1
|
Michalak KM, Wojciechowska N, Kułak K, Minicka J, Jagodziński AM, Bagniewska-Zadworna A. Is autophagy always a death sentence? A case study of highly selective cytoplasmic degradation during phloemogenesis. ANNALS OF BOTANY 2025; 135:681-696. [PMID: 39497527 PMCID: PMC11904893 DOI: 10.1093/aob/mcae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/04/2024] [Indexed: 03/15/2025]
Abstract
BACKGROUND AND AIMS The transformation of sieve elements from meristematic cells, equipped with a full complement of organelles, to specialized transport tubes devoid of a nucleus has long been enigmatic. We hypothesized a strong involvement of various degradation pathways, particularly macroautophagy in this context, emphasizing the importance of autophagic selectivity in the remaining viability of these cells. METHODS Experiments were performed on pioneer roots of Populus trichocarpa cultivated in rhizotrons under field conditions. Through anatomical, ultrastructural and molecular analyses, we delineate the stages of phloemogenesis and the concurrent alterations in the cytoplasmic composition of SEs. KEY RESULTS Notably, we observed not only macroautophagic structures, but also the formation of autophagic plastids, the selective degradation of specific organelles, vacuole disruption and the release of vacuolar contents. These events initially lead to localized reductions in cytoplasm density, but the organelle-rich cytoplasmic phase is safeguarded from extensive damage by a membrane system derived from the endoplasmic reticulum. The sieve element ultimately develops into a conduit containing electron-translucent cytoplasm. Eventually, the mature sieve element is a tube filled only by translucent cytoplasm, with sparse organelles tethered to the cell wall. CONCLUSIONS Although the activation of programmed cell death pathways was postulated, the persistence of sieve elements indicates that protoplast depletion is meticulously regulated by hitherto unidentified mechanisms. This research elucidates the sequential processes occurring in these cells during phloemogenesis and unveils novel insights into the mechanisms of selective autophagy.
Collapse
Affiliation(s)
- Kornel M Michalak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| | - Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| | - Karolina Kułak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| | - Julia Minicka
- Department of Virology and Bacteriology, Institute of Plant Protection in Poznań, Węgorka 20, Poznań 60-318, Poland
| | - Andrzej M Jagodziński
- Department of Ecology, Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik 62-035, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| |
Collapse
|
2
|
Pérez-Sancho J, Smokvarska M, Dubois G, Glavier M, Sritharan S, Moraes TS, Moreau H, Dietrich V, Platre MP, Paterlini A, Li ZP, Fouillen L, Grison MS, Cana-Quijada P, Immel F, Wattelet V, Ducros M, Brocard L, Chambaud C, Luo Y, Ramakrishna P, Bayle V, Lefebvre-Legendre L, Claverol S, Zabrady M, Martin PGP, Busch W, Barberon M, Tilsner J, Helariutta Y, Russinova E, Taly A, Jaillais Y, Bayer EM. Plasmodesmata act as unconventional membrane contact sites regulating intercellular molecular exchange in plants. Cell 2025; 188:958-977.e23. [PMID: 39983675 DOI: 10.1016/j.cell.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/06/2024] [Accepted: 11/26/2024] [Indexed: 02/23/2025]
Abstract
Membrane contact sites (MCSs) are fundamental for intracellular communication, but their role in intercellular communication remains unexplored. We show that in plants, plasmodesmata communication bridges function as atypical endoplasmic reticulum (ER)-plasma membrane (PM) tubular MCSs, operating at cell-cell interfaces. Similar to other MCSs, ER-PM apposition is controlled by a protein-lipid tethering complex, but uniquely, this serves intercellular communication. Combining high-resolution microscopy, molecular dynamics, and pharmacological and genetic approaches, we show that cell-cell trafficking is modulated through the combined action of multiple C2 domains transmembrane domain proteins (MCTPs) 3, 4, and 6 ER-PM tethers and phosphatidylinositol-4-phosphate (PI4P) lipid. Graded PI4P amounts regulate MCTP docking to the PM, their plasmodesmata localization, and cell-cell permeability. SAC7, an ER-localized PI4P-phosphatase, regulates MCTP4 accumulation at plasmodesmata and modulates cell-cell trafficking capacity in a cell-type-specific manner. Our findings expand MCS functions in information transmission from intracellular to intercellular cellular activities.
Collapse
Affiliation(s)
- Jessica Pérez-Sancho
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Marija Smokvarska
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Gwennogan Dubois
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRA, 69342 Lyon, France
| | - Marie Glavier
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Sujith Sritharan
- Laboratoire de Biochimie Théorique, UPR9080, CNRS, Université Paris Cité, Paris, France
| | - Tatiana S Moraes
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Hortense Moreau
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Victor Dietrich
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Matthieu P Platre
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andrea Paterlini
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France; The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Ziqiang P Li
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Magali S Grison
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Pepe Cana-Quijada
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Françoise Immel
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Valerie Wattelet
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Mathieu Ducros
- Bordeaux Imaging Center, Plant Imaging Platform, UAR3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Lysiane Brocard
- Bordeaux Imaging Center, Plant Imaging Platform, UAR3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Clément Chambaud
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France; Bordeaux Imaging Center, Plant Imaging Platform, UAR3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Yongming Luo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Priya Ramakrishna
- Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRA, 69342 Lyon, France
| | | | | | - Matej Zabrady
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK; Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Pascal G P Martin
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, 33882 Villenave d'Ornon, France
| | - Wolfgang Busch
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marie Barberon
- Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK; Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Yrjö Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK; Institute of Biotechnology, HiLIFE/Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, UPR9080, CNRS, Université Paris Cité, Paris, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRA, 69342 Lyon, France.
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France.
| |
Collapse
|
7
|
Schreiber JM, Limpens E, de Keijzer J. Distributing Plant Developmental Regulatory Proteins via Plasmodesmata. PLANTS (BASEL, SWITZERLAND) 2024; 13:684. [PMID: 38475529 DOI: 10.3390/plants13050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
During plant development, mobile proteins, including transcription factors, abundantly serve as messengers between cells to activate transcriptional signaling cascades in distal tissues. These proteins travel from cell to cell via nanoscopic tunnels in the cell wall known as plasmodesmata. Cellular control over this intercellular movement can occur at two likely interdependent levels. It involves regulation at the level of plasmodesmata density and structure as well as at the level of the cargo proteins that traverse these tunnels. In this review, we cover the dynamics of plasmodesmata formation and structure in a developmental context together with recent insights into the mechanisms that may control these aspects. Furthermore, we explore the processes involved in cargo-specific mechanisms that control the transport of proteins via plasmodesmata. Instead of a one-fits-all mechanism, a pluriform repertoire of mechanisms is encountered that controls the intercellular transport of proteins via plasmodesmata to control plant development.
Collapse
Affiliation(s)
- Joyce M Schreiber
- Laboratory of Cell and Developmental Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Erik Limpens
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeroen de Keijzer
- Laboratory of Cell and Developmental Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|