1
|
Sun Y, Jiang T, Sun L, Qin Q, Yang S, Wang J, Sun S, Xue Y. Phosphorus and sulphur crosstalk in cereals: Unraveling the molecular interplay, agronomic impacts on yield and heavy metal tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109838. [PMID: 40158480 DOI: 10.1016/j.plaphy.2025.109838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Phosphorus (P) and sulphur (S) are essential macronutrients for crop growth, playing critical roles in physiological and biochemical processes throughout the plant life cycle, as well as in mitigating heavy metal and metalloid toxicity. Therefore, the coordinated use of P and S is crucial for optimizing crop growth and reducing the accumulation of heavy metals and metalloids in plants. While P and S signaling pathways are often studied independently, our understanding of their interactions remains limited. A series of recent studies have revealed key components regulating P-S interactions in cereal crops such as rice, maize and wheat, providing new insights into the network that integrates the signaling pathways of P and S. However, the interaction between P and S in molecular regulatory pathways, crop yield improvement, and resistance to heavy metal stress has not yet been systematically summarized or hypothesized. Here, we summarize the latest advances in P-S interactions and propose potential working mechanisms that integrate these P-S interactive regulatory pathways in cereal crops. Furthermore, we discuss the regulatory mechanisms of P-S interactions in cereal crops that still need to be uncovered in the future.
Collapse
Affiliation(s)
- Yafei Sun
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Tingting Jiang
- College of Resources and Environmental Sciences, Nanjing Agriculture University, Nanjing, 210095, China
| | - Lijuan Sun
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Qin Qin
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Shiyan Yang
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Jun Wang
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Shubin Sun
- College of Resources and Environmental Sciences, Nanjing Agriculture University, Nanjing, 210095, China.
| | - Yong Xue
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
2
|
Kuno M, Miyamoto A, Takano H, Homma M, Shiotani N, Uchida K, Takikawa H, Nakajima M, Mizutani M, Wakabayashi T, Sugimoto Y. CYP722A1-mediated 16-hydroxylation of carlactonoic acid regulates the floral transition in Arabidopsis. PLANT & CELL PHYSIOLOGY 2025; 66:645-657. [PMID: 40098498 DOI: 10.1093/pcp/pcaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Strigolactones (SLs) are multifunctional plant hormones and rhizosphere signals with diverse structures, roughly classified into two categories: canonical and noncanonical SLs. In Arabidopsis thaliana, SL biosynthesis mutants exhibit increased shoot branching and early flowering, underscoring their roles in developmental regulation. Shoot branching inhibition in Arabidopsis is associated with the methylation of a noncanonical SL, carlactonoic acid (CLA), catalyzed by CLA methyltransferase (CLAMT). Canonical SLs primarily function as rhizosphere signals, with their biosynthesis in dicots mediated by CYP722C enzymes. It is hypothesized that Arabidopsis does not produce canonical SL because of the lack of the CYP722C genes in its genome. Instead, Arabidopsis possesses CYP722A1, a member of the previously uncharacterized CYP722A subfamily, distinct from the CYP722C subfamily. This study demonstrates that Arabidopsis cyp722a1 mutants exhibit an earlier floral transition without excessive shoot branching. Biochemical analysis revealed that CYP722A1 catalyzes the hydroxylation of CLA to produce 16-hydroxy-CLA (16-HO-CLA), which is subsequently methylated by CLAMT to form 16-HO-MeCLA. 16-HO-CLA and 16-HO-MeCLA were detected in the wildtype; however, these compounds were absent in max1-4 mutant, deficient in CLA synthesis, and in cyp722a1 mutant. These findings show CYP722A1-dependent 16-hydroxylation activity of CLA in Arabidopsis. Moreover, they suggest that hydroxylated CLA specifically regulates floral transition, distinct from branching inhibition. Through the identification of CYP722A1 affecting floral transition, which is the distinct role of the CYP722A subfamily, this work provides insights into the structural diversification of SLs for specialized biological functions in plant development.
Collapse
Affiliation(s)
- Masaki Kuno
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Ayumi Miyamoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hinako Takano
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masato Homma
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Nanami Shiotani
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kiyono Uchida
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hirosato Takikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masatoshi Nakajima
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masaharu Mizutani
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Takatoshi Wakabayashi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yukihiro Sugimoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
3
|
Ban X, Qin L, Yan J, Wu J, Li Q, Su X, Hao Y, Hu Q, Kou L, Yan Z, Xin P, Zhang Y, Dong L, Bouwmeester H, Yu H, Yu Q, Huang S, Lin T, Xie Q, Chen Y, Chu J, Cui X, Li J, Wang B. Manipulation of a strigolactone transporter in tomato confers resistance to the parasitic weed broomrape. Innovation (N Y) 2025; 6:100815. [PMID: 40098680 PMCID: PMC11910882 DOI: 10.1016/j.xinn.2025.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Parasitic weeds of the Orobanchaceae family cause substantial economic losses and pose significant threats to global agriculture. However, management of such parasitism is challenging, and very few resistance genes have been cloned and characterized in depth. Here, we performed a genome-wide association study using 152 tomato accessions and identified SlABCG45 as a key gene that mediates host resistance to Phelipanche aegyptiaca by affecting the level of strigolactones (SLs) in root exudates. SLs are synthesized and released by host plants and act as germination stimulants for parasitic weeds. We found that SlABCG45 and its close homolog SlABCG44 were membrane-localized SL transporters with essential roles in exudation of SLs to the rhizosphere, resistance to Phelipanche and Orobanche, and upward transport of SLs from roots to shoots. As a predominant environmental stimulant exacerbates parasitism, phosphorus deficiency dramatically induced SlABCG45 expression and weakly induced SlABCG44 expression via the transcription factors SlNSP1 and SlNSP2. Knockout of SlABCG45 in tomato had little effect on yield traits in a broomrape-free field, but conferred increased resistance to different Phelipanche and Orobanche species, resulting in an ∼30% yield increase in a Phelipanche-infested field. Our findings reveal that targeting a single gene by genome editing can confer broad-spectrum parasite resistance in tomato, providing an effective strategy for the sustainable control of parasitic plants in agriculture.
Collapse
Affiliation(s)
- Xinwei Ban
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Qin
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jijun Yan
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxin Wu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qianjin Li
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Su
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100081, China
| | - Yanrong Hao
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingliang Hu
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Liquan Kou
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zongyun Yan
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Peiyong Xin
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuqin Zhang
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lemeng Dong
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Harro Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Hong Yu
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Qinghui Yu
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Sanwen Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Tao Lin
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100081, China
| | - Qi Xie
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhang Chen
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfang Chu
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Jiayang Li
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Bing Wang
- State Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Korek M, Uhrig RG, Marzec M. Strigolactone insensitivity affects differential shoot and root transcriptome in barley. J Appl Genet 2025; 66:15-28. [PMID: 38877382 PMCID: PMC11762224 DOI: 10.1007/s13353-024-00885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Strigolactones (SLs) are plant hormones that play a crucial role in regulating various aspects of plant architecture, such as shoot and root branching. However, the knowledge of SL-responsive genes and transcription factors (TFs) that control the shaping of plant architecture remains elusive. Here, transcriptomic analysis was conducted using the SL-insensitive barley mutant hvd14.d (carried mutation in SL receptor DWARF14, HvD14) and its wild-type (WT) to unravel the differences in gene expression separately in root and shoot tissues. This approach enabled us to select more than six thousand SL-dependent genes that were exclusive to each studied organ or not tissue-specific. The data obtained, along with in silico analyses, found several TFs that exhibited changed expression between the analyzed genotypes and that recognized binding sites in promoters of other identified differentially expressed genes (DEGs). In total, 28 TFs that recognize motifs over-represented in DEG promoters were identified. Moreover, nearly half of the identified TFs were connected in a single network of known and predicted interactions, highlighting the complexity and multidimensionality of SL-related signalling in barley. Finally, the SL control on the expression of one of the identified TFs in HvD14- and dose-dependent manners was proved. Obtained results bring us closer to understanding the signalling pathways regulating SL-dependent plant development.
Collapse
Affiliation(s)
- Magdalena Korek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| | - Marek Marzec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland.
| |
Collapse
|
5
|
Hu Q, Liu H, He Y, Hao Y, Yan J, Liu S, Huang X, Yan Z, Zhang D, Ban X, Zhang H, Li Q, Zhang J, Xin P, Jing Y, Kou L, Sang D, Wang Y, Wang Y, Meng X, Fu X, Chu J, Wang B, Li J. Regulatory mechanisms of strigolactone perception in rice. Cell 2024; 187:7551-7567.e17. [PMID: 39500324 DOI: 10.1016/j.cell.2024.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/06/2024] [Accepted: 10/07/2024] [Indexed: 12/29/2024]
Abstract
Strigolactones (SLs) are hormones essential for plant development and environmental responses. SL perception requires the formation of the complex composed of an SL receptor DWARF14 (D14), F-box protein D3, and transcriptional repressor D53, triggering ubiquitination and degradation of D53 to activate signal transduction. However, mechanisms of SL perception and their influence on plant architecture and environmental responses remain elusive and controversial. Here, we report that key residues at interfaces of the AtD14-D3-ASK1 complex are essential for the activation of SL perception, discover that overexpression of the D3-CTH motif negatively regulates SL perception to enhance tillering, and reveal the importance of phosphorylation and N-terminal disordered (NTD) domain in mediating ubiquitination and degradation of D14. Importantly, low nitrogen promotes phosphorylation and stabilization of D14 to repress rice tillering. These findings reveal a panorama of the activation, termination, and regulation of SL perception, which determines the plasticity of plant architecture in complex environments.
Collapse
Affiliation(s)
- Qingliang Hu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Huihui Liu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yajun He
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yanrong Hao
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jijun Yan
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Simao Liu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiahe Huang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Zongyun Yan
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Dahan Zhang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xinwei Ban
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Hao Zhang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qianqian Li
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jingkun Zhang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; Yazhouwan National Laboratory, Sanya, 572024 Hainan, China
| | - Peiyong Xin
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yanhui Jing
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Liquan Kou
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Dajun Sang
- Yazhouwan National Laboratory, Sanya, 572024 Hainan, China
| | - Yonghong Wang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, 271018 Shandong, China
| | - Yingchun Wang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiangbing Meng
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiangdong Fu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jinfang Chu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Bing Wang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Jiayang Li
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; Yazhouwan National Laboratory, Sanya, 572024 Hainan, China
| |
Collapse
|
6
|
Wang JY, Balakrishna A, Martínez C, Chen GE, Sioud S, de Lera AR, Al‐Babili S. The rice orobanchol synthase catalyzes the hydroxylation of the noncanonical strigolactone methyl 4-oxo-carlactonoate. THE NEW PHYTOLOGIST 2024; 244:2121-2126. [PMID: 39297385 PMCID: PMC11579440 DOI: 10.1111/nph.20135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/29/2024] [Indexed: 11/22/2024]
Affiliation(s)
- Jian You Wang
- The BioActives Lab, Center for Desert AgricultureKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Aparna Balakrishna
- The BioActives Lab, Center for Desert AgricultureKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Claudio Martínez
- Universidade de Vigo, CINBIO and Facultade de Química36310VigoSpain
| | - Guan‐Ting Erica Chen
- The BioActives Lab, Center for Desert AgricultureKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
- The Plant Science Program, Biological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Salim Sioud
- Analytical Chemistry Core LabKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Angel R. de Lera
- Universidade de Vigo, CINBIO and Facultade de Química36310VigoSpain
| | - Salim Al‐Babili
- The BioActives Lab, Center for Desert AgricultureKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
- The Plant Science Program, Biological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| |
Collapse
|
7
|
Li C, Haider I, Wang JY, Quinodoz P, Suarez Duran HG, Méndez LR, Horber R, Fiorilli V, Votta C, Lanfranco L, Correia de Lemos SM, Jouffroy L, Moegle B, Miesch L, De Mesmaeker A, Medema MH, Al-Babili S, Dong L, Bouwmeester HJ. OsCYP706C2 diverts rice strigolactone biosynthesis to a noncanonical pathway branch. SCIENCE ADVANCES 2024; 10:eadq3942. [PMID: 39196928 PMCID: PMC11352842 DOI: 10.1126/sciadv.adq3942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
Strigolactones exhibit dual functionality as regulators of plant architecture and signaling molecules in the rhizosphere. The important model crop rice exudes a blend of different strigolactones from its roots. Here, we identify the inaugural noncanonical strigolactone, 4-oxo-methyl carlactonoate (4-oxo-MeCLA), in rice root exudate. Comprehensive, cross-species coexpression analysis allowed us to identify a cytochrome P450, OsCYP706C2, and two methyl transferases as candidate enzymes for this noncanonical rice strigolactone biosynthetic pathway. Heterologous expression in yeast and Nicotiana benthamiana indeed demonstrated the role of these enzymes in the biosynthesis of 4-oxo-MeCLA, which, expectedly, is derived from carlactone as substrate. The oscyp706c2 mutants do not exhibit a tillering phenotype but do have delayed mycorrhizal colonization and altered root phenotype. This work sheds light onto the intricate complexity of strigolactone biosynthesis in rice and delineates its role in symbiosis and development.
Collapse
Affiliation(s)
- Changsheng Li
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- Yuelushan Laboratory, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, 410082, Changsha, P. R. China
| | - Imran Haider
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, The BioActives Lab, Thuwal, 23955-6900, Saudi Arabia
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Jian You Wang
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, The BioActives Lab, Thuwal, 23955-6900, Saudi Arabia
| | - Pierre Quinodoz
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | | | - Lucía Reyes Méndez
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Robin Horber
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125 Turin, Italy
| | - Cristina Votta
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125 Turin, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125 Turin, Italy
| | - Samara M. Correia de Lemos
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands
- Plant genomics and transcriptomics group, Institute of Biosciences, Sao Paulo State University, 13506-900 Rio Claro, Brazil
| | - Lucile Jouffroy
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie du CNRS UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Baptiste Moegle
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie du CNRS UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Laurence Miesch
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie du CNRS UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Alain De Mesmaeker
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, The BioActives Lab, Thuwal, 23955-6900, Saudi Arabia
| | - Lemeng Dong
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Harro J. Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| |
Collapse
|
8
|
Al-Babili S. A dirigent of the ring for strigolactone stereochemistry. Proc Natl Acad Sci U S A 2024; 121:e2410953121. [PMID: 39133862 PMCID: PMC11348329 DOI: 10.1073/pnas.2410953121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Affiliation(s)
- Salim Al-Babili
- The BioActives Lab, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
- The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| |
Collapse
|
9
|
Kuijer HNJ, Wang JY, Bougouffa S, Abrouk M, Jamil M, Incitti R, Alam I, Balakrishna A, Alvarez D, Votta C, Chen GTE, Martínez C, Zuccolo A, Berqdar L, Sioud S, Fiorilli V, de Lera AR, Lanfranco L, Gojobori T, Wing RA, Krattinger SG, Gao X, Al-Babili S. Chromosome-scale pearl millet genomes reveal CLAMT1b as key determinant of strigolactone pattern and Striga susceptibility. Nat Commun 2024; 15:6906. [PMID: 39134551 PMCID: PMC11319436 DOI: 10.1038/s41467-024-51189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
The yield of pearl millet, a resilient cereal crop crucial for African food security, is severely impacted by the root parasitic weed Striga hermonthica, which requires host-released hormones, called strigolactones (SLs), for seed germination. Herein, we identify four SLs present in the Striga-susceptible line SOSAT-C88-P10 (P10) but absent in the resistant 29Aw (Aw). We generate chromosome-scale genome assemblies, including four gapless chromosomes for each line. The Striga-resistant Aw lacks a 0.7 Mb genome segment containing two putative CARLACTONOIC ACID METHYLTRANSFERASE1 (CLAMT1) genes, which may contribute to SL biosynthesis. Functional assays show that P10CLAMT1b produces the SL-biosynthesis intermediate methyl carlactonoate (MeCLA) and that MeCLA is the precursor of P10-specific SLs. Screening a diverse pearl millet panel confirms the pivotal role of the CLAMT1 section for SL diversity and Striga susceptibility. Our results reveal a reason for Striga susceptibility in pearl millet and pave the way for generating resistant lines through marker-assisted breeding or direct genetic modification.
Collapse
Affiliation(s)
- Hendrik N J Kuijer
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jian You Wang
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Michael Abrouk
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Muhammad Jamil
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Roberto Incitti
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Aparna Balakrishna
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Derry Alvarez
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Cristina Votta
- Department of Life Sciences and Systems Biology, University of Torino; Viale Mattioli 25, Torino, 10125, Italy
| | - Guan-Ting Erica Chen
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Claudio Martínez
- Universidade de Vigo, Facultade de Química and CINBIO, 36310, Vigo, Spain
| | - Andrea Zuccolo
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Institute of Crop Science, Sant'Anna School of Advanced Studies, Pisa, 56127, Italy
| | - Lamis Berqdar
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Salim Sioud
- Analytical Chemistry Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino; Viale Mattioli 25, Torino, 10125, Italy
| | - Angel R de Lera
- Universidade de Vigo, Facultade de Química and CINBIO, 36310, Vigo, Spain
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino; Viale Mattioli 25, Torino, 10125, Italy
| | - Takashi Gojobori
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Rod A Wing
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Simon G Krattinger
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
10
|
Wang JY, Chen GTE, Braguy J, Al-Babili S. Distinguishing the functions of canonical strigolactones as rhizospheric signals. TRENDS IN PLANT SCIENCE 2024; 29:925-936. [PMID: 38521698 DOI: 10.1016/j.tplants.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
Strigolactones (SLs) act as regulators of plant architecture as well as signals in rhizospheric communications. Reduced availability of minerals, particularly phosphorus, leads to an increase in the formation and release of SLs that enable adaptation of root and shoot architecture to nutrient limitation and, simultaneously, attract arbuscular mycorrhizal fungi (AMF) for establishing beneficial symbiosis. Based on their chemical structure, SLs are designated as either canonical or non-canonical; however, the question of whether the two classes are also distinguished in their biological functions remained largely elusive until recently. In this review we summarize the latest advances in SL biosynthesis and highlight new findings pointing to rhizospheric signaling as the major function of canonical SLs.
Collapse
Affiliation(s)
- Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Guan-Ting Erica Chen
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Justine Braguy
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
11
|
Nomura T, Seto Y, Kyozuka J. Unveiling the complexity of strigolactones: exploring structural diversity, biosynthesis pathways, and signaling mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1134-1147. [PMID: 37877933 DOI: 10.1093/jxb/erad412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023]
Abstract
Strigolactone is the collective name for compounds containing a butenolide as a part of their structure, first discovered as compounds that induce seed germination of root parasitic plants. They were later found to be rhizosphere signaling molecules that induce hyphal branching of arbuscular mycorrhizal fungi, and, finally, they emerged as a class of plant hormones. Strigolactones are found in root exudates, where they display a great variability in their chemical structure. Their structure varies among plant species, and multiple strigolactones can exist in one species. Over 30 strigolactones have been identified, yet the chemical structure of the strigolactone that functions as an endogenous hormone and is found in the above-ground parts of plants remains unknown. We discuss our current knowledge of the synthetic pathways of diverse strigolactones and their regulation, as well as recent progress in identifying strigolactones as plant hormones. Strigolactone is perceived by the DWARF14 (D14), receptor, an α/β hydrolase which originated by gene duplication of KARRIKIN INSENSITIVE 2 (KAI2). D14 and KAI2 signaling pathways are partially overlapping paralogous pathways. Progress in understanding the signaling mechanisms mediated by two α/β hydrolase receptors as well as remaining challenges in the field of strigolactone research are reviewed.
Collapse
Affiliation(s)
- Takahito Nomura
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Yoshiya Seto
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
12
|
Votta C, Wang JY, Cavallini N, Savorani F, Capparotto A, Liew KX, Giovannetti M, Lanfranco L, Al-Babili S, Fiorilli V. Integration of rice apocarotenoid profile and expression pattern of Carotenoid Cleavage Dioxygenases reveals a positive effect of β-ionone on mycorrhization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108366. [PMID: 38244387 DOI: 10.1016/j.plaphy.2024.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Carotenoids are susceptible to degrading processes initiated by oxidative cleavage reactions mediated by Carotenoid Cleavage Dioxygenases that break their backbone, leading to products called apocarotenoids. These carotenoid-derived metabolites include the phytohormones abscisic acid and strigolactones, and different signaling molecules and growth regulators, which are utilized by plants to coordinate many aspects of their life. Several apocarotenoids have been recruited for the communication between plants and arbuscular mycorrhizal (AM) fungi and as regulators of the establishment of AM symbiosis. However, our knowledge on their biosynthetic pathways and the regulation of their pattern during AM symbiosis is still limited. In this study, we generated a qualitative and quantitative profile of apocarotenoids in roots and shoots of rice plants exposed to high/low phosphate concentrations, and upon AM symbiosis in a time course experiment covering different stages of growth and AM development. To get deeper insights in the biology of apocarotenoids during this plant-fungal symbiosis, we complemented the metabolic profiles by determining the expression pattern of CCD genes, taking advantage of chemometric tools. This analysis revealed the specific profiles of CCD genes and apocarotenoids across different stages of AM symbiosis and phosphate supply conditions, identifying novel reliable markers at both local and systemic levels and indicating a promoting role of β-ionone in AM symbiosis establishment.
Collapse
Affiliation(s)
- Cristina Votta
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, Torino, 10125, Italy
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Nicola Cavallini
- Department of Applied Science and Technology (DISAT), Polytechnic of Turin, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | - Francesco Savorani
- Department of Applied Science and Technology (DISAT), Polytechnic of Turin, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | - Arianna Capparotto
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131, Padova, Italy
| | - Kit Xi Liew
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Marco Giovannetti
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, Torino, 10125, Italy; Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131, Padova, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, Torino, 10125, Italy
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, Torino, 10125, Italy.
| |
Collapse
|
13
|
Li K, Cheng Y, Fang C. OsDWARF10, transcriptionally repressed by OsSPL3, regulates the nutritional metabolism of polished rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1322463. [PMID: 38130489 PMCID: PMC10733476 DOI: 10.3389/fpls.2023.1322463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Strigolactone (SL) plays essential roles in plant development and the metabolism of rice leaves. However, the impact of SL on the accumulation of nutritional metabolites in polished rice, as well as the transcription factors directly involved in SL synthesis, remains elusive. In this study, we performed a metabolome analysis on polished rice samples from mutants of an SL biosynthetic gene, OsDWARF10 (OsD10). Compared with those in the wild type plants, primary and secondary metabolites exhibited a series of alterations in the d10 mutants. Notably, the d10 mutants showed a substantial increase in the amino acids and vitamins content. Through a yeast one-hybridization screening assay, we identified OsSPL3 as a transcription factor that binds to the OsD10 promoter, thereby inhibiting OsD10 transcription in vivo and in vitro. Furthermore, we conducted a metabolic profiling analysis in polished rice from plants that overexpressed OsSPL3 and observed enhanced levels of amino acids and vitamins. This study identified a novel transcriptional repressor of the SL biosynthetic gene and elucidated the regulatory roles of OsSPL3 and OsD10 on the accumulation of nutritional metabolites in polished rice.
Collapse
Affiliation(s)
- Kang Li
- Hainan Yazhou Bay Seed Laboratory, Scool of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yan Cheng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Chuanying Fang
- Hainan Yazhou Bay Seed Laboratory, Scool of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
14
|
Madison I, Gillan L, Peace J, Gabrieli F, Van den Broeck L, Jones JL, Sozzani R. Phosphate starvation: response mechanisms and solutions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6417-6430. [PMID: 37611151 DOI: 10.1093/jxb/erad326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
Phosphorus is essential to plant growth and agricultural crop yields, yet the challenges associated with phosphorus fertilization in agriculture, such as aquatic runoff pollution and poor phosphorus bioavailability, are increasingly difficult to manage. Comprehensively understanding the dynamics of phosphorus uptake and signaling mechanisms will inform the development of strategies to address these issues. This review describes regulatory mechanisms used by specific tissues in the root apical meristem to sense and take up phosphate from the rhizosphere. The major regulatory mechanisms and related hormone crosstalk underpinning phosphate starvation responses, cellular phosphate homeostasis, and plant adaptations to phosphate starvation are also discussed, along with an overview of the major mechanism of plant systemic phosphate starvation responses. Finally, this review discusses recent promising genetic engineering strategies for improving crop phosphorus use and computational approaches that may help further design strategies for improved plant phosphate acquisition. The mechanisms and approaches presented include a wide variety of species including not only Arabidopsis but also crop species such as Oryza sativa (rice), Glycine max (soybean), and Triticum aestivum (wheat) to address both general and species-specific mechanisms and strategies. The aspects of phosphorus deficiency responses and recently employed strategies of improving phosphate acquisition that are detailed in this review may provide insights into the mechanisms or phenotypes that may be targeted in efforts to improve crop phosphorus content and plant growth in low phosphorus soils.
Collapse
Affiliation(s)
- Imani Madison
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA
| | - Lydia Gillan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jasmine Peace
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Flavio Gabrieli
- Dipartimento di Ingegneria Industriale (DII), Università degli studi di Padova, Padova, Italy
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Perugia, Italy
| | - Lisa Van den Broeck
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA
| | - Jacob L Jones
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Rosangela Sozzani
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
15
|
Kun Yuan, Zhang H, Yu C, Luo N, Yan J, Zheng S, Hu Q, Zhang D, Kou L, Meng X, Jing Y, Chen M, Ban X, Yan Z, Lu Z, Wu J, Zhao Y, Liang Y, Wang Y, Xiong G, Chu J, Wang E, Li J, Wang B. Low phosphorus promotes NSP1-NSP2 heterodimerization to enhance strigolactone biosynthesis and regulate shoot and root architecture in rice. MOLECULAR PLANT 2023; 16:1811-1831. [PMID: 37794682 DOI: 10.1016/j.molp.2023.09.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/18/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Phosphorus is an essential macronutrient for plant development and metabolism, and plants have evolved ingenious mechanisms to overcome phosphate (Pi) starvation. However, the molecular mechanisms underlying the regulation of shoot and root architecture by low phosphorus conditions and the coordinated utilization of Pi and nitrogen remain largely unclear. Here, we show that Nodulation Signaling Pathway 1 (NSP1) and NSP2 regulate rice tiller number by promoting the biosynthesis of strigolactones (SLs), a class of phytohormones with fundamental effects on plant architecture and environmental responses. We found that NSP1 and NSP2 are induced by Oryza sativa PHOSPHATE STARVATION RESPONSE2 (OsPHR2) in response to low-Pi stress and form a complex to directly bind the promoters of SL biosynthesis genes, thus markedly increasing SL biosynthesis in rice. Interestingly, the NSP1/2-SL signaling module represses the expression of CROWN ROOTLESS 1 (CRL1), a newly identified early SL-responsive gene in roots, to restrain lateral root density under Pi deficiency. We also demonstrated that GR244DO treatment under normal conditions inhibits the expression of OsNRTs and OsAMTs to suppress nitrogen absorption but enhances the expression of OsPTs to promote Pi absorption, thus facilitating the balance between nitrogen and phosphorus uptake in rice. Importantly, we found that NSP1p:NSP1 and NSP2p:NSP2 transgenic plants show improved agronomic traits and grain yield under low- and medium-phosphorus conditions. Taken together, these results revealed a novel regulatory mechanism of SL biosynthesis and signaling in response to Pi starvation, providing genetic resources for improving plant architecture and nutrient-use efficiency in low-Pi environments.
Collapse
Affiliation(s)
- Kun Yuan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoji Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Nan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jijun Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Zheng
- University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qingliang Hu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dahan Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhui Jing
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingjiang Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinwei Ban
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongyun Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zefu Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Liang
- College of Life Sciences, Shandong Agriculture University, Tai'an, Shandong 271018, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agriculture University, Tai'an, Shandong 271018, China
| | - Guosheng Xiong
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ertao Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Chen GTE, Wang JY, Votta C, Braguy J, Jamil M, Kirschner GK, Fiorilli V, Berqdar L, Balakrishna A, Blilou I, Lanfranco L, Al-Babili S. Disruption of the rice 4-DEOXYOROBANCHOL HYDROXYLASE unravels specific functions of canonical strigolactones. Proc Natl Acad Sci U S A 2023; 120:e2306263120. [PMID: 37819983 PMCID: PMC10589652 DOI: 10.1073/pnas.2306263120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Strigolactones (SLs) regulate many developmental processes, including shoot-branching/tillering, and mediate rhizospheric interactions. SLs originate from carlactone (CL) and are structurally diverse, divided into a canonical and a noncanonical subfamily. Rice contains two canonical SLs, 4-deoxyorobanchol (4DO) and orobanchol (Oro), which are common in different plant species. The cytochrome P450 OsMAX1-900 forms 4DO from CL through repeated oxygenation and ring closure, while the homologous enzyme OsMAX1-1400 hydroxylates 4DO into Oro. To better understand the biological function of 4DO and Oro, we generated CRISPR/Cas9 mutants disrupted in OsMAX1-1400 or in both OsMAX1-900 and OsMAX1-1400. The loss of OsMAX1-1400 activity led to a complete lack of Oro and an accumulation of its precursor 4DO. Moreover, Os1400 mutants showed shorter plant height, panicle and panicle base length, but no tillering phenotype. Hormone quantification and transcriptome analysis of Os1400 mutants revealed elevated auxin levels and changes in the expression of auxin-related, as well as of SL biosynthetic genes. Interestingly, the Os900/1400 double mutant lacking both Oro and 4DO did not show the observed Os1400 architectural phenotypes, indicating their being a result of 4DO accumulation. Treatment of wild-type plants with 4DO confirmed this assumption. A comparison of the Striga seed germinating activity and the mycorrhization of Os900, Os900/1400, and Os1400 loss-of-function mutants demonstrated that the germination activity positively correlates with 4DO content while disrupting OsMAX1-1400 has a negative impact on mycorrhizal symbiosis. Taken together, our paper deciphers the biological function of canonical SLs in rice and reveals their particular contributions to establishing architecture and rhizospheric communications.
Collapse
Affiliation(s)
- Guan-Ting Erica Chen
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
- The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Cristina Votta
- Department of Life Sciences and Systems Biology, University of Torino, Torino10125, Italy
| | - Justine Braguy
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Muhammad Jamil
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Gwendolyn K. Kirschner
- Biological and Environmental Science and Engineering (BESE) Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Torino10125, Italy
| | - Lamis Berqdar
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Aparna Balakrishna
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Ikram Blilou
- The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
- Biological and Environmental Science and Engineering (BESE) Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Torino10125, Italy
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
- The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Yang S, Zhou J, Li Y, Wu J, Ma C, Chen Y, Sun X, Wu L, Liang X, Fu Q, Xu Z, Li L, Huang Z, Zhu J, Jia X, Ye X, Chen R. AP2/EREBP Pathway Plays an Important Role in Chaling Wild Rice Tolerance to Cold Stress. Int J Mol Sci 2023; 24:14441. [PMID: 37833888 PMCID: PMC10572191 DOI: 10.3390/ijms241914441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Cold stress is the main factor limiting rice production and distribution. Chaling wild rice can survive in cold winters. AP2/EREBP is a known transcription factor family associated with abiotic stress. We identified the members of the AP2/EREBP transcription factor family in rice, maize, and Arabidopsis, and conducted collinearity analysis and gene family analysis. We used Affymetrix array technology to analyze the expression of AP2/EREBP family genes in Chaling wild rice and cultivated rice cultivar Pei'ai64S, which is sensitive to cold. According to the GeneChip results, the expression levels of AP2/EREBP genes in Chaling wild rice were different from those in Pei'ai64S; and the increase rate of 36 AP2/EREBP genes in Chaling wild rice was higher than that in Pei'ai64S. Meanwhile, the MYC elements in cultivated rice and Chaling wild rice for the Os01g49830, Os03g08470, and Os03g64260 genes had different promoter sequences, resulting in the high expression of these genes in Chaling wild rice under low-temperature conditions. Furthermore, we analyzed the upstream and downstream genes of the AP2/EREBP transcription factor family and studied the conservation of these genes. We found that the upstream transcription factors were more conserved, indicating that these upstream transcription factors may be more important in regulating cold stress. Meanwhile, we found the expression of AP2/EREBP pathway genes was significantly increased in recombinant inbred lines from Nipponbare crossing with Chaling wild rice, These results suggest that the AP2/EREBP signaling pathway plays an important role in Chaling wild rice tolerance to cold stress.
Collapse
Affiliation(s)
- Songjin Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Jingming Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Yaqi Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Jiacheng Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Chuan Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Yulin Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Xingzhuo Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Lingli Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Xin Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Qiuping Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Zhengjun Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Lihua Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Zhengjian Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Jianqing Zhu
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (X.J.); (X.Y.)
| | - Xiaomei Jia
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (X.J.); (X.Y.)
| | - Xiaoying Ye
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (X.J.); (X.Y.)
| | - Rongjun Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (X.J.); (X.Y.)
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
18
|
Jamil M, Lin PY, Berqdar L, Wang JY, Takahashi I, Ota T, Alhammad N, Chen GTE, Asami T, Al-Babili S. New Series of Zaxinone Mimics (MiZax) for Fundamental and Applied Research. Biomolecules 2023; 13:1206. [PMID: 37627271 PMCID: PMC10452442 DOI: 10.3390/biom13081206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The apocarotenoid zaxinone is a recently discovered regulatory metabolite required for proper rice growth and development. In addition, zaxinone and its two mimics (MiZax3 and MiZax5) were shown to have a remarkable growth-promoting activity on crops and a capability to reduce infestation by the root parasitic plant Striga through decreasing strigolactone (SL) production, suggesting their potential for application in agriculture and horticulture. In the present study, we developed a new series of MiZax via structural modification of the two potent zaxinone mimics (MiZax3 and MiZax5) and evaluated their effect on plant growth and Striga infestation. In general, the structural modifications to MiZax3 and MiZax5 did not additionally improve their overall performance but caused an increase in certain activities. In conclusion, MiZax5 and especially MiZax3 remain the likely most efficient zaxinone mimics for controlling Striga infestation.
Collapse
Affiliation(s)
- Muhammad Jamil
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
| | - Pei-Yu Lin
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lamis Berqdar
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
| | - Ikuo Takahashi
- Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan; (I.T.); (T.O.); (T.A.)
| | - Tsuyoshi Ota
- Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan; (I.T.); (T.O.); (T.A.)
| | - Noor Alhammad
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
| | - Guan-Ting Erica Chen
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Tadao Asami
- Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan; (I.T.); (T.O.); (T.A.)
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.J.); (P.-Y.L.); (L.B.); (J.Y.W.); (N.A.); (G.-T.E.C.)
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|