1
|
Bissinger R, Schaefer L, Bohnert BN, Schork A, Hoerber S, Peter A, Qadri SM, Birkenfeld AL, Heyne N, Bakchoul T, Wieder T, Artunc F. GFR is a Key Determinant of Red Blood Cell Survival in Anemia Associated With Progressive CKD. Kidney Int Rep 2025; 10:730-742. [PMID: 40225399 PMCID: PMC11993223 DOI: 10.1016/j.ekir.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/17/2024] [Accepted: 12/16/2024] [Indexed: 04/15/2025] Open
Abstract
Introduction Anemia is a common and clinically significant complication observed in patients with chronic kidney disease (CKD), resulting from complex interactions between renal dysfunction, erythropoietin (EPO) deficiency, and altered iron metabolism. In murine CKD models, red blood cell (RBC) death or eryptosis, characterized by exposure of phosphatidylserine (PS) on the outer membrane of RBCs, was observed to drive anemia. However, there is limited research that has investigated this phenomenon in patients with non-dialysis-dependent CKD (NDD-CKD). Methods In this cross-sectional cohort study, we describe the relationship between RBC death and anemia in all stages of NDD-CKD (n = 122). Blood samples from 133 healthy blood donors were additionally analyzed as controls. Results Patients with CKD had a significantly lower hemoglobin (Hb) concentration (12.4 [interquartile range: 11.1-13.7] g/dl) when compared with the healthy group (13.8 [13.0-14.8] g/dl, P < 0.001). Hb concentrations exhibited a significant positive correlation with the estimated glomerular filtration rate (eGFR) across the entire cohort (r = 0.5, P < 0.001). RBC death rates, quantified by the binding of freshly isolated RBCs to the ligand annexin V using flow cytometry (FACS), were significantly increased by approximately 1.4-fold in patients with CKD compared with the RBC death rates in healthy blood donors. RBC death correlated with the glomerular filtration rate (GFR) stage but not with the albuminuria stage of CKD, the degree of anemia, and serum iron concentration. Using multiple linear regression, eGFR was identified as the sole independent predictor of RBC death with an inverse relationship. Conclusion RBC death is stimulated in progressive NDD-CKD, possibly contributing to the development of renal anemia.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Lina Schaefer
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Bernhard N. Bohnert
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research at the University of Tübingen, Tübingen, Germany
| | - Anja Schork
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research at the University of Tübingen, Tübingen, Germany
| | - Sebastian Hoerber
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research at the University of Tübingen, Tübingen, Germany
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital of Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research at the University of Tübingen, Tübingen, Germany
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital of Tübingen, Tübingen, Germany
| | - Syed M. Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, Ontario, Canada
- Innovation & Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Andreas L. Birkenfeld
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research at the University of Tübingen, Tübingen, Germany
| | - Nils Heyne
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research at the University of Tübingen, Tübingen, Germany
| | - Tamam Bakchoul
- Institute for Clinical and Experimental Transfusion Medicine (IKET), University Hospital of Tübingen, Tübingen, Germany
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Thomas Wieder
- Department of Vegetative and Clinical Physiology, University of Tübingen, Tübingen, Germany
| | - Ferruh Artunc
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research at the University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Neri S, Brandsma ET, Mul FPJ, Kuijpers TW, Matlung HL, van Bruggen R. An AI-based imaging flow cytometry approach to study erythrophagocytosis. Cytometry A 2024; 105:763-771. [PMID: 39248056 DOI: 10.1002/cyto.a.24894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 09/10/2024]
Abstract
Erythrophagocytosis is a process consisting of recognition, engulfment and digestion by phagocytes of antibody-coated or damaged erythrocytes. Understanding the dynamics that are behind erythrophagocytosis is fundamental to comprehend this cellular process under specific circumstances. Several techniques have been used to study phagocytosis. Among these, an interesting approach is the use of Imaging Flow Cytometry (IFC) to distinguish internalization and binding of cells or particles. However, this method requires laborious analysis. Here, we introduce a novel approach to analyze the phagocytosis process by combining Artificial Intelligence (AI) with IFC. Our study demonstrates that this approach is highly suitable to study erythrophagocytosis, categorizing internalized, bound and non-bound erythrocytes. Validation experiments showed that our pipeline performs with high accuracy and reproducibility.
Collapse
Affiliation(s)
- S Neri
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, Amsterdam, The Netherlands
| | - E T Brandsma
- Saxion, Academy Life Science Engineering and Design, University of Applied Science, Enschede, The Netherlands
| | - F P J Mul
- Department Central Cell Analysis Facility, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - T W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, Amsterdam, The Netherlands
| | - H L Matlung
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, Amsterdam, The Netherlands
| | - R van Bruggen
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Zhao J, Andreev I, Silva HM. Resident tissue macrophages: Key coordinators of tissue homeostasis beyond immunity. Sci Immunol 2024; 9:eadd1967. [PMID: 38608039 DOI: 10.1126/sciimmunol.add1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Resident tissue macrophages (RTMs) encompass a highly diverse set of cells abundantly present in every tissue and organ. RTMs are recognized as central players in innate immune responses, and more recently their importance beyond host defense has started to be highlighted. Despite sharing a universal name and several canonical markers, RTMs perform remarkably specialized activities tailored to sustain critical homeostatic functions of the organs they reside in. These cells can mediate neuronal communication, participate in metabolic pathways, and secrete growth factors. In this Review, we summarize how the division of labor among different RTM subsets helps support tissue homeostasis. We discuss how the local microenvironment influences the development of RTMs, the molecular processes they support, and how dysregulation of RTMs can lead to disease. Last, we highlight both the similarities and tissue-specific distinctions of key RTM subsets, aiming to coalesce recent classifications and perspectives into a unified view.
Collapse
Affiliation(s)
- Jia Zhao
- Laboratory of Immunophysiology, Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ilya Andreev
- Laboratory of Immunophysiology, Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hernandez Moura Silva
- Laboratory of Immunophysiology, Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
4
|
Fang M, Xia F, Chen Y, Shen Y, Ma L, You C, Tao C, Hu X. Role of Eryptosis in Hemorrhagic Stroke. Front Mol Neurosci 2022; 15:932931. [PMID: 35966018 PMCID: PMC9371462 DOI: 10.3389/fnmol.2022.932931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Erythrocytes undergo certain morphological changes resembling apoptosis during senescence or in an abnormal state/site, which is termed eryptosis. This process is characterized by phosphatidylserine (PS) exposure, membrane blebbing, and cell shrinkage. Eryptotic erythrocytes are subsequently removed via macrophage-mediated efferocytosis. In hemorrhagic stroke (HS), blood within an artery rapidly bleeds into the brain tissue or the subarachnoid space, resulting in severe neurological deficits. A hypoxic, over-oxidative, and pro-inflammatory microenvironment in the hematoma leads to oxidative stress, hyperosmotic shock, energy depletion, and Cl– removal in erythrocytes, which eventually triggers eryptosis. In addition, eryptosis following intracerebral hemorrhage favors hematoma clearance, which sheds light on a common mechanism of intrinsic phagocytosis. In this review, we summarized the canonical mechanisms of eryptosis and discussed its pathological conditions associated with HS. Understanding the role of eryptosis in HS may uncover additional potential interventions for further translational clinical research.
Collapse
Affiliation(s)
- Mei Fang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqi Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuke Shen
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanyuan Tao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Chuanyuan Tao,
| | - Xin Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Xin Hu,
| |
Collapse
|
5
|
Mukhtar F, Jilani K, Bibi I, Mushataq Z, Bari Khan MA, Fatima M. Stimulation of Erythrocyte Membrane Blebbing by Bifenthrin Induced Oxidative Stress. Dose Response 2022; 20:15593258221076710. [PMID: 35645655 PMCID: PMC9133878 DOI: 10.1177/15593258221076710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
Background Bifenthrin is an insecticide and anti-estrogenic compound primarily used to control residential pests by depolarizing sodium gated voltage channels in the nervous system. Eryptosis, the suicidal death of erythrocytes, featured by PS exposure, membrane blebbing and cell shrinkage. Anemia is an outcome of uncontrolled eryptosis. Research Design In this study, erythrocytes were treated with different concentrations (.5-1-1.5 μM) of bifenthrin over a period of 48 hours. In order to investigate the oxidative stress induced by bifenthrin, catalase, superoxide dismutase, and glutathione peroxidase activities were investigated. Results Obtained data indicated the decrease in the enzymes (superoxide dismutase, glutathione peroxidase, and catalase) activities in bifenthrin treated cells at 1 μM concentration. In addition, measurement of cell size and confirmation of the role of calcium in the stimulation of the eryptotic activity of bifenthrin were performed. A significant increase in mean cell volume was found in the presence of bifenthrin and a decrease in mean cell volume in the presence of calcium channel blocker was observed. Similarly, there was also a significant increase in the percentage of hemolysis indicating the necrotic activity of bifenthrin. Conclusions It is concluded that the indicated doses of bifenthrin triggered oxidative stress which may lead to early cell death by eryptosis and hemolysis.
Collapse
Affiliation(s)
- Fatima Mukhtar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Kashif Jilani
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Ismat Bibi
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur,Pakistan
| | - Zahid Mushataq
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | | | - Maria Fatima
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
Soldatenko A, Hoyt LR, Xu L, Calabro S, Lewis SM, Gallman AE, Hudson KE, Stowell SR, Luckey CJ, Zimring JC, Liu D, Santhanakrishnan M, Hendrickson JE, Eisenbarth SC. Innate and Adaptive Immunity to Transfused Allogeneic RBCs in Mice Requires MyD88. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:991-997. [PMID: 35039331 PMCID: PMC10107373 DOI: 10.4049/jimmunol.2100784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023]
Abstract
RBC transfusion therapy is essential for the treatment of anemia. A serious complication of transfusion is the development of non-ABO alloantibodies to polymorphic RBC Ags; yet, mechanisms of alloantibody formation remain unclear. Storage of mouse RBCs before transfusion increases RBC immunogenicity through an unknown mechanism. We previously reported that sterile, stored mouse RBCs activate splenic dendritic cells (DCs), which are required for alloimmunization. Here we transfused mice with allogeneic RBCs to test whether stored RBCs activate pattern recognition receptors (PRRs) on recipient DCs to induce adaptive immunity. TLRs are a class of PRRs that regulate DC activation, which signal through two adapter molecules: MyD88 and TRIF. We show that the inflammatory cytokine response, DC activation and migration, and the subsequent alloantibody response to transfused RBCs require MyD88 but not TRIF, suggesting that a restricted set of PRRs are responsible for sensing RBCs and triggering alloimmunization.
Collapse
Affiliation(s)
- Arielle Soldatenko
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Laura R Hoyt
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Lan Xu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Samuele Calabro
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Steven M Lewis
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Antonia E Gallman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Sean R Stowell
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Chance J Luckey
- Department of Pathology, University of Virginia, Charlottesville, VA; and
| | - James C Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA; and
| | - Dong Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Manjula Santhanakrishnan
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT.,Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT.,Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT; .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
7
|
Li D, Zheng X, Zhang Y, Li X, Chen X, Yin Y, Hu J, Li J, Guo M, Wang X. What Should Be Responsible for Eryptosis in Chronic Kidney Disease? Kidney Blood Press Res 2022; 47:375-390. [PMID: 35114677 DOI: 10.1159/000522133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Renal anemia is an important complication of chronic kidney disease (CKD). In addition to insufficient secretion of erythropoietin (EPO) and erythropoiesis disorders, the impact of eryptosis on renal anemia demands attention. However, a systemic analysis concerning the pathophysiology of eryptosis has not been expounded. SUMMARY The complicated conditions in CKD patients, including oxidative stress, osmotic stress, metabolic stress, accumulation of uremic toxins, and iron deficiency, affect the normal skeleton structure of red blood cells (RBCs) and disturbs ionic homeostasis, causing phosphatidylserine to translocate to the outer lobules of the RBC membrane that leads to early elimination and/or shortening of the RBC lifespan. Inadequate synthesis of RBCs cannot compensate for their accelerated destruction, thus exacerbating renal anemia. Meanwhile, EPO treatment alone will not reverse renal anemia. A variety of eryptosis inhibitors have so far been found, but evidence of their effectiveness in the treatment of CKD remains to be established. KEY MESSAGES In this review, the pathophysiological processes and factors influencing eryptosis in CKD were elucidated. The aim of this review was to underline the importance of eryptosis in renal anemia and determine some promising research directions or possible therapeutic targets to correct anemia in CKD.
Collapse
Affiliation(s)
- Dongxin Li
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China,
| | - Xujuan Zheng
- Health Science Centre, Shenzhen University, Shenzhen, China
| | - Yunxia Zhang
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Xiangling Li
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Xuexun Chen
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Yonghua Yin
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, China
| | - Jingwen Hu
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Jialin Li
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Min Guo
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Xiangming Wang
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Red blood cell (RBC) clearance has been studied for decades in many different pathologies, which has revealed different routes of RBC degradation, depending on the situation. This review summarizes the latest mechanistic insights on RBC clearance in different contexts; during homeostatic removal, immune-mediated destruction, and systemic inflammation. RECENT FINDINGS Besides the recognition of a variety of potential 'eat me' signals on RBCs, recent evidence suggests that normal RBC degradation is driven by the increase of the adhesive properties of RBCs, mediating the retention in the spleen and leading to RBC hemolysis. Furthermore, immune-mediated degradation of RBCs seems to be fine-tuned by the balance between the density of the antigens expressed on RBCs and the presence of 'don't eat me' signals. Moreover, besides RBC clearance by macrophages, neutrophils seem to play a much more prominent role in immune-mediated RBC removal than anticipated. Lastly, RBC clearance during systemic inflammation appears to be driven by a combination of extreme macrophage activity in response to proinflammatory cytokines as well as direct damage of RBC by the inflammation or inflammatory agent. SUMMARY Recent studies on RBC clearance have expanded our knowledge on their destruction in different contexts.
Collapse
Affiliation(s)
- Silvia Neri
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam
| | - Dorine W Swinkels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, RadboudUMC, Nijmegen, The Netherlands
| | - Hanke L Matlung
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam
| | - Robin van Bruggen
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam
| |
Collapse
|
9
|
Bissinger R, Nemkov T, D'Alessandro A, Grau M, Dietz T, Bohnert BN, Essigke D, Wörn M, Schaefer L, Xiao M, Beirne JM, Kalo MZ, Schork A, Bakchoul T, Omage K, Kong L, Gonzalez-Menendez I, Quintanilla-Martinez L, Fehrenbacher B, Schaller M, Dhariwal A, Birkenfeld AL, Grahammer F, Qadri SM, Artunc F. Proteinuric chronic kidney disease is associated with altered red blood cell lifespan, deformability and metabolism. Kidney Int 2021; 100:1227-1239. [PMID: 34537228 DOI: 10.1016/j.kint.2021.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
Anemia is a common complication of chronic kidney disease, affecting the quality of life of patients. Among various factors, such as iron and erythropoietin deficiency, reduced red blood cell (RBC) lifespan has been implicated in the pathogenesis of anemia. However, mechanistic data on in vivo RBC dysfunction in kidney disease are lacking. Herein, we describe the development of chronic kidney disease-associated anemia in mice with proteinuric kidney disease resulting from either administration of doxorubicin or an inducible podocin deficiency. In both experimental models, anemia manifested at day 10 and progressed at day 30 despite increased circulating erythropoietin levels and erythropoiesis in the bone marrow and spleen. Circulating RBCs in both mouse models displayed altered morphology and diminished osmotic-sensitive deformability together with increased phosphatidylserine externalization on the outer plasma membrane, a hallmark of RBC death. Fluorescence-labelling of RBCs at day 20 of mice with doxorubicin-induced kidney disease revealed premature clearance from the circulation. Metabolomic analyses of RBCs from both mouse models demonstrated temporal changes in redox recycling pathways and Lands' cycle, a membrane lipid remodeling process. Anemic patients with proteinuric kidney disease had an increased proportion of circulating phosphatidylserine-positive RBCs. Thus, our observations suggest that reduced RBC lifespan, mediated by altered RBC metabolism, reduced RBC deformability, and enhanced cell death contribute to the development of anemia in proteinuric kidney disease.
Collapse
Affiliation(s)
- Rosi Bissinger
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Division of Hematology, University of Colorado Denver, Aurora, Colorado, USA
| | - Marijke Grau
- Institute of Molecular and Cellular Sports Medicine, German Sport University of Cologne, Köln, Germany
| | - Thomas Dietz
- Institute of Molecular and Cellular Sports Medicine, German Sport University of Cologne, Köln, Germany
| | - Bernhard N Bohnert
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD) at the University Tübingen, Tübingen, Germany
| | - Daniel Essigke
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Matthias Wörn
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Lina Schaefer
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Mengyun Xiao
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Jonathan M Beirne
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - M Zaher Kalo
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Anja Schork
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD) at the University Tübingen, Tübingen, Germany
| | - Tamam Bakchoul
- Center for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Kingsley Omage
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Lingsi Kong
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | | | | | - Birgit Fehrenbacher
- Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Achal Dhariwal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Andreas L Birkenfeld
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD) at the University Tübingen, Tübingen, Germany
| | - Florian Grahammer
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Syed M Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, Ontario, Canada
| | - Ferruh Artunc
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD) at the University Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Thiagarajan P, Parker CJ, Prchal JT. How Do Red Blood Cells Die? Front Physiol 2021; 12:655393. [PMID: 33790808 PMCID: PMC8006275 DOI: 10.3389/fphys.2021.655393] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 12/24/2022] Open
Abstract
Normal human red blood cells have an average life span of about 120 days in the circulation after which they are engulfed by macrophages. This is an extremely efficient process as macrophages phagocytose about 5 million erythrocytes every second without any significant release of hemoglobin in the circulation. Despite large number of investigations, the precise molecular mechanism by which macrophages recognize senescent red blood cells for clearance remains elusive. Red cells undergo several physicochemical changes as they age in the circulation. Several of these changes have been proposed as a recognition tag for macrophages. Most prevalent hypotheses for red cell clearance mechanism(s) are expression of neoantigens on red cell surface, exposure phosphatidylserine and decreased deformability. While there is some correlation between these changes with aging their causal role for red cell clearance has not been established. Despite plethora of investigations, we still have incomplete understanding of the molecular details of red cell clearance. In this review, we have reviewed the recent data on clearance of senescent red cells. We anticipate recent progresses in in vivo red cell labeling and the explosion of modern proteomic techniques will, in near future, facilitate our understanding of red cell senescence and their destruction.
Collapse
Affiliation(s)
- Perumal Thiagarajan
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Charles J Parker
- University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Josef T Prchal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
11
|
18F-fluorodeoxyglucose positron emission tomography-computed tomography for assessing organ distribution of stressed red blood cells in mice. Sci Rep 2021; 11:2505. [PMID: 33510312 PMCID: PMC7844045 DOI: 10.1038/s41598-021-82100-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/13/2021] [Indexed: 02/04/2023] Open
Abstract
Red blood cells (RBCs) stressed by high temperature are similar to senescent or damaged RBCs in pathological conditions. RBCs can be efficiently labelled with 18F-fluorodeoxyglucose (FDG). The aim of this study was to assess stressed RBCs erythrophagocytosis and organ distribution in vivo with the application of 18F-FDG PET/CT. RBCs were induced under high temperature (48 °C) to prepare stressed RBCs. Fluorescence-activated cell sorting (FACS) was used to analyse reactive oxygen species (ROS) generation, intracellular Ca2+ concentration and membrane phosphatidylserine (PS) externalization of RBCs. 18F-FDG was used to label RBCs and assess the erythrophagocytosis. Finally, 18F-FDG PET/CT was applied to reveal and measure the organ distribution of stressed RBCs in mice. Compared with untreated RBCs, stressed RBCs decreased in cell volume and increased in ROS level, intracellular Ca2+ concentration, and PS exposure. RBCs could be labelled by 18F-FDG. Stressed RBCs tended to be phagocytosed by macrophages via assessment of FACS and radioactivity. 18F-FDG PET/CT imaging showed that stressed RBCs were mainly trapped in spleen, while untreated RBCs remained in circulation system. Thus, stressed RBCs can be effectively labelled by 18F-FDG and tend to be trapped in spleen of mice as assessed by PET/CT.
Collapse
|
12
|
Bissinger R, Petkova-Kirova P, Mykhailova O, Oldenborg PA, Novikova E, Donkor DA, Dietz T, Bhuyan AAM, Sheffield WP, Grau M, Artunc F, Kaestner L, Acker JP, Qadri SM. Thrombospondin-1/CD47 signaling modulates transmembrane cation conductance, survival, and deformability of human red blood cells. Cell Commun Signal 2020; 18:155. [PMID: 32948210 PMCID: PMC7502024 DOI: 10.1186/s12964-020-00651-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Thrombospondin-1 (TSP-1), a Ca2+-binding trimeric glycoprotein secreted by multiple cell types, has been implicated in the pathophysiology of several clinical conditions. Signaling involving TSP-1, through its cognate receptor CD47, orchestrates a wide array of cellular functions including cytoskeletal organization, migration, cell-cell interaction, cell proliferation, autophagy, and apoptosis. In the present study, we investigated the impact of TSP-1/CD47 signaling on Ca2+ dynamics, survival, and deformability of human red blood cells (RBCs). METHODS Whole-cell patch-clamp was employed to examine transmembrane cation conductance. RBC intracellular Ca2+ levels and multiple indices of RBC cell death were determined using cytofluorometry analysis. RBC morphology and microvesiculation were examined using imaging flow cytometry. RBC deformability was measured using laser-assisted optical rotational cell analyzer. RESULTS Exposure of RBCs to recombinant human TSP-1 significantly increased RBC intracellular Ca2+ levels. As judged by electrophysiology experiments, TSP-1 treatment elicited an amiloride-sensitive inward current alluding to a possible Ca2+ influx via non-selective cation channels. Exogenous TSP-1 promoted microparticle shedding as well as enhancing Ca2+- and nitric oxide-mediated RBC cell death. Monoclonal (mouse IgG1) antibody-mediated CD47 ligation using 1F7 recapitulated the cell death-inducing effects of TSP-1. Furthermore, TSP-1 treatment altered RBC cell shape and stiffness (maximum elongation index). CONCLUSIONS Taken together, our data unravel a new role for TSP-1/CD47 signaling in mediating Ca2+ influx into RBCs, a mechanism potentially contributing to their dysfunction in a variety of systemic diseases. Video abstract.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Universitätsklinikum Tübingen, Tübingen, Germany
| | | | - Olga Mykhailova
- Centre for Innovation, Canadian Blood Services, Edmonton, AB, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Elena Novikova
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - David A Donkor
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Thomas Dietz
- Institute of Molecular and Cellular Sports Medicine, German Sport University of Cologne, Köln, Germany
| | | | - William P Sheffield
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Marijke Grau
- Institute of Molecular and Cellular Sports Medicine, German Sport University of Cologne, Köln, Germany
| | - Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Universitätsklinikum Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at Eberhard-Karls University, Tübingen, Germany.,German Center for Diabetes Research (DZD), Eberhard-Karls University, Tübingen, Germany
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany.,Experimental Physics, Saarland University, Saarbruecken, Germany
| | - Jason P Acker
- Centre for Innovation, Canadian Blood Services, Edmonton, AB, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Syed M Qadri
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada. .,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada.
| |
Collapse
|
13
|
Lewis SM, Williams A, Eisenbarth SC. Structure and function of the immune system in the spleen. Sci Immunol 2020; 4:4/33/eaau6085. [PMID: 30824527 DOI: 10.1126/sciimmunol.aau6085] [Citation(s) in RCA: 663] [Impact Index Per Article: 132.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
The spleen is the largest secondary lymphoid organ in the body and, as such, hosts a wide range of immunologic functions alongside its roles in hematopoiesis and red blood cell clearance. The physical organization of the spleen allows it to filter blood of pathogens and abnormal cells and facilitate low-probability interactions between antigen-presenting cells (APCs) and cognate lymphocytes. APCs specific to the spleen regulate the T and B cell response to these antigenic targets in the blood. This review will focus on cell types, cell organization, and immunologic functions specific to the spleen and how these affect initiation of adaptive immunity to systemic blood-borne antigens. Potential differences in structure and function between mouse and human spleen will also be discussed.
Collapse
Affiliation(s)
- Steven M Lewis
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adam Williams
- Jackson Laboratory for Genomic Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA.,Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
14
|
Bissinger R, Lang E, Gonzalez-Menendez I, Quintanilla-Martinez L, Ghashghaeinia M, Pelzl L, Sukkar B, Bhuyan AAM, Salker MS, Singh Y, Fehrenbacher B, Fakhri H, Umbach AT, Schaller M, Qadri SM, Lang F. Genetic deficiency of the tumor suppressor protein p53 influences erythrocyte survival. Apoptosis 2019; 23:641-650. [PMID: 30238335 DOI: 10.1007/s10495-018-1481-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The transcription factor p53 suppresses tumor growth by inducing nucleated cell apoptosis and cycle arrest. Because of its influence on primitive erythroid cell differentiation and survival, p53 is an important determinant of erythropoiesis. However, the impact of p53 on the fate of erythrocytes, cells lacking nucleus and mitochondria, during their post-maturation phase in the circulation remained elusive. Erythrocyte survival may be compromised by suicidal erythrocyte death or eryptosis, which is hallmarked by phosphatidylserine translocation and stimulated by increase of cytosolic Ca2+ concentration. Here, we comparatively examined erythrocyte homeostasis in p53-mutant mice (Trp53tm1Tyj/J) and in corresponding WT mice (C57BL/6J) by analyzing eryptosis and erythropoiesis. To this end, spontaneous cell membrane phosphatidylserine exposure and cytosolic Ca2+ concentration were higher in erythrocytes drawn from Trp53tm1Tyj/J mice than from WT mice. Eryptosis induced by glucose deprivation, a pathophysiological cell stressor, was slightly, but significantly more prominent in erythrocytes drawn from Trp53tm1Tyj/J mice as compared to WT mice. The loss of erythrocytes by eryptosis was fully compensated by enhanced erythropoiesis in Trp53tm1Tyj/J mice, as reflected by increased reticulocytosis and abundance of erythroid precursor cells in the bone marrow. Accordingly, erythrocyte number, packed cell volume and hemoglobin were similar in Trp53tm1Tyj/J and WT mice. Taken together, functional p53 deficiency enhances the turnover of circulating erythrocytes by parallel increase of eryptosis and stimulated compensatory erythropoiesis.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Internal Medicine III, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Elisabeth Lang
- Department of Molecular Medicine II, Heinrich-Heine University, Düsseldorf, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Eberhard-Karls University Tübingen, Tübingen, Germany.,Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard-Karls University Tübingen, Tübingen, Germany.,Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Mehrdad Ghashghaeinia
- Psoriasis Center, Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany
| | - Lisann Pelzl
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany
| | - Basma Sukkar
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany
| | - Abdulla Al Mamun Bhuyan
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany
| | - Madhuri S Salker
- Research Institute for Women's Health, University Hospital Tübingen, Tübingen, Germany
| | - Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Birgit Fehrenbacher
- Department of Dermatology, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Hajar Fakhri
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany
| | - Anja T Umbach
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Syed M Qadri
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada. .,Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.
| | - Florian Lang
- Department of Internal Medicine III, Eberhard-Karls University Tübingen, Tübingen, Germany. .,Department of Molecular Medicine II, Heinrich-Heine University, Düsseldorf, Germany. .,Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany.
| |
Collapse
|
15
|
Backer RA, Diener N, Clausen BE. Langerin +CD8 + Dendritic Cells in the Splenic Marginal Zone: Not So Marginal After All. Front Immunol 2019; 10:741. [PMID: 31031751 PMCID: PMC6474365 DOI: 10.3389/fimmu.2019.00741] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/19/2019] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DC) fulfill an essential sentinel function within the immune system, acting at the interface of innate and adaptive immunity. The DC family, both in mouse and man, shows high functional heterogeneity in order to orchestrate immune responses toward the immense variety of pathogens and other immunological threats. In this review, we focus on the Langerin+CD8+ DC subpopulation in the spleen. Langerin+CD8+ DC exhibit a high ability to take up apoptotic/dying cells, and therefore they are essential to prime and shape CD8+ T cell responses. Next to the induction of immunity toward blood-borne pathogens, i.e., viruses, these DC are important for the regulation of tolerance toward cell-associated self-antigens. The ontogeny and differentiation pathways of CD8+CD103+ DC should be further explored to better understand the immunological role of these cells as a prerequisite of their therapeutic application.
Collapse
Affiliation(s)
- Ronald A Backer
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Nathalie Diener
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Björn E Clausen
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
16
|
Zhao M, Zhou Q, He C, Zhang Y, Wang Z, Cai R, Ma C, Li Y, Wang X, Zhan L. Stored red blood cells enhance in vivo migration of dendritic cells by promoting reactive oxygen species-induced cytoskeletal rearrangement. Transfusion 2019; 59:1312-1323. [PMID: 30614543 DOI: 10.1111/trf.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/27/2018] [Accepted: 10/28/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND A complex array of physicochemical changes occurs in red blood cells (RBCs) during storage, leading to enhanced posttransfusion clearance. Dendritic cells (DCs) play crucial roles in the engulfment of aged RBCs; however, it is unclear how stored RBCs (sRBCs) modulate their responses to inflammatory stimuli and DC migration ability. STUDY DESIGN AND METHODS In this study, we examined whether sRBCs affect the migration ability of DCs and elucidated the detailed mechanisms mediating this process. Murine RBCs were incubated with marrow DCs after removing the storage supernatant. The effects of sRBCs on cytokine secretion from DCs, surface marker expression, and homing ability were examined. RESULTS More sRBCs were internalized by DCs than fresh RBCs (fRBCs), and RBC accumulation significantly promoted the expression of allostimulatory molecules and the secretion of Th1-type cytokines in the presence of lipopolysaccharide (LPS). In particular, the lymphoid-tissue homing ability of transfused DCs treated with sRBCs (sRBC-DCs) was also significantly greater than that of fRBCs. Up regulation of CCR7 and improved organization of the cytoskeleton were observed in sRBC-DCs, and blocking Rho/Rho-associated protein kinase (ROCK), PI3K/Akt, and NF-κB pathways greatly hindered cytoskeletal rearrangement. Moreover, high levels of reactive oxygen species (ROS) were detected in sRBC-DCs, and treatment with N-acetylcysteine simultaneously decreased the lymph node-homing ability of DCs and phosphorylation of RhoA, ROCK1, and cortactin. CONCLUSIONS sRBCs initiated differential immune responses compared to fRBCs, and the presence of LPS augmented this phenomenon. Up regulation of CCR7 and ROS production promotes cytoskeletal reorganization and contributes to the increased homing of sRBCs-DCs.
Collapse
Affiliation(s)
- Man Zhao
- Beijing Key Laboratory of Blood Safety and Security, Institute of Health Service and Transfusion Medicine, Beijing, P.R. China.,Department of Blood Transfusion, Chinese PLA General Hospital, Beijing, China
| | - Qianqian Zhou
- Beijing Key Laboratory of Blood Safety and Security, Institute of Health Service and Transfusion Medicine, Beijing, P.R. China
| | - Chulin He
- Beijing Key Laboratory of Blood Safety and Security, Institute of Health Service and Transfusion Medicine, Beijing, P.R. China
| | - Yulong Zhang
- Beijing Key Laboratory of Blood Safety and Security, Institute of Health Service and Transfusion Medicine, Beijing, P.R. China
| | - Zhengjun Wang
- Beijing Key Laboratory of Blood Safety and Security, Institute of Health Service and Transfusion Medicine, Beijing, P.R. China
| | - Ruiying Cai
- Beijing Key Laboratory of Blood Safety and Security, Institute of Health Service and Transfusion Medicine, Beijing, P.R. China
| | - Cong Ma
- Beijing Key Laboratory of Blood Safety and Security, Institute of Health Service and Transfusion Medicine, Beijing, P.R. China
| | - Yuan Li
- Beijing Key Laboratory of Blood Safety and Security, Institute of Health Service and Transfusion Medicine, Beijing, P.R. China
| | - Xiaohui Wang
- Beijing Key Laboratory of Blood Safety and Security, Institute of Health Service and Transfusion Medicine, Beijing, P.R. China
| | - Linsheng Zhan
- Beijing Key Laboratory of Blood Safety and Security, Institute of Health Service and Transfusion Medicine, Beijing, P.R. China.,Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Bissinger R, Bhuyan AAM, Qadri SM, Lang F. Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J 2018; 286:826-854. [PMID: 30028073 DOI: 10.1111/febs.14606] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/15/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
Abstract
The average lifespan of circulating erythrocytes usually exceeds hundred days. Prior to that, however, erythrocytes may be exposed to oxidative stress in the circulation which could cause injury and trigger their suicidal death or eryptosis. Oxidative stress activates Ca2+ -permeable nonselective cation channels in the cell membrane, thus, stimulating Ca2+ entry and subsequent cell membrane scrambling resulting in phosphatidylserine exposure and activation of Ca2+ -sensitive K+ channels leading to K+ exit, hyperpolarization, Cl- exit, and ultimately cell shrinkage due to loss of KCl and osmotically driven water. While the mechanistic link between oxidative stress and anemia remains ill-defined, several diseases such as diabetes, hepatic failure, malignancy, chronic kidney disease and inflammation have been identified to display both increased oxidative stress as well as eryptosis. Recent compelling evidence suggests that oxidative stress is an important perpetrator in accelerating erythrocyte loss in different systemic conditions and an underlying mechanism for anemia associated with these pathological states. In the present review, we discuss the role of oxidative stress in reducing erythrocyte survival and provide novel insights into the possible use of antioxidants as putative antieryptotic and antianemic agents in a variety of systemic diseases.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Internal Medicine III, Eberhard-Karls-University Tübingen, Germany
| | - Abdulla Al Mamun Bhuyan
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard-Karls-University Tübingen, Germany
| | - Syed M Qadri
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Florian Lang
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard-Karls-University Tübingen, Germany.,Department of Molecular Medicine II, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
18
|
A-Gonzalez N, Castrillo A. Origin and specialization of splenic macrophages. Cell Immunol 2018; 330:151-158. [PMID: 29779612 DOI: 10.1016/j.cellimm.2018.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/09/2018] [Accepted: 05/13/2018] [Indexed: 12/18/2022]
Abstract
Macrophage heterogeneity in the spleen has been long documented, with four subsets populating the different splenic compartments. The diverse environments on the splenic compartments determine their varied phenotype and functions. In the white pulp, highly phagocytic macrophages contribute to the generation of the immune response. The marginal zone contains two populations of macrophages, which also contribute to the immune response. Their strategic position in the bloodstream and their unique phenotype confer them a crucial role in the defense against blood borne pathogens, placing them at the crossroad between innate and adaptive immune responses. Macrophages in the red pulp are classically linked to homeostatic and metabolic functions in erythrocyte phagocytosis and iron recycling. We review here recent advances demonstrating the importance of macrophage ontogeny and organ development in determining the phenotype, transcriptional profile and, ultimately, the functions of the populations of splenic macrophages.
Collapse
Affiliation(s)
- Noelia A-Gonzalez
- Institute of Immunology, University of Münster, 48149 Münster, Germany.
| | - Antonio Castrillo
- Instituto Investigaciones Biomédicas "Alberto Sols", Centro Mixto Consejo Superior de Investigaciones Cientificas y Universidad Autonoma de Madrid (IIBM CSIC-UAM), IIBM Madrid, Spain; Unidad De Biomedicina (Unidad Asociada al CSIC), IIBM- Universidad Las Palmas de Gran Canaria, ULPGC, Grupo de Investigación en medio ambiente y Salud (GIMAS), Instituto Universitario de Investigaciones Biomedicas y Sanitarias (IUIBS, ULPGC), Spain
| |
Collapse
|
19
|
Yee MEM, Josephson CD, Winkler AM, Webb J, Luban NLC, Leong T, Stowell SR, Roback JD, Fasano RM. Hemoglobin A clearance in children with sickle cell anemia on chronic transfusion therapy. Transfusion 2018; 58:1363-1371. [PMID: 29664198 DOI: 10.1111/trf.14610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Chronic transfusion therapy for sickle cell anemia reduces disease complications by diluting sickle-erythrocytes with hemoglobin A (HbA)-containing erythrocytes and suppressing erythropoiesis. Minor antigen mismatches may result in alloimmunization, but it is unknown if antigen mismatches or recipient characteristics influence HbA clearance posttransfusion. STUDY DESIGN AND METHODS Children with sickle cell anemia on chronic transfusion therapy were followed prospectively for 12 months. All patients received units serologically matched for C/c, E/e, and K; patients with prior red blood cell (RBC) antibodies had additional matching for Fya , Jkb , and any previous alloantibodies. Patients' RBC antigen genotypes, determined by multiplexed molecular assays (PreciseType Human Erythrocyte Antigen, and RHCE and RHD BeadChip, Immucor) were compared to genotypes of transfused RBC units to assess for antigen mismatches. Decline in hbA (ΔHbA) from posttransfusion to the next transfusion was calculated for each transfusion episode. RESULTS Sixty patients received 789 transfusions, 740 with ΔHbA estimations, and 630 with donor Human Erythrocyte Antigen genotyping. In univariate mixed-model analysis, ΔHbA was higher in patients with past RBC antibodies or splenomegaly and lower in patients with splenectomy. RBC antigen mismatches were not associated with ΔHbA. In multivariate linear mixed-effects modeling, ΔHbA was associated with RBC antibodies (2.70 vs. 2.45 g/dL/28 d, p = 0.0028), splenomegaly (2.87 vs. 2.28 g/dL/28 d, p = 0.019), and negatively associated with splenectomy (2.46 vs. 2.70 g/dL/28 d, p = 0.011). CONCLUSIONS HbA decline was increased among patients with sickle cell anemia with prior immunologic response to RBC antigens and decreased among those with prior splenectomy, demonstrating that recipient immunologic characteristics influenced the clearance of transfused RBCs.
Collapse
Affiliation(s)
- Marianne E M Yee
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics and Hematology/Oncology, Emory University School of Medicine and the
| | - Cassandra D Josephson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics and Hematology/Oncology, Emory University School of Medicine and the.,Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; the
| | - Anne M Winkler
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; the
| | - Jennifer Webb
- Center for Cancer and Blood Disorders, Children's National Medical Center, Departments of Hematology and Laboratory Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Naomi L C Luban
- Center for Cancer and Blood Disorders, Children's National Medical Center, Departments of Hematology and Laboratory Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Traci Leong
- Department of Biostatistics and Bioinformatics, Emory University, Rollins School of Public Health, Atlanta, Georgia
| | - Sean R Stowell
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; the
| | - John D Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; the
| | - Ross M Fasano
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; the
| |
Collapse
|
20
|
Qadri SM, Donkor DA, Nazy I, Branch DR, Sheffield WP. Bacterial neuraminidase-mediated erythrocyte desialylation provokes cell surface aminophospholipid exposure. Eur J Haematol 2018; 100:502-510. [PMID: 29453885 DOI: 10.1111/ejh.13047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Surface desialylation is associated with erythrocyte aging and mediates phagocytic recognition and clearance of senescent erythrocytes. Neuraminidases, a family of glycohydrolytic enzymes, cleave the glycosidic linkages between sialic acid and mucopolysaccharides and have previously been implicated in erythrocyte dysfunction associated with sepsis. Erythrocytes in septic patients further display a phenotype of accelerated eryptosis characterized by membrane phospholipid scrambling resulting in phosphatidylserine (PS) externalization. Herein, we examined the impact of artificial erythrocyte desialylation on eryptosis. METHODS Using flow cytometry and/or fluorescence microscopy, we analyzed desialylation patterns and eryptotic alterations in erythrocytes exposed to Clostridium perfringens-derived neuraminidase. RESULTS Exogenous bacterial neuraminidase significantly augmented membrane PS exposure and cytosolic Ca2+ levels in a dose- and time-dependent manner. Neuraminidase treatment significantly reduced fluorescence-tagged agglutinin binding, an effect temporally preceding the increase in PS externalization. Neuraminidase-induced PS exposure was significantly curtailed by pretreatment with the pan-sialidase inhibitor N-acetyl-2,3-dehydro-2-deoxyneuraminic acid. Neuraminidase treatment further induced hemolysis but did not significantly impact erythrocyte volume, ceramide abundance, or the generation of reactive oxygen species. CONCLUSION Collectively, our data reveal that alteration of erythrocyte sialylation status by bacterial neuraminidase favors eryptotic cell death, an effect potentially contributing to reduced erythrocyte lifespan and anemia in sepsis.
Collapse
Affiliation(s)
- Syed M Qadri
- Canadian Blood Services, Centre for Innovation, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - David A Donkor
- Canadian Blood Services, Centre for Innovation, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Ishac Nazy
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Centre for Transfusion Research, Hamilton, ON, Canada
| | - Donald R Branch
- Canadian Blood Services, Centre for Innovation, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - William P Sheffield
- Canadian Blood Services, Centre for Innovation, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
21
|
Lang F, Bissinger R, Abed M, Artunc F. Eryptosis - the Neglected Cause of Anemia in End Stage Renal Disease. Kidney Blood Press Res 2017; 42:749-760. [PMID: 29151105 DOI: 10.1159/000484215] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/23/2017] [Indexed: 11/19/2022] Open
Abstract
End stage renal disease (ESRD) invariably leads to anemia which has been mainly attributed to compromised release of erythropoietin from the defective kidneys with subsequent impairment of erythropoiesis. However, erythropoietin replacement only partially reverses anemia pointing to the involvement of additional mechanisms. As shown more recently, anemia of ESRD is indeed in large part a result of accelerated erythrocyte loss due to suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the cell surface. Phosphatidylserine exposing erythrocytes are bound to and engulfed by macrophages and are thus rapidly cleared from circulating blood. If the loss of erythrocytes cannot be fully compensated by enhanced erythropoiesis, stimulation of eryptosis leads to anemia. Eryptotic erythrocytes may further adhere to the vascular wall and thus impair microcirculation. Stimulators of eryptosis include complement, hyperosmotic shock, energy depletion, oxidative stress, and a wide variety of xenobiotics. Signaling involved in the stimulation of eryptosis includes increase of cytosolic Ca2+ activity, ceramide, caspases, calpain, p38 kinase, protein kinase C, Janus-activated kinase 3, casein kinase 1α, and cyclin-dependent kinase 4. Eryptosis is inhibited by AMP-activated kinase, p21-activated kinase 2, cGMP-dependent protein kinase, mitogen- and stress-activated kinase MSK1/2, and some illdefined tyrosine kinases. In ESRD eryptosis is stimulated at least in part by a plasma component, as it is triggered by exposure of erythrocytes from healthy individuals to plasma from ESRD patients. Several eryptosis-stimulating uremic toxins have been identified, such as vanadate, acrolein, methylglyoxal, indoxyl sulfate, indole-3-acetic acid and phosphate. Attempts to fully reverse anemia in ESRD with excessive stimulation of erythropoiesis enhances the number of circulating suicidal erythrocytes and bears the risk of interference with micocirculation, At least in theory, anemia in ESRD could preferably be treated with replacement of erythropoietin and additional inhibition of eryptosis thus avoiding eryptosis-induced impairment of microcirculation. A variety of eryptosis inhibitors have been identified, their efficacy in ESRD remains, however, to be shown.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology I, University of Tübingen, Tübingen, Germany.,Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Rosi Bissinger
- Department of Internal Medicine III, University of Tübingen, Tübingen, Germany
| | - Majed Abed
- Department of Physiology I, University of Tübingen, Tübingen, Germany
| | - Ferruh Artunc
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Lang E, Bissinger R, Qadri SM, Lang F. Suicidal death of erythrocytes in cancer and its chemotherapy: A potential target in the treatment of tumor-associated anemia. Int J Cancer 2017; 141:1522-1528. [DOI: 10.1002/ijc.30800] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/02/2017] [Accepted: 05/17/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Elisabeth Lang
- Department of Molecular Medicine II; Heinrich Heine University of Düsseldorf; Düsseldorf Germany
| | - Rosi Bissinger
- Department of Internal Medicine III; Eberhard-Karls-University of Tübingen; Tübingen Germany
| | - Syed M. Qadri
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
- Centre for Innovation, Canadian Blood Services; Hamilton ON Canada
| | - Florian Lang
- Department of Internal Medicine III; Eberhard-Karls-University of Tübingen; Tübingen Germany
| |
Collapse
|
23
|
Qadri SM, Bissinger R, Solh Z, Oldenborg PA. Eryptosis in health and disease: A paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev 2017; 31:349-361. [PMID: 28669393 DOI: 10.1016/j.blre.2017.06.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/05/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
Abstract
During the course of their natural ageing and upon injury, anucleate erythrocytes can undergo an unconventional apoptosis-like cell death, termed eryptosis. Eryptotic erythrocytes display a plethora of morphological alterations including volume reduction, membrane blebbing and breakdown of the membrane phospholipid asymmetry resulting in phosphatidylserine externalization which, in turn, mediates their phagocytic recognition and clearance from the circulation. Overall, the eryptosis machinery is tightly orchestrated by a wide array of endogenous mediators, ion channels, membrane receptors, and a host of intracellular signaling proteins. Enhanced eryptosis shortens the lifespan of circulating erythrocytes and confers a procoagulant phenotype; this phenomenon has been tangibly implicated in the pathogenesis of anemia, deranged microcirculation, and increased prothrombotic risk associated with a multitude of clinical conditions. Herein, we reviewed the molecular mechanisms dictating eryptosis and erythrophagocytosis and critically analyzed the current evidence leading to the pathophysiological ramifications of eryptotic cell death in the context of human disease.
Collapse
Affiliation(s)
- Syed M Qadri
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.
| | - Rosi Bissinger
- Department of Internal Medicine, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Ziad Solh
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Medical Services and Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
24
|
Abed M, Thiel C, Towhid S, Alzoubi K, Honisch S, Lang F, Königsrainer A. Stimulation of Erythrocyte Cell Membrane Scrambling by C-Reactive Protein. Cell Physiol Biochem 2017; 41:806-818. [DOI: 10.1159/000458745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/25/2017] [Indexed: 12/29/2022] Open
Abstract
Background: Eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and phosphatidylserine-translocation, is triggered by fever and inflammation. Signaling includes increased cytosolic Ca2+-activity ([Ca2+]i), caspase activation, and ceramide. Inflammation is associated with increased plasma concentration of C-reactive protein (CRP). The present study explored whether CRP triggers eryptosis. Methods: Phosphatidylserine abundance at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ceramide abundance and caspase-3-activity utilizing FITC-conjugated antibodies. Moreover, blood was drawn from patients with acute appendicitis (9♀,11♂) and healthy volunteers (10♀,10♂) for determination of CRP, blood count and phosphatidylserine. Results: A 48h CRP treatment significantly increased the percentage of annexin-V-binding cells (≥5µg/ml), [Ca2+]i (≥5µg/ml), ceramide (20µg/ml) and caspase-activity (20µg/ml). Annexin-V-binding was significantly blunted by caspase inhibitor zVAD (10µM). The percentage of phosphatidylserine-exposing erythrocytes in freshly drawn blood was significantly higher in appendicitis patients (1.83±0.21%) than healthy volunteers (0.81±0.09%), and significantly higher following a 24h incubation of erythrocytes from healthy volunteers to patient plasma than to plasma from healthy volunteers. The percentage of phosphatidylserine-exposing erythrocytes correlated with CRP plasma concentration. Conclusion: C-reactive protein triggers eryptosis, an effect at least partially due to increase of [Ca2+]i, increase of ceramide abundance and caspase activation.
Collapse
|
25
|
Qadri SM, Chen D, Schubert P, Perruzza DL, Bhakta V, Devine DV, Sheffield WP. Pathogen inactivation by riboflavin and ultraviolet light illumination accelerates the red blood cell storage lesion and promotes eryptosis. Transfusion 2016; 57:661-673. [DOI: 10.1111/trf.13959] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Syed M. Qadri
- Centre for Innovation, Canadian Blood Services; McMaster University; Hamilton Ontario Canada
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton Ontario Canada
| | - Deborah Chen
- Centre for Innovation, Canadian Blood Services; University of British Columbia; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - Peter Schubert
- Centre for Innovation, Canadian Blood Services; University of British Columbia; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - Darian L. Perruzza
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton Ontario Canada
| | - Varsha Bhakta
- Centre for Innovation, Canadian Blood Services; McMaster University; Hamilton Ontario Canada
| | - Dana V. Devine
- Centre for Innovation, Canadian Blood Services; University of British Columbia; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - William P. Sheffield
- Centre for Innovation, Canadian Blood Services; McMaster University; Hamilton Ontario Canada
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton Ontario Canada
| |
Collapse
|
26
|
Antonelou MH, Seghatchian J. Insights into red blood cell storage lesion: Toward a new appreciation. Transfus Apher Sci 2016; 55:292-301. [PMID: 27839967 DOI: 10.1016/j.transci.2016.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Red blood cell storage lesion (RSL) is a multifaceted biological phenomenon. It refers to deterioration in RBC quality that is characterized by lethal and sub-lethal, reversible and irreversible defects. RSL is influenced by prestorage variables and it might be associated with variable clinical outcomes. Optimal biopreservation conditions are expected to offer maximum levels of RBC survival and acceptable functionality and bioreactivity in-bag and in vivo; consequently, full appraisal of RSL requires understanding of how RSL changes interact with each other and with the recipient. Recent technological innovation in MS-based omics, imaging, cytometry, small particle and systems biology has offered better understanding of RSL contributing factors and effects. A number of elegant in vivo and in vitro studies have paved the way for the identification of quality control biomarkers useful to predict RSL profile and posttransfusion performance. Moreover, screening tools for the early detection of good or poor "storers" and donors have been developed. In the light of new perspectives, storage time is not the touchstone to rule on the quality of a packed RBC unit. At least by a biochemical standpoint, the metabolic aging pattern during storage may not correspond to the currently fresh/old distinction of stored RBCs. Finally, although each unit of RBCs is probably unique, a metabolic signature of RSL across storage variables might exist. Moving forward from traditional hematologic measures to integrated information on structure, composition, biochemistry and interactions collected in bag and in vivo will allow identification of points for intervention in a transfusion meaningful context.
Collapse
Affiliation(s)
- Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| | - Jerard Seghatchian
- International Consultancy in Blood Component Quality/Safety Improvement, Audit/Inspection and DDR Strategy, London, UK.
| |
Collapse
|
27
|
Antonelou MH, Seghatchian J. Update on extracellular vesicles inside red blood cell storage units: Adjust the sails closer to the new wind. Transfus Apher Sci 2016; 55:92-104. [DOI: 10.1016/j.transci.2016.07.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|