1
|
Huang C, Wang ZW, Lin YH, Liang XG, Chen HM, Hong B, Chen XM, Zhou YN, Chen ZY, Dong S, Wang X, Shen S, Zhou SL. Siblicide between fertilized and unfertilized ovaries within the maize ear. Commun Biol 2025; 8:528. [PMID: 40164830 PMCID: PMC11958663 DOI: 10.1038/s42003-025-07784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
Evolutionarily, plants overproduce ovaries but selectively eliminate those inferiors to ensure competitive offspring to set. This sibling rivalry, reducing grain number, is detrimental agronomically. However, the interaction between early-fertilized and unfertilized ovaries in sequentially-pollinated panicles is unclear. Here, we fertilized the ovaries on half rows of maize ear (HP) while keeping the rest unfertilized to investigate their interaction. HP reduced the growth of unfertilized ovaries while promoting fertilized ovary (grain) development. 13C-isotope labeling of grains led to isotope signal detected in the unlabeled ovaries, validating their interactions. Transcriptionally, HP caused cell wall degradation and senescence of unfertilized ovaries, reducing their viability. These ovaries showed promoted auxin and jasmonic acid levels with activated auxin signaling but suppressed MAPK signaling. Conversely, HP grains activated MAPK signaling, sugar utilization, and cell proliferation. These findings demonstrate that grains suppress ovaries in ear to consolidate sugar utilization advantage for development, potentially through hormone and MAPK signaling.
Collapse
Affiliation(s)
- Cheng Huang
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Zhi-Wei Wang
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Yi-Hsuan Lin
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Xiao-Gui Liang
- Research Center on Ecological Science, Jiangxi Agricultural University, Nanchang, China
| | - Hui-Min Chen
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Bo Hong
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Xian-Min Chen
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Ya-Ning Zhou
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Zhen-Yuan Chen
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Shuai Dong
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, 100193, Beijing, China
| | - Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China.
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, 100193, Beijing, China.
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei Province, Wuqiao, China.
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, 100193, Beijing, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei Province, Wuqiao, China
| |
Collapse
|
2
|
Liu W, Jiang H, Zeng F. The sugar transporter proteins in plants: An elaborate and widespread regulation network-A review. Int J Biol Macromol 2025; 294:139252. [PMID: 39755309 DOI: 10.1016/j.ijbiomac.2024.139252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
In higher plants, sugars are the primary products of photosynthesis, where CO2 is converted into organic carbon within the mesophyll cells of leaves. These sugars serve as a critical source of carbon skeletons for the biosynthesis of essential cellular compounds, energy production, and as osmotic and signaling molecules. Plant sugar transporter proteins play a key role in facilitating the long-distance translocation of sugars from source to sink organs, thereby controlling their distribution and accumulation across the plant. Over the past decade, substantial progress has been achieved in identifying the functions of individual genes linked to sugar transporters; however, the diverse regulatory mechanisms influencing these transporters remain insufficiently explored. This review consolidates current and previous research on the functions of sugar transporter proteins, focusing on their involvement in phloem transport pathways their impact on crop yield, cross-talk with other signals, and plant-microbe interactions. Furthermore, we propose future directions for studying the mechanisms of sugar transporter proteins and their potential applications in agriculture, with the goal of improving sugar utilization efficiency in crops and ultimately increasing crop yield.
Collapse
Affiliation(s)
- Weigang Liu
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Hong Jiang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Fankui Zeng
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 262306, China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, China.
| |
Collapse
|
3
|
Cheng S, Qi Y, Lu D, Wang Y, Xu X, Zhu D, Ma D, Wang S, Chen C. Comparative transcriptome analysis reveals potential regulatory genes involved in the development and strength formation of maize stalks. BMC PLANT BIOLOGY 2025; 25:272. [PMID: 40021951 PMCID: PMC11871777 DOI: 10.1186/s12870-025-06276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Stalk strength is a critical trait in maize that influences plant architecture, lodging resistance and grain yield. The developmental stage of maize, spanning from the vegetative stage to the reproductive stage, is critical for determining stalk strength. However, the dynamics of the genetic control of this trait remains unclear. RESULTS Here, we report a temporal resolution study of the maize stalk transcriptome in one tropical line and one non-stiff-stalk line using 53 transcriptomes collected covering V7 (seventh leaf stage) through silking stage. The time-course transcriptomes were categorized into four phases corresponding to stalk early development, stalk early elongation, stalk late elongation, and stalk maturation. Fuzzy c-means clustering and Gene Ontology (GO) analyses elucidated the chronological sequence of events that occur at four phases of stalk development. Gene Ontology analysis suggests that active cell division occurs in the stalk during Phase I. During Phase II, processes such as cell wall extension, lignin deposition, and vascular cell development are active. In Phase III, lignin metabolic process, secondary cell wall biogenesis, xylan biosynthesis process, cell wall biogenesis, and polysaccharide biosynthetic process contribute to cell wall strengthening. Defense responses, abiotic stresses, and transport of necessary nutrients or substances are active engaged during Phase IV. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the two maize lines presented significant gene expression differences in the phenylpropanoid biosynthesis pathway and the flavonoid biosynthesis pathway. Certain differentially expressed genes (DEGs) encoding transcription factors, especially those in the NAC and MYB families, may be involved in stalk development. In addition, six potential regulatory genes associated with stalk strength were identified through weighted gene co-expression network analysis (WGCNA). CONCLUSION The data set provides a high temporal-resolution atlas of gene expression during maize stalk development. These phase-specific genes, differentially expressed genes, and potential regulatory genes reported in this study provide important resources for further studies to elucidate the genetic control of stalk development and stalk strength formation in maize.
Collapse
Affiliation(s)
- Senan Cheng
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Youhui Qi
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Dusheng Lu
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Yancui Wang
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Xitong Xu
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Deyun Zhu
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Dijie Ma
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Shuyun Wang
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Cuixia Chen
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
4
|
Zhong Y, Wang Y, Pan X, Wang R, Li D, Ren W, Hao Z, Shi X, Guo J, Ramarojaona E, Schilder M, Bouwmeester H, Chen L, Yu P, Yan J, Chu J, Xu Y, Liu W, Dong Z, Wang Y, Zhang X, Zhang F, Li X. ZmCCD8 regulates sugar and amino acid accumulation in maize kernels via strigolactone signalling. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:492-508. [PMID: 39522159 PMCID: PMC11772326 DOI: 10.1111/pbi.14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/06/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
How carbon (sucrose) and nitrogen (amino acid) accumulation is coordinatively controlled in cereal grains remains largely enigmatic. We found that overexpression of the strigolactone (SL) biosynthesis gene CAROTENOID CLEAVAGE DIOXYGENASE 8 (CCD8) resulted in greater ear diameter and enhanced sucrose and amino acid accumulation in maize kernels. Loss of ZmCCD8 function reduced kernel growth with lower sugar and amino acid concentrations. Transcriptomic analysis showed down-regulation of the transcription factors ZmMYB42 and ZmMYB63 in ZmCCD8 overexpression alleles and up-regulation in zmccd8 null alleles. Importantly, ZmMYB42 and ZmMYB63 were negatively regulated by the SL signalling component UNBRANCHED 3, and repressed expression of the sucrose transporters ZmSWEET10 and ZmSWEET13c and the lysine/histidine transporter ZmLHT14. Consequently, null alleles of ZmMYB42 or ZmMYB63 promoted accumulation of soluble sugars and free amino acids in maize kernels, whereas ZmLHT14 overexpression enhanced amino acid accumulation in kernels. Moreover, overexpression of the SL receptor DWARF 14B resulted in more sucrose and amino acid accumulation in kernels, down-regulation of ZmMYB42 and ZmMYB63 expression, and up-regulation of ZmSWEETs and ZmLHT14 transcription. Together, we uncover a distinct SL signalling pathway that regulates sucrose and amino acid accumulation in kernels. Significant association of two SNPs in the 5' upstream region of ZmCCD8 with ear and cob diameter implicates its potential in breeding toward higher yield and nitrogen efficiency.
Collapse
Affiliation(s)
- Yanting Zhong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Yongqi Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Xiaoying Pan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Ruifeng Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Dongdong Li
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Wei Ren
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Ziyi Hao
- Department of Ecology and Ecological EngineeringChina Agricultural UniversityBeijingChina
| | - Xionggao Shi
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Jingyu Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Elia Ramarojaona
- Plant Hormone Biology Group, Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Mario Schilder
- Plant Hormone Biology Group, Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Harro Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, Center for crop functional genomics and molecular breeding, College of Biological ScienceChina Agricultural UniversityBeijingChina
| | - Peng Yu
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource ConservationUniversity of BonnBonnGermany
| | - Jijun Yan
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yanjun Xu
- Department of Applied ChemistryChina Agricultural UniversityBeijingChina
| | - Wenxin Liu
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zhaobin Dong
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yi Wang
- State Key Laboratory of Plant Environmental Resilience, Center for crop functional genomics and molecular breeding, College of Biological ScienceChina Agricultural UniversityBeijingChina
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable SciencesChina Agricultural UniversityBeijingChina
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Xuexian Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
5
|
Niu S, Yu L, Li J, Qu L, Wang Z, Li G, Guo J, Lu D. Effect of high temperature on maize yield and grain components: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175898. [PMID: 39222820 DOI: 10.1016/j.scitotenv.2024.175898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Global warming poses a significant challenge to global food security, with maize playing a vital role as a staple crop in ensuring food availability worldwide. Therefore, investigating the impact of high temperature (HT) on maize cultivation is imperative for addressing food security concerns. Despite numerous studies exploring the effects of HT on maize growth and yield, a comprehensive understanding of these effects remains elusive due to variations in experimental environments, varieties, and growth stages. To solve these limitations, a meta-analysis was conducted to assess the effects of HT on maize yield and grain components, synthesizing data from 575 observations across 34 studies. The findings indicate that 1) HT significantly reduced grain yield by 32.7-40.9 % and grain starch content by 2.8-10.5 %; 2) the vicinity of kernel development stage (include silking, blister, milk) is the period when maize kernels are most sensitive to HT; 3) a significant negative correlation was observed between HT degree and their impact on grain yield (R2 = 0.38, P = 0.043); and 4) the effects of HT days and degrees on maize yield were equally important. In conclusion, this meta-analysis establishes a theoretical framework for enhancing the resilience of maize production and cultivation practices by comprehensively evaluating the impact of HT on yield and grain components.
Collapse
Affiliation(s)
- Shiduo Niu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Linyang Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Jing Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Lingling Qu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Zitao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Guanghao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern, Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
6
|
Chen XM, Wang ZW, Liang XG, Li FY, Li BB, Wu G, Yi F, Setter TL, Shen S, Zhou SL. Incomplete filling in the basal region of maize endosperm: timing of development of starch synthesis and cell vitality. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1142-1158. [PMID: 39348485 DOI: 10.1111/tpj.17043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 10/02/2024]
Abstract
Starch synthesis in maize endosperm adheres to the basipetal sequence from the apex downwards. However, the mechanism underlying nonuniformity among regions of the endosperm in starch accumulation and its significance is poorly understood. Here, we examined the spatiotemporal transcriptomes and starch accumulation dynamics in apical (AE), middle (ME), and basal (BE) regions of endosperm throughout the filling stage. Results demonstrated that the BE had lower levels of gene transcripts and enzymes facilitating starch synthesis, corresponding to incomplete starch storage at maturity, compared with AE and ME. Contrarily, the BE showed abundant gene expression for genetic processing and slow progress in physiological development (quantified by an index calculated from the expression values of development progress marker genes), revealing a sustained cell vitality of the BE. Further analysis demonstrated a significant parabolic correlation between starch synthesis and physiological development. An in-depth examination showed that the BE had more active signaling pathways of IAA and ABA than the AE throughout the filling stage, while ethylene showed the opposite pattern. Besides, SNF1-related protein kinase1 (SnRK1) activity, a regulator for starch synthesis modulated by trehalose-6-phosphate (T6P) signaling, was kept at a lower level in the BE than the AE and ME, corresponding to the distinct gene expression in the T6P pathway in starch synthesis regulation. Collectively, the findings support an improved understanding of the timing of starch synthesis and cell vitality in regions of the endosperm during development, and potential regulation from hormone signaling and T6P/SnRK1 signaling.
Collapse
Affiliation(s)
- Xian-Min Chen
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhi-Wei Wang
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiao-Gui Liang
- Ministry of Education Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Agronomy College, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Feng-Yuan Li
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Bin-Bin Li
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Gong Wu
- Agronomy College, Anhui Agricultural University, Hefei, 230036, China
| | - Fei Yi
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Tim L Setter
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Si Shen
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, 061802, China
| | - Shun-Li Zhou
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, 061802, China
| |
Collapse
|
7
|
Xiao ZD, Chen ZY, Lin YH, Liang XG, Wang X, Huang SB, Munz S, Graeff-Hönninger S, Shen S, Zhou SL. Phosphorus deficiency promotes root:shoot ratio and carbon accumulation via modulating sucrose utilization in maize. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154349. [PMID: 39260051 DOI: 10.1016/j.jplph.2024.154349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Phosphorus deficiency usually promotes root:shoot ratio and sugar accumulation. However, how the allocation and utilization of carbon assimilates are regulated by phosphorus deficiency remains unclear. To understand how phosphorus deficiency affects the allocation and utilization of carbon assimilates, we systematically investigated the fixation and utilization of carbon, along with its diurnal and spatial patterns, in hydroponically grown maize seedlings under low phosphorus treatment. Under low phosphorus, sucrolytic activity was slightly inhibited by 12.0% in the root but dramatically inhibited by 38.8% in the shoot, corresponding to the promoted hexose/sucrose ratio and biomass in the root. Results point to a stable utilization of sucrose in the root facilitating competition for more assimilates, while increasing root:shoot ratio. Moreover, starch and sucrose accumulated in the leaves under low phosphorus. Spatially, starch and sucrose were oppositely distributed, starch mainly in the leaf tip, and sucrose mainly in the leaf base and sheath. Evidence of sucrose getting stuck in leaf base and sheath suggests that carbon accumulation is not attributed to carbon assimilation or export disturbance, but may be due to poor carbon utilization in the sinks. These findings improve the understanding of how low phosphorus regulates carbon allocation between shoot and root for acclimation to stress, and highlight the importance of improving carbon utilization in sinks to deal with phosphorus deficiency.
Collapse
Affiliation(s)
- Zu-Dong Xiao
- State Key Laboratory of Maize Bio-breeding, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhen-Yuan Chen
- State Key Laboratory of Maize Bio-breeding, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yi-Hsuan Lin
- State Key Laboratory of Maize Bio-breeding, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiao-Gui Liang
- State Key Laboratory of Maize Bio-breeding, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Province, China; Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Xin Wang
- State Key Laboratory of Maize Bio-breeding, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shou-Bing Huang
- State Key Laboratory of Maize Bio-breeding, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Sebastian Munz
- Department of Agronomy, Institute of Crop Science, University of Hohenheim, Stuttgart, 70599, Germany
| | - Simone Graeff-Hönninger
- Department of Agronomy, Institute of Crop Science, University of Hohenheim, Stuttgart, 70599, Germany
| | - Si Shen
- State Key Laboratory of Maize Bio-breeding, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Shun-Li Zhou
- State Key Laboratory of Maize Bio-breeding, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Zeng R, Chen T, Li X, Cao J, Li J, Xu X, Zhang L, Chen Y. Integrated physiological, transcriptomic and metabolomic analyses reveal the mechanism of peanut kernel weight reduction under waterlogging stress. PLANT, CELL & ENVIRONMENT 2024; 47:3198-3214. [PMID: 38722055 DOI: 10.1111/pce.14936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 07/12/2024]
Abstract
Waterlogging stress (WS) hinders kernel development and directly reduces peanut yield; however, the mechanism of kernel filling in response to WS remains unknown. The waterlogging-sensitive variety Huayu 39 was subjected to WS for 3 days at 7 days after the gynophores touched the ground (DAG). We found that WS affected kernel filling at 14, 21, and 28 DAG. WS decreased the average filling rate and kernel dry weight, while transcriptome sequencing and widely targeted metabolomic analysis revealed that WS inhibited the gene expression in starch and sucrose metabolism, which reduced sucrose input and transformation ability. Additionally, genes related to ethylene and melatonin synthesis and the accumulation of tryptophan and methionine were upregulated in response to WS. WS upregulated the expression of the gene encoding tryptophan decarboxylase (AhTDC), and overexpression of AhTDC in Arabidopsis significantly reduced the seed length, width, and weight. Therefore, WS reduced the kernel-filling rate, leading to a reduction in the 100-kernel weight. This survey informs the development of measures that alleviate the negative impact of WS on peanut yield and quality and provides a basis for exploring high-yield and high-quality cultivation, molecular-assisted breeding, and waterlogging prevention in peanut farming.
Collapse
Affiliation(s)
- Ruier Zeng
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Tingting Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Xi Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Jing Cao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Xueyu Xu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Yong Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Du B, Cao Y, Zhou J, Chen Y, Ye Z, Huang Y, Zhao X, Zou X, Zhang L. Sugar import mediated by sugar transporters and cell wall invertases for seed development in Camellia oleifera. HORTICULTURE RESEARCH 2024; 11:uhae133. [PMID: 38974190 PMCID: PMC11226869 DOI: 10.1093/hr/uhae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/28/2024] [Indexed: 07/09/2024]
Abstract
Seed development and yield depend on the transport and supply of sugar. However, an insufficient supply of nutrients from maternal tissues to embryos results in seed abortion and yield reduction in Camellia oleifera. In this study, we systematically examined the route and regulatory mechanisms of sugar import into developing C. oleifera seeds using a combination of histological observations, transcriptome profiling, and functional analysis. Labelling with the tracer carboxyfluorescein revealed a symplasmic route in the integument and an apoplasmic route for postphloem transport at the maternal-filial interface. Enzymatic activity and histological observation showed that at early stages [180-220 days after pollination (DAP)] of embryo differentiation, the high hexose/sucrose ratio was primarily mediated by acid invertases, and the micropylar endosperm/suspensor provides a channel for sugar import. Through Camellia genomic profiling, we identified three plasma membrane-localized proteins including CoSWEET1b, CoSWEET15, and CoSUT2 and one tonoplast-localized protein CoSWEET2a in seeds and verified their ability to transport various sugars via transformation in yeast mutants and calli. In situ hybridization and profiling of glycometabolism-related enzymes further demonstrated that CoSWEET15 functions as a micropylar endosperm-specific gene, together with the cell wall acid invertase CoCWIN9, to support early embryo development, while CoSWEET1b, CoSWEET2a, and CoSUT2 function at transfer cells and chalazal nucellus coupled with CoCWIN9 and CoCWIN11 responsible for sugar entry in bulk into the filial tissue. Collectively, our findings provide the first comprehensive evidence of the molecular regulation of sugar import into and within C. oleifera seeds and provide a new target for manipulating seed development.
Collapse
Affiliation(s)
- Bingshuai Du
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yibo Cao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Jing Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuqing Chen
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhihua Ye
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yiming Huang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Xinyan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Xinhui Zou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lingyun Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
10
|
He J, Wang J, Zhang Z. Toward unveiling transcriptome dynamics and regulatory modules at the maternal/filial interface of developing maize kernel. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2124-2140. [PMID: 38551088 DOI: 10.1111/tpj.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 06/14/2024]
Abstract
The basal region of maize (Zea mays) kernels, which includes the pedicel, placenta-chalazal, and basal endosperm transfer layers, serves as the maternal/filial interface for nutrient transfer from the mother plant to the developing seed. However, transcriptome dynamics of this maternal/filial interface remain largely unexplored. To address this gap, we conducted high-temporal-resolution RNA sequencing of the basal and upper kernel regions between 4 and 32 days after pollination and deeply analyzed transcriptome dynamics of the maternal/filial interface. Utilizing 790 specifically and highly expressed genes in the basal region, we performed the gene ontology (GO) term and weighted gene co-expression network analyses. In the early-stage basal region, we identified five MADS-box transcription factors (TFs) as hubs. Their homologs have been demonstrated as pivotal regulators at the maternal/filial interface of rice or Arabidopsis, suggesting their potential roles in maize kernel development. In the filling-stage basal region, numerous GO terms associated with transcriptional regulation and transporters are significantly enriched. Furthermore, we investigated the molecular function of three hub TFs. Through genome-wide DNA affinity purification sequencing combined with promoter transactivation assays, we suggested that these three TFs act as regulators of 10 basal-specific transporter genes involved in the transfer of sugars, amino acids, and ions. This study provides insights into transcriptomic dynamic and regulatory modules of the maternal/filial interface. In the future, genetic investigation of these hub regulators must advance our understanding of maternal/filial interface development and function.
Collapse
Affiliation(s)
- Juan He
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jincang Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zhiyong Zhang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
11
|
Liu H, Yao X, Fan J, Lv L, Zhao Y, Nie J, Guo Y, Zhang L, Huang H, Shi Y, Zhang Q, Li J, Sui X. Cell wall invertase 3 plays critical roles in providing sugars during pollination and fertilization in cucumber. PLANT PHYSIOLOGY 2024; 195:1293-1311. [PMID: 38428987 DOI: 10.1093/plphys/kiae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 03/03/2024]
Abstract
In plants, pollen-pistil interactions during pollination and fertilization mediate pollen hydration and germination, pollen tube growth, and seed set and development. Cell wall invertases (CWINs) help provide the carbohydrates for pollen development; however, their roles in pollination and fertilization have not been well established. In cucumber (Cucumis sativus), CsCWIN3 showed the highest expression in flowers, and we further examined CsCWIN3 for functions during pollination to seed set. Both CsCWIN3 transcript and CsCWIN3 protein exhibited similar expression patterns in the sepals, petals, stamen filaments, anther tapetum, and pollen of male flowers, as well as in the stigma, style, transmitting tract, and ovule funiculus of female flowers. Notably, repression of CsCWIN3 in cucumber did not affect the formation of parthenocarpic fruit but resulted in an arrested growth of stigma integuments in female flowers and a partially delayed dehiscence of anthers with decreased pollen viability in male flowers. Consequently, the pollen tube grew poorly in the gynoecia after pollination. In addition, CsCWIN3-RNA interference plants also showed affected seed development. Considering that sugar transporters could function in cucumber fecundity, we highlight the role of CsCWIN3 and a potential close collaboration between CWIN and sugar transporters in these processes. Overall, we used molecular and physiological analyses to determine the CsCWIN3-mediated metabolism during pollen formation, pollen tube growth, and plant fecundity. CsCWIN3 has essential roles from pollination and fertilization to seed set but not parthenocarpic fruit development in cucumber.
Collapse
Affiliation(s)
- Huan Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuehui Yao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jingwei Fan
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lijun Lv
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yalong Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jing Nie
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yicong Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lidong Zhang
- Tianjin Academy of Agricultural Sciences, Tianjin Kernel Cucumber Research Institute, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Ministry of Science and Technology of the People's Republic of China, Tianjin 300192, China
| | - Hongyu Huang
- Tianjin Academy of Agricultural Sciences, Tianjin Kernel Cucumber Research Institute, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Ministry of Science and Technology of the People's Republic of China, Tianjin 300192, China
| | - Yuzi Shi
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qian Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiawang Li
- Tianjin Academy of Agricultural Sciences, Tianjin Kernel Cucumber Research Institute, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Ministry of Science and Technology of the People's Republic of China, Tianjin 300192, China
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Wu JW, Wang XY, Yan RY, Zheng GM, Zhang L, Wang Y, Zhao YJ, Wang BH, Pu ML, Zhang XS, Zhao XY. A MYB-related transcription factor ZmMYBR29 is involved in grain filling. BMC PLANT BIOLOGY 2024; 24:458. [PMID: 38797860 PMCID: PMC11129368 DOI: 10.1186/s12870-024-05163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND The endosperm serves as the primary source of nutrients for maize (Zea mays L.) kernel embryo development and germination. Positioned at the base of the endosperm, the transfer cells (TCs) of the basal endosperm transfer layer (BETL) generate cell wall ingrowths, which enhance the connectivity between the maternal plant and the developing kernels. These TCs play a crucial role in nutrient transport and defense against pathogens. The molecular mechanism underlying BETL development in maize remains unraveled. RESULTS This study demonstrated that the MYB-related transcription factor ZmMYBR29, exhibited specific expression in the basal cellularized endosperm, as evidenced by in situ hybridization analysis. Utilizing the CRISPR/Cas9 system, we successfully generated a loss-of-function homozygous zmmybr29 mutant, which presented with smaller kernel size. Observation of histological sections revealed abnormal development and disrupted morphology of the cell wall ingrowths in the BETL. The average grain filling rate decreased significantly by 26.7% in zmmybr29 mutant in comparison to the wild type, which impacted the dry matter accumulation within the kernels and ultimately led to a decrease in grain weight. Analysis of RNA-seq data revealed downregulated expression of genes associated with starch synthesis and carbohydrate metabolism in the mutant. Furthermore, transcriptomic profiling identified 23 genes that expressed specifically in BETL, and the majority of these genes exhibited altered expression patterns in zmmybr29 mutant. CONCLUSIONS In summary, ZmMYBR29 encodes a MYB-related transcription factor that is expressed specifically in BETL, resulting in the downregulation of genes associated with kernel development. Furthermore, ZmMYBR29 influences kernels weight by affecting the grain filling rate, providing a new perspective for the complementation of the molecular regulatory network in maize endosperm development.
Collapse
Affiliation(s)
- Jia Wen Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xiao Yi Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Ru Yu Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Guang Ming Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Lin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Ya Jie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Bo Hui Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Meng Lin Pu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
13
|
Lin YH, Zhou YN, Liang XG, Jin YK, Xiao ZD, Zhang YJ, Huang C, Hong B, Chen ZY, Zhou SL, Shen S. Exogenous methylglyoxal alleviates drought-induced 'plant diabetes' and leaf senescence in maize. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1982-1996. [PMID: 38124377 DOI: 10.1093/jxb/erad503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Drought-induced leaf senescence is associated with high sugar levels, which bears some resemblance to the syndrome of diabetes in humans; however, the underlying mechanisms of such 'plant diabetes' on carbon imbalance and the corresponding detoxification strategy are not well understood. Here, we investigated the regulatory mechanism of exogenous methylglyoxal (MG) on 'plant diabetes' in maize plants under drought stress applied via foliar spraying during the grain-filling stage. Exogenous MG delayed leaf senescence and promoted photoassimilation, thereby reducing the yield loss induced by drought by 14%. Transcriptome and metabolite analyses revealed that drought increased sugar accumulation in leaves through inhibition of sugar transporters that facilitate phloem loading. This led to disequilibrium of glycolysis and overaccumulation of endogenous MG. Application of exogenous MG up-regulated glycolytic flux and the glyoxalase system that catabolyses endogenous MG and glycation end-products, ultimately alleviating 'plant diabetes'. In addition, the expression of genes facilitating anabolism and catabolism of trehalose-6-phosphate was promoted and suppressed by drought, respectively, and exogenous MG reversed this effect, implying that trehalose-6-phosphate signaling in the mediation of 'plant diabetes'. Furthermore, exogenous MG activated the phenylpropanoid biosynthetic pathway, promoting the production of lignin and phenolic compounds, which are associated with drought tolerance. Overall, our findings indicate that exogenous MG activates defense-related pathways to alleviate the toxicity derived from 'plant diabetes', thereby helping to maintain leaf function and yield production under drought.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ya-Ning Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiao-Gui Liang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yu-Ka Jin
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zu-Dong Xiao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ying-Jun Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Cheng Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Bo Hong
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhen-Yuan Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao 061802, China
| | - Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao 061802, China
| |
Collapse
|
14
|
Miret JA, Griffiths CA, Paul MJ. Sucrose homeostasis: Mechanisms and opportunity in crop yield improvement. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154188. [PMID: 38295650 DOI: 10.1016/j.jplph.2024.154188] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/10/2024]
Abstract
Sugar homeostasis is a critical feature of biological systems. In humans, raised and dysregulated blood sugar is a serious health issue. In plants, directed changes in sucrose homeostasis and allocation represent opportunities in crop improvement. Plant tissue sucrose varies more than blood glucose and is found at higher concentrations (cytosol and phloem ca. 100 mM v 3.9-6.9 mM for blood glucose). Tissue sucrose varies with developmental stage and environment, but cytosol and phloem exhibit tight sucrose control. Sucrose homeostasis is a consequence of the integration of photosynthesis, synthesis of storage end-products such as starch, transport of sucrose to sinks and sink metabolism. Trehalose 6-phosphate (T6P)-SnRK1 and TOR play central, still emerging roles in regulating and coordinating these processes. Overall, tissue sucrose levels are more strongly related to growth than to photosynthesis. As a key sucrose signal, T6P regulates sucrose levels, transport and metabolic pathways to coordinate source and sink at a whole plant level. Emerging evidence shows that T6P interacts with meristems. With careful targeting, T6P manipulation through exploiting natural variation, chemical intervention and genetic modification is delivering benefits for crop yields. Regulation of cereal grain set, filling and retention may be the most strategically important aspect of sucrose allocation and homeostasis for food security.
Collapse
Affiliation(s)
- Javier A Miret
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Cara A Griffiths
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Matthew J Paul
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
| |
Collapse
|
15
|
Shen X, Xiao B, Kaderbek T, Lin Z, Tan K, Wu Q, Yuan L, Lai J, Zhao H, Song W. Dynamic transcriptome landscape of developing maize ear. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1856-1870. [PMID: 37731154 DOI: 10.1111/tpj.16457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/22/2023]
Abstract
Seed number and harvesting ability in maize (Zea mays L.) are primarily determined by the architecture of female inflorescence, namely the ear. Therefore, ear morphogenesis contributes to grain yield and as such is one of the key target traits during maize breeding. However, the molecular networks of this highly dynamic and complex grain-bearing inflorescence remain largely unclear. As a first step toward characterizing these networks, we performed a high-spatio-temporal-resolution investigation of transcriptomes using 130 ear samples collected from developing ears with length from 0.1 mm to 19.0 cm. Comparisons of these mRNA populations indicated that these spatio-temporal transcriptomes were clearly separated into four distinct stages stages I, II, III, and IV. A total of 23 793 genes including 1513 transcription factors (TFs) were identified in the investigated developing ears. During the stage I of ear morphogenesis, 425 genes were predicted to be involved in a co-expression network established by eight hub TFs. Moreover, 9714 ear-specific genes were identified in the seven kinds of meristems. Additionally, 527 genes including 59 TFs were identified as especially expressed in ear and displayed high temporal specificity. These results provide a high-resolution atlas of gene activity during ear development and help to unravel the regulatory modules associated with the differentiation of the ear in maize.
Collapse
Affiliation(s)
- Xiaomeng Shen
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
| | - Bing Xiao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, P.R. China
| | - Tangnur Kaderbek
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
| | - Zhen Lin
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
| | - Kaiwen Tan
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
| | - Qingyu Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, P.R. China
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P.R. China
| | - Haiming Zhao
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P.R. China
| | - Weibin Song
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P.R. China
| |
Collapse
|
16
|
Sun N, Liu Y, Xu T, Zhou X, Xu H, Zhang H, Zhan R, Wang L. Genome-wide analysis of sugar transporter genes in maize ( Zea mays L.): identification, characterization and their expression profiles during kernel development. PeerJ 2023; 11:e16423. [PMID: 38025667 PMCID: PMC10658905 DOI: 10.7717/peerj.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Sugar transporters (STs) play a crucial role in the development of maize kernels. However, very limited information about STs in maize is known. In this study, sixty-eight ZmST genes were identified from the maize genome and classified into eight major groups based on phylogenetic relationship. Gene structure analysis revealed that members within the same group shared similar exon numbers. Synteny analysis indicated that ZmSTs underwent 15 segmental duplication events under purifying selection. Three-dimensional structure of ZmSTs demonstrated the formation of a compact helix bundle composed of 8-13 trans-membrane domains. Various development-related cis-acting elements, enriched in promoter regions, were correlated with the transcriptional response of ZmSTs during kernel development. Transcriptional expression profiles exhibited expression diversity of various ZmST genes in roots, stems, leaves, tassels, cobs, embryos, endosperms and seeds tissues. During kernel development, the expression of 24 ZmST genes was significantly upregulated in the early stage of grain filling. This upregulation coincided with the sharply increased grain-filling rate observed in the early stage. Overall, our findings shed light on the characteristics of ZmST genes in maize and provide a foundation for further functional studies.
Collapse
Affiliation(s)
- Nan Sun
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd., Zhaoyuan, Shandong, China
| | - Yanfeng Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd., Zhaoyuan, Shandong, China
| | - Tao Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Xiaoyan Zhou
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Heyang Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd., Zhaoyuan, Shandong, China
| | - Renhui Zhan
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd., Zhaoyuan, Shandong, China
| |
Collapse
|
17
|
Fu Y, Xiao W, Tian L, Guo L, Ma G, Ji C, Huang Y, Wang H, Wu X, Yang T, Wang J, Wang J, Wu Y, Wang W. Spatial transcriptomics uncover sucrose post-phloem transport during maize kernel development. Nat Commun 2023; 14:7191. [PMID: 37938556 PMCID: PMC10632454 DOI: 10.1038/s41467-023-43006-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
Maize kernels are complex biological systems composed of three genetic sources, namely maternal tissues, progeny embryos, and progeny endosperms. The lack of gene expression profiles with spatial information has limited the understanding of the specific functions of each cell population, and hindered the exploration of superior genes in kernels. In our study, we conduct microscopic sectioning and spatial transcriptomics analysis during the grain filling stage of maize kernels. This enables us to visualize the expression patterns of all genes through electronical RNA in situ hybridization, and identify 11 cell populations and 332 molecular marker genes. Furthermore, we systematically elucidate the spatial storage mechanisms of the three major substances in maize kernels: starch, protein, and oil. These findings provide valuable insights into the functional genes that control agronomic traits in maize kernels.
Collapse
Affiliation(s)
- Yuxin Fu
- College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai, 200233, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai, 200032, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenxin Xiao
- College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai, 200233, China
| | - Lang Tian
- College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai, 200233, China
| | - Liangxing Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai, 200032, China
| | - Guangjin Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Ji
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongcai Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai, 200032, China
- State key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai, 200032, China
| | - Xingguo Wu
- College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai, 200233, China
| | - Tao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai, 200032, China
- State key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai, 200032, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai, 200032, China.
| | - Wenqin Wang
- College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai, 200233, China.
| |
Collapse
|
18
|
Liang XG, Gao Z, Fu XX, Chen XM, Shen S, Zhou SL. Coordination of carbon assimilation, allocation, and utilization for systemic improvement of cereal yield. FRONTIERS IN PLANT SCIENCE 2023; 14:1206829. [PMID: 37731984 PMCID: PMC10508850 DOI: 10.3389/fpls.2023.1206829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023]
Abstract
The growth of yield outputs is dwindling after the first green revolution, which cannot meet the demand for the projected population increase by the mid-century, especially with the constant threat from extreme climates. Cereal yield requires carbon (C) assimilation in the source for subsequent allocation and utilization in the sink. However, whether the source or sink limits yield improvement, a crucial question for strategic orientation in future breeding and cultivation, is still under debate. To narrow the knowledge gap and capture the progress, we focus on maize, rice, and wheat by briefly reviewing recent advances in yield improvement by modulation of i) leaf photosynthesis; ii) primary C allocation, phloem loading, and unloading; iii) C utilization and grain storage; and iv) systemic sugar signals (e.g., trehalose 6-phosphate). We highlight strategies for optimizing C allocation and utilization to coordinate the source-sink relationships and promote yields. Finally, based on the understanding of these physiological mechanisms, we envisage a future scenery of "smart crop" consisting of flexible coordination of plant C economy, with the goal of yield improvement and resilience in the field population of cereals crops.
Collapse
Affiliation(s)
- Xiao-Gui Liang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education and Jiangxi Province/The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhen Gao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiao-Xiang Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education and Jiangxi Province/The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
| | - Xian-Min Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Du K, Zhao W, Lv Z, Liu L, Ali S, Chen B, Hu W, Zhou Z, Wang Y. Auxin and abscisic acid play important roles in promoting glucose metabolism of reactivated young kernels of maize (Zea mays L.). PHYSIOLOGIA PLANTARUM 2023; 175:e14019. [PMID: 37882255 DOI: 10.1111/ppl.14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 10/27/2023]
Abstract
In maize, young kernels that are less competitive and have poor sink activity often abort. Studies have indicated that such poor competitiveness depends, in part, on the regulation by auxin (IAA) and abscisic acid (ABA). However, the mechanisms for such effects remain unclear. We used pollination-blocking and hand-pollination treatments accompanied by multi-omics and physiological tests, to identify underlying mechanism by which IAA and ABA, along with sugar signaling affect kernel development. Results showed that preventing pollination of the primary ears reactivated kernels in the secondary ears and altered both sugar metabolism and hormone signaling pathways. This was accompanied by increased enzyme activities in carbon metabolism and concentrations of glucose and starch, as well as increased levels of IAA and decreased levels of ABA in the reactivated kernels. Positive and negative correlations were observed between IAA, ABA contents and cell wall invertase (CWIN) activity, and glucose contents, respectively. In vitro culture revealed that the expression of genes involved in glucose utilization was upregulated by IAA, but downregulated by ABA. IAA could promote the expression of ABA signaling genes ZmPP2C9 and ZmPP2C13 but downregulated the expression of Zmnced5, an ABA biosynthesis gene, and ZmSnRK2.10, which is involved in ABA signal transduction. However, these genes showed opposite trends when IAA transport was inhibited. To summarize, we suggest a regulatory model for how IAA inhibits ABA metabolism by promoting the smooth utilization of glucose in reactivated young kernels. Our findings highlight the importance of IAA in ABA signaling by regulating glucose production and transport in maize.
Collapse
Affiliation(s)
- Kang Du
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Wenqing Zhao
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agricultural University, Nanjing, China
| | - Zhiwei Lv
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Lin Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Saif Ali
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Binglin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agricultural University, Nanjing, China
| | - Wei Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agricultural University, Nanjing, China
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agricultural University, Nanjing, China
| | - Youhua Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
Gao L, Hu Y. Editorial: Environmental and endogenous signals: crop yield and quality regulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1271918. [PMID: 37670873 PMCID: PMC10476621 DOI: 10.3389/fpls.2023.1271918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023]
Affiliation(s)
| | - Yufeng Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Shen S, Ma S, Wu L, Zhou SL, Ruan YL. Winners take all: competition for carbon resource determines grain fate. TRENDS IN PLANT SCIENCE 2023; 28:893-901. [PMID: 37080837 DOI: 10.1016/j.tplants.2023.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
As an evolutionary strategy, plants overproduce ovaries as a safety net for survival, with those losing in the competition for resources being aborted. Grain abortion is, however, highly detrimental agronomically. The molecular basis of selective abortion of grain siblings remains unknown. In this opinion article we assess the current understanding of the molecular players controlling carbon resource import into ovaries and young grains, followed by an evaluation of the spatial hierarchy of sink capacity among grain siblings, focusing on the roles exerted by sugar transporters and enzymes. We argue that, upon sequential pollination and fertilization, robust activation of the carbon import and sugar signaling system plays a key role in establishing the capacity of grain siblings to acquire enough carbon resources to survive and thrive.
Collapse
Affiliation(s)
- Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Si Ma
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Limin Wu
- Agriculture and Food, CSIRO, Canberra, ACT 2617, Australia
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong-Ling Ruan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, China; Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
22
|
Liu B, Li L, Fu C, Zhang Y, Bai B, Du J, Zeng J, Bian Y, Liu S, Song J, Luo X, Xie L, Sun M, Xu X, Xia X, Cao S. Genetic dissection of grain morphology and yield components in a wheat line with defective grain filling. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:165. [PMID: 37392240 DOI: 10.1007/s00122-023-04410-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
KEY MESSAGE We identified stable QTL for grain morphology and yield component traits in a wheat defective grain filling line and validated genetic effects in a panel of cultivars using breeding-relevant markers. Grain filling capacity is essential for grain yield and appearance quality in cereal crops. Identification of genetic loci for grain filling is important for wheat improvement. However, there are few genetic studies on grain filling in wheat. Here, a defective grain filling (DGF) line wdgf1 characterized by shrunken grains was identified in a population derived from multi-round crosses involving nine parents and a recombinant inbreed line (RIL) population was generated from the cross between wdgf1 and a sister line with normal grains. We constructed a genetic map of the RIL population using the wheat 15K single nucleotide polymorphism chip and detected 25 stable quantitative trait loci (QTL) for grain morphology and yield components, including three for DGF, eleven for grain size, six for thousand grain weight, three for grain number per spike and two for spike number per m2. Among them, QDGF.caas-7A is co-located with QTGW.caas-7A and can explain 39.4-64.6% of the phenotypic variances, indicating that this QTL is a major locus controlling DGF. Sequencing and linkage mapping showed that TaSus2-2B and Rht-B1 were candidate genes for QTGW.caas-2B and the QTL cluster (QTGW.caas-4B, QGNS.caas-4B, and QSN.caas-4B), respectively. We developed kompetitive allele-specific PCR markers tightly linked to the stable QTL without corresponding to known yield-related genes, and validated their genetic effects in a diverse panel of wheat cultivars. These findings not only lay a solid foundation for genetic dissection underlying grain filling and yield formation, but also provide useful tools for marker-assisted breeding.
Collapse
Affiliation(s)
- Bingyan Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lingli Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Chao Fu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yingjun Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, China
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Jiuyuan Du
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Jianqi Zeng
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yingjie Bian
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Siyang Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jie Song
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xumei Luo
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lina Xie
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Mengjing Sun
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiaowan Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| |
Collapse
|
23
|
Hertig C, Rutten T, Melzer M, Schippers JHM, Thiel J. Dissection of Developmental Programs and Regulatory Modules Directing Endosperm Transfer Cell and Aleurone Identity in the Syncytial Endosperm of Barley. PLANTS (BASEL, SWITZERLAND) 2023; 12:1594. [PMID: 37111818 PMCID: PMC10142620 DOI: 10.3390/plants12081594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Endosperm development in barley starts with the formation of a multinucleate syncytium, followed by cellularization in the ventral part of the syncytium generating endosperm transfer cells (ETCs) as first differentiating subdomain, whereas aleurone (AL) cells will originate from the periphery of the enclosing syncytium. Positional signaling in the syncytial stage determines cell identity in the cereal endosperm. Here, we performed a morphological analysis and employed laser capture microdissection (LCM)-based RNA-seq of the ETC region and the peripheral syncytium at the onset of cellularization to dissect developmental and regulatory programs directing cell specification in the early endosperm. Transcriptome data revealed domain-specific characteristics and identified two-component signaling (TCS) and hormone activities (auxin, ABA, ethylene) with associated transcription factors (TFs) as the main regulatory links for ETC specification. On the contrary, differential hormone signaling (canonical auxin, gibberellins, cytokinin) and interacting TFs control the duration of the syncytial phase and timing of cellularization of AL initials. Domain-specific expression of candidate genes was validated by in situ hybridization and putative protein-protein interactions were confirmed by split-YFP assays. This is the first transcriptome analysis dissecting syncytial subdomains of cereal seeds and provides an essential framework for initial endosperm differentiation in barley, which is likely also valuable for comparative studies with other cereal crops.
Collapse
Affiliation(s)
- Christian Hertig
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Twan Rutten
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Michael Melzer
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Jos H. M. Schippers
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Johannes Thiel
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| |
Collapse
|
24
|
Li Q, Liu N, Wu C. Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. PLANTA 2023; 257:94. [PMID: 37031436 DOI: 10.1007/s00425-023-04126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In maize, intrinsic hormone activities and sap fluxes facilitate organogenesis patterning and plant holistic development; these hormone movements should be a primary focus of developmental biology and agricultural optimization strategies. Maize (Zea mays) is an important crop plant with distinctive life history characteristics and structural features. Genetic studies have extended our knowledge of maize developmental processes, genetics, and molecular ecophysiology. In this review, the classical life cycle and life history strategies of maize are analyzed to identify spatiotemporal organogenesis properties and develop a definitive understanding of maize development. The actions of genes and hormones involved in maize organogenesis and sex determination, along with potential molecular mechanisms, are investigated, with findings suggesting central roles of auxin and cytokinins in regulating maize holistic development. Furthermore, investigation of morphological and structural characteristics of maize, particularly node ubiquity and the alternate attachment pattern of lateral organs, yields a novel regulatory model suggesting that maize organ initiation and subsequent development are derived from the stimulation and interaction of auxin and cytokinin fluxes. Propositions that hormone activities and sap flow pathways control organogenesis are thoroughly explored, and initiation and development processes of distinctive maize organs are discussed. Analysis of physiological factors driving hormone and sap movement implicates cues of whole-plant activity for hormone and sap fluxes to stimulate maize inflorescence initiation and organ identity determination. The physiological origins and biogenetic mechanisms underlying maize floral sex determination occurring at the tassel and ear spikelet are thoroughly investigated. The comprehensive outline of maize development and morphogenetic physiology developed in this review will enable farmers to optimize field management and will provide a reference for de novo crop domestication and germplasm improvement using genome editing biotechnologies, promoting agricultural optimization.
Collapse
Affiliation(s)
- Qinglin Li
- Crop Genesis and Novel Agronomy Center, Yangling, 712100, Shaanxi, China.
| | - Ning Liu
- Shandong ZhongnongTiantai Seed Co., Ltd, Pingyi, 273300, Shandong, China
| | - Chenglai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
25
|
Zhu W, Miao X, Qian J, Chen S, Jin Q, Li M, Han L, Zhong W, Xie D, Shang X, Li L. A translatome-transcriptome multi-omics gene regulatory network reveals the complicated functional landscape of maize. Genome Biol 2023; 24:60. [PMID: 36991439 PMCID: PMC10053466 DOI: 10.1186/s13059-023-02890-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/04/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Maize (Zea mays L.) is one of the most important crops worldwide. Although sophisticated maize gene regulatory networks (GRNs) have been constructed for functional genomics and phenotypic dissection, a multi-omics GRN connecting the translatome and transcriptome is lacking, hampering our understanding and exploration of the maize regulatome. RESULTS We collect spatio-temporal translatome and transcriptome data and systematically explore the landscape of gene transcription and translation across 33 tissues or developmental stages of maize. Using this comprehensive transcriptome and translatome atlas, we construct a multi-omics GRN integrating mRNAs and translated mRNAs, demonstrating that translatome-related GRNs outperform GRNs solely using transcriptomic data and inter-omics GRNs outperform intra-omics GRNs in most cases. With the aid of the multi-omics GRN, we reconcile some known regulatory networks. We identify a novel transcription factor, ZmGRF6, which is associated with growth. Furthermore, we characterize a function related to drought response for the classic transcription factor ZmMYB31. CONCLUSIONS Our findings provide insights into spatio-temporal changes across maize development at both the transcriptome and translatome levels. Multi-omics GRNs represent a useful resource for dissection of the regulatory mechanisms underlying phenotypic variation.
Collapse
Affiliation(s)
- Wanchao Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Xinxin Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Jia Qian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Sijia Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qixiao Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Mingzhu Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Wanshun Zhong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Dan Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Xiaoyang Shang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- HuBei HongShan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
26
|
Ma B, Zhang L, He Z. Understanding the regulation of cereal grain filling: The way forward. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:526-547. [PMID: 36648157 DOI: 10.1111/jipb.13456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
During grain filling, starch and other nutrients accumulate in the endosperm; this directly determines grain yield and grain quality in crops such as rice (Oryza sativa), maize (Zea mays), and wheat (Triticum aestivum). Grain filling is a complex trait affected by both intrinsic and environmental factors, making it difficult to explore the underlying genetics, molecular regulation, and the application of these genes for breeding. With the development of powerful genetic and molecular techniques, much has been learned about the genes and molecular networks related to grain filling over the past decades. In this review, we highlight the key factors affecting grain filling, including both biological and abiotic factors. We then summarize the key genes controlling grain filling and their roles in this event, including regulators of sugar translocation and starch biosynthesis, phytohormone-related regulators, and other factors. Finally, we discuss how the current knowledge of valuable grain filling genes could be integrated with strategies for breeding cereal varieties with improved grain yield and quality.
Collapse
Affiliation(s)
- Bin Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
27
|
Deng T, Wang JH, Gao Z, Shen S, Liang XG, Zhao X, Chen XM, Wu G, Wang X, Zhou SL. Late Split-Application with Reduced Nitrogen Fertilizer Increases Yield by Mediating Source-Sink Relations during the Grain Filling Stage in Summer Maize. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030625. [PMID: 36771709 PMCID: PMC9920228 DOI: 10.3390/plants12030625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 05/22/2023]
Abstract
In the North China Plain, the excessive application of nitrogen (N) fertilizer for ensuring high yield and a single application at sowing for simplifying management in farmer practice lead to low N use efficiency and environmental risk in maize (Zea mays L.) production. However, it is unclear whether and how late split application with a lower level of N fertilizer influences maize yield. To address this question, a two-year field experiment was conducted with two commercial maize cultivars (Zhengdan 958 and Denghai 605) using a lower level of N input (180 kg ha-1) by setting up single application at sowing and split application at sowing and later stages (V12, R1, and R2) with four different ratios, respectively. The maize yield with split-applied 180 kg ha-1 N did not decrease compared to the average yield with 240 kg ha-1 N input in farmer practice, while it increased by 6.7% to 11.5% in the four N split-application treatments compared with that of the single-application control. Morphological and physiological analyses demonstrated that late split application of N (i) increased the net photosynthetic rate and chlorophyll content and thus promoted the photosynthetic efficiency during the reproductive stages; (ii) promoted the sink capacity via improved kernel number, endosperm cells division, and grain-filling rate; and (iii) increased the final N content and N efficiency in the plant. Therefore, we propose that late split application of N could reduce N fertilizer input and coordinately improve N efficiency and grain yield in summer maize production, which are likely achieved by optimizing the source-sink relations during the grain-filling stage.
Collapse
Affiliation(s)
- Tao Deng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jia-Hui Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhen Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao 061802, China
| | - Xiao-Gui Liang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xue Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xian-Min Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Gong Wu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao 061802, China
- Correspondence: (X.W.); (S.-L.Z.); Tel.: +86-10-62732557 (X.W.); +86-10-62732431 (S.-L.Z.)
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao 061802, China
- Correspondence: (X.W.); (S.-L.Z.); Tel.: +86-10-62732557 (X.W.); +86-10-62732431 (S.-L.Z.)
| |
Collapse
|
28
|
Wang J, Wang H, Li K, Liu X, Cao X, Zhou Y, Huang C, Peng Y, Hu X. Characterization and Transcriptome Analysis of Maize Small-Kernel Mutant smk7a in Different Development Stages. PLANTS (BASEL, SWITZERLAND) 2023; 12:354. [PMID: 36679067 PMCID: PMC9866416 DOI: 10.3390/plants12020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The kernel serves as a storage organ for various nutrients and determines the yield and quality of maize. Understanding the mechanisms regulating kernel development is important for maize production. In this study, a small-kernel mutant smk7a of maize was characterized. Cytological observation suggested that the development of the endosperm and embryo was arrested in smk7a in the early development stage. Biochemical tests revealed that the starch, zein protein, and indole-3-acetic acid (IAA) contents were significantly lower in smk7a compared with wild-type (WT). Consistent with the defective development phenotype, transcriptome analysis of the kernels 12 and 20 days after pollination (DAP) revealed that the starch, zein, and auxin biosynthesis-related genes were dramatically downregulated in smk7a. Genetic mapping indicated that the mutant was controlled by a recessive gene located on chromosome 2. Our results suggest that disrupted nutrition accumulation and auxin synthesis cause the defective endosperm and embryo development of smk7a.
Collapse
Affiliation(s)
- Jing Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongwu Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Kun Li
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaogang Liu
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoxiong Cao
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqiang Zhou
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changling Huang
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunling Peng
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaojiao Hu
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
29
|
Coast O, Posch BC, Rognoni BG, Bramley H, Gaju O, Mackenzie J, Pickles C, Kelly AM, Lu M, Ruan YL, Trethowan R, Atkin OK. Wheat photosystem II heat tolerance: evidence for genotype-by-environment interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1368-1382. [PMID: 35781899 DOI: 10.1111/tpj.15894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
High temperature stress inhibits photosynthesis and threatens wheat production. One measure of photosynthetic heat tolerance is Tcrit - the critical temperature at which incipient damage to photosystem II (PSII) occurs. This trait could be improved in wheat by exploiting genetic variation and genotype-by-environment interactions (GEI). Flag leaf Tcrit of 54 wheat genotypes was evaluated in 12 thermal environments over 3 years in Australia, and analysed using linear mixed models to assess GEI effects. Nine of the 12 environments had significant genetic effects and highly variable broad-sense heritability (H2 ranged from 0.15 to 0.75). Tcrit GEI was variable, with 55.6% of the genetic variance across environments accounted for by the factor analytic model. Mean daily growth temperature in the month preceding anthesis was the most influential environmental driver of Tcrit GEI, suggesting biochemical, physiological and structural adjustments to temperature requiring different durations to manifest. These changes help protect or repair PSII upon exposure to heat stress, and may improve carbon assimilation under high temperature. To support breeding efforts to improve wheat performance under high temperature, we identified genotypes superior to commercial cultivars commonly grown by farmers, and demonstrated potential for developing genotypes with greater photosynthetic heat tolerance.
Collapse
Affiliation(s)
- Onoriode Coast
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
- School of Environmental and Rural Sciences, Faculty of Science Agriculture Business and Law, University of New England, Armidale, NSW, 2351, Australia
| | - Bradley C Posch
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Bethany G Rognoni
- Department of Agriculture and Fisheries, Leslie Research Facility, Toowoomba, QLD, 4350, Australia
| | - Helen Bramley
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW, 2390, Australia
| | - Oorbessy Gaju
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Lincoln Institute of Agri-Food Technology, University of Lincoln, Riseholme Park, Lincoln, Lincolnshire, LN2 2LG, UK
| | - John Mackenzie
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Claire Pickles
- Birchip Cropping Group, 73 Cumming Avenue, Birchip, VIC, 3483, Australia
| | - Alison M Kelly
- Department of Agriculture and Fisheries, Leslie Research Facility, Toowoomba, QLD, 4350, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Toowoomba, QLD, 4350, Australia
| | - Meiqin Lu
- Australian Grain Technologies, 12656 Newell Highway, Narrabri, NSW, 2390, Australia
| | - Yong-Ling Ruan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Richard Trethowan
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW, 2390, Australia
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
30
|
Du K, Zhao W, Mao Y, Lv Z, Khattak WA, Ali S, Zhou Z, Wang Y. Maize ear growth is stimulated at the fourth day after pollination by cell wall remodeling and changes in lipid and hormone signaling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5429-5439. [PMID: 35338493 DOI: 10.1002/jsfa.11896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Stimulating maize ear development is an effective way of improving yield. However, limited information is available regarding the regulation of sink strength change from weak to strong at the same position of maize plants. Here, a novel method for stimulating development combined with physiological assays and proteomics was applied to explore the regulation of ear strengthened development. RESULTS By blocking pollination of the upper ear of maize hybrid Suyu 41, the adjacent lower ear was dramatically stimulated at 4 days after pollination (DAP). Tandem mass tag (TMT)-based proteomics identified 173 differentially expressed proteins (fold change >1.2 or <0.83, P < 0.05) from 7793 total proteins. Gene ontology annotations indicated that several pathways showed noticeable changes, with a preferential distribution to cell wall remodeling, hormone signals and lipid metabolism in the stimulated kernels. Cell wall remodeling was highly mediated by chitinase, exhydrolase II and xyloglucan enotransglucosylase/hydrolase, and accompanied by increased sucrose and glucose content. A series of lipoxygenase proteins were significantly upregulated, causing a significant alteration in lipid metabolism. Hormone signals were influenced by the expression of the proteins involved in indole-3-acetic acid (IAA) transport, zeatin (ZT) biosynthesis and abscisic acid (ABA) signal response, and increased IAA, ZT and ABA content. CONCLUSION The critical time for understanding the mechanism by which ear growth is stimulated is 4 DAP. Comparative proteomics and physiological analysis revealed that lipid metabolism enhancement, cell wall remodeling and changes in hormone signaling (IAA, ZT and ABA) were all important in stimulating early ear development. Proper regulation of these pathways may improve ear development, resulting in increased maize yield. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kang Du
- College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Wenqing Zhao
- College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, P. R. China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC- MCP), Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Yu Mao
- College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Zhiwei Lv
- College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Wajid Ali Khattak
- College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Saif Ali
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, P. R. China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC- MCP), Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Youhua Wang
- College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, P. R. China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC- MCP), Nanjing Agricultural University, 210095, Nanjing, P. R. China
| |
Collapse
|
31
|
Chen XM, Li FY, Dong S, Liu XF, Li BB, Xiao ZD, Deng T, Wang YB, Shen S, Zhou SL. Stubby or Slender? Ear Architecture Is Related to Drought Resistance in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:901186. [PMID: 35769293 PMCID: PMC9235860 DOI: 10.3389/fpls.2022.901186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Ear architecture is determined by two stable heritable traits, kernel row number (KRN) and kernel number per row (KNPR), but its relationship with drought resistance is still vague. To this end, we obtained 16 and 11 hybrids with slender (less KRN but more KNPR) and stubby (more KRN but less KNPR) ears by intentionally crossbreeding, respectively. These hybrids were exposed to a seven-day water deficit (WD) since silk emergence coupled with synchronous (SP) and continuous pollination (CP) to alter the pollination time gaps on ears. The results showed that the emerged silks in CP were 9.1 and 9.0% less than in the SP treatment in the stubby and slender ears, respectively, suggesting the suppression of asynchronous pollination on silk emergence. The stubby ears performed higher silking rate and yield compared with the slender ears with or without drought stress. To eliminate the inherent difference in sink capacities, we selected four hybrids for each ear type with similar silk and kernel numbers for further analyses. Interestingly, the stubby ears were less affected in silking rate and thus performed higher yield under drought compared with the slender ears. The finding suggests that ear architecture matters in the determination of drought resistance that deserves more attention in breeding.
Collapse
Affiliation(s)
- Xian-Min Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Feng-Yuan Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shuai Dong
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xin-Fang Liu
- Corn Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Bin-Bin Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zu-Dong Xiao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Tao Deng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yan-Bo Wang
- Corn Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| |
Collapse
|
32
|
Liu J, Wu MW, Liu CM. Cereal Endosperms: Development and Storage Product Accumulation. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:255-291. [PMID: 35226815 DOI: 10.1146/annurev-arplant-070221-024405] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The persistent triploid endosperms of cereal crops are the most important source of human food and animal feed. The development of cereal endosperms progresses through coenocytic nuclear division, cellularization, aleurone and starchy endosperm differentiation, and storage product accumulation. In the past few decades, the cell biological processes involved in endosperm formation in most cereals have been described. Molecular genetic studies performed in recent years led to the identification of the genes underlying endosperm differentiation, regulatory network governing storage product accumulation, and epigenetic mechanism underlying imprinted gene expression. In this article, we outline recent progress in this area and propose hypothetical models to illustrate machineries that control aleurone and starchy endosperm differentiation, sugar loading, and storage product accumulations. A future challenge in this area is to decipher the molecular mechanisms underlying coenocytic nuclear division, endosperm cellularization, and programmed cell death.
Collapse
Affiliation(s)
- Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Ming-Wei Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| |
Collapse
|
33
|
Hu L, Zhang F, Song S, Yu X, Ren Y, Zhao X, Liu H, Liu G, Wang Y, He H. CsSWEET2, a Hexose Transporter from Cucumber ( Cucumis sativus L.), Affects Sugar Metabolism and Improves Cold Tolerance in Arabidopsis. Int J Mol Sci 2022; 23:ijms23073886. [PMID: 35409244 PMCID: PMC8999130 DOI: 10.3390/ijms23073886] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Sugars, which are critical osmotic compounds and signalling molecules in plants, and Sugars Will Eventually be Exported Transporters (SWEETs), which constitute a novel family of sugar transporters, play central roles in plant responses to multiple abiotic stresses. In the present study, a member of the SWEET gene family from cucumber (Cucumis sativus L.), CsSWEET2, was identified and characterized. Histochemical analysis of β-glucuronidase expression in transgenic Arabidopsis plants showed that CsSWEET2 is highly expressed in the leaves; subcellular localization indicated that CsSWEET2 proteins are localized in the plasma membrane and endoplasmic reticulum. Heterologous expression assays in yeast demonstrated that CsSWEET2 encodes an energy-independent hexose/H+ uniporter that can complement both glucose and fructose transport deficiencies. Compared with wild-type Arabidopsis plants, transgenic Arabidopsis plants overexpressing CsSWEET2 had much lower relative electrolyte leakage levels and were much more resistant to cold stress. Sugar content analysis showed that glucose and fructose levels in the transgenic Arabidopsis plants were significantly higher than those in the wild-type plants. Taken together, our results suggest that, by mediating sugar metabolism and compartmentation, CsSWEET2 plays a vital role in improving plant cold tolerance.
Collapse
Affiliation(s)
- Liping Hu
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing 100097, China
- Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Feng Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shuhui Song
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing 100097, China
- Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Xiaolu Yu
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing 100097, China
- Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Yi Ren
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xuezhi Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing 100097, China
- Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Huan Liu
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing 100097, China
- Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Guangmin Liu
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing 100097, China
- Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Yaqin Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing 100097, China
- Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Hongju He
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing 100097, China
- Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| |
Collapse
|
34
|
Morin A, Kadi F, Porcheron B, Vriet C, Maurousset L, Lemoine R, Pourtau N, Doidy J. Genome-wide identification of invertases in Fabaceae, focusing on transcriptional regulation of Pisum sativum invertases in seed subjected to drought. PHYSIOLOGIA PLANTARUM 2022; 174:e13673. [PMID: 35307852 DOI: 10.1111/ppl.13673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 05/11/2023]
Abstract
Invertases are key enzymes for carbon metabolism, cleaving sucrose into energy-rich and signaling metabolites, glucose and fructose. Invertases play pivotal roles in development and stress response, determining yield and quality of seed production. In this context, the repertoire of invertase gene families is critically scarce in legumes. Here, we performed a systematic search for invertase families in 16 Fabaceae genomes. For instance, we identified 19 invertase genes in the model plant Medicago and 17 accessions in the agronomic crop Pisum sativum. Our comprehensive phylogenetic analysis sets a milestone for the scientific community as we propose a new nomenclature to correctly name plant invertases. Thus, neutral invertases were classified into four clades of cytosolic invertase (CINV). Acid invertases were classified into two cell wall invertase clades (CWINV) and two vacuolar invertase clades (VINV). Then, we explored transcriptional regulation of the pea invertase family, focusing on seed development and water stress. Invertase expression decreased sharply from embryogenesis to seed-filling stages, consistent with higher sucrose and lower monosaccharide contents. The vacuolar invertase PsVINV1.1 clearly marked the transition between both developmental stages. We hypothesize that the predominantly expressed cell wall invertase, PsCWINV1.2, may drive sucrose unloading towards developing seeds. The same candidates, PsVINV1.1 and PsCWINV1.2, were also regulated by water deficit during embryonic stage. We suggest that PsVINV1.1 along with vacuolar sugar transporters maintain cellular osmotic pressure and PsCWINV1.2 control hexose provision, thereby ensuring embryo survival in drought conditions. Altogether, our findings provide novel insights into the regulation of plant carbon metabolism in a challenging environment.
Collapse
Affiliation(s)
- Amélie Morin
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Fadia Kadi
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Benoit Porcheron
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Cécile Vriet
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Laurence Maurousset
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Rémi Lemoine
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Nathalie Pourtau
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Joan Doidy
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| |
Collapse
|
35
|
Zhang GP, Marasini M, Li WW, Zhang FL. Grain filling leads to backflow of surplus water from the maize grain to the cob and plant via the xylem. FRONTIERS IN PLANT SCIENCE 2022; 13:1008896. [PMID: 36544873 PMCID: PMC9762273 DOI: 10.3389/fpls.2022.1008896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/16/2022] [Indexed: 05/12/2023]
Abstract
Rapid dehydration of maize grain is one of the main characteristics of cultivar selection for mechanical grain harvest; however, the dominant driving forces and mechanisms of grain dehydration before physiological maturity remain disputable and obscure. This study compared the grain moisture content and dehydration rate of coated treatment (no surface evaporation) and control grains. Meanwhile, the xylem-mobile dye was infused from stem and cob, and its movement was observed in cob, ear-stalk and stem xylem. The development dynamics of husk, grain and cob were analyzed to determine the mechanism of grain dehydration. The results showed that, from grain formation to 5-10 days before physiological maturity, the main driving force of grain dehydration of the early and middle-maturity maize cultivars was filling, followed by surface evaporation. In the dye movement experiment, the movement of the stem-infused xylem-mobile dye through the pedicel xylem was observed during but not after the grain formation period. Moreover, the cob-infused xylem-mobile dye moved to the ear- stalk and the stem via the xylem. There was a significantly positive correlation between grain filling rate and dehydration rate from grain formation to physiological maturity. According to these results, we proposed that in the grain dehydration phase driven by filling, the surplus water in the grain flows back to the cob via the pedicel xylem, of which some flowed back to the plant via the cob and ear- stalk xylem. This provides a new theoretical basis for selecting and breeding maize cultivars suitable for mechanical grain harvesting.
Collapse
|