhu A, Zhao X, Wang D, Zeng Y, Yang H, Wang S, Fu G. Acetate prevents pistil dysfunction in rice under heat stress by inducing methyl jasmonate and quercetin synthesis. J Adv Res 2025:S2090-1232(25)00113-4. [PMID: 39947322 DOI: 10.1016/j.jare.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 01/03/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
INTRODUCTION Acetic acid (HAC) is a crucial signal molecule in plant stress responses; however, its role in conferring heat tolerance to rice remains unclear. OBJECTIVES This study aims to investigate the effect of HAC in protecting pistil function under heat stress and its potential role in facilitating pollen germination and tube growth via HAC-induced synthesis of methyl jasmonate (MeJA) and quercetin (QR). METHODS Physiological analysis, including pollen germination, pollen tube growth into the ovule, reactive oxygen species (ROS), as well as the levels of HAC, acetyl coenzyme A (acetyl-CoA), MeJA, and QR in the pistils of heat stress-treated early indica rice cultivars Zhongzao39 (ZZ39) and Zhongjiazao17 (ZJZ17), were conducted. RNA sequencing (RNA-seq) was performed to identify differentially expressed genes involved in this process. Effect of exogenous acetate (NaAC), MeJA, and QR on spikelet fertility were also investigated. RESULTS Compared with ZJZ17, severe inhibition of spikelet fertility, pollen germination, and pollen tube growth was observed in ZZ39, due to the ROS burst and an irregular distribution across the stigma, style, and ovule. RNA-seq and physiological data indicate that HAC may activate acetyl-CoA to enhance heat tolerance by inducing the synthesis of MeJA and QR. Exogenous NaAC enhanced spikelet fertility under heat stress, accompanied by elevated antioxidant enzyme activities, improved energy status, and increased levels of acetyl-CoA, MeJA, and QR in the pistils. Additionally, NaAC, MeJA, and QR, either alone or in combination, effectively augmented spikelet fertility under heat stress, while the combination of MeJA and QR inhibitors significantly reduced fertility. CONCLUSION Acetate activates acetyl-CoA to induce the synthesis of both MeJA and QR, thereby alleviating heat-induced pistil dysfunction by maintaining ROS homeostasis and enhancing the pollen germination, pollen tube growth and spikelet fertility. Our results offer a promising strategy to enhance the heat tolerance of crops.
Collapse
Affiliation(s)
- Hubo Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006 China; College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300 China
| | - Yongqiang Xu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006 China
| | - Jie Lin
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006 China
| | - Baohua Feng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006 China
| | - Aike Zhu
- Nanchong Academy of Agricultural Sciences, Nanchong 637000 Sichuan, China
| | - Xia Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000 Sichuan, China
| | - Danying Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006 China
| | - Yuxiang Zeng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006 China
| | - Haining Yang
- Nanchong Academy of Agricultural Sciences, Nanchong 637000 Sichuan, China.
| | - Shimei Wang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China.
| | - Guanfu Fu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006 China.
| |
Collapse
|
3
|
Kim JH, Son YJ, Kim EJ, Jung KH, Kim YJ. Pollen tube-expressed RUPO forms a complex with OsMTD2 and OsRALF17 and OsRALF19 peptides in rice (Oryza sativa). JOURNAL OF PLANT PHYSIOLOGY 2025; 305:154421. [PMID: 39799824 DOI: 10.1016/j.jplph.2025.154421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Pollen tubes are crucial for angiosperm plants, as they deliver sperm gametes for the essential process of double fertilization. Understanding the molecular mechanisms behind pollen tube germination and growth is critical; however, these processes remain partially elucidated in monocot cereal crops. Rapid Alkalinization Factor (RALF), a small peptide of about 5 kDa, binds to the CrRLK1L receptor and plays a role in various plant physiological processes, including reproduction and tip growth. Recently, we reported that OsRALF17 and OsRALF19 binds to the OsMTD2, pollen specific CrRLK1L member, and regulates pollen tube growth. In this study, we demonstrate that Ruptured Pollen tube (RUPO), another CrRLK1L member, is also a putative receptor for OsRALF17 and OsRALF19, and propose the formation of a receptor complex with OsMTD2. In tobacco epidermal cells, OsMTD2 and RUPO were co-localized at both the plasma membrane (PM) and the nuclear membrane. Additionally, we generated a RUPO-tagged line driven by its native promoter to visualize subcellular localization during pollen tube growth. RUPO localizes a tip-enriched distribution, with intense fluorescence at the tip's PM and cytoplasm in pollen tube. Upon treatment with synthetic OsRALF17M and OsRALF19M peptides, a reduction in the signal near the PM was observed, suggesting a potential response to these peptides. Our data support the role of RUPO as a candidate receptor for OsRALF17 and OsRALF19 in rice pollen tubes, thereby suggesting a novel mechanism for these RALFs in regulating pollen tube function. Additionally, we observed a significant delay in pollen tube burst time upon treatment with synthetic OsRALF17M and synthetic OsRALF19M. We propose that investigating this phenomenon may provide further insights into the specific signaling pathways mediated by these RALFs.
Collapse
Affiliation(s)
- Ji-Hyun Kim
- Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Ye-Jin Son
- Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Eui-Jung Kim
- Graduate School of Green Bio-Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Green Bio-Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea; Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea.
| |
Collapse
|
4
|
Gawande ND, Bhalla H, Watts A, Shelake RM, Sankaranarayanan S. Application of genome editing in plant reproductive biology: recent advances and challenges. PLANT REPRODUCTION 2024; 37:441-462. [PMID: 38954018 DOI: 10.1007/s00497-024-00506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
KEY MESSAGE This comprehensive review underscores the application of genome editing in plant reproductive biology, including recent advances and challenges associated with it. Genome editing (GE) is a powerful technology that has the potential to accelerate crop improvement by enabling efficient, precise, and rapid engineering of plant genomes. Over the last decade, this technology has rapidly evolved from the use of meganucleases (homing endonucleases), zinc-finger nucleases, transcription activator-like effector nucleases to the use of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas), which has emerged as a popular GE tool in recent times and has been extensively used in several organisms, including plants. GE has been successfully employed in several crops to improve plant reproductive traits. Improving crop reproductive traits is essential for crop yields and securing the world's food supplies. In this review, we discuss the application of GE in various aspects of plant reproductive biology, including its potential application in haploid induction, apomixis, parthenocarpy, development of male sterile lines, and the regulation of self-incompatibility. We also discuss current challenges and future prospects of this technology for crop improvement, focusing on plant reproduction.
Collapse
Affiliation(s)
- Nilesh D Gawande
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Hemal Bhalla
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Anshul Watts
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Subramanian Sankaranarayanan
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
| |
Collapse
|
5
|
Yun CM, Hong WJ, Kim HJ, Kim JH, Son YJ, Noh G, Park CW, Li H, Liang W, Hong CO, Lee KM, Jung KH, Kim YJ. Protein Involved in Tip Elongation (PITE) regulates root hair growth in rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14625. [PMID: 39545478 DOI: 10.1111/ppl.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Polar tip growth in plants occurs only in root hairs and pollen tubes. In particular, root hair growth is considered very important in the growth of plants, as it is critical for water and nutrient absorption. Polar tip growth is regulated by various factors, including plant hormones such as abscisic acid (ABA) and gibberellin (GA) and cell wall modifications. We aimed to elucidate the effects and mechanisms on tip growth of a novel gene containing the domain of unknown function (DUF) 3511. We found that Protein Involved in Tip Elongation (PITE) is involved in root hair development in rice (Oryza sativa L.). PITE protein was observed in the plasma membrane and cytoplasm of root hairs. Pite mutants generated by the CRISPR/Cas9 system showed a shorter root hair phenotype compared to the wild type. Through RNA sequencing and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis, we found that the expression of genes that affect cell wall rigidity and GA metabolism-related genes were differently regulated in pite mutants. PITE could interact with acyl transferase and haloacid dehalogenase-like hydrolase (HAD9) in the nucleus and cytoplasm. Our study suggests that PITEs containing the DUF3511 domain regulate root hair growth in rice by mediating the expression of genes that can regulate cell wall rigidity or cause changes in GA metabolism through interactors such as HAD9.
Collapse
Affiliation(s)
- Chan Mi Yun
- Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Woo-Jong Hong
- Department of Smart Farm Science, Kyung Hee University, Yongin, Republic of Korea
| | - Hyo-Jeong Kim
- Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Ji-Hyun Kim
- Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Ye-Jin Son
- Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Gayoung Noh
- Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Chan-Woo Park
- Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - HuanJun Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chang-Oh Hong
- Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Kwang Min Lee
- Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Green Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| |
Collapse
|
6
|
Zheng S, Wang F, Liu Z, Zhang H, Zhang L, Chen D. The Role of Female and Male Genes in Regulating Pollen Tube Guidance in Flowering Plants. Genes (Basel) 2024; 15:1367. [PMID: 39596567 PMCID: PMC11593715 DOI: 10.3390/genes15111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
In flowering plants, fertilization is a complex process governed by precise communication between the male and female gametophytes. This review focuses on the roles of various female gametophyte cells-synergid, central, and egg cells-in facilitating pollen tube guidance and ensuring successful fertilization. Synergid cells play a crucial role in attracting the pollen tube, while the central cell influences the direction of pollen tube growth, and the egg cell is responsible for preventing polyspermy, ensuring correct fertilization. The review also examines the role of the pollen tube in this communication, highlighting the mechanisms involved in its growth regulation, including the importance of pollen tube receptors, signal transduction pathways, cell wall dynamics, and ion homeostasis. The Ca2+ concentration gradient is identified as a key factor in guiding pollen tube growth toward the ovule. Moreover, the review briefly compares these communication processes in angiosperms with those in non-flowering plants, such as mosses, ferns, and early gymnosperms, providing evolutionary insights into gametophytic signaling. Overall, this review synthesizes the current understanding of male-female gametophyte interactions and outlines future directions for research in plant reproductive biology.
Collapse
Affiliation(s)
- Siyuan Zheng
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Feng Wang
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Zehui Liu
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
| | - Hongbin Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China;
| | - Liangsheng Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Dan Chen
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
| |
Collapse
|
7
|
Zhang LX, Shen CC, Bai YX, Li HY, Zhu CL, Yang CG, Latif A, Sun Y, Pu CX. The receptor kinase OsANX limits precocious flowering and inflorescence over-branching and maintains pollen tube integrity in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112162. [PMID: 38901780 DOI: 10.1016/j.plantsci.2024.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
CrRLK1L subfamily members are involved in diverse growth- and development-related processes in Arabidopsis. However, the functions of their counterparts in rice are unknown. Here, OsANX expression was detected in developing inflorescences, mature pollen grains, and growing pollen tubes, and it was localized to the plasma membrane in pollen grains and tobacco epidermal cells. Homozygous osanx progeny could not be segregated from the CRISPR/Cas9-edited mutants osanx-c1+/- and osanx-c2+/-, and such progeny were segregated only occasionally from osanx-c3+/-. Further, all three alleles showed osanx male but not female gamete transmission defects, in line with premature pollen tube rupture in osanx-c3. Additionally, osanx-c3 exhibited precocious flowering, excessively branched inflorescences, and an extremely low seed setting rate of 1.4 %, while osanx-c2+/- and osanx-c3+/- had no obvious defects in inflorescence development or the seed setting rate compared to wild-type Nipponbare (Nip). Consistent with this, the complemented line pPS1:OsANX-GFP/osanx-c2 (PSC), in which the lack of OsANX expression was inflorescence-specific, showed slightly earlier flowering and overly-branched panicles. Multiple inflorescence meristem transition-related and inflorescence architecture-related genes were expressed at higher levels in osanx-c3 than in Nip; thus, they may partially account for the aforementioned mutant phenotypes. Our findings broaden our understanding of the biological functions of OsANX in rice.
Collapse
Affiliation(s)
- Lan-Xin Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Can-Can Shen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Ying-Xue Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Hao-Yue Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Chen-Li Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Chen-Guang Yang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Ammara Latif
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Ying Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Cui-Xia Pu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| |
Collapse
|
8
|
Kim EJ, Hong WJ, Kang M, Jeon JS, Kim YJ, Jung KH. Overcoming functional redundancy in three actin depolymerizing factor genes for rice pollen tube growth. PLANT PHYSIOLOGY 2024; 195:1134-1137. [PMID: 38478416 PMCID: PMC11142328 DOI: 10.1093/plphys/kiae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/12/2024] [Indexed: 06/02/2024]
Affiliation(s)
- Eui-Jung Kim
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Republic of Korea
| | - Woo-Jong Hong
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Minseo Kang
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Ali MF, Muday GK. Reactive oxygen species are signaling molecules that modulate plant reproduction. PLANT, CELL & ENVIRONMENT 2024; 47:1592-1605. [PMID: 38282262 DOI: 10.1111/pce.14837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Reactive oxygen species (ROS) can serve as signaling molecules that are essential for plant growth and development but abiotic stress can lead to ROS increases to supraoptimal levels resulting in cellular damage. To ensure efficient ROS signaling, cells have machinery to locally synthesize ROS to initiate cellular responses and to scavenge ROS to prevent it from reaching damaging levels. This review summarizes experimental evidence revealing the role of ROS during multiple stages of plant reproduction. Localized ROS synthesis controls the formation of pollen grains, pollen-stigma interactions, pollen tube growth, ovule development, and fertilization. Plants utilize ROS-producing enzymes such as respiratory burst oxidase homologs and organelle metabolic pathways to generate ROS, while the presence of scavenging mechanisms, including synthesis of antioxidant proteins and small molecules, serves to prevent its escalation to harmful levels. In this review, we summarized the function of ROS and its synthesis and scavenging mechanisms in all reproductive stages from gametophyte development until completion of fertilization. Additionally, we further address the impact of elevated temperatures induced ROS on impairing these reproductive processes and of flavonol antioxidants in maintaining ROS homeostasis to minimize temperature stress to combat the impact of global climate change on agriculture.
Collapse
Affiliation(s)
- Mohammad Foteh Ali
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston Salem, NC, United States
| | - Gloria K Muday
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston Salem, NC, United States
| |
Collapse
|
10
|
Jing XQ, Shi PT, Zhang R, Zhou MR, Shalmani A, Wang GF, Liu WT, Li WQ, Chen KM. Rice kinase OsMRLK63 contributes to drought tolerance by regulating reactive oxygen species production. PLANT PHYSIOLOGY 2024; 194:2679-2696. [PMID: 38146904 DOI: 10.1093/plphys/kiad684] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/16/2023] [Accepted: 11/10/2023] [Indexed: 12/27/2023]
Abstract
Drought is a major adverse environmental factor that plants face in nature but the molecular mechanism by which plants transduce stress signals and further endow themselves with tolerance remains unclear. Malectin/malectin-like domains containing receptor-like kinases (MRLKs) have been proposed to act as receptors in multiple biological signaling pathways, but limited studies show their roles in drought-stress signaling and tolerance. In this study, we demonstrate OsMRLK63 in rice (Oryza sativa L.) functions in drought tolerance by acting as the receptor of 2 rapid alkalization factors, OsRALF45 and OsRALF46. We show OsMRLK63 is a typical receptor-like kinase that positively regulates drought tolerance and reactive oxygen species (ROS) production. OsMRLK63 interacts with and phosphorylates several nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with the primarily phosphorylated site at Ser26 in the N-terminal of RESPIRATORY BURST OXIDASE HOMOLOGUE A (OsRbohA). The application of the 2 small signal peptides (OsRALF45/46) on rice can greatly alleviate the dehydration of plants induced by mimic drought. This function depends on the existence of OsMRLK63 and the NADPH oxidase-dependent ROS production. The 2 RALFs interact with OsMRLK63 by binding to its extracellular domain, suggesting they may act as drought/dehydration signal sensors for the OsMRLK63-mediated process. Our study reveals a OsRALF45/46-OsMRLK63-OsRbohs module which contributes to drought-stress signaling and tolerance in rice.
Collapse
Affiliation(s)
- Xiu-Qing Jing
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, Shanxi 030619, China
| | - Peng-Tao Shi
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ran Zhang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng-Ru Zhou
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Abdullah Shalmani
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gang-Feng Wang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Ting Liu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Qiang Li
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kun-Ming Chen
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
11
|
Xie S, Luo H, Huang W, Jin W, Dong Z. Striking a growth-defense balance: Stress regulators that function in maize development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:424-442. [PMID: 37787439 DOI: 10.1111/jipb.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/01/2023] [Indexed: 10/04/2023]
Abstract
Maize (Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA), together with reactive oxygen species (ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which must be finely tuned to achieve high yields in crops while maintaining some level of defense. In this review, we provide an in-depth analysis of recent research on the developmental functions of stress regulators, focusing specifically on maize. By unraveling the contributions of these regulators to maize development, we present new avenues for enhancing maize cultivation and growth while highlighting the potential risks associated with manipulating stress regulators to enhance grain yields in the face of environmental challenges.
Collapse
Affiliation(s)
- Shiyi Xie
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Luo
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhaobin Dong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
12
|
Kim YJ, Jung KH. WD40-domain protein GORI is an integrative scaffold that is required for pollen tube growth in rice. PLANT SIGNALING & BEHAVIOR 2023; 18:2082678. [PMID: 35642508 PMCID: PMC9851197 DOI: 10.1080/15592324.2022.2082678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The pollen tube plays a critical role in angiosperm plants by delivering sperm gametes for double fertilization. Although the molecular mechanisms underlying pollen tube germination and growth are crucial to crop plants, they are poorly understood. Here, we describe recent advancements in the understanding of the role of the WD40-domain protein in regulating pollen germination and discuss future directions to investigate its role in rice. GORI encodes a seven-WD40-motif protein that interacts with an AP180 N-terminal homology (ANTH)-domain protein, which modulates clathrin-mediated endocytosis (CME), and regulates Rac6 activity in the apical plasma membrane of elongating pollen tubes. Loss of function of GORI or Rac6 reduces pollen germination and tube growth, thereby resulting in male sterility in rice. In contrast, overexpression of Rac6 increases pollen tube elongation, with this effect being rescued by GORI overexpression. In the absence of ANTH, pollen germination was reduced, similar to the results observed after inhibitor treatment, indicating that pollen germination partially requires CME. Our findings demonstrated that the GORI protein is a positive regulator of pollen germination and tube growth, serving as a link between Rac6 activity regulation and ANTH-mediated endocytosis.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
13
|
Kim EJ, Kim JH, Hong WJ, Kim EY, Kim MH, Lee SK, Min CW, Kim ST, Park SK, Jung KH, Kim YJ. Rice pollen-specific OsRALF17 and OsRALF19 are essential for pollen tube growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2218-2236. [PMID: 37195059 DOI: 10.1111/jipb.13508] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/16/2023] [Indexed: 05/18/2023]
Abstract
Pollen tube growth is essential for successful double fertilization, which is critical for grain yield in crop plants. Rapid alkalinization factors (RALFs) function as ligands for signal transduction during fertilization. However, functional studies on RALF in monocot plants are lacking. Herein, we functionally characterized two pollen-specific RALFs in rice (Oryza sativa) using multiple clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9-induced loss-of-function mutants, peptide treatment, expression analyses, and tag reporter lines. Among the 41 RALF members in rice, OsRALF17 was specifically expressed at the highest level in pollen and pollen tubes. Exogenously applied OsRALF17 or OsRALF19 peptide inhibited pollen tube germination and elongation at high concentrations but enhanced tube elongation at low concentrations, indicating growth regulation. Double mutants of OsRALF17 and OsRALF19 (ralf17/19) exhibited almost full male sterility with defects in pollen hydration, germination, and tube elongation, which was partially recovered by exogenous treatment with OsRALF17 peptide. This study revealed that two partially functionally redundant OsRALF17 and OsRALF19 bind to Oryza sativa male-gene transfer defective 2 (OsMTD2) and transmit reactive oxygen species signals for pollen tube germination and integrity maintenance in rice. Transcriptomic analysis confirmed their common downstream genes, in osmtd2 and ralf17/19. This study provides new insights into the role of RALF, expanding our knowledge of the biological role of RALF in regulating rice fertilization.
Collapse
Affiliation(s)
- Eui-Jung Kim
- Graduate School of Green Bio-Science & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Ji-Hyun Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Woo-Jong Hong
- Department of Smart Farm Science, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Eun Young Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Myung-Hee Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Su Kyoung Lee
- Graduate School of Green Bio-Science & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Green Bio-Science & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| |
Collapse
|
14
|
Jing X, Deng N, Shalmani A. Characterization of Malectin/Malectin-like Receptor-like Kinase Family Members in Foxtail Millet ( Setaria italica L.). Life (Basel) 2023; 13:1302. [PMID: 37374087 DOI: 10.3390/life13061302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Plant malectin/malectin-like receptor-like kinases (MRLKs) play crucial roles throughout the life course of plants. Here, we identified 23 SiMRLK genes from foxtail millet. All the SiMRLK genes were named according to the chromosomal distribution of the SiMRLKs in the foxtail millet genome and grouped into five subfamilies based on phylogenetic relationships and structural features. Synteny analysis indicated that gene duplication events may take part in the evolution of SiMRLK genes in foxtail millet. The expression profiles of 23 SiMRLK genes under abiotic stresses and hormonal applications were evaluated through qRT-PCR. The expression of SiMRLK1, SiMRLK3, SiMRLK7 and SiMRLK19 were significantly affected by drought, salt and cold stresses. Exogenous ABA, SA, GA and MeJA also obviously changed the transcription levels of SiMRLK1, SiMRLK3, SiMRLK7 and SiMRLK19. These results signified that the transcriptional patterns of SiMRLKs showed diversity and complexity in response to abiotic stresses and hormonal applications in foxtail millet.
Collapse
Affiliation(s)
- Xiuqing Jing
- Department of Biology, Taiyuan Normal University, Jinzhong 030619, China
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ning Deng
- Department of Biology, Taiyuan Normal University, Jinzhong 030619, China
| | - Abdullah Shalmani
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
He W, Li W, Luo X, Tang Y, Wang L, Yu F, Lin Q. Rice FERONIA-LIKE RECEPTOR 3 and 14 affect grain quality by regulating redox homeostasis during endosperm development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3003-3018. [PMID: 36881783 DOI: 10.1093/jxb/erad077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/06/2023] [Indexed: 05/21/2023]
Abstract
Chalky endosperm negatively affects the appearance, milling, and eating qualities of rice (Oryza sativa L.) grains. Here, we report the role of two receptor-like kinases, FERONIA-LIKE RECEPTOR 3 (FLR3) and FERONIA-LIKE RECEPTOR 14 (FLR14), in grain chalkiness and quality. Knockouts of FLR3 and/or FLR14 increased the number of white-core grains caused by aberrant accumulation of storage substances, resulting in poor grain quality. Conversely, the overexpression of FLR3 or FLR14 reduced grain chalkiness and improved grain quality. Transcriptome and metabolome analyses showed that genes and metabolites involved in the oxidative stress response were significantly up-regulated in flr3 and flr14 grains. The content of reactive oxygen species was significantly increased in flr3 and flr14 mutant endosperm but decreased in overexpression lines. This strong oxidative stress response induced the expression of programmed cell death (PCD)-related genes and caspase activity in endosperm, which further accelerated PCD, resulting in grain chalkiness. We also demonstrated that FLR3 and FLR14 reduced grain chalkiness by alleviating heat-induced oxidative stress in rice endosperm. Therefore, we report two positive regulators of grain quality that maintain redox homeostasis in the endosperm, with potential applications in breeding rice for optimal grain quality.
Collapse
Affiliation(s)
- Wei He
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Province, Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Wanjing Li
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Xiao Luo
- Hunan Province, Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, P. R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, P. R. China
| | - Yuqin Tang
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Long Wang
- Hunan Province, Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Feng Yu
- Hunan Province, Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, P. R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, P. R. China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| |
Collapse
|
16
|
Robinson R, Sprott D, Couroux P, Routly E, Labbé N, Xing T, Robert LS. The triticale mature pollen and stigma proteomes - assembling the proteins for a productive encounter. J Proteomics 2023; 278:104867. [PMID: 36870675 DOI: 10.1016/j.jprot.2023.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Triticeae crops are major contributors to global food production and ensuring their capacity to reproduce and generate seeds is critical. However, despite their importance our knowledge of the proteins underlying Triticeae reproduction is severely lacking and this is not only true of pollen and stigma development, but also of their pivotal interaction. When the pollen grain and stigma are brought together they have each accumulated the proteins required for their intended meeting and accordingly studying their mature proteomes is bound to reveal proteins involved in their diverse and complex interactions. Using triticale as a Triticeae representative, gel-free shotgun proteomics was used to identify 11,533 and 2977 mature stigma and pollen proteins respectively. These datasets, by far the largest to date, provide unprecedented insights into the proteins participating in Triticeae pollen and stigma development and interactions. The study of the Triticeae stigma has been particularly neglected. To begin filling this knowledge gap, a developmental iTRAQ analysis was performed revealing 647 proteins displaying differential abundance as the stigma matures in preparation for pollination. An in-depth comparison to an equivalent Brassicaceae analysis divulged both conservation and diversification in the makeup and function of proteins involved in the pollen and stigma encounter. SIGNIFICANCE: Successful pollination brings together the mature pollen and stigma thus initiating an intricate series of molecular processes vital to crop reproduction. In the Triticeae crops (e.g. wheat, barley, rye, triticale) there persists a vast deficit in our knowledge of the proteins involved which needs to be addressed if we are to face the many upcoming challenges to crop production such as those associated with climate change. At maturity, both the pollen and stigma have acquired the protein complement necessary for their forthcoming encounter and investigating their proteomes will inevitably provide unprecedented insights into the proteins enabling their interactions. By combining the analysis of the most comprehensive Triticeae pollen and stigma global proteome datasets to date with developmental iTRAQ investigations, proteins implicated in the different phases of pollen-stigma interaction enabling pollen adhesion, recognition, hydration, germination and tube growth, as well as those underlying stigma development were revealed. Extensive comparisons between equivalent Triticeae and Brassiceae datasets highlighted both the conservation of biological processes in line with the shared goal of activating the pollen grain and promoting pollen tube invasion of the pistil to effect fertilization, as well as the significant distinctions in their proteomes consistent with the considerable differences in their biochemistry, physiology and morphology.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - David Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Natalie Labbé
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada.
| |
Collapse
|
17
|
Li H, Feng B, Li J, Fu W, Wang W, Chen T, Liu L, Wu Z, Peng S, Tao L, Fu G. RGA1 alleviates low-light-repressed pollen tube elongation by improving the metabolism and allocation of sugars and energy. PLANT, CELL & ENVIRONMENT 2023; 46:1363-1383. [PMID: 36658612 DOI: 10.1111/pce.14547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Low-light stress compromises photosynthetic and energy efficiency and leads to spikelet sterility; however, the effect of low-light stress on pollen tube elongation in the pistil remains poorly understood. The gene RGA1, which encodes a Gα-subunit of the heterotrimeric G-protein, enhanced low-light tolerance at anthesis by preventing the cessation of pollen tube elongation in the pistil of rice plants. In this process, marked increases in the activities of acid invertase (INV), sucrose synthase (SUS) and mitochondrial respiratory electron transport chain complexes, as well as the relative expression levels of SUTs (sucrose transporter), SWEETs (sugars will eventually be exported transporters), SUSs, INVs, CINs (cell-wall INV 1), SnRK1A (sucrose-nonfermenting 1-related kinase 1) and SnRK1B, were observed in OE-1 plants. Accordingly, notable increases in contents of ATP and ATPase were presented in OE-1 plants under low-light conditions, while they were decreased in d1 plants. Importantly, INV and ATPase activators (sucrose and Na2 SO3 , respectively) increased spikelet fertility by improving the energy status in the pistil under low-light conditions, and the ATPase inhibitor Na2 VO4 induced spikelet sterility and decreased ATPase activity. These results suggest that RGA1 could alleviate the low-light stress-induced impairment of pollen tube elongation to increase spikelet fertility by promoting sucrose unloading in the pistil and improving the metabolism and allocation of energy.
Collapse
Affiliation(s)
- Hubo Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Crop Production and Physiology Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Juncai Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Wenting Wang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lianmeng Liu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhihai Wu
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Shaobing Peng
- Crop Production and Physiology Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| |
Collapse
|
18
|
Zhu Q, Feng Y, Xue J, Chen P, Zhang A, Yu Y. Advances in Receptor-like Protein Kinases in Balancing Plant Growth and Stress Responses. PLANTS (BASEL, SWITZERLAND) 2023; 12:427. [PMID: 36771514 PMCID: PMC9919196 DOI: 10.3390/plants12030427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Accompanying the process of growth and development, plants are exposed to ever-changing environments, which consequently trigger abiotic or biotic stress responses. The large protein family known as receptor-like protein kinases (RLKs) is involved in the regulation of plant growth and development, as well as in the response to various stresses. Understanding the biological function and molecular mechanism of RLKs is helpful for crop breeding. Research on the role and mechanism of RLKs has recently received considerable attention regarding the balance between plant growth and environmental adaptability. In this paper, we systematically review the classification of RLKs, the regulatory roles of RLKs in plant development (meristem activity, leaf morphology and reproduction) and in stress responses (disease resistance and environmental adaptation). This review focuses on recent findings revealing that RLKs simultaneously regulate plant growth and stress adaptation, which may pave the way for the better understanding of their function in crop improvement. Although the exact crosstalk between growth constraint and plant adaptation remains elusive, a profound study on the adaptive mechanisms for decoupling the developmental processes would be a promising direction for the future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Yu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
19
|
Hong WJ, Kim EJ, Yoon J, Silva J, Moon S, Min CW, Cho LH, Kim ST, Park SK, Kim YJ, Jung KH. A myosin XI adaptor, TAPE, is essential for pollen tube elongation in rice. PLANT PHYSIOLOGY 2022; 190:562-575. [PMID: 35736513 PMCID: PMC9434255 DOI: 10.1093/plphys/kiac299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Pollen tube (PT) elongation is important for double fertilization in angiosperms and affects the seed-setting rate and, therefore, crop productivity. Compared to Arabidopsis (Arabidopsis thaliana L.), information on PT elongation in rice (Oryza sativa L.) is limited by the difficulty in obtaining homozygous mutants. In a screen of T-DNA insertional mutants, we identified a mutant in the Tethering protein of actomyosin transport in pollen tube elongation (TAPE) gene with an unusual segregation ratio by genotyping analysis. A CRISPR/Cas9 knockout mutant of TAPE that produced a short PT was sterile, and TAPE was expressed specifically in pollen grains. TAPE is a homolog of a myosin XI adaptor in Arabidopsis with three tetratricopeptide repeat and Phox and Bem1 protein domains. TAPE showed latrunculin B-sensitive, actin-dependent localization to the endoplasmic reticulum. Yeast two-hybrid screening and transcriptome analysis revealed that TAPE interacted with pollen-specific LIM protein 2b and elongation factor 1-alpha. Loss of TAPE affected transcription of 1,259 genes, especially genes related to cell organization, which were downregulated. In summary, TAPE encodes a myosin XI adaptor essential for rice PT elongation.
Collapse
Affiliation(s)
- Woo-Jong Hong
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Eui-Jung Kim
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jinmi Yoon
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jeniffer Silva
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Sunok Moon
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yu-Jin Kim
- Authors for correspondence: (Y.-J.K.); (K.-H.J.)
| | - Ki-Hong Jung
- Authors for correspondence: (Y.-J.K.); (K.-H.J.)
| |
Collapse
|
20
|
Receptor for Activated C Kinase1B (OsRACK1B) Impairs Fertility in Rice through NADPH-Dependent H2O2 Signaling Pathway. Int J Mol Sci 2022; 23:ijms23158455. [PMID: 35955593 PMCID: PMC9368841 DOI: 10.3390/ijms23158455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The scaffold protein receptor for Activated C Kinase1 (RACK1) regulates multiple aspects of plants, including seed germination, growth, environmental stress responses, and flowering. Recent studies have revealed that RACK1 is associated with NADPH-dependent reactive oxygen species (ROS) signaling in plants. ROS, as a double-edged sword, can modulate several developmental pathways in plants. Thus, the resulting physiological consequences of perturbing the RACK1 expression-induced ROS balance remain to be explored. Herein, we combined molecular, pharmacological, and ultrastructure analysis approaches to investigate the hypothesized connection using T-DNA-mediated activation-tagged RACK1B overexpressed (OX) transgenic rice plants. In this study, we find that OsRACK1B-OX plants display reduced pollen viability, defective anther dehiscence, and abnormal spikelet morphology, leading to partial spikelet sterility. Microscopic observation of the mature pollen grains from the OX plants revealed abnormalities in the exine and intine structures and decreased starch granules in the pollen, resulting in a reduced number of grains per locule from the OX rice plants as compared to that of the wild-type (WT). Histochemical staining revealed a global increase in hydrogen peroxide (H2O2) in the leaves and roots of the transgenic lines overexpressing OsRACK1B compared to that of the WT. However, the elevated H2O2 in tissues from the OX plants can be reversed by pre-treatment with diphenylidonium (DPI), an NADPH oxidase inhibitor, indicating that the source of H2O2 could be, in part, NADPH oxidase. Expression analysis showed a differential expression of the NADPH/respiratory burst oxidase homolog D (RbohD) and antioxidant enzyme-related genes, suggesting a homeostatic mechanism of H2O2 production and antioxidant enzyme activity. BiFC analysis demonstrated that OsRACK1B interacts with the N-terminal region of RbohD in vivo. Taken together, these data indicate that elevated OsRACK1B accumulates a threshold level of ROS, in this case H2O2, which negatively regulates pollen development and fertility. In conclusion, we hypothesized that an optimal expression of RACK1 is critical for fertility in rice plants.
Collapse
|
21
|
Li X, Guo C, Wang Q, Li Z, Cai J, Wu D, Li Y, Yang A, Guo Y, Gao J, Wen L, Pu W. Systematic Analysis of Tobacco CrRLK1L Family Genes and Functional Identification of NtCrRLK1L47 in Environmental Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:838857. [PMID: 35783983 PMCID: PMC9247620 DOI: 10.3389/fpls.2022.838857] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The Catharanthus roseus RLK1-like (CrRLK1L) family is involved in the regulation of plant reproduction, growth and development, cell wall integrity sensing, as well as responses to both biotic and abiotic stress conditions. Extraordinary progress has been made in elucidating the CrRLK1L family receptor kinases-mediated signaling pathway, while limited research addressed the functions of CrRLK1L proteins in tobacco. In this study, we identified and analyzed 48 NtCrRLK1L members from the tobacco genome. The newly identified NtCrRLK1L members were divided into seven groups together with the Arabidopsis CrRLK1L members. The syntenic analysis revealed that four pairs of NtCrRLK1L genes were predicted to have arisen from segmental duplication events. Expression profiling showed that the NtCrRLK1L genes were expressed in various tissues, and most NtCrRLK1L genes were induced by salt and drought stress conditions. Notably, NtCrRLK1L47 was upregulated under drought and salinity stresses, and the NtCrRLK1L47-GFP fusion protein was located in the cell membrane. Furthermore, overexpression of the NtCrRLK1L47 gene enhanced the salt tolerance in tobacco seedlings.
Collapse
Affiliation(s)
- Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Cun Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qi Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhiyuan Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jun Cai
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, China
| | - Aiguo Yang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yongfeng Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Junping Gao
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Liuying Wen
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wenxuan Pu
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| |
Collapse
|
22
|
Kim EJ, Hong WJ, Kim YJ, Jung KH. Transcriptome Analysis of Triple Mutant for OsMADS62, OsMADS63, and OsMADS68 Reveals the Downstream Regulatory Mechanism for Pollen Germination in Rice ( Oryza sativa). Int J Mol Sci 2021; 23:ijms23010239. [PMID: 35008665 PMCID: PMC8745200 DOI: 10.3390/ijms23010239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/31/2022] Open
Abstract
The MADS (MCM1-AGAMOUS-DEFFICIENS-SRF) gene family has a preserved domain called MADS-box that regulates downstream gene expression as a transcriptional factor. Reports have revealed three MADS genes in rice, OsMADS62, OsMADS63, and OsMADS68, which exhibits preferential expression in mature rice pollen grains. To better understand the transcriptional regulation of pollen germination and tube growth in rice, we generated the loss-of-function homozygous mutant of these three OsMADS genes using the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9) system in wild-type backgrounds. Results showed that the triple knockout (KO) mutant showed a complete sterile phenotype without pollen germination. Next, to determine downstream candidate genes that are transcriptionally regulated by the three OsMADS genes during pollen development, we proceeded with RNA-seq analysis by sampling the mature anther of the mutant and wild-type. Two hundred and seventy-four upregulated and 658 downregulated genes with preferential expressions in the anthers were selected. Furthermore, downregulated genes possessed cell wall modification, clathrin coat assembly, and cellular cell wall organization features. We also selected downregulated genes predicted to be directly regulated by three OsMADS genes through the analyses for promoter sequences. Thus, this study provides a molecular background for understanding pollen germination and tube growth mediated by OsMADS62, OsMADS63, and OsMADS68 with mature pollen preferred expression.
Collapse
Affiliation(s)
- Eui-Jung Kim
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin-si 17104, Korea; (E.-J.K.); (W.-J.H.)
| | - Woo-Jong Hong
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin-si 17104, Korea; (E.-J.K.); (W.-J.H.)
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang-si 50463, Korea
- Correspondence: (Y.-J.K.); (K.-H.J.); Tel.: +82-31-201-3474 (K.-H.J.)
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin-si 17104, Korea; (E.-J.K.); (W.-J.H.)
- Correspondence: (Y.-J.K.); (K.-H.J.); Tel.: +82-31-201-3474 (K.-H.J.)
| |
Collapse
|
23
|
Young Chae G, Hong WJ, Jeong Jang M, Jung KH, Kim S. Recurrent mutations promote widespread structural and functional divergence of MULE-derived genes in plants. Nucleic Acids Res 2021; 49:11765-11777. [PMID: 34725701 PMCID: PMC8599713 DOI: 10.1093/nar/gkab932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 11/23/2022] Open
Abstract
Transposable element (TE)-derived genes are increasingly recognized as major sources conferring essential traits in agriculturally important crops but underlying evolutionary mechanisms remain obscure. We updated previous annotations and constructed 18,744 FAR-RED IMPAIRED RESPONSE1 (FAR1) genes, a transcription factor family derived from Mutator-like elements (MULEs), from 80 plant species, including 15,546 genes omitted in previous annotations. In-depth sequence comparison of the updated gene repertoire revealed that FAR1 genes underwent continuous structural divergence via frameshift and nonsense mutations that caused premature translation termination or specific domain truncations. CRISPR/Cas9-based genome editing and transcriptome analysis determined a novel gene involved in fertility-regulating transcription of rice pollen, denoting the functional capacity of our re-annotated gene models especially in monocots which had the highest copy numbers. Genomic evidence showed that the functional gene adapted by obtaining a shortened form through a frameshift mutation caused by a tandem duplication of a 79-bp sequence resulting in premature translation termination. Our findings provide improved resources for comprehensive studies of FAR1 genes with beneficial agricultural traits and unveil novel evolutionary mechanisms generating structural divergence and subsequent adaptation of TE-derived genes in plants.
Collapse
Affiliation(s)
- Geun Young Chae
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Republic of Korea
| | - Woo-Jong Hong
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Min Jeong Jang
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seungill Kim
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Republic of Korea
| |
Collapse
|