1
|
Tao K, Tao K, Wang J. The potential mechanisms of extracellular vesicles in transfusion-related adverse reactions: Recent advances. Transfus Clin Biol 2025; 32:205-227. [PMID: 40180029 DOI: 10.1016/j.tracli.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Blood transfusion is an irreplaceable clinical treatment. Blood components are differentiated and stored according to specific guidelines. Storage temperatures and times vary depending on the blood component, but they all release extracellular vesicles (EVs) during storage. Although blood transfusions can be life-saving, they can also cause many adverse transfusion reactions, among which the effects of EVs are of increasing interest to researchers. EVs are submicron particles that vary in size, composition, and surface biomarkers, are encapsulated by a lipid bilayer, and are not capable of self-replication. EVs released by blood cells are important contributors to pathophysiologic states through proinflammatory, coagulant, and immunosuppressive effects, which in turn promote or inhibit the associated disease phenotype. Therefore, this review explores the potential mechanisms of hematopoietic-derived EVs in transfusion-associated adverse reactions and discusses the potential of the latest proteomics tools to be applied to the analysis of EVs in the field of transfusion medicine with a view to reducing the risk of blood transfusion.
Collapse
Affiliation(s)
- Keyi Tao
- Panzhihua University, Panzhihua 617000 Sichuan, China
| | - Keran Tao
- Institute of Medicine and Nursing, Hubei University of Medicine, Shiyan 442000 Hubei, China
| | - Jing Wang
- Southwest Medical University, Luzhou 646000 Sichuan, China; Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000 China.
| |
Collapse
|
2
|
Liu X, Li Y, Jia J, Wang H, Xi Y, Sun A, Wang L, Deng X, Chen Z, Fan Y. Analysis of non-physiological shear stress-induced red blood cell trauma across different clinical support conditions of the blood pump. Med Biol Eng Comput 2024; 62:3209-3223. [PMID: 38802609 DOI: 10.1007/s11517-024-03121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
Systematic research into device-induced red blood cell (RBC) damage beyond hemolysis, including correlations between hemolysis and RBC-derived extracellular vesicles, remains limited. This study investigated non-physiological shear stress-induced RBC damage and changes in related biochemical indicators under two blood pump clinical support conditions. Pressure heads of 100 and 350 mmHg, numerical simulation methods, and two in vitro loops were utilized to analyze the shear stress and changes in RBC morphology, hemolysis, biochemistry, metabolism, and oxidative stress. The blood pump created higher shear stress in the 350-mmHg condition than in the 100-mmHg condition. With prolonged blood pump operation, plasma-free hemoglobin and cholesterol increased, whereas plasma glucose and nitric oxide decreased in both loops. Notably, plasma iron and triglyceride concentrations increased only in the 350-mmHg condition. The RBC count and morphology, plasma lactic dehydrogenase, and oxidative stress across loops did not differ significantly. Plasma extracellular vesicles, including RBC-derived microparticles, increased significantly at 600 min in both loops. Hemolysis correlated with plasma triglyceride, cholesterol, glucose, and nitric oxide levels. Shear stress, but not oxidative stress, was the main cause of RBC damage. Hemolysis alone inadequately reflects overall blood pump-induced RBC damage, suggesting the need for additional biomarkers for comprehensive assessments.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yuan Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jinze Jia
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Hongyu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yifeng Xi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
3
|
Ilvonen P, Pusa R, Härkönen K, Laitinen S, Impola U. Distinct targeting and uptake of platelet and red blood cell-derived extracellular vesicles into immune cells. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e130. [PMID: 38938679 PMCID: PMC11080822 DOI: 10.1002/jex2.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 06/29/2024]
Abstract
Blood-derived extracellular vesicles (EVs) hold great therapeutic potential. As blood contains mixed EV populations, it is challenging to study EVs originating from different cells separately. Blood cell concentrates manufactured in blood banks offer an excellent non-invasive source of blood cell-specific EV populations. To study blood cell-specific EVs, we isolated EVs from platelet (TREVs) and red blood cell (EryEVs) concentrates and characterized them using nanoparticle tracking analysis, imaging flow cytometry, electron microscopy and western blot analysis and co-cultured them with peripheral blood mononuclear cells (PBMCs). Our aim was to use imaging flow cytometry to investigate EV interaction with PBMCs as well as study their effects on T-lymphocyte populations to better understand their possible biological functions. As a conclusion, TREVs interacted with PBMCs more than EryEVs. Distinctively, TREVs were uptaken into CD11c+ monocytes rapidly and into CD19+ B-lymphocytes in 24 h. EryEVs were not uptaken into CD11c+ monocytes before the 24-h time point, and they were only seen on the surface of lymphocytes. Neither TREVs nor EryEV were uptaken into CD3+ T-lymphocytes and no effect on T-cell populations was detected. We have previously seen similar differences in targeting PC-3 cancer cells. Further studies are needed to address the functional properties of blood cell concentrate-derived EVs. This study demonstrates that imaging flow cytometry can be used to study the distinctive differences in the interaction and uptake of EVs. Considering our current and previous results, EVs present a new valuable component for the future development of blood-derived therapeutics.
Collapse
Affiliation(s)
| | - Reetta Pusa
- Finnish Red Cross Blood ServiceHelsinkiFinland
| | | | | | - Ulla Impola
- Finnish Red Cross Blood ServiceHelsinkiFinland
| |
Collapse
|
4
|
Zhang J, Hu X, Wang T, Xiao R, Zhu L, Ruiz M, Dupuis J, Hu Q. Extracellular vesicles in venous thromboembolism and pulmonary hypertension. J Nanobiotechnology 2023; 21:461. [PMID: 38037042 PMCID: PMC10691137 DOI: 10.1186/s12951-023-02216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Venous thromboembolism (VTE) is a multifactorial disease, and pulmonary hypertension (PH) is a serious condition characterized by pulmonary vascular remodeling leading with increased pulmonary vascular resistance, ultimately leading to right heart failure and death. Although VTE and PH have distinct primary etiologies, they share some pathophysiologic similarities such as dysfunctional vasculature and thrombosis. In both conditions there is solid evidence that EVs derived from a variety of cell types including platelets, monocytes, endothelial cells and smooth muscle cells contribute to vascular endothelial dysfunction, inflammation, thrombosis, cellular activation and communications. However, the roles and importance of EVs substantially differ between studies depending on experimental conditions and parent cell origins of EVs that modify the nature of their cargo. Numerous studies have confirmed that EVs contribute to the pathophysiology of VTE and PH and increased levels of various EVs in relation with the severity of VTE and PH, confirming its potential pathophysiological role and its utility as a biomarker of disease severity and as potential therapeutic targets.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
- Department of Pathology, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Xiaoyi Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Respiratory Medicine, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Matthieu Ruiz
- Department of Nutrition, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montréal, Québec, Canada
| | - Jocelyn Dupuis
- Montreal Heart Institute, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China.
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China.
| |
Collapse
|
5
|
Ma SR, Xia HF, Gong P, Yu ZL. Red Blood Cell-Derived Extracellular Vesicles: An Overview of Current Research Progress, Challenges, and Opportunities. Biomedicines 2023; 11:2798. [PMID: 37893171 PMCID: PMC10604118 DOI: 10.3390/biomedicines11102798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Red blood cell-derived extracellular vesicles (RBC EVs) are small, spherical fragments released from red blood cells. These vesicles, similar to EVs derived from other cell types, are crucial for intercellular communication processes and have been implicated in various physiological and pathological processes. The diagnostic and therapeutic potential of RBC EVs has garnered increasing attention in recent years, revealing their valuable role in the field of medicine. In this review, we aim to provide a comprehensive analysis of the current research status of RBC EVs. We summarize existing studies and highlight the progress made in understanding the characteristics and functions of RBC EVs, with a particular focus on their biological roles in different diseases. We also discuss their potential utility as diagnostic and prognostic biomarkers in diseases and as vectors for drug delivery. Furthermore, we emphasize the need for further research to achieve selective purification of RBC EVs and unravel their heterogeneity, which will allow for a deeper understanding of their diverse functions and exploration of their potential applications in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Si-Rui Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (S.-R.M.); (H.-F.X.)
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hou-Fu Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (S.-R.M.); (H.-F.X.)
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ping Gong
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (S.-R.M.); (H.-F.X.)
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
6
|
Kuebler WM, William N, Post M, Acker JP, McVey MJ. Extracellular vesicles: effectors of transfusion-related acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L327-L341. [PMID: 37310760 DOI: 10.1152/ajplung.00040.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Respiratory transfusion reactions represent some of the most severe adverse reactions related to receiving blood products. Of those, transfusion-related acute lung injury (TRALI) is associated with elevated morbidity and mortality. TRALI is characterized by severe lung injury associated with inflammation, pulmonary neutrophil infiltration, lung barrier leak, and increased interstitial and airspace edema that cause respiratory failure. Presently, there are few means of detecting TRALI beyond clinical definitions based on physical examination and vital signs or preventing/treating TRALI beyond supportive care with oxygen and positive pressure ventilation. Mechanistically, TRALI is thought to be mediated by the culmination of two successive proinflammatory hits, which typically comprise a recipient factor (1st hit-e.g., systemic inflammatory conditions) and a donor factor (2nd hit-e.g., blood products containing pathogenic antibodies or bioactive lipids). An emerging concept in TRALI research is the contribution of extracellular vesicles (EVs) in mediating the first and/or second hit in TRALI. EVs are small, subcellular, membrane-bound vesicles that circulate in donor and recipient blood. Injurious EVs may be released by immune or vascular cells during inflammation, by infectious bacteria, or in blood products during storage, and can target the lung upon systemic dissemination. This review assesses emerging concepts such as how EVs: 1) mediate TRALI, 2) represent targets for therapeutic intervention to prevent or treat TRALI, and 3) serve as biochemical biomarkers facilitating TRALI diagnosis and detection in at-risk patients.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin, Berlin, Germany
- Keenan Research Centre, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Nishaka William
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Martin Post
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jason P Acker
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Mark J McVey
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Yang L, Huang S, Zhang Z, Liu Z, Zhang L. Roles and Applications of Red Blood Cell-Derived Extracellular Vesicles in Health and Diseases. Int J Mol Sci 2022; 23:ijms23115927. [PMID: 35682606 PMCID: PMC9180222 DOI: 10.3390/ijms23115927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Red blood cell-derived extracellular vesicles (RBCEVs) are vesicles naturally produced by red blood cells and play multiple roles such as acting as cell-to-cell communication messengers in both normal physiological and diseased states. RBCEVs are highly promising delivery vehicles for therapeutic agents such as biomolecules and nucleic acids as they are easy to source, safe, and versatile. RBCEVs autonomously target the liver and pass the blood-brain barrier into the brain, which is highly valuable for the treatment of liver and brain diseases. RBCEVs can be modified by various functional units, including various functional molecules and nanoparticles, to improve their active targeting capabilities for tumors or other sites. Moreover, the RBCEV level is significantly shifted in many diseased states; hence, they can also serve as important biomarkers for disease diagnoses. It is clear that RBCEVs have considerable potential in multiple medical applications. In this review, we briefly introduce the biological roles of RBCEVs, presented interesting advances in RBCEV applications, and discuss several challenges that need to be addressed for their clinical translation.
Collapse
Affiliation(s)
- Lan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (L.Y.); (S.H.); (Z.Z.)
| | - Shiqi Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (L.Y.); (S.H.); (Z.Z.)
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (L.Y.); (S.H.); (Z.Z.)
| | - Zhenmi Liu
- Med-X Center for Materials, West China School of Public Health, Sichuan University, Chengdu 610041, China;
| | - Ling Zhang
- Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- Correspondence:
| |
Collapse
|
8
|
Hasse S, Julien AS, Duchez AC, Zhao C, Boilard E, Fortin PR, Bourgoin SG. Red blood cell-derived phosphatidylserine positive extracellular vesicles are associated with past thrombotic events in patients with systemic erythematous lupus. Lupus Sci Med 2022; 9:9/1/e000605. [PMID: 35260475 PMCID: PMC8905995 DOI: 10.1136/lupus-2021-000605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/18/2022] [Indexed: 12/14/2022]
Abstract
Background Extracellular vesicles (EVs) released by blood cells have proinflammation and procoagulant action. Patients with systemic lupus erythematosus (SLE) present high vascular inflammation and are prone to develop cardiovascular diseases. Therefore, we postulated that the EV populations found in blood, including platelet EVs (PEVs) and red blood cell EVs (REVs), are associated with SLE disease activity and SLE-associated cardiovascular accidents. Method We assessed autotaxin (ATX) plasma levels by ELISA, the platelet activation markers PAC1 and CD62P, ATX bound to platelets and the amounts of plasma PEVs and REVs by flow cytometry in a cohort of 102 patients with SLE, including 29 incident cases of SLE and 30 controls. Correlation analyses explored the associations with the clinical parameters. Result Platelet activation markers were increased in patients with SLE compared with healthy control, with the marker CD62P associated with the SLE disease activity index (SLEDAI). The incident cases show additional associations between platelet markers (CD62P/ATX and PAC1/CD62P) and the SLEDAI. Compared with controls, patients with SLE presented higher levels of PEVs, phosphatidylserine positive (PS+) PEVs, REVs and PS+ REVs, but there is no association with disease activity. When stratified according to the plasma level of PS+ REVs, the group of patients with SLE with a high level of PS+ REVs presented a higher number of past thrombosis events and higher ATX levels. Conclusion Incident and prevalent forms of SLE cases present similar levels of platelet activation markers, with CD62P correlating with disease activity. Though EVs are not associated with disease activity, the incidence of past thrombotic events is higher in patients with a high level of PS+ REVs.
Collapse
Affiliation(s)
- Stephan Hasse
- Axe Maladies Infectieuses et Immunitaires, Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Quebec city, Quebec, Canada
| | - Anne-Sophie Julien
- Département de mathématiques et statistique, Université Laval, Quebec city, Quebec, Canada
| | - Anne-Claire Duchez
- Axe Maladies Infectieuses et Immunitaires, Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Quebec city, Quebec, Canada
| | - Chenqi Zhao
- Axe Maladies Infectieuses et Immunitaires, Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Quebec city, Quebec, Canada
| | - Eric Boilard
- Département de microbiologie-infectiologie et immunologie, Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Quebec city, Quebec, Canada
| | - Paul R Fortin
- Département de Médecine, Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Quebec city, Quebec, Canada
| | - Sylvain G Bourgoin
- Département de microbiologie-infectiologie et immunologie, Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Quebec city, Quebec, Canada
| |
Collapse
|
9
|
Muszynski JA, Banks R, Reeder RW, Hall MW, Berg RA, Zuppa A, Shanley TP, Cornell TT, Newth CJL, Pollack MM, Wessel D, Doctor A, Lin JC, Harrison RE, Meert KL, Dean JM, Holubkov R, Carcillo JA. Outcomes Associated With Early RBC Transfusion in Pediatric Severe Sepsis: A Propensity-Adjusted Multicenter Cohort Study. Shock 2022; 57:88-94. [PMID: 34628452 PMCID: PMC8678199 DOI: 10.1097/shk.0000000000001863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Little is known about the epidemiology of and outcomes related to red blood cell (RBC) transfusion in septic children across multiple centers. We performed propensity-adjusted secondary analyses of the Biomarker Phenotyping of Pediatric Sepsis and Multiple Organ Failure (PHENOMS) study to test the hypothesis that early RBC transfusion is associated with fewer organ failure-free days in pediatric severe sepsis. METHODS Four hundred one children were enrolled in the parent study. Children were excluded from these analyses if they received extracorporeal membrane oxygenation (n = 22) or died (n = 1) before sepsis day 2. Propensity-adjusted analyses compared children who received RBC transfusion on or before sepsis day 2 (early RBC transfusion) with those who did not. Logistic regression was used to model the propensity to receive early RBC transfusion. A weighted cohort was constructed using stabilized inverse probability of treatment weights. Variables in the weighted cohort with absolute standardized differences >0.15 were added to final multivariable models. RESULTS Fifty percent of children received at least one RBC transfusion. The majority (68%) of first transfusions were on or before sepsis day 2. Early RBC transfusion was not independently associated with organ failure-free (-0.34 [95%CI: -2, 1.3] days) or PICU-free days (-0.63 [-2.3, 1.1]), but was associated with the secondary outcome of higher mortality (aOR 2.9 [1.1, 7.9]). CONCLUSIONS RBC transfusion is common in pediatric severe sepsis and may be associated with adverse outcomes. Future studies are needed to clarify these associations, to understand patient-specific transfusion risks, and to develop more precise transfusion strategies.
Collapse
Affiliation(s)
- Jennifer A Muszynski
- Division of Critical Care, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Russell Banks
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Ron W Reeder
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Mark W Hall
- Division of Critical Care, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Robert A Berg
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Athena Zuppa
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Thomas P Shanley
- Department of Pediatrics, Mott Children's Hospital, Ann Arbor, Michigan
| | - Timothy T Cornell
- Department of Pediatrics, Mott Children's Hospital, Ann Arbor, Michigan
| | - Christopher J L Newth
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Murray M Pollack
- Department of Pediatrics, Children's National Medical Center, Washington, District of Columbia
| | - David Wessel
- Department of Pediatrics, Children's National Medical Center, Washington, District of Columbia
| | - Allan Doctor
- Department of Pediatrics, Washington University at Saint Louis, Saint Louis, Missouri
| | - John C Lin
- Department of Pediatrics, Washington University at Saint Louis, Saint Louis, Missouri
| | - Rick E Harrison
- Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, California
| | - Kathleen L Meert
- Division of Critical Care, Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, Michigan
| | - J Michael Dean
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Richard Holubkov
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Joseph A Carcillo
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Ma X, Liu Y, Han Q, Han Y, Wang J, Zhang H. Transfusion‑related immunomodulation in patients with cancer: Focus on the impact of extracellular vesicles from stored red blood cells (Review). Int J Oncol 2021; 59:108. [PMID: 34841441 DOI: 10.3892/ijo.2021.5288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/05/2021] [Indexed: 01/28/2023] Open
Abstract
Red blood cell (RBC) transfusions may have a negative impact on the prognosis of patients with cancer, where transfusion‑related immunomodulation (TRIM) may be a significant contributing factor. A number of components have been indicated to be associated with TRIM. Among these, the impact of extracellular vesicles (EVs) has been garnering increasing attention from researchers. EVs are defined as nano‑scale, cell‑derived vesicles that carry a variety of bioactive molecules, including proteins, nucleic acids and lipids, to mediate cell‑to‑cell communication and exert immunoregulatory functions. RBCs in storage constitutively secrete EVs, which serve an important role in TRIM in patients with cancer receiving a blood transfusion. Therefore, the present review aimed to first summarize the available information on the biogenesis and characterization of EVs. Subsequently, the possible mechanisms of TRIM in patients with cancer and the impact of EVs on TRIM were discussed, aiming to provide an outlook for future studies, specifically for formulating recommendations for managing patients with cancer receiving RBC transfusions.
Collapse
Affiliation(s)
- Xingyu Ma
- Class 2018 Medical Inspection Technology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yanxi Liu
- Class 2018 Medical Inspection Technology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qianlan Han
- Class 2018 Medical Inspection Technology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jing Wang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hongwei Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
11
|
Valkov N, Das A, Tucker NR, Li G, Salvador AM, Chaffin MD, Pereira De Oliveira Junior G, Kur I, Gokulnath P, Ziegler O, Yeri A, Lu S, Khamesra A, Xiao C, Rodosthenous R, Srinivasan S, Toxavidis V, Tigges J, Laurent LC, Momma S, Kitchen R, Ellinor P, Ghiran I, Das S. SnRNA sequencing defines signaling by RBC-derived extracellular vesicles in the murine heart. Life Sci Alliance 2021; 4:4/12/e202101048. [PMID: 34663679 PMCID: PMC8548207 DOI: 10.26508/lsa.202101048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022] Open
Abstract
In a unique model of fluorescent based mapping of EV recipient cells, RBC-EVs were found to signal to cardiac cells and regulate gene expression in a model of ischemic heart failure. Extracellular vesicles (EVs) mediate intercellular signaling by transferring their cargo to recipient cells, but the functional consequences of signaling are not fully appreciated. RBC-derived EVs are abundant in circulation and have been implicated in regulating immune responses. Here, we use a transgenic mouse model for fluorescence-based mapping of RBC-EV recipient cells to assess the role of this intercellular signaling mechanism in heart disease. Using fluorescent-based mapping, we detected an increase in RBC-EV–targeted cardiomyocytes in a murine model of ischemic heart failure. Single cell nuclear RNA sequencing of the heart revealed a complex landscape of cardiac cells targeted by RBC-EVs, with enrichment of genes implicated in cell proliferation and stress signaling pathways compared with non-targeted cells. Correspondingly, cardiomyocytes targeted by RBC-EVs more frequently express cellular markers of DNA synthesis, suggesting the functional significance of EV-mediated signaling. In conclusion, our mouse model for mapping of EV-recipient cells reveals a complex cellular network of RBC-EV–mediated intercellular communication in ischemic heart failure and suggests a functional role for this mode of intercellular signaling.
Collapse
Affiliation(s)
- Nedyalka Valkov
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Avash Das
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Nathan R Tucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.,Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA.,Masonic Medical Research Institute, Utica, NY, USA
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Ane M Salvador
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Mark D Chaffin
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
| | | | - Ivan Kur
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Priyanka Gokulnath
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Olivia Ziegler
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Ashish Yeri
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Shulin Lu
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Aushee Khamesra
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Chunyang Xiao
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Srimeenakshi Srinivasan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - John Tigges
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Robert Kitchen
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.,Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
| | - Ionita Ghiran
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
12
|
Hasse S, Duchez AC, Fortin P, Boilard E, Bourgoin SG. Interplay between LPA2 and LPA3 in LPA-mediated phosphatidylserine cell surface exposure and extracellular vesicles release by erythrocytes. Biochem Pharmacol 2021; 192:114667. [PMID: 34216604 DOI: 10.1016/j.bcp.2021.114667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022]
Abstract
Evidence is growing for the role of red blood cells (RBCs) in vascular homeostasis, including thrombogenic events and inflammation. Lysophosphatidic acid (LPA) is known to induce phosphatidylserine (PS) exposure and the release of RBC Extracellular Vesicles (REVs). Using high sensitivity flow cytometry, we examined the effects and the mechanisms by which the LPA species commonly found in human plasma could activate RBCs. We report that LPA 16:0, 18:0 and 18:1, but not LPA 20:4, induced PS exposure and the release of small PS- and large PS+ REVs through LPA3 receptor signalling in RBCs. The release of large PS+ REVs required higher concentrations of LPA. RBCs were not activated by LPA 20:4. Interestingly, blockade of LPA2 enhanced LPA-mediated PS- REV release in RBCs. Furthermore, LPA receptor agonists and antagonists highlighted that LPA 20:4 inhibited LPA3-dependent PS exposure and, through the LPA2 receptor, inhibited PS- REV production. Activation of RBCs with LPA 18:1 in normal plasma stimulated the release of PS- and PS+ REVs. REVs released in response to LPA were similar to those found in the plasma of systemic lupus erythematosus patients. Our results suggest that LPA species exhibit different biological activities in RBCs through targeting LPA2 and/or LPA3 receptors.
Collapse
Affiliation(s)
- Stephan Hasse
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC G1V 4G2, Canada.
| | - Anne-Claire Duchez
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de médecine, Faculté de médecine, Université Laval, QC G1V 4G2, Canada
| | - Paul Fortin
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de médecine, Faculté de médecine, Université Laval, QC G1V 4G2, Canada.
| | - Eric Boilard
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC G1V 4G2, Canada.
| | - Sylvain G Bourgoin
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
13
|
Hermida-Nogueira L, García Á. Extracellular vesicles in the transfusion medicine field: The potential of proteomics. Proteomics 2021; 21:e2000089. [PMID: 33754471 DOI: 10.1002/pmic.202000089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 11/07/2022]
Abstract
In transfusion centres, blood components are divided and stored following specific guidelines. The storage temperature and time vary among the blood cells but all of them release extracellular vesicles (EVs) under blood bank conditions. The clinical impact of such vesicles in blood components for transfusion is an object of debate, but should be considered and is being investigated. In this context, proteomics is an excellent tool to study the cargo and composition of EVs derived from red blood cells and platelets, since such vesicles are enriched in lipids and proteins. The development of quantitative mass spectrometry techniques and the evolution of bioinformatics have allowed the identification of novel EVs biomarkers for different diseases. In this context, the application of high coverage proteomic tools to the analysis of EVs in the transfusion medicine field would provide information about storage lesions and possible transfusion adverse reactions. This viewpoint article approaches the potential of proteomics to investigate the impact of EVs in blood bank transfusion components, especially red blood cells and platelets.
Collapse
Affiliation(s)
- Lidia Hermida-Nogueira
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ángel García
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
14
|
Thangaraju K, Neerukonda SN, Katneni U, Buehler PW. Extracellular Vesicles from Red Blood Cells and Their Evolving Roles in Health, Coagulopathy and Therapy. Int J Mol Sci 2020; 22:E153. [PMID: 33375718 PMCID: PMC7796437 DOI: 10.3390/ijms22010153] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Red blood cells (RBCs) release extracellular vesicles (EVs) including both endosome-derived exosomes and plasma-membrane-derived microvesicles (MVs). RBC-derived EVs (RBCEVs) are secreted during erythropoiesis, physiological cellular aging, disease conditions, and in response to environmental stressors. RBCEVs are enriched in various bioactive molecules that facilitate cell to cell communication and can act as markers of disease. RBCEVs contribute towards physiological adaptive responses to hypoxia as well as pathophysiological progression of diabetes and genetic non-malignant hematologic disease. Moreover, a considerable number of studies focus on the role of EVs from stored RBCs and have evaluated post transfusion consequences associated with their exposure. Interestingly, RBCEVs are important contributors toward coagulopathy in hematological disorders, thus representing a unique evolving area of study that can provide insights into molecular mechanisms that contribute toward dysregulated hemostasis associated with several disease conditions. Relevant work to this point provides a foundation on which to build further studies focused on unraveling the potential roles of RBCEVs in health and disease. In this review, we provide an analysis and summary of RBCEVs biogenesis, composition, and their biological function with a special emphasis on RBCEV pathophysiological contribution to coagulopathy. Further, we consider potential therapeutic applications of RBCEVs.
Collapse
Affiliation(s)
- Kiruphagaran Thangaraju
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
| | - Sabari Nath Neerukonda
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Upendra Katneni
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
| | - Paul W. Buehler
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Assessment of extracellular vesicles using IFC for application in transfusion medicine. Transfus Apher Sci 2020; 59:102942. [PMID: 32943325 DOI: 10.1016/j.transci.2020.102942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) have been shown to be involved in various physiological and pathophysiological processes. With respect to Transfusion Medicine, the accumulation of EVs in blood products during hypothermic storage is an indicator of the storage lesion and reportedly correlates with adverse effects after transfusion, including but not limited to immunomodulation, activation of coagulation, endothelial activation, and others. To optimally reduce such an impact on blood product quality degradation and improve post-transfusion outcomes, better methods for detection, enumeration, characterisation by size and phenotype, and functional involvement of EVs in different pathophysiological and physiological processes are required. Currently, Imaging Flow Cytometry (IFC) technology provides the most comprehensive assessment of EV subsets in different body fluids. The unique ability of IFC to detect EVs of 20 nm size by registration of a single pixel of fluorescence signal makes this approach highly promising for comprehensive studies of EVs. In this review, we will focus on the recent breakthrough and advantages of using the ImageStreamX MKII IFC platform for the detection and characterisation of EVs and its future prospects for routine application of IFC in Transfusion Medicine.
Collapse
|
16
|
Borgheti-Cardoso LN, Kooijmans SAA, Chamorro LG, Biosca A, Lantero E, Ramírez M, Avalos-Padilla Y, Crespo I, Fernández I, Fernandez-Becerra C, Del Portillo HA, Fernàndez-Busquets X. Extracellular vesicles derived from Plasmodium-infected and non-infected red blood cells as targeted drug delivery vehicles. Int J Pharm 2020; 587:119627. [PMID: 32653596 DOI: 10.1016/j.ijpharm.2020.119627] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
Among several factors behind drug resistance evolution in malaria is the challenge of administering overall doses that are not toxic for the patient but that, locally, are sufficiently high to rapidly kill the parasites. Thus, a crucial antimalarial strategy is the development of drug delivery systems capable of targeting antimalarial compounds to Plasmodium with high specificity. In the present study, extracellular vesicles (EVs) have been evaluated as a drug delivery system for the treatment of malaria. EVs derived from naive red blood cells (RBCs) and from Plasmodium falciparum-infected RBCs (pRBCs) were isolated by ultrafiltration followed by size exclusion chromatography. Lipidomic characterization showed that there were no significant qualitative differences between the lipidomic profiles of pRBC-derived EVs (pRBC-EVs) and RBC-derived EVs (RBC-EVs). Both EVs were taken up by RBCs and pRBCs, although pRBC-EVs were more efficiently internalized than RBC-EVs, which suggested their potential use as drug delivery vehicles for these cells. When loaded into pRBC-EVs, the antimalarial drugs atovaquone and tafenoquine inhibited in vitro P. falciparum growth more efficiently than their free drug counterparts, indicating that pRBC-EVs can potentially increase the efficacy of several small hydrophobic drugs used for the treatment of malaria.
Collapse
Affiliation(s)
- Livia Neves Borgheti-Cardoso
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain.
| | | | - Lucía Gutiérrez Chamorro
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Arnau Biosca
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Elena Lantero
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Miriam Ramírez
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Yunuen Avalos-Padilla
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Isabel Crespo
- Plataforma de Citometria, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Irene Fernández
- Unitat d'Espectrometria de Masses de Caracterització Molecular, CCiTUB, Universitat de Barcelona (UB), Barcelona, Spain
| | - Carmen Fernandez-Becerra
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain; Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Hernando A Del Portillo
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain; Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB, UB), Barcelona, Spain.
| |
Collapse
|
17
|
van Manen L, Peters AL, van der Sluijs PM, Nieuwland R, van Bruggen R, Juffermans NP. Clearance and phenotype of extracellular vesicles after red blood cell transfusion in a human endotoxemia model. Transfus Apher Sci 2019; 58:508-511. [PMID: 31253560 DOI: 10.1016/j.transci.2019.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/21/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND In the critically ill, extracellular vesicles (EV) from red blood cells (RBC) have been related to adverse effects of blood transfusion. Stored RBC units contain high concentrations of RBC- EVs, thereby increasing the concentration of EVs in the circulation after transfusion. The mechanisms underlying the clearance of donor RBC-EVs after transfusion are unknown. This study investigates whether membrane markers that are associated with clearance of RBCs are also implicated in clearance of RBC-EVs in human endotoxemic recipients of a transfusion. METHODS Six volunteers were injected with Escherichia coli lipopolysaccharide, and after two hours transfused with an autologous RBC unit donated 35 days earlier. Samples were collected from the RBC unit and the volunteers before and after transfusion. RBC-EVs were labeled with (anti) glycophorin A, combined with (anti) CD44, CD47, CD55, CD59, CD147, or lactadherin to detect phosphatidylserine (PS) and analyzed on a A50 Micro flow cytometer. RESULTS In the RBC unit, RBC-EVs solely exposed PS (7.8%). Before transfusion, circulating RBC-EVs mainly exposed PS (22%) and CD59 (9.1%), the expression of the other membrane markers was much lower. After transfusion, the concentration of RBC- EVs increased 2.4-fold in two hours. Thereafter, the EV concentration decreased towards baseline levels. The fraction of EVs positive for all tested membrane markers decreased after transfusion. CONCLUSION Besides a minor fraction of PS-exposing EVs, RBC-EVs produced during storage do not expose detectable levels of RBC membrane markers that are associated with clearance, which is in contrast to the EVs produced by the circulating RBCs.
Collapse
Affiliation(s)
- Lisa van Manen
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Blood Cell Research, Sanquin research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Anna L Peters
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - P Matthijs van der Sluijs
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, and Vesicle Observation Center, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole P Juffermans
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Alshalani A, Li W, Juffermans NP, Seghatchian J, Acker JP. Biological mechanisms implicated in adverse outcomes of sex mismatched transfusions. Transfus Apher Sci 2019; 58:351-356. [DOI: 10.1016/j.transci.2019.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Extracellular vesicles: exosomes, microparticles, their parts, and their targets to enable their biomanufacturing and clinical applications. Curr Opin Biotechnol 2019; 60:89-98. [PMID: 30851486 DOI: 10.1016/j.copbio.2019.01.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are membrane vesicles, the submicron-size microparticles and the nanometer-size exosomes, that carry RNAs, proteins and lipids from their parent cells. EV generation takes place under cellular activation or stress. Cells use EVs to communicate with other cells by delivering signals through their content and surface proteins. Beyond diagnostic and discovery applications, EVs are excellent candidates for enabling safe and potent cell and gene therapies, especially those requiring strong target specificity. Here we examine EVs, their engineering and applications by dissecting mechanistic and engineering aspects of their components that endow them with their unique capabilities: their cargo and membranes proteins. Both EV cargo and membranes can be independently engineered and used for various applications. We review early efforts for their biomanufacturing.
Collapse
|
20
|
Fendl B, Eichhorn T, Weiss R, Tripisciano C, Spittler A, Fischer MB, Weber V. Differential Interaction of Platelet-Derived Extracellular Vesicles With Circulating Immune Cells: Roles of TAM Receptors, CD11b, and Phosphatidylserine. Front Immunol 2018; 9:2797. [PMID: 30619243 PMCID: PMC6297748 DOI: 10.3389/fimmu.2018.02797] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Secretion and exchange of biomolecules by extracellular vesicles (EVs) are crucial in intercellular communication and enable cells to adapt to alterations in their microenvironment. EVs are involved in a variety of cellular processes under physiological conditions as well as in pathological settings. In particular, they exert profound effects on the innate immune system, and thereby are also capable of modulating adaptive immunity. The mechanisms underlying their interaction with their recipient cells, particularly their preferential association with monocytes and granulocytes in the circulation, however, remain to be further clarified. Surface molecules exposed on EVs are likely to mediate immune recognition and EV uptake by their recipient cells. Here, we investigated the involvement of Tyro3, Axl, and Mer (TAM) tyrosine kinase receptors and of integrin CD11b in the binding of platelet-derived EVs, constituting the large majority of circulating EVs, to immune cells in the circulation. Flow cytometry and Western Blotting demonstrated a differential expression of TAM receptors and CD11b on monocytes, granulocytes, and lymphocytes, as well as on monocyte subsets. Of the TAM receptors, only Axl and Mer were detected at low levels on monocytes and granulocytes, but not on lymphocytes. Likewise, CD11b was present on circulating monocytes and granulocytes, but remained undetectable on lymphocytes. Differentiation of monocytes into classical, intermediate, and non-classical monocyte subsets revealed distinct expression patterns of Mer and activated CD11b. Co-incubation of isolated monocytes and granulocytes with platelet-derived EVs showed that the binding of EVs to immune cells was dependent on Ca++. Our data do not support a particular role for TAM receptors or for activated CD11b in the association of platelet-derived EVs with monocytes and granulocytes in the circulation, as anti-TAM antibodies did not interfere with EV binding to isolated immune cells, as binding was not dependent on the presence of TIM4 acting synergistically with TAM receptors, and as neither low levels of Gas6, required as a linker between phosphatidylserine (PS) on the EV surface and TAM receptors on immune cells, nor masking of PS on the EV surface did interfere with EV binding.
Collapse
Affiliation(s)
- Birgit Fendl
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Tanja Eichhorn
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - René Weiss
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Carla Tripisciano
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry & Surgical Research Laboratories, Medical University of Vienna, Vienna, Austria
| | - Michael B Fischer
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Viktoria Weber
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| |
Collapse
|
21
|
Wirtz MR, Jurgens J, Zuurbier CJ, Roelofs JJTH, Spinella PC, Muszynski JA, Carel Goslings J, Juffermans NP. Washing or filtering of blood products does not improve outcome in a rat model of trauma and multiple transfusion. Transfusion 2018; 59:134-145. [PMID: 30461025 PMCID: PMC7379301 DOI: 10.1111/trf.15039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Transfusion is associated with organ failure and nosocomial infection in trauma patients, which may be mediated by soluble bioactive substances in blood products, including extracellular vesicles (EVs). We hypothesize that removing EVs, by washing or filtering of blood products, reduces organ failure and improves host immune response. MATERIALS AND METHODS Blood products were prepared from syngeneic rat blood. EVs were removed from RBCs and platelets by washing. Plasma was filtered through a 0.22‐μm filter. Rats were traumatized by crush injury to the intestines and liver, and a femur was fractured. Rats were hemorrhaged until a mean arterial pressure of 40 mm Hg and randomized to receive resuscitation with standard or washed/filtered blood products, in a 1:1:1 ratio. Sham controls were not resuscitated. Ex vivo whole blood stimulation tests were performed and histopathology was done. RESULTS Washing of blood products improved quality metrics compared to standard products. Also, EV levels reduced by 12% to 77%. The coagulation status, as assessed by thromboelastometry, was deranged in both groups and normalized during transfusion, without significant differences. Use of washed/filtered products did not reduce organ failure, as assessed by histopathologic score and biochemical measurements. Immune response ex vivo was decreased following transfusion compared to sham but did not differ between transfusion groups. CONCLUSION Filtering or washing of blood products improved biochemical properties and reduced EV counts, while maintaining coagulation abilities. However, in this trauma and transfusion model, the use of optimized blood components did not attenuate organ injury or immune suppression.
Collapse
Affiliation(s)
- Mathijs R Wirtz
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Trauma Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - Jordy Jurgens
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Philip C Spinella
- Department of Pediatrics, Division of Critical Care, Washington University in St Louis, St Louis, Missouri
| | - Jennifer A Muszynski
- Department of Pediatrics, Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - J Carel Goslings
- Department of Trauma Surgery, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | - Nicole P Juffermans
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Leal JKF, Adjobo-Hermans MJW, Bosman GJCGM. Red Blood Cell Homeostasis: Mechanisms and Effects of Microvesicle Generation in Health and Disease. Front Physiol 2018; 9:703. [PMID: 29937736 PMCID: PMC6002509 DOI: 10.3389/fphys.2018.00703] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Red blood cells (RBCs) generate microvesicles to remove damaged cell constituents such as oxidized hemoglobin and damaged membrane constituents, and thereby prolong their lifespan. Damage to hemoglobin, in combination with altered phosphorylation of membrane proteins such as band 3, lead to a weakening of the binding between the lipid bilayer and the cytoskeleton, and thereby to membrane budding and microparticle shedding. Microvesicle generation is disturbed in patients with RBC-centered diseases, such as sickle cell disease, glucose 6-phosphate dehydrogenase deficiency, spherocytosis or malaria. A disturbance of the membrane-cytoskeleton interaction is likely to be the main underlying mechanism, as is supported by data obtained from RBCs stored in blood bank conditions. A detailed proteomic, lipidomic and immunogenic comparison of microvesicles derived from different sources is essential in the identification of the processes that trigger vesicle generation. The contribution of RBC-derived microvesicles to inflammation, thrombosis and autoimmune reactions emphasizes the need for a better understanding of the mechanisms and consequences of microvesicle generation.
Collapse
Affiliation(s)
- Joames K F Leal
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Giel J C G M Bosman
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
23
|
Raeven P, Zipperle J, Drechsler S. Extracellular Vesicles as Markers and Mediators in Sepsis. Am J Cancer Res 2018; 8:3348-3365. [PMID: 29930734 PMCID: PMC6010985 DOI: 10.7150/thno.23453] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/14/2018] [Indexed: 01/28/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. It remains a highly lethal condition in which current tools for early diagnosis and therapeutic decision-making are far from ideal. Extracellular vesicles (EVs), 30 nm to several micrometers in size, are released from cells upon activation and apoptosis and express membrane epitopes specific for their parental cells. Since their discovery two decades ago, their role as biomarkers and mediators in various diseases has been intensively studied. However, their potential importance in the sepsis syndrome has gained attention only recently. Sepsis and EVs are both complex fields in which standardization has long been overdue. In this review, several topics are discussed. First, we review current studies on EVs in septic patients with emphasis on their variable quality and clinical utility. Second, we discuss the diagnostic and therapeutic potential of EVs as well as their role as facilitators of cell communication via micro RNA and the relevance of micro-organism-derived EVs. Third, we give an overview over the potential beneficial but also detrimental roles of EVs in sepsis. Finally, we focus on the role of EVs in selected intensive care scenarios such as coagulopathy, mechanical ventilation and blood transfusion. Overall, the prospect for EV use in septic patients is bright, ranging from rapid and precise (point-of-care) diagnostics, prevention of harmful iatrogenic interventions, to using EVs as guides of individualized therapy. Before the above is achieved, however, the EV research field requires reliable standardization of the current methods and development of new analytical procedures that can close the existing technological gaps.
Collapse
|
24
|
Differential Interaction of Platelet-Derived Extracellular Vesicles with Leukocyte Subsets in Human Whole Blood. Sci Rep 2018; 8:6598. [PMID: 29700367 PMCID: PMC5920058 DOI: 10.1038/s41598-018-25047-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022] Open
Abstract
Secretion and exchange of biomolecules via extracellular vesicles (EVs) are crucial mechanisms in intercellular communication, and the roles of EVs in infection, inflammation, or thrombosis have been increasingly recognized. EVs have emerged as central players in immune regulation and can enhance or suppress the immune response, depending on the state of donor and recipient cells. We investigated the interaction of blood cell-derived EVs with leukocyte subpopulations (monocytes and their subsets, granulocytes, B cells, T cells, and NK cells) directly in whole blood using a combination of flow cytometry, imaging flow cytometry, cell sorting, and high resolution confocal microscopy. Platelet-derived EVs constituted the majority of circulating EVs and were preferentially associated with granulocytes and monocytes, while they scarcely interacted with lymphocytes. Further flow cytometric differentiation of monocyte subsets provided clear indications for a preferential association of platelet-derived EVs with intermediate (CD14++CD16+) monocytes in whole blood.
Collapse
|
25
|
Serrano K, Pambrun C, Levin E, Devine DV. Supernatant reduction of stored gamma-irradiated red blood cells minimizes potentially harmful substances present in transfusion aliquots for neonates. Transfusion 2017; 57:3009-3018. [PMID: 28782124 DOI: 10.1111/trf.14270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND In neonate transfusion, the use of a dedicated red blood cell (RBC) unit decreases donor exposure. A separate safety measure involves gamma irradiation of the RBCs to abrogate the possibility of transfusion-associated graft-versus-host disease. However, in combination, storage of gamma-irradiated RBCs leads to accumulation of potentially harmful substances in the supernatant. STUDY DESIGN AND METHODS For this study, RBCs were pooled and split into three study arms. Centrifugation or gravity was used to pack RBCs of matched units thereby reducing the amount of supernatant that would be present in neonate transfusion aliquots; these were compared to matched control units. Supernatant measurements of potassium, hemoglobin (Hb), RBC microvesicle (RMV) content, and mannitol were made in aliquots prepared weekly up to 21 days after gamma irradiation. RBC morphology and osmotic fragility were also assessed to determine if supernatant reduction methods affected the storage lesion. RESULTS Potassium and mannitol were significantly decreased in transfusion aliquots prepared with either of the supernatant reduction methods. On Day 21, potassium levels from supernatant-reduced aliquots were below those of Day 7 control aliquots. A decrease in free Hb was only detected on Day 21 in centrifuged aliquots. RMVs were significantly reduced in centrifuged aliquots and significantly increased in gravity-settled aliquots. The only measurable effect on storage lesion was a small increase in osmotic fragility of the RBCs subjected to supernatant reduction. CONCLUSION Supernatant reduction by centrifugation effectively reduces potassium, mannitol, and RMVs in aliquots from gamma-irradiated RBCs stored up to 21 days.
Collapse
Affiliation(s)
- Katherine Serrano
- Department of Pathology and Laboratory Medicine and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Canadian Blood Services Centre for Innovation, Vancouver, British Columbia, Canada
| | - Chantale Pambrun
- Canadian Blood Services Donor and Clinical Services, Ottawa, Ontario, Canada.,IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Elena Levin
- Department of Pathology and Laboratory Medicine and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Canadian Blood Services Centre for Innovation, Vancouver, British Columbia, Canada
| | - Dana V Devine
- Department of Pathology and Laboratory Medicine and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Canadian Blood Services Centre for Innovation, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Abstract
Extracellular vesicles (EVs) can modulate the host immune response, executing both pro- and anti-inflammatory effects. As EVs increasingly gain attention as potential carriers for targeted gene and drug delivery, knowledge on the effects of EVs on the host immune response is important. This review will focus on the ability of EVs to trigger a pro-inflammatory host response by activating target cells. The overall view is that EVs can augment an inflammatory response, thereby potentially contributing to organ injury. This pro-inflammatory potential of EVs may hamper its use for therapeutic drug delivery. Whether removal of EVs as a means to reduce a pro-inflammatory or pro-coagulant response during hyper-inflammatory conditions is beneficial remains to be determined. Prior to any proposed therapeutic application, there is a need for further studies on the role of EVs in physiology and pathophysiology using improved detection and characterization methods to elucidate the roles of EVs in inflammatory conditions.
Collapse
|
27
|
Tzounakas VL, Seghatchian J, Grouzi E, Kokoris S, Antonelou MH. Red blood cell transfusion in surgical cancer patients: Targets, risks, mechanistic understanding and further therapeutic opportunities. Transfus Apher Sci 2017. [PMID: 28625825 DOI: 10.1016/j.transci.2017.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Anemia is present in more than half of cancer patients and appears to be an independent prognostic factor of short- and long-term adverse outcomes. It increases in the advanced period of cancer and perioperatively, in patients with solid tumors who undergo surgery. As a result, allogeneic red blood cell (RBC) transfusion is an indispensable treatment in cancer. However, its safety remains controversial, based on several laboratory and clinical data reporting a linkage with increased risk for cancer recurrence, infection and cancer-related mortality. Immunological, inflammatory and thrombotic reactions mediated by the residual leukocytes and platelets, the stored RBCs per se, the biological response modifiers and the plasticizer of the unit may underlie infection and tumor-promoting effects. Although the causality between transfusion and infection has been established, the effects of transfusion on cancer recurrence remain confusing; this is mainly due to the extreme biological heterogeneity that characterizes RBC donations and cancer context. In fact, the functional interplay between donation-associated factors and recipient characteristics, including tumor biology per se, inflammation, infection, coagulation and immune activation state and competence may synergistically and individually define the clinical impact of each transfusion in any given cancer patient. Our understanding of how the potential risk is mediated is important to make RBC transfusion safer and to pave the way for novel, promising and highly personalized strategies for the treatment of anemia in surgical cancer patients.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Jerard Seghatchian
- International Consultancy in Blood Component Quality/Safety Improvement, Audit/Inspection and DDR Strategy, London, UK.
| | - Elissavet Grouzi
- Department of Transfusion Service and Clinical Hemostasis, "Saint Savvas" Oncology Hospital, Athens, Greece
| | - Styliani Kokoris
- Department of Blood Transfusion, Medical School, "Attikon" General Hospital, NKUA, Athens, Greece
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| |
Collapse
|